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SMALL-TIME LOCAL CONTROLLABILITY OF THE BILINEAR

SCHRÖDINGER EQUATION, DESPITE A QUADRATIC

OBSTRUCTION, THANKS TO A CUBIC TERM

MÉGANE BOURNISSOU∗

Abstract. We consider a 1D linear Schrödinger equation, on a bounded interval, with
Dirichlet boundary conditions and bilinear control. We study its controllability around
the ground state when the linearized system is not controllable. More precisely, we study
to what extent the nonlinear terms of the expansion can recover the directions lost at
the first order.

In the works [9, 16], for any positive integer n, assumptions have been formulated
under which the quadratic term induces a drift in the nonlinear dynamics, quantified
by the H−n-norm of the control. This drift is an obstruction to the small-time local
controllability (STLC) under a smallness assumption on the controls in regular spaces.

In this paper, we prove that for controls small in less regular spaces, the cubic term can
recover the controllability lost at the linear level, despite the quadratic drift. The proof
is inspired by Sussman’s method to prove the sufficiency of the S(θ) condition for STLC
of ODEs. However, it uses a different global strategy relying on a new concept of tangent
vector, better adapted to the infinite-dimensional setting of PDEs. Given a target, we first
realize the expected motion along the lost direction by using control variations for which
the cubic term dominates the quadratic one. Then, we correct the other components
exactly, by using the STLC in projection result of [15], with simultaneous estimates of
weak norms of the control. These estimates ensure that the new error along the lost
direction is negligible, and we conclude with the Brouwer fixed point theorem.

1. Introduction

1.1. Description of the control system. Let T > 0. In this paper, we consider the 1D
linear Schrödinger equation given by,{

i∂tψ(t, x) = −∂2
xψ(t, x)− u(t)µ(x)ψ(t, x), (t, x) ∈ (0, T )× (0, 1),

ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, T ).
(1)

This equation is used in quantum physics to describe a quantum particle stuck in an
infinite potential well and subjected to a uniform electric field whose amplitude is given
by u(t). The function µ : (0, 1) → R depicts the dipolar moment of the particle. This
equation is a bilinear control system where the state is the wave function ψ such that for
all time ‖ψ(t)‖L2(0,1) = 1 and u : (0, T )→ R denotes a scalar control.

1.2. Functional settings. Unless otherwise specified, in space, we will work with complex
valued functions. The Lebesgue space L2(0, 1) is equipped with the hermitian scalar
product given by

〈f, g〉 :=

∫ 1

0
f(x)g(x)dx, ∀f, g ∈ L2(0, 1).
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Let S be the unit-sphere of L2(0, 1). The operator A is defined by

Dom(A) := H2(0, 1) ∩H1
0 (0, 1) and Aϕ := −d

2ϕ

dx2
.

Its eigenvalues and eigenvectors are respectively given by

∀j ∈ N∗, λj := (jπ)2 and ϕj :=
√

2 sin(jπ·).

The family of eigenvectors (ϕj)j∈N∗ is an orthonormal basis of L2(0, 1). We denote by,

∀j ∈ N∗, ψj(t, x) := ϕj(x)e−iλjt, ∀(t, x) ∈ R× [0, 1],

the solutions of the Schrödinger equation (1) with u ≡ 0 and initial data ϕj at time t = 0.
When j = 1, ψ1 is called the ground state. We also introduce the normed spaces linked
to the operator A, given by, for all s > 0,

Hs
(0)(0, 1) := Dom(A

s
2 )

endowed with the norm ‖ϕ‖Hs
(0)

(0,1) := ‖(〈ϕ,ϕj〉)‖hs(N∗) :=

+∞∑
j=1

|js〈ϕ,ϕj〉|2
 1

2

.

Let T > 0. For u ∈ L1(0, T ), the family (un)n∈N of the iterated primitives of u is defined
by induction as,

u0 := u and ∀n ∈ N, un+1(t) :=

∫ t

0
un(τ)dτ, t ∈ [0, T ].

Sometimes, to uniformize the notations of the primitives and derivatives of u, we will write
u(n) when n is negative to denote u|n|, the |n|-th primitive of u.

We will also consider, for any integer k ∈ N, Hk ((0, T ),R), the usual integer-order real
Sobolev space, equipped with the usual Hk(0, T )-norm and Hk

0 (0, T ) the adherence of
C∞c (0, T ), the set of functions with compact support inside (0, T ), for the topology ‖ ·
‖Hk(0,T ). For any integer k ∈ N∗, a negative Sobolev norm is defined by,

‖u‖H−k(0,T ) := |u1(T )|+ ‖uk‖L2(0,T ), u ∈ L2(0, T ). (2)

These norms don’t coincide with the usual H−k-norms, but this definition is taken as these
quantities arise naturally in both the nonlinear and linearized dynamics.

1.3. Assumptions on the dipolar moment µ. Let us make precise the assumptions
on the dipolar moment µ we shall consider in the following.

(Hreg) The function µ is in H11((0, 1),R) with the following boundary conditions

µ′(0) = µ′(1) = µ(3)(0) = µ(3)(1) = 0. (3)

(Hlin) There exists an integer K ∈ N∗ − {1} such that

〈µϕ1, ϕK〉 = 0, (4)

and there exists c > 0 such that for all j ∈ N∗ − {K}, |〈µϕ1, ϕj〉| >
c

j7
. (5)

Define, for p = 1, 2 and 3, the following quadratic (with respect to µ) coefficients,

ApK := (−1)p−1
+∞∑
j=1

(
λj −

λ1 + λK
2

)
(λK − λj)p−1(λj − λ1)p−1〈µϕ1, ϕj〉〈µϕK , ϕj〉. (6)
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(Hquad) The first two quadratic coefficients vanish and the third one does not vanish

A1
K = 0, (7)

A2
K = 0, (8)

A3
K 6= 0. (9)

(Hcub) The following cubic (with respect to µ) coefficient does not vanish

CK :=
+∞∑
j=1

(λ1 − λj) 〈µϕ1, ϕj〉〈µ′2ϕK , ϕj〉 −
+∞∑
j=1

(λj − λK) 〈µϕj , ϕK〉〈µ′2ϕ1, ϕj〉 6= 0. (10)

Remark 1.1. Notice that, under (Hreg), integrations by parts and Riemann-Lebesgue
lemma lead to

∀q ∈ N∗, 〈µϕq, ϕj〉 =
12q

π6j7

(
(−1)j+qµ(5)(1)− µ(5)(0)

)
+ o
j→+∞

(
1

j7

)
. (11)

Thus, all the series considered in (6) and (10) converge absolutely.

Remark 1.2. For smooth vector fields X,Y in C∞(Rd,Rd), the Lie bracket [X,Y ] is
defined as the following smooth vector field: [X,Y ](x) := X ′(x)Y (x)− Y ′(x)X(x). Notice
that the sign convention chosen is not usual. We also define by induction

ad0
X(Y ) := Y and ∀k ∈ N, adk+1

X (Y ) := [X, adkX(Y )].

At least formally, the assumption (Hquad) can be written in terms of Lie brackets as

∀p = 1, 2, 〈[adp−1
A (µ), adpA(µ)]ϕ1, ϕK〉 = 0 and 〈[ad2

A(µ), ad3
A(µ)]ϕ1, ϕK〉 6= 0.

Notice that the last Lie bracket is exactly the one along which the quadratic order adds a
drift, denying W 3,∞-STLC (see Definition 1.3) for finite-dimensional systems ẋ = f0(x) +
uf1(x) in [7, Theorem 3]. Similarly, (Hcub) can be written as

〈[adA(µ), [adA(µ), µ]]ϕ1, ϕK〉 6= 0.

All these computations can be made rigorous when µ satisfies (Hreg) for instance. In that

case, the iterated Lie brackets are well-defined (for all k ∈ N∗, to compute adkA(µ)ϕ1, one

needs to check that adk−1
A (µ)ϕ1 is in Dom(A)) and denote commutators of operators.

At a heuristic level, assumptions (Hreg), (Hlin), (Hquad) and (Hcub) entail that, in the
asymptotic of small controls (in a norm to be specified), the leading terms of the solution
ψ of the Schrödinger equation (1) along the lost direction are given by

〈ψ(T ), ϕKe
−iλ1T 〉 ≈ −iA3

K

∫ T

0
u3(t)2dt+ iCK

∫ T

0
u1(t)2u2(t)dt. (12)

The existence of a function µ satisfying (Hreg), (Hlin), (Hquad) and (Hcub) is proved in
Appendix A.

1.4. Main result. First, we state the notion of small-time local controllability (STLC)
used in this paper, stressing the smallness assumption imposed on the control, as it plays
a key role in the validity of controllability results.

Definition 1.3. Let (ET , ‖ · ‖ET ) be a family of normed vector spaces of real functions
defined on [0, T ] for T > 0. The system (1) is said to be E-STLC around the ground
state if there exists s ∈ N such that for every T > 0, for every η > 0, there exists
δ > 0 such that for every ψf ∈ S ∩Hs

(0)(0, 1) with ‖ψf − ψ1(T )‖Hs
(0)

(0,1) < δ, there exists

u ∈ L2((0, T ),R) ∩ ET with ‖u‖ET < η such that the solution ψ of (1) associated to the
initial condition ϕ1 at time t = 0 and the control u satisfies ψ(T ) = ψf .
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When the linearized system around an equilibrium is controllable, using a fixed-point
theorem, one can hope to prove STLC for the nonlinear system as explained in [26, Chap.
3.1] in finite dimension. When it is not the case, one needs to go further into the expansion
in the spirit of [26, Chap. 8]. For the Schrödinger equation, a few STLC results are already
known.

Linear behavior. Since [6], it is known that when the coefficients (〈µϕ1, ϕj〉)j∈N∗ satisfy

there exists a constant c > 0 such that ∀j ∈ N∗, |〈µϕ1, ϕj〉| >
c

j3
, (13)

then the Schrödinger equation is Hk
0 -STLC around the ground state with targets in H2k+3

(0) .

This result has been extended in [15] where the author proved that when (13) holds only
on a subset of N∗, STLC holds in projection with a unique control map for a finite range of
regularity on the control. Moreover, it also has been proved in [9] that, under the weaker
assumption,

µ′(1)± µ′(0) 6= 0,

a finite number of coefficients 〈µϕ1, ϕK〉 vanish, but the local controllability with controls
in L2 holds in large time.

Quadratic behavior. In [16], the author proved that when, for some n ≥ 2 (resp. n = 1)

〈µϕ1, ϕK〉 = 0, A1
K = · · · = An−1

K = 0 and AnK 6= 0,

(with enough regularity on µ so that the associated series converge), the Schrödinger
equation is not H2n−3-STLC (resp. W−1,∞-STLC), due to a drift quantified by the H−n-
norm of the control. This follows the work of [9] where the authors already denied L∞-
STLC in the case n = 1. Let us stress that such a result entails that, under (Hlin), (4)
and (Hquad), the Schrödinger equation (1) is not H3-STLC.

The goal of this paper is the proof of the following statement by taking advantage of
the cubic term of the expansion.

Theorem 1.4. Let µ satisfying (Hreg), (Hlin), (Hquad) and (Hcub). Then, the Schrödinger
equation (1) is H2

0 -STLC around the ground state with targets in H11
(0)(0, 1).

Using ‘higher-order control variations’ to prove STLC is classical for ODEs: it has been
used for example to prove the sufficiency of Sussman S(θ) condition [54] (see also [26,
Theorem 3.29]) or by Kawski in [41, Theorem 3.7]. However, up to our knowledge, it is
the first time that this strategy is used in infinite dimension. The proof of Theorem 1.4
can be brought down to the following ideas.

• First, to recover STLC, it is enough to have STLC in projection on the reachable
space of the linearized system and to move into the directions lost at the linear
level using ‘higher-order control variations’.
• To move into the directions lost at the linear level, the strategy is the following.

. First, one computes a well-quantified expansion of the solution along the lost
directions to identify the leading terms.

. Then, one proves that the cubic term can absorb the quadratic term along
the lost directions using oscillating controls small in a good asymptotic.

. Finally, one corrects the linear components using the STLC result in projec-
tion on the reachable space of the linearized system. Sharp estimates on the
H−k-norms of the control (see (2)) are needed to prove that such a correction
didn’t destroy the work done previously along the lost directions. Thus, the
work done in [15] is a key tool for this paper.
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The paper is organized as follows. First, a systematic approach to recover STLC when
the linearized system misses a finite number of directions is described in Section 2 and pre-
sented on a few toy-models in finite dimension in Section 3. Before applying this method to
the Schrödinger equation, in Section 4, we recall its well-posedness and the controllability
result in projection of [15]. Then, the power series expansion of the Schrödinger equation
is computed in Section 5. Finally, Section 6 is dedicated to the proof of Theorem 1.4.

1.5. State of the art.

Controllability results on the Schrödinger equation.
Local exact controllability results. Bilinear control systems have been considered as non
controllable for a long time because of a negative result [1] from Ball, Marsden and Slemrod,
later adapted for the Schrödinger equation by Turinici in [55]. The result in [1] was later
completed by Boussäıd, Caponigro and Chambrion in [18].

However, these statements don’t give obstructions for the Schrödinger equation to be
controllable in different functional spaces. Later, exact local controllability results for 1D
models have been proved by Beauchard in [2, 3], later improved by Beauchard and Laurent
in [6] and generalized later in [15]. In [6], the authors also proved the local controllability
of a nonlinear Schrödinger equation with Neumann boundary conditions. The case of
Dirichlet boundary conditions has been treated later by Duca and Nersesyan in [37].

Morancey and Nersesyan also proved the controllability of one Schrödinger equation with
a polarizability term [45] and of a finite number of equations with one control [44, 46].
In dimension N ≤ 3, Puel [51] also proved the local exact controllability of a Schrödinger
equation, in a bounded regular domain in a neighborhood of an eigenfunction correspond-
ing to a simple eigenvalue, for controls u = u(t, x). Using the link between quantum and
classical dynamics, in [10], the authors also gave some necessary and sufficient conditions
of the local controllability of the Schrödinger equation.

Global results. Using Galerkin approximations, global approximate controllability results
have been proved by Boscain, Boussäıd, Caponigro, Chambrion, Mason and Sigalotti
in [11, 12, 17, 18, 22]. The genericity of these sufficient conditions is stated in [23].
This strategy has also been used to prove exact controllability in projection on the first
eigenstates in [19]. Adiabatic arguments [13, 14, 34, 35] or Lyapunov techniques [43, 47]
can also be used. Also, in [36], the authors proved the approximate controllability of a
nonlinear Schrödinger equation with bilinear controls.

Nersesyan and Nersisyan also proved the global exact controllability in infinite time of
one Schrödinger equation in one [48] and any dimension [49]. Later, Duca provided explicit
times such that the global exact controllability holds in [32]. Global exact controllability
in projection of infinite bilinear Schrödinger equations has also been proved in [33].

Local controllability result by the power series expansion. When the linearized
system is not controllable, the strategy, presented in [20, Chap. 8] for finite-dimensional
control system, of performing a power series expansion of the solution, can be used to
prove both negative or positive controllability results.

Negative results. In [7], the authors proved that, in finite dimension, for scalar-input dif-
ferential systems, when the linear test fails, the second-order term adds a drift quantified
by the H−n-norm of the control, along an explicit Lie bracket, denying W 2n−3,∞-STLC for
the nonlinear system. Such a phenomenon was already observed in infinite dimension, for
a Schrödinger equation, by Coron in [25], by Beauchard and Morancey in [9] and later in
[16]. In these works, using the second-order term, and more precisely proving a coercivity
inequality involving an integer negative Sobolev norm of the control, the authors gave im-
possible motions in small time. For a Burgers equation, STLC is still denied in [42] proving
a coercivity inequality but involving a fractional Sobolev norm of the control instead. In
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[8], obstructions caused by both quadratic integer and fractional drifts are proven on a
scalar-input parabolic equation. A similar result has also been proved on a KdV system,
for boundary controls in [28] by Coron, Koenig and Nguyen. The authors also showed in
[29] that the STLC of a water tank modeled by 1D Saint-Venant equations doesn’t hold
when the time is not large enough, proving a coercivity property for the quadratic term
of the system.

Positive results. The power series expansion method has been used in infinite dimension
to recover STLC for the first time in [27] for a KdV control system. Beforehand, in [52],
Rosier studied the controllability of the Kdv equation posed on a finite interval (0, L)
with Dirichlet boundary conditions and the control acting on the Neumann data at the
right end-point of the interval. The author proved that when L belongs to a set of critical
values, the linearized system around the origin is not controllable due to the existence of
a finite-dimension subspace of unreachable states. For some critical values such that the
space of unreachable states is of dimension 1, Coron and Crépeau in [27] recovered local
controllability in small time using a power series expansion of the solution of order 3 for
which there is no quadratic term. In [20], the same approach is used by Cerpa to treat
another critical length. However, in this case, the unreachable set of directions at the
linear level is of dimension 2 and a second order expansion is sufficient to recover local
controllability, but the result holds only in large time. Later, Cerpa and Crépeau proved
in [21] the local controllability in large time for any critical lengths with the same strategy.

Such a method has also already been used for the Schrödinger equation. In [5] and
[3], the controllability of a quantum particle in a 1D infinite square potential well with
variable length is studied. In both cases, the proof relies on a compactness argument that
needs local controllability results around many periodic trajectories. Those local results
are proved by the linear test or using second order terms for some trajectories for which
the linearized system looses one direction. In [9], local controllability with controls in L2

in large time has also been proved using an expansion of order 2.
Moreover, for the first time in [8], on a scalar-input parabolic equation, the power series

method has been used to recover at the quadratic order an infinite number of direction
lost at the linear level.

Finally, let us quickly mention that stabilization results have also been proved using the
power series expansion method as in [24, 30, 31].

2. Method of ‘control variations’

Under (Hlin), the linearized system around the ground state of the Schrödinger equa-
tion (1) is not controllable: it misses one complex direction ϕK . This situation is called
‘controllability up to (real) codimension two’. The goal of this section is to propose a sys-
tematic approach to deal with these situations, which is different from the one for ODEs
and better adapted to PDEs. For finite dimensional systems, the classical approach used
by Kawski [41, Theorem 2.4] consists in,

• proving that any direction lost at the linear level is a ‘tangent vector’ thanks to
higher order control variations,
• and deducing the STLC of the nonlinear system thanks to a time-iterative process

that uses arbitrary small-time intervals.

For PDEs, using arbitrary small-time intervals is not comfortable, because of the control-
cost explosion when the time goes to zero. Therefore, in our new approach, Kawski’s
time-iteration process is replaced by a Brouwer fixed point argument. This is why our
new notion of ‘tangent vector’ contains a continuity property.

2.1. Main result. To encompass finite and infinite dimensional systems, STLC is dis-
cussed in terms of the surjectivity of the end-point map. Let us state first the functional
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setting. Let X be a Banach space over R. Let (ET , ‖ · ‖ET ) be a family of normed vector
spaces of functions defined on [0, T ] for T > 0. Assume that for all T1, T2 > 0, for all
u ∈ ET1 and v ∈ ET2 , the concatenation of the two functions u#v defined by

u#v := u1l(0,T1) + v(· − T1)1l(T1,T1+T2) (14)

is in ET1+T2 with moreover the following estimate:

‖u#v‖ET1+T2 6 ‖u‖ET1 + ‖v‖ET2 . (15)

For example, for any positive integer k, the Sobolev space Hk
0 (0, T ) satisfies this property

whereas the Sobolev space Hk(0, T ) doesn’t. Finally, let (FT )T>0 be a family of functions
from X ×ET to X for T > 0. Later, in all our applications, FT will denote the end-point
of the control system.

First, let us make precise the new definition of ‘tangent vector’ used in this paper.

Definition 2.1. A vector ξ ∈ X is called a small-time E-continuously approximately
reachable vector if there exists a continuous map Ξ : [0,+∞) → X with Ξ(0) = ξ such
that for all T > 0, there exists C, ρ, s > 0 and a continuous map b ∈ (−ρ, ρ) 7→ ub ∈ ET
such that,

∀b ∈ (−ρ, ρ), ‖FT (0, ub)− bΞ(T )‖X 6 C|b|
1+s with ‖ub‖ET 6 C|b|

s. (16)

The family (ub)b∈R (resp. the map Ξ) is called the control variations (resp. the vector
variations) associated with ξ.

Remark 2.2. Let us stress that, for finite-dimensional system, in [41], Kawski (see also
the work of Frankowska [38, 39]) introduced rather the following definition: a vector ξ is
said to be an m-th order tangent vector if there exists a family of controls (uT )T>0 such
that

FT (0, uT ) = Tmξ + o(Tm) when T → 0. (17)

Our Definition 2.1 is different: the final time and the amplitude of the target are unrelated.
This allows constants in (16) badly quantified with respect to the final time T , which is not
possible in (17). Hence, being a small-time E-continuously approximately reachable vector
is a weaker property than being a tangent vector. Also, for this reason, the dependency
of the constants with respect to the final time will not be tracked in this paper. For the
Schrödinger equation (1), the lost directions at the linear level are approximately reachable
vectors, but it seems more complicated to prove that they are tangent vectors.

Our systematic approach is formalized in the following statement.

Theorem 2.3. Assume the following hypotheses hold.

(A1) For all T > 0, FT : X × ET → X is of class C2 on a neighborhood of (0, 0) with
FT (0, 0) = 0.

(A2) For all x ∈ X, T ∈ R+ 7→ dFT (0, 0).(x, 0) ∈ X can be continuously extended at
zero with dF0(0, 0).(x, 0) = x.

(A3) For all T1, T2 > 0, for all x ∈ X, for all u ∈ ET1 and v ∈ ET2,

FT1+T2 (x, u#v) = FT2 (FT1 (x, u) , v) . (18)

(A4) The space H := Ran dFT (0, 0).(0, ·) doesn’t depend on time, is closed and of finite
codimension n.

(A5) There exists M a supplementary of H that admits a basis (ξi)i=1,...,n of small-time
E-continuously approximately reachable vectors.

Then, for all T > 0, FT is locally onto from zero: for all η > 0, there exists δ > 0 such
that for all xf ∈ X with ‖xf‖X < δ, there exists u ∈ ET with ‖u‖ET < η such that

FT (0, u) = xf .
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Remark 2.4. If in addition of (A1)− (A5), we assume that

(A6) for all T > 0 and u ∈ ET , u(T − ·) is in ET with

FT (FT (0, u), u(T − ·)) = 0,

then, for all T > 0, FT is locally onto: for all η > 0, there exists δ > 0 such that for all
(x0, xf ) ∈ X2 with ‖x0‖X + ‖xf‖X < δ, there exists u ∈ ET with ‖u‖ET < η such that

FT (x0, u) = xf .

Indeed, let (x0, xf ) ∈ X2 with ‖x0‖X+‖xf‖X < δ. By Theorem 2.3, there exists u, v ∈ ET
such that FT (0, u) = x0 and FT (0, v) = xf . Then, using successively (A3) and (A6), one
has

F2T (x0, u(T − ·)#v) = FT (FT (x0, u(T − ·)), v) = FT (0, v) = xf .

Remark 2.5. The C2-regularity of FT in (A1) is for convenience. In the proof of Theo-
rem 2.3, one needs the following estimates: for all T > 0 and R > 0, there exists C > 0
such that for all (x, u) ∈ X × ET with ‖x‖X + ‖u‖ET < R,

‖FT (x, u)−FT (0, u)−FT (x, 0)‖X 6 C‖x‖X‖u‖ET , (19)

‖FT (x, u)− dFT (0, 0).(x, u)‖X 6 C
(
‖x‖2X + ‖u‖2ET

)
. (20)

Both estimates follow from Taylor formulas when FT is of class C2.

Remark 2.6. When FT denotes the end-point map of a control system,

• (A1) is linked to the well-posedness of the system: for controls in ET and initial
data in X, the end-point of the solution must take values in X;
• (A2) asks that the solutions of the linearized system are continuous with respect

to time;
• (A3) is related to the semigroup property of the equation;
• (A4) means that the linearized system is ‘controllable up to finite codimension’;
• (A5) means that the directions lost at the linear level can be recovered using ‘higher

order control variations’;
• and (A6) is linked to the time reversibility of the equation.

2.2. Proof of Theorem 2.3. The first tool is the local surjectivity of the nonlinear map
FT up to finite codimension.

Proposition 2.7. Assume (A1) and (A3). Let T > 0 and N a supplementary of H.
Denote by P the projection on H parallely to N . Then, FT is locally onto in projection
on H: there exists δ0, C > 0 and a C1-map ΓT : BX(0, δ0) × (BX(0, δ0) ∩H) → ET with
ΓT (0, 0) = 0 such that for all (x0, xf ) ∈ BX(0, δ0)× (BX(0, δ0) ∩H),

P[FT (x0,ΓT (x0, xf ))] = xf , (21)

with the size estimate

‖ΓT (x0, xf )‖ET 6 C (‖x0‖X + ‖xf‖X) . (22)

The proof follows from applying the inverse mapping theorem to the C1-map

X × ET → X ×H
(x, u) 7→ (x,P[FT (x, u)]) .

(23)

Then, we prove that every direction spanned by approximately reachable vectors can
be recovered using higher order control variations.

Proposition 2.8. Under the assumptions of Theorem 2.3, there exists T ∗ > 0 such that
for all T ∈ (0, T ∗) and η > 0, there exists MT a supplementary of H, C, s, ρ > 0 and a
continuous map z ∈MT ∩BX(0, ρ) 7→ uz ∈ ET such that for all z ∈MT ∩BX(0, ρ),

‖FT (0, uz)− z‖X 6 C‖z‖
1+s
X with ‖uz‖ET 6 η. (24)
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Proof. Let T > 0 and η > 0. Let 0 = T0 < · · · < Tn = T be a subdivision of [0, T ]. By (A5),
there exists C, ρ, s > 0 and for all i = 1, . . . , n, two continuous maps Ξi : [0,+∞) → X
with Ξi(0) = ξi and b ∈ (−ρ, ρ) 7→ uib ∈ ETi−Ti−1 such that for all b ∈ (−ρ, ρ),∥∥FTi−Ti−1

(
0, uib

)
− bΞi(Ti − Ti−1)

∥∥
X
6 C|b|1+s with ‖uib‖ETi−Ti−1

6 C|b|s. (25)

For all c = (c1, . . . , cn) ∈ Rn with ‖c‖ < ρ and k ∈ {1, . . . , n}, we define

u#k

c := u1
c1#u2

c2# . . .#ukck ∈ ETk .

We prove by induction on k ∈ {1, . . . , n} the existence of C > 0 such that for all ‖c‖X < ρ,∥∥∥∥∥FTk(0, u#k

c )−
k∑
i=1

cidFTk−Ti(0, 0).(Ξi(Ti − Ti−1), 0)

∥∥∥∥∥
X

6 C‖c‖1+s. (26)

The initialization with k = 1 follows from the definition of the family (u1
b)b∈R in (25) and

that dF0(0, 0).(·, 0) = IdX by (A2). Let us prove the heredity: assume that (26) holds for
some k ∈ {1, . . . , n}. First, by (A3), one has,

FTk+1
(0, u#k+1

c ) = FTk+1−Tk

(
FTk(0, u#k

c ), uk+1
ck+1

)
.

Thus, together with the inequality (19), one gets,∥∥∥FTk+1
(0, u#k+1

c )−FTk+1−Tk(0, uk+1
ck+1

)−FTk+1−Tk(FTk(0, u#k

c ), 0)
∥∥∥
X

6 C‖FTk(0, u#k

c )‖X‖uk+1
ck+1
‖ETk+1−Tk

6 C‖c‖|ck+1|s, (27)

thanks to (26) and the size estimate in (25). Moreover, by Definition 2.1,

‖FTk+1−Tk(0, uk+1
ck+1

)− ck+1Ξk+1(Tk+1 − Tk)‖X 6 C|ck+1|1+s. (28)

Besides, using the Taylor expansion (20), one gets,∥∥∥FTk+1−Tk(FTk(0, u#k

c ), 0)− dFTk+1−Tk(0, 0).(FTk(0, u#k

c ), 0)
∥∥∥
X

6 C‖FTk(0, u#k

c )‖2X 6 C‖c‖2. (29)

Moreover, using the induction hypothesis (26), one has∥∥∥dFTk+1−Tk(0, 0).(FTk(0, u#k

c ), 0)

−
k∑
i=1

cidFTk+1−Tk(0, 0). (dFTk−Ti(0, 0).(Ξi(Ti − Ti−1), 0), 0)
∥∥∥
X
6 C‖c‖1+s. (30)

Besides, differentiating (18), one gets that for all T1, T2 > 0 and x ∈ X,

dFT1(0, 0).(dFT2(0, 0).(x, 0), 0) = dFT1+T2(0, 0).(x, 0).

Thus, (29) and (30) lead to∥∥∥∥∥FTk+1−Tk(FTk(0, u#k

c ), 0)−
k∑
i=1

cidFTk+1−Ti(0, 0). (Ξi(Ti − Ti−1), 0)

∥∥∥∥∥
X

6 C‖c‖1+s. (31)

Then, estimates (27), (28) and (31) lead to (26) for k+1 and this concludes the induction.

Conclusion. The following map is continuous and doesn’t vanish at zero,

(t1, . . . , tn, t̂1, . . . , t̂n) 7→ det
(
PM[dFt1(0, 0).(Ξ1(t̂1), 0)], . . . ,PM[dFtn(0, 0).(Ξn(t̂n), 0)]

)
,
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where PM := Id−P denotes the projection on M defined in (A5) parallely to H. Thus,
there exists T ∗ > 0 such that for all T ∈ [0, T ∗), (PM[dFT−Ti(0, 0).(Ξi(Ti−Ti−1), 0)])i=1,...,n

is a basis of M. As M is a supplementary of H, one deduces that MT defined as

MT := Span(dFT−Ti(0, 0). (Ξi(Ti − Ti−1), 0) , i = 1, . . . , n),

is also a supplementary of H. Thus, by (26), the proof is concluded with

uz := u#n

c1,...,cn for all z =

n∑
i=1

cidFT−Ti(0, 0). (Ξi(Ti − Ti−1), 0) ∈MT .

Notice that the continuity of the map z 7→ uz stems from the ones of b 7→ uib. �

Finally, one can prove Theorem 2.3: the ‘higher order control variations’ constructed in
Proposition 2.8 and the local surjectivity of FT up to finite codimension given in Propo-
sition 2.7 are enough to gain back the controllability lost at the linear level.

Remark 2.9. It is enough to prove the conclusion of Theorem 2.3 for sufficiently small
final times T ∈ (0, T ∗). Indeed, for T > T ∗, taking Ti > 0 such that T − Ti < T ∗, one has

∀u ∈ ET−Ti , FT (0, 0[0,Ti]#u) = FT−Ti(FTi(0, 0), u) = FT−Ti(0, u),

using (A1) and (A3). Thus, the result in small time entails the result in large time.

Proof of Theorem 2.3. Let T > 0 the final time, T1 ∈ (0, T ) an intermediate time and
η > 0 the accuracy on the control. Define δ := min(δ0,

η
4C ) where δ0 (resp. C) is defined

by Proposition 2.7 (resp. (22)). Let xf in X with ‖xf‖X < δ.

Step 1: Steering 0 almost to xf . LetMT1 the supplementary of H given in Proposition 2.8.
The goal of this step is to construct a n-parameters family (vz)z∈MT1

such that, for every
z ∈MT1 small enough, one has

PFT (0, vz) = Pxf , (32)

‖PT1FT (0, vz)− z‖X 6 C‖z‖
1+γ
X + C‖Pxf‖2X , with γ > 0, (33)

‖vz‖ET 6 η, (34)

where PT1 := Id−P denotes the projection on MT1 parallely to H. By Proposition 2.8,
there exists C, ρ, s > 0 and a continuous map z̃ 7→ uz̃ from MT1 ∩ BX(0, ρ) to ET1 such
that,

∀z̃ ∈MT1 ∩BX(0, ρ), ‖FT1 (0, uz̃)− z̃‖X 6 C‖z̃‖
1+s
X with ‖uz̃‖ET1 6

η

2
. (35)

Denote by (eT1i )i=1,...,n a basis of MT1 . Then, the following map is continuous and non-
vanishing at zero,

t 7→ det
(
PT1 [dFt(0, 0).(eT11 , 0)], . . . ,PT1 [dFt(0, 0).(eT1n , 0)]

)
.

Thus, for T small enough, PT1 [dFT−T1(0, 0).(·, 0)] is invertible from MT1 to MT1 with a
continuous inverse by the open mapping principle. Hence, there exists a linear continuous
map h from MT1 to MT1 such that,

∀z ∈MT1 , PT1 [dFT−T1(0, 0).(h(z), 0)] = z. (36)

Finally, for all z ∈MT1 ∩BX(0, ρ), we define

vz := uh(z)#ΓT−T1
(
FT1

(
0, uh(z)

)
,Pxf

)
, (37)

where ΓT−T1 : BX(0, δ0) × (BX(0, δ0) ∩H) is constructed in Proposition 2.7 with the
supplementaryMT1 and the family(uz̃)z̃∈MT1

is constructed in (35). As FT1
(
0, uh(z)

)
→ 0

when z goes to 0, for ρ small enough,
∥∥FT1 (0, uh(z)

)∥∥
X
< δ0 .
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Size estimate. By (15), for all z ∈MT1 ∩BX(0, ρ), vz is in ET with

‖vz‖ET 6 ‖uh(z)‖ET1 +
∥∥ΓT−T1

(
FT1

(
0, uh(z)

)
,Pxf

)∥∥
ET−T1

6
η

2
+ C

(
‖FT1

(
0, uh(z)

)
‖X + ‖Pxf‖X

)
6
η

2
+ 2Cδ 6 η,

using the size estimate (35) on uh(z) and the estimate (22) on ΓT−T1 . This proves (34).

Target almost reached. Moreover, using (A3), one has,

FT (0, vz) = FT−T1
(
FT1(0, uh(z)),ΓT−T1

(
FT1

(
0, uh(z)

)
,Pxf

))
. (38)

Therefore, by definition (21) of ΓT−T1 , (32) is already satisfied. To prove (33), one can
use (38) together with the inequality (19) to get

‖PT1FT (0, vz)− z‖X 6
∥∥PT1 [FT−T1 (0,ΓT−T1 (FT1 (0, uh(z)

)
,Pxf

))]∥∥
X

+
∥∥PT1 [FT−T1 (FT1(0, uh(z)), 0

)
− z
]∥∥
X

+ C‖ΓT−T1
(
FT1

(
0, uh(z)

)
,Pxf

)
‖ET−T1‖FT1

(
0, uh(z)

)
‖X . (39)

Yet, using the estimates (22) on ΓT−T1 , (35) on FT1(0, uh(z)) and the continuity of h, the

last term of the right-hand side of (39) is estimated by C‖z‖2 +C‖Pxf‖2. Using the Taylor
expansion (20), the second term of the right-hand side of (39) is estimated by

‖PT1 [dFT−T1(0, 0).
(
FT1(0, uh(z)), 0

)
− z]‖X + ‖FT1(0, uh(z))‖2X 6 C‖z‖1+min(1,s), (40)

using estimate (35), the construction (36) and the continuity of h. Moreover, by definition
of H in (A4), PT1 [dFT−T1(0, 0).(0,ΓT−T1(FT1(0, uz),Pxf ))] = 0. Thus, using again the
Taylor expansion (20), the first term of the right-hand side of (39) is estimated by

C ‖ΓT−T1(FT1(0, uz),Pxf )‖2X 6 C
(
‖z‖2 + ‖Pxf‖2

)
, (41)

using estimate (22) on ΓT−T1 and (35). Therefore, (39), (40) and (41) lead to (33).

Step 2: Steering 0 to xf . Thanks to (32) and (34), to conclude the proof, it remains to
prove the existence of z ∈ MT1 ∩ BX(0, ρ) such that PT1FT (0, vz) = PT1xf . To that end,
we apply the Brouwer fixed-point theorem to the function

Gxf :

∣∣∣∣ MT1 ∩BX(0, ρ) −→ MT1

z 7−→ z − PT1 [FT (0, vz)] + PT1 [xf ].

First, notice that by continuity of FT , of ΓT−T1 , of h and of z̃ 7→ uz̃, the map z 7→ vz
defined in (37) is continuous from MT1 to ET . Thus, Gxf is continuous. It remains to

prove that it stabilizes a ball. Let ρ′ ∈ (0, ρ) such that Cρ′γ < 1
2 and reduce δ such

that Cδ2 + δ < ρ′

2 where C is given in (33). Then, using estimate (33), one has for all
z ∈MT1 ∩BX(0, ρ′),

‖Gxf (z)‖X 6 C‖z‖1+γ
X + C‖Pxf‖2X + ‖Pxf‖X 6 Cρ′1+γ + Cδ2 + δ 6 ρ′.

Thus, one can apply Brouwer fixed-point theorem to Gxf to conclude the proof. �

3. Toy-models in finite dimension

The goal of this section is to illustrate the method presented in Section 2 on examples
in finite dimension. For the sake of simplicity, we only explain how to prove that the
directions lost at the linear level are small-time E-continuously approximately reachable
vectors. The verification of the other assumptions of Theorem 2.3 is left to the reader. In
this section, for all n ∈ N∗, (ei)i=1,...,n denotes the canonical basis of Rn.
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3.1. A first toy-model: not all lost directions can be recovered. Consider the
following control-affine polynomial system{

ẋ1 = u,
ẋ2 = x2

1 + x3
1.

(42)

The reachable space of the linearized system around (0, 0) is given by H = Span(e1) and
its supplementary byM = Span(e2). However, e2 is not a small-time W−1,∞-continuously
approximately reachable vector because the following quantity

x2(T ; u, 0) =

∫ T

0
u1(t)2dt+

∫ T

0
u1(t)3dt ≥ (1− T‖u‖W−1,∞)

∫ T

0
u2

1(t)dt

is positive for T and ‖u‖W−1,∞ small enough. This system illustrates Sussman’s necessary
condition [53] on [[f0, f1], f1] (0) for L∞-STLC.

3.2. Sussman example: a quadratic/cubic competition. The following classical ex-
ample illustrates that a cubic term can be used to dominate a quadratic drift and restore
STLC,  ẋ1 = u,

ẋ2 = x1,
ẋ3 = x2

2 + x3
1.

(43)

For this system, H = Span(e1, e2) and M = Span(e3).
First, (43) is not W 1,∞-STLC. Indeed, considering a trajectory such that x1(T ) =

x2(T ) = 0, two integrations by parts give,∫ T

0
u1(t)3dt = −2

∫ T

0
u2(t)u1(t)u(t)dt =

∫ T

0
u2(t)2u′(t)dt.

Thus, provided that ‖u‖W 1,∞(0,T ) ≤ 1
2 ,

x3(T ; u, 0) =

∫ T

0
u2(t)2(1 + u′(t))dt ≥ 1

2

∫ T

0
u2(t)2dt.

Hence, it is impossible to reach states of the form (0, 0,−δ) with δ > 0.
However, e3 is a small-time L∞-continuously approximately reachable vector. Indeed,

in this asymptotic, one can use the cubic term to absorb the quadratic term along the lost
direction using oscillating controls defined for b ∈ R∗ by

∀t ∈ [0, T ], ub(t) := sign(b)|b|
1
11φ′′

(
t

|b|
2
11

)
with φ ∈ C∞c (0, 1) s. t.

∫ 1

0
φ′(θ)3dθ = 1.

Indeed, performing the change of variables t = |b|
2
11 θ, one gets

x3(T ; ub, 0) =

∫ |b| 211
0

(
sign(b)|b|

5
11φ

(
t

|b|
2
11

))2

dt+

∫ |b| 211
0

(
sign(b)|b|

3
11φ′

(
t

|b|
2
11

))3

dt

= |b|
12
11

∫ 1

0
φ(θ)2dθ + sign(b)|b|

∫ 1

0
φ′(θ)3dθ = b+O(|b|

12
11 ).

Moreover, along the ‘linear components’, as ub is supported on (0, |b|
2
11 ) ⊂ (0, T ) for b

small enough, one directly has

(x1(T ; ub, 0), x2(T ; ub, 0)) = (u1(T ), u2(T )) = (0, 0).

Besides, one has the following estimates on the controls,

∀k ∈ N, ‖u(k)
b ‖L∞(0,T ) 6 ‖φ(2+k)‖L∞(0,1)|b|

1−2k
11 .
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Hence, this family of controls is arbitrary small in L∞(0, T ) (but not in W 1,∞(0, T )).
Moreover, this estimate (with k = 0) also gives that the map b 7→ ub from R∗ to L∞(0, T )
can be extended continuously at zero with u0 = 0. Therefore, e3 is a small-time L∞-
continuously approximately reachable vector with vector variations Ξ(T ) = e3 and by
Theorem 2.3, (43) is L∞-STLC. Notice that this was already known thanks to the Susmann
S(θ) condition [53].

3.3. A polynomial toy-model for the Schrödinger PDE. The next polynomial con-
trol system is designed to be a toy-model for the Schrödinger equation (1) as explained
later in Remark 3.1, 

ẋ1 = u,
ẋ2 = x1,
ẋ3 = x2,
ẋ4 = x2

3 + x2
1x2,

ẋ5 = x4.

(44)

For this example, H = Span(e1, e2, e3) andM = Span(e4, e5). Moreover, solving explicitly
(44), the fourth and fifth components are given by,

x4(T ; u, 0) =

∫ T

0
u3(t)2dt+

∫ T

0
u1(t)2u2(t)dt, (45)

x5(T ; u, 0) =

∫ T

0
(T − t)u3(t)2dt+

∫ T

0
(T − t)u1(t)2u2(t)dt. (46)

First, using Cauchy-Schwarz and Gagliardo-Nirenberg inequalities [50], one gets the exis-
tence of C > 0 such that for all u ∈ H3(0, T )∣∣∣∣∫ T

0
u1(t)2u2(t)dt

∣∣∣∣ 6 C‖u1‖3L2(0,T ) 6 C
(
‖u(3)‖L2(0,T ) + T−3‖u‖L2(0,T )

)
‖u3‖2L2(0,T ).

Thus, the quadratic term prevails on the cubic term in (45) and (46) when controls are
small in H3. This allows to deny H3-STLC for (44). Nonetheless, let us prove that (44)
is H2

0 -STLC.

Step 1: e4 is a small-time H2
0 -continuously approximately reachable vector with vector

variations Ξ4(T ) = e4 + Te5. Heuristically, for a final time T fixed, looking at (45) and
(46), the cubic terms of x4 and x5 have the same size. Thus, it seems better to use the
vector variations Ξ4(T ) = e4 + Te5 instead of Ξ4(T ) = e4.

As before, in the asymptotic of controls small in H2
0 , one can use the cubic term to

absorb the quadratic term along the lost direction using oscillating controls of the form,
for all b ∈ R∗,

ub(t) = sign(b)|b|
7
41φ(3)

(
t

|b|
4
41

)
with φ ∈ C∞c (0, 1) s. t.

∫ 1

0
φ′′(θ)2φ′(θ)dθ = 1. (47)

Indeed, substituting these controls into (45) and (46) and performing the change of vari-

ables t = |b|
4
41 θ, one gets

x4(T ; ub, 0) = |b|
42
41

∫ 1

0
φ(θ)2dθ + b,

x5(T ; ub, 0) = |b|
42
41

∫ 1

0
(T − |b|

4
41 θ)φ(θ)2dθ + Tb− sign(b)|b|

45
41

∫ 1

0
θφ′′(θ)2φ′(θ)dθ.

Moreover, as ub is supported on (0, |b|
4
41 ) ⊂ (0, T ) for b small enough, one directly has,

(x1(T ; ub, 0), x2(T ; ub, 0), x3(T ; ub, 0)) = (u1(T ), u2(T ), u3(T )) = (0, 0, 0).
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Besides, for all b ∈ R∗,

‖u′′b‖L2(0,T ) 6 ‖φ(5)‖L2(0,1)|b|
1
41 . (48)

Thus, the family (ub)b∈R is arbitrary small in H2
0 (0, T ) and the map b 7→ ub from R∗ to

H2
0 (0, T ) can be continuously extended at zero with u0 = 0. This concludes Step 1.

Step 2: Constructing the second approximately reachable vector from the first one. Hermes
and Kawski proved in [40, Theorem 6] that for affine-control systems of the form ẋ =
f0(x)+uf1(x), if for some Lie bracket V of f0 and f1, V (0) is a tangent vector in the sense
of (17), then [f0, V ](0) is also a tangent vector.

Using the same construction, we prove that e5 is also a small-time H2
0 -continuously

approximately reachable vector with vector variations Ξ5(T ) = e5. Denote by (ub)b∈R the
control variations associated with e4, constructed at step 1. We are going to prove that,
for all (b, c) ∈ R2 small enough,

x(3T ; ub#0[0,T ]#uc, 0) = (b+ c)(e4 + Te5) + 2Tbe5 +O(‖(b, c)‖1+ 1
41 ). (49)

Thus, taking for all α ∈ R, b = α
2T and c = −b, this proves the existence of a family of

controls (vα)α∈R such that, when α goes to zero,

x(3T ; vα, 0) = αe5 +O(|α|1+ 1
41 ) with ‖vα‖H2

0 (0,T ) 6 C|α|
1
41 ,

using (48). And, this will conclude Step 2. To prove (49), notice first that by definition of
(ub)b∈R, one has

x(T ; ub, 0) = b(e4 + Te5) +O(|b|1+ 1
41 ). (50)

Then, using the semi-group property of (44), one has

x(2T ; ub#0[0,T ], 0) = x(T ; 0[0,T ], x(T ; ub, 0)). (51)

Moreover, computing explicitly the solution, one gets a constant C > 0 such that,

∀p ∈ R5,
∥∥x(T ; 0[0,T ], p)− p− Tp4e5

∥∥ 6 C‖p‖2. (52)

Thus, (50), (51) and (52) lead to

x(2T ; ub#0[0,T ], 0) = b(e4 + Te5) + Tbe5 +O(|b|1+ 1
41 ). (53)

Then, once again, using the semi-group property,

x(3T ; ub#0[0,T ]#uc, 0) = x(T ; uc, x(2T ; ub#0[0,T ], 0)). (54)

Moreover, using Gronwall Lemma, one gets a constant C > 0 such that for all ‖u‖H2
0 (0,T ) <

1 and ‖p‖ < 1,∥∥x(T ; u, p)− x(T ; 0[0,T ], p)− x(T ; u, 0)
∥∥ 6 C‖u‖H2

0 (0,T )‖p‖. (55)

Thus, (54) and (55) lead to

‖x(3T ; ub#0[0,T ]#uc, 0)− x(T ; uc, 0)− x(T ; 0[0,T ], x(2T ; ub#0[0,T ], 0))‖

6 C‖uc‖H2
0
‖x(2T ; ub#0[0,T ], 0)‖ 6 C|c|

1
41 |b|, (56)

using the size estimates (48) on (uc)c∈R and (53) on x(2T ; ub#0[0,T ], 0). Besides, using
the estimates (52) and (53),

x(T ; 0[0,T ], x(2T ; ub#0, 0)) = b(e4 + Te5) + 2Tbe5 +O(|b|1+ 1
41 ). (57)

Using the definition of the family (uc)c∈R, (56) and (57) lead to (49).
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Remark 3.1. The system (44) can be seen as a polynomial toy-model for the Schrödinger
PDE (1) in the following way. For both control systems, the linearized system is control-
lable ‘up to codimension 2’, the leading quadratic (resp. cubic) term of the solution along

the first lost direction is given by
∫ T

0 u3(t)2dt (resp. by
∫ T

0 u1(t)2u2(t)dt) and the second
lost direction is more or less the ‘integration’ of the first one.

3.4. A bilinear toy-model for Schrödinger. Let p ∈ N∗ and H0, H1 ∈ Mp(R) sym-
metric matrices. Consider Schrödinger control systems of the form

iX ′(t) = H0X(t)− u(t)H1X(t), (58)

where the state is X(t) ∈ Cp and the control is u(t) ∈ R. We write (ϕ1, . . . , ϕp) for an
orthonormal basis of eigenvectors of H0 and (λ1, . . . , λp) for its eigenvalues. We also denote

by Xj(t) := ϕje
−iλjt for all j ∈ {1, . . . , p}. In this section, the commutator of H0 and H1

is denoted by [H0, H1] := H0H1 − H1H0 and 〈·, ·〉 denotes the classical hermitian scalar
product on Cp.

Remark 3.2. For Schrödinger ODEs (58), we work around the trajectory (X1, u ≡ 0).
The work in Section 2 can still be used by performing the change of function X∗(t) :=
X(t)eiλ1t − ϕ1 to work around (0, 0). Thus, in this setting, a vector ξ ∈ Rp is called a
small-time E-continuously approximately reachable vector if there exists a continuous map
Ξ : [0,+∞) → Rp with Ξ(0) = ξ such that for all T > 0, there exists C, ρ, s > 0 and a
continuous map b ∈ (−ρ, ρ) 7→ ub ∈ ET such that for all b ∈ (−ρ, ρ),

‖X(T ; ub, ϕ1)−X1(T )− bΞ(T )‖ 6 C|b|1+s with ‖ub‖ET 6 C|b|
s.

The topology on the state is not specified as all norms are equivalent in finite dimension.

3.4.1. The linear test. The linearized system of (58) around the trajectory (X1, u ≡ 0) is
given by

iX ′L = H0XL − u(t)H1X1. (59)

By the Duhamel formula, the solution of (59) with XL(0) = 0 can be written as

XL(T ) = i

p∑
j=1

(
〈H1ϕ1, ϕj〉

∫ T

0
u(t)ei(λj−λ1)tdt

)
Xj(T ). (60)

Thus, the reachable space of the linearized system (59) is given by

H := SpanC (Xj(T ) for j ∈ {1, . . . , p} such that 〈H1ϕ1, ϕj〉 6= 0) ,

as the equality XL(T ) = Xf is brought down to solving a finite polynomial moment
problem when the coefficients 〈H1ϕ1, ϕj〉 don’t vanish. To simplify, we assume that,

there exists an integer K ∈ {2, . . . , p} such that

〈H1ϕ1, ϕK〉 = 0 and ∀j ∈ {1, . . . , p} − {K}, 〈H1ϕ1, ϕj〉 6= 0. (Ĥlin)

As the solution of the Schrödinger ODE (58) is complex-valued, it means that H is of
codimension 2 and its supplementary is given by M = SpanR(ϕK , iϕK).

3.4.2. Quadratic and cubic behaviors. To prove that iϕK and ϕK are approximately reach-
able vectors, we need to study the behavior of the solution of (58) along the lost directions.
Unlike for the previous polynomial toy-models, here the computations of the first terms
of the expansion of (58) are quite heavy. It can be lightened by introducing the new state

X̃(t) := e−iH1u1(t)X(t), (61)

which solves the following ODE, called the auxiliary system,

X̃ ′(t) = −ie−iH1u1(t)H0e
iH1u1(t)X̃(t) = −i

+∞∑
k=0

(−iu1(t))k

k!
adkH1

(H0)X̃(t). (62)
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Thus, working with X̃, it is easier to quantify the expansion of the solution with respect
to the primitives of the control and not with respect to the control u. This idea was
introduced in [25] and later used in [9, 16] for the Schrödinger equation. It was also used
in finite dimension in [7] to study the quadratic behavior of differential systems or in [4] to
give refined error estimates for various expansions of scalar-input affine control systems.

By the Duhamel formula, the solution of the auxiliary system (62) with X̃(0) = ϕ1 satisfies

X̃(t) = X1(t)− i
∫ t

0
e−iH0(t−τ)

+∞∑
k=1

(−iu1(τ))k

k!
adkH1

(H0)X̃(τ)dτ. (63)

Then, the linear term X̃L, the quadratic term X̃Q and the cubic term X̃C of the expansion

of X̃ around the trajectory (X1, u ≡ 0) are given by,

X̃L(t) = −
∫ t

0
e−iH0(t−τ)u1(τ) ad1

H1
(H0)X1(τ)dτ, (64)

X̃Q(t) =

∫ t

0
e−iH0(t−τ)

(
−u1(τ) ad1

H1
(H0)X̃L(τ) +

iu1(τ)2

2
ad2

H1
(H0)X1(τ)

)
dτ, (65)

X̃C(t) =

∫ t

0
e−iH0(t−τ)

(
− u1(τ) ad1

H1
(H0)X̃Q(τ)

+
iu1(τ)2

2
ad2

H1
(H0)X̃L(τ) +

u1(τ)3

6
ad3

H1
(H0)X1(τ)

)
dτ. (66)

First-order term. Using (64), the linear term along the lost direction is given by

〈X̃L(T ), ϕKe
−iλ1T 〉 = (λK − λ1)〈H1ϕ1, ϕK〉

∫ T

0
u1(t)ei(λK−λ1)(t−T )dt = 0, (67)

under (Ĥlin). The K-th direction is also lost at the first order for the auxiliary system.

Second-order term. Substituting the explicit form (64) of X̃L into (65), the quadratic term
along the lost direction is given by,

〈X̃Q(T ), ϕKe
−iλ1T 〉 = −iÂ1

K

∫ T

0
u1(t)2ei(λK−λ1)(t−T )dt+

∫ T

0
u1(t)

∫ t

0
u1(τ)k̂(t, τ)dτdt,

(68)
where

Â1
K := −1

2
〈ad2

H1
(H0)ϕ1, ϕK〉 =

p∑
j=1

(
λj −

λ1 + λK
2

)
〈H1ϕ1, ϕj〉〈H1ϕK , ϕj〉,

k̂(t, τ) :=

p∑
j=1

(λ1 − λj)(λj − λK)〈H1ϕ1, ϕj〉〈H1ϕK , ϕj〉ei(λj(τ−t)+λK(t−T )+λ1(T−τ)). (69)

To identify the leading quadratic term, one can compute integrations by parts to get, for
all n ∈ N∗, the existence of a quadratic form Qn on C2n such that

〈X̃Q(T ), ϕKe
−iλ1T 〉 = −i

n∑
m=1

ÂmK

∫ T

0
um(t)2ei(λK−λ1)(t−T )dt

+

∫ T

0
un(t)

∫ t

0
un(τ)∂n−1

1 ∂n−1
2 k̂(t, τ)dτdt+Qn (u2(T ), . . . , un(T ), αn2 , . . . , α

n
n) , (70)
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where, for all m = 2, . . . , n,

αnm :=

∫ T

0
un(τ)∂m1 ∂

n−1
2 k̂(T, τ)dτ,

ÂmK :=

p∑
j=1

(
λj −

λ1 + λK
2

)
(λK − λj)m−1(λj − λ1)m−1〈H1ϕ1, ϕj〉〈H1ϕK , ϕj〉.

To see more details about this kind of computations, the reader can for example refer to
[8, Section 3.3] or [16, Section 2.2 and 5]. To identify the leading quadratic term, one must

know which coefficient ÂmK is the first not to vanish. From now on, we assume that

Â1
K = Â2

K = 0 and Â3
K 6= 0. (Ĥquad)

This choice is explained later in Remark 3.3. Then, using (70) for n = 3 and Cauchy-

Schwarz inequality, under (Ĥquad), one gets that∣∣∣〈X̃Q(T ), ϕKe
−iλ1T 〉

∣∣∣ = O
(
‖u3‖2L2(0,T ) + |u2(T )|2 + |u3(T )|2

)
. (71)

Thus, provided that the boundary terms can be neglected, the leading quadratic term of

the expansion along the lost direction is
∫ T

0 u3(t)2dt.

Third-order term. Substituting the explicit forms (64) and (65) of X̃L and X̃Q into (66),
the cubic term along the lost direction is given by,

〈X̃C(T ), ϕKe
−iλ1T 〉 =

1

6
〈ad3

H1
(H0)ϕ1, ϕK〉

∫ T

0
u1(t)3ei(λK−λ1)(t−T )dt

+

∫ T

0
u1(t)2

∫ t

0
u1(τ)ĥ1(t, τ)dτdt+

∫ T

0
u1(t)

∫ t

0
u1(τ)2ĥ2(t, τ)dτdt

+

∫ T

0
u1(t)

∫ t

0
u1(τ)

∫ τ

0
u1(s)ĥ3(t, τ, s)dsdτdt,

where the cubic kernels are given by

ĥ1(t, τ) :=
i

2

p∑
j=1

(λj − λ1)〈H1ϕ1, ϕj〉〈ad2
H1

(H0)ϕK , ϕj〉ei(λK(t−T )+λj(τ−t)+λ1(T−τ)), (72)

ĥ2(t, τ) :=
i

2

p∑
j=1

(λK − λj)〈H1ϕK , ϕj〉〈ad2
H1

(H0)ϕ1, ϕj〉ei(λK(t−T )+λj(τ−t)+λ1(T−τ)), (73)

ĥ3(t, τ, s) :=

p∑
j=1

p∑
n=1

(λK − λj)(λ1 − λn)(λn − λj)〈H1ϕ1, ϕn〉〈H1ϕn, ϕj〉〈H1ϕK , ϕj〉

× ei(λK(t−T )+λj(τ−t)+λ1(T−s)+λn(s−τ)). (74)

For the Schrödinger PDE (1), computing formally the Lie bracket, one gets that ad3
A(µ)ϕ =

0 for all ϕ. Thus, to have a toy-model fitting the PDE, from now on we assume that

〈ad3
H1

(H0)ϕ1, ϕK〉 = 0. (75)

Then, the cubic term along the lost direction behaves as

〈X̃C(T ), ϕKe
−iλ1T 〉 =

∫ T

0
u1(t)2

∫ t

0
u1(τ)ĥ1(t, τ)dτdt

+

∫ T

0
u1(t)

∫ t

0
u1(τ)2ĥ2(t, τ)dτdt+O(‖u1‖3L1(0,T )). (76)
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The last cubic term is neglected in front of the other two in an asymptotic of small-time,
and thus, is seen as a small pollution.

Error estimate on the expansion. With a similar proof as in [16, Prop. 2.5], one can
compute the following error estimate,

‖(X̃ −X1 − X̃L − X̃Q − X̃C)(T )‖ = O(‖u1‖4L4(0,T )). (77)

Remark 3.3 (About assumption (Ĥquad)). When (75) holds, the equality (76) gives that

in an asymptotic of small-time, the leading cubic term is
∫ T

0 u1(t)2u2(t)dt.

• If, instead of (Ĥquad), we assume that Â1
K 6= 0, by (68), the leading quadratic term

is
∫ T

0 u1(t)2dt. Thus, for controls small in W−1,∞, the quadratic term prevails on

the cubic term and (58) is not W−1,∞. Thus, one must at least assume that

Â1
K = 0.

• If, instead of (Ĥquad), we assume that Â1
K = 0 and Â2

K 6= 0, then (70) with n = 2

gives that the leading quadratic term is
∫ T

0 u2(t)2dt. However, the cubic term
can’t absorb simultaneously such a quadratic term and the quartic term as by
Cauchy-Schwarz inequality, one has∣∣∣∣∫ T

0
u1(t)2u2(t)dt

∣∣∣∣2 6 ∫ T

0
u2(t)2dt

∫ T

0
u1(t)4dt.

To overcome this issue, one could try to prove a sharper error estimate than (77).

Instead of doing this, we assume (Ĥquad) so that the leading quadratic term is

given by
∫ T

0 u3(t)2dt. This time, the cubic term can handle simultaneously such a
quadratic term and the terms of order higher than four.

To sum up, the goal of this section is to prove the following result.

Theorem 3.4. Let H0 and H1 satisfying (Ĥlin), (Ĥquad), (75), and (Ĥcub) (defined below).
Then, the Schrödinger ODE (58) is H2

0 -STLC around the ground state: for all T > 0, for
all η > 0, there exists δ > 0 such that for every Xf ∈ Cp with ‖Xf −X1(T )‖ < δ, there
exists u ∈ H2

0 ((0, T ),R) with ‖u‖H2
0 (0,T ) < η such that the solution X of (58) satisfies

X(T ; u, ϕ1) = Xf .

3.4.3. Proof that the vector iϕK is a small-time H2
0 -continuously approximately reachable

vector. Working in two stages as for the polynomial toy-models (43) and (44), we prove
that iϕK is a small-time H2

0 -continuously approximately reachable vector associated with
vector variations Ξ(T ) = iXK(T ).

• First, the computations of Section 3.4.2 entail the existence of a family of oscillating
controls (ub)b∈R arbitrary small in H2

0 (0, T ) such that

〈X(T ; ub, ϕ1), XK(T )〉 = ib+O(|b|1+ 1
41 ) when b→ 0. (78)

• Then, we make sure that

‖PX(T ; ub, ϕ1)−X1(T )‖ = O(|b|1+ 1
41 ), (79)

where we recall that P denotes the orthogonal projection on H.
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Step 1: Using oscillating controls along the lost direction. Define, for b ∈ R∗,

ub(t) = sign(b)|b|
7
41φ(3)

(
t

|b|
4
41

)
with φ ∈ C∞c (0, 1) s. t.

∫ 1

0
φ′′(θ)2φ′(θ)dθ =

1

ĈK
, (80)

with ĈK := ĥ1(0, 0) − ĥ2(0, 0) where ĥ1 and ĥ2 are defined in (72) and (73). To ensure
that φ exists, one must assume that

ĈK 6= 0. (Ĥcub)

First, the same estimate as (48) gives that the controls are arbitrary small in H2
0 and the

map b 7→ ub can be extended continuously from R to H2
0 (0, T ). Moreover, substituting

these controls into (67), (71), (76) and (77), the same computations as for (44) lead to

〈X̃(T ; ub, ϕ1), ϕKe
−iλ1T 〉 = b

∫ 1

0
φ′′(θ1)2

∫ θ1

0
φ′′(θ2)ĥ1(|b|

4
41 θ1, |b|

4
41 θ2)dθ2dθ1

+ b

∫ 1

0
φ′′(θ1)

∫ θ1

0
φ′′(θ2)2ĥ2(|b|

4
41 θ1, |b|

4
41 θ2)dθ2dθ1 +O(|b|1+ 1

41 ).

Performing the expansion of the kernels ĥ1 and ĥ2 when b goes to zero, one has

〈X̃(T ; ub, ϕ1), ϕKe
−iλ1T 〉 = iĈKb

∫ 1

0
φ′′(θ)2φ′(θ)dθei(λ1−λK)T +O(|b|1+ 1

41 ),

which gives (78) by construction of φ as X̃(T ) = X(T ) when u1(T ) = 0 (see (61)).

Step 2: Correcting the linear components. Unlike for the previous polynomial toy-models,
it is not straightforward to make sure that (79) holds. Thus, in a second time, the linear
components of the solution are corrected using the STLC result on projection onH given in
Proposition 2.7. This gives the existence of a control vb ∈ H2

0 (T, 2T ) such that the solution
of (58) on [T, 2T ] associated to the control vb and the initial condition X(T ; ub, ϕ1) at
time T satisfies

PX(2T ) = X1(2T ) with ‖vb‖H2
0 (T,2T ) 6 C‖X(T ; ub, ϕ1)−X1(T )‖. (81)

Then, (79) is verified (for the final time 2T ). However, one needs to check that (78) which
holds at time T thanks to Step 1, still holds at time 2T and has not been destroyed by
the linear correction. Thus, one needs to check that

|〈X(2T ), XK(2T )〉 − 〈X(T ), XK(T )〉| = O(|b|1+ 1
41 ). (82)

Evolution of the solution along the lost direction. First, we prove that under (Ĥlin), one
has,

|〈X(2T ), XK(2T )〉 − 〈X(T ), XK(T )〉| 6 C‖vb‖2L1(T,2T ). (83)

To that end, first notice that, using (60), under (Ĥlin), one has,

∀t ∈ [0, T ], 〈X(t), XK(t)〉 = 〈(X −X1 −XL)(t), XK(t)〉.
Besides, looking at (58) and (59), X −X1 −XL is the solution of

i(X −X1 −XL)′ = H0(X −X1 −XL)− u(t)H1(X −X1).

Thus, the Duhamel formula gives that the left-hand side of (83) is estimated by∣∣∣∣∫ 2T

T
vb(t)〈H1(X −X1)(t), ϕK〉e−iλK(2T−t)dt

∣∣∣∣
6 C‖vb‖L1(T,2T ) sup

t∈[T,2T ]
‖(X −X1)(t)‖. (84)
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Moreover, writing the Duhamel formula for the equation satisfied by X − X1, one gets
similarly that

sup
t∈[T,2T ]

‖(X −X1)(t)‖ 6 C‖vb‖L1(T,2T ) sup
t∈[T,2T ]

‖X(t)‖. (85)

Besides, taking the scalar product of (58) with X and then the imaginary part of the
corresponding equality, one gets that the norm of X is preserved. Thus, putting together
all these estimates, one gets (83).

Estimate on the end-point of the solution at time T . Thus, to prove (82), using (81) and
(83), it is enough to prove that

‖X(T ; ub, ϕ1)−X1(T )‖2 = O(|b|1+ 1
41 ), (86)

that is, we need to estimate the error on the linear part of the solution when using the
oscillating controls (80). Notice that by the Duhamel formula, as in (85), a straightforward
estimate is given by

‖X(T ; ub, ϕ1)−X1(T )‖ 6 C‖ub‖L1(0,T ) = O(|b|
11
41 ),

by definition (80) of the family (ub)b∈R. This is not enough to prove (86). One can compute
a sharper estimate by writing instead that

‖X(T ; ub, ϕ1)−X1(T )‖ 6 ‖XL(T ; ub, ϕ1)‖+ ‖(X −X1 −XL)(T ; ub, ϕ1)‖. (87)

Moreover, using the estimate given in [16, Prop. 2.6], one has

‖(X −X1 −XL)(T ; ub, ϕ1)‖ 6 C‖u1‖2L2(0,T ) = O(|b|
26
41 ), (88)

looking at (80). Moreover, looking at the explicit computations given in (60), the linear
part is estimated by

‖XL(T ; ub, ϕ1)‖ 6 C max
j=1,...,p

∣∣∣∣∫ T

0
ub(t)e

i(λj−λ1)(t−T )dt

∣∣∣∣ . (89)

Besides, for every j = 2, . . . , p, performing three integrations by parts as u1(T ) = u2(T ) =
u3(T ) = 0, one has∣∣∣∣∫ T

0
ub(t)e

i(λj−λ1)(t−T )dt

∣∣∣∣ =

∣∣∣∣(λj − λ1)3

∫ T

0
u3(t)ei(λj−λ1)(t−T )dt

∣∣∣∣ = O(|b|
23
41 ) (90)

looking at (80). Notice that this also holds for j = 1 because in this case, the left hand-side
is equal to u1(T ) = 0. Therefore, (87), (88), (89), (90) lead to

‖X(T ; ub, ϕ1)−X1(T )‖ = O(|b|
23
41 ),

which gives (86) concluding Step 2.

3.4.4. Proof that the vector ϕK is a small-time H2
0 -continuously approximately reachable

vector. As for the polynomial toy-model (44), the second approximately reachable vector
is built from the first one in a way inspired by the work [40, Th. 6]. To that end, denote
by (ub)b∈R the control variations associated with iϕK constructed in Section 3.4.3. The
goal is to prove that for every b, c ∈ R small enough,

X(3T ; ub#0[0,T ]#uc, ϕ1) = X1(3T ) + (ice2i(λK−λ1)T + ib)XK(3T ) +O(|(b, c)|1+ 1
41 ). (91)

Thus, for all T ∈
(

0, π
2(λK−λ1)

)
, taking c = − α

sin(2(λK−λ1)T ) and b = −c cos(2(λK − λ1)T ),

this provides a family of controls (vα)α∈R such that when α goes to zero,

X(3T ; vα, ϕ1) = X1(3T ) + αXK(3T ) +O(|α|1+ 1
41 ) with ‖vα‖H2

0 (0,3T ) 6 C|α|
1
41 .
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This will give that ϕK is a small-time H2
0 -continuously approximately reachable vector

associated with vector variations Ξ(T ) = XK(T ). So, it remains to prove (91). First, by
construction of the family (ub)b∈R, one has

X(T ; ub, ϕ1) = X1(T ) + ibXK(T ) +O(|b|1+ 1
41 ) with ‖ub‖H2

0 (0,T ) 6 C|b|
1
41 .

Then, on [T, 2T ], no control is activated, so,

X(2T ; ub#0[0,T ], ϕ1) = e−iH0TX(T ; ub, ϕ1) = X1(2T ) + ibXK(2T ) +O(|b|1+ 1
41 ).

Moreover, using the semi-group property of the equation, one has

X(3T ; ub#0[0,T ]#uc, ϕ1) = X(T ; uc, X(2T ; ub#0[0,T ], ϕ1)). (92)

Besides, using Gronwall Lemma, one proves the existence of C > 0 such that for all τ > 0,
p ∈ R5 with ‖p‖ < 1 and u ∈ H2

0 (0, T ) with ‖u‖H2
0
< 1,

‖X(T ; u, X1(τ) + p)−X(T ; u, ϕ1)e−iλ1τ − e−iH0T p‖ 6 C‖u‖H2(0,T )‖p‖. (93)

The proof is left to the reader but one can refer to Proposition 4.4 for a similar proof for

the Schrödinger PDE. Taking u = uc, τ = 2T and pb = ibXK(2T ) +O(|b|1+ 1
41 ), one gets

that ‖uc‖H2(0,T )‖pb‖ = O(|c|
1
41 |b|). Moreover, by construction of (uc),

X(T ; uc, ϕ1) = X1(T ) + icXK(T ) +O(|c|1+ 1
41 ).

Thus, using (93), (92) becomes

X(3T ; ub#0[0,T ]#uc, ϕ1) = X1(3T ) + icXK(T )e−2iλ1T + ibXK(3T ) +O(|b, c|1+ 1
41 ),

which concludes the proof of (91).

3.4.5. Towards the Schrödinger PDE. Let us state here the main difficulties we are going
to face for the Schrödinger PDE (1) compared to the ODE (58).

• In Section 5, the computations of the expansion of the solution will be quite similar.
The only difference is that the kernels will be defined as function series. Thus, the
regularity and boundness of such kernels needed to perform integrations by parts
will not be straightforward but will stem from (Hreg).
• The main difficulty for the PDE will be to prove that iϕK is a H2

0 -continuously
approximately reachable vector (the second approximately reachable vector will be
deduced from the first with the same proof). Using the same oscillating controls
as for the ODE, we will have similarly that

〈ψ(T ; ub, ϕ1), ψK(T )〉 = ib+O(|b|1+ 1
41 ). (94)

Then, contrary to the finite dimensional case, we will need to correct an infinite
number of linear directions. This will also be done using the STLC in projection
on H to get the existence of vb ∈ H2

0 (T, 2T ) such that

Pψ(2T ) = ψ1(2T ).

The core of the paper is to prove that such a linear correction didn’t destroy the
work in (94). This is done using two ingredients.

– The STLC result in projection provides an estimate, (81) in finite dimension,
on the linear control by the data to be reached. For the Schrödinger PDE, the
classical estimate giving that the L2-norm of the control is estimated by the
data to be controlled in the H3

(0)-norm is not sharp enough. The whole work

of [15] has consisted in establishing sharper (and simultaneous) estimates on
the control to make this step work.
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– Also, in finite dimension, the evolution of the solution along the lost dimension
(83) is estimated by the L1-norm of the linear control. Once again, this will
not be sharp enough for the Schrödinger PDE. That is why in Section 5.6, we
quantify more precisely the evolution of the solution along the lost direction.

4. Well-posedness and STLC of the Schrödinger equation

4.1. Well-posedness of the Schrödinger equation. In this section, we recall the result
given in [15, Theorem 2.1] about the existence and uniqueness of the solution of the
following Cauchy problem, stressing the link between the regularity of the solution and
the boundary conditions on the dipolar moment µ, i∂tψ(t, x) = −∂2

xψ(t, x)− u(t)µ(x)ψ(t, x)− f(t, x), (t, x) ∈ (0, T )× (0, 1),
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, T ),
ψ(0, x) = ψ0(x), x ∈ (0, 1).

(95)

Theorem 4.1. Let T > 0, (p, k) ∈ N2, µ ∈ H2(p+k)+3((0, 1),R) with µ(2n+1)(0) =

µ(2n+1)(1) = 0 for all n = 0, . . . , p − 1 , u ∈ Hk
0 ((0, T ),R), ψ0 ∈ H

2(p+k)+3
(0) (0, 1) and

f ∈ Hk
0 ((0, T ), H2p+3 ∩ H2p+1

(0) (0, 1)). There exists a unique solution of (95), that is a

function ψ ∈ Ck([0, T ], H2p+3
(0) (0, 1)) with ψ(T ) in H

2(p+k)+3
(0) (0, 1) such that the following

equality holds in H2p+3
(0) for every t ∈ [0, T ]:

ψ(t) = e−iAtψ0 + i

∫ t

0
e−iA(t−τ) (u(τ)µψ(τ) + f(τ)) dτ.

Moreover, for every R > 0, there exists C = C(T, µ,R) > 0 such that if ‖u‖Hk
0 (0,T ) < R,

then this solution satisfies

‖ψ(T )‖
H

2(p+k)+3
(0)

, ‖ψ‖
Ck([0,T ],H2p+3

(0)
)
6 C

(
‖ψ0‖H2(p+k)+3

(0)

+ ‖f‖
Hk((0,T ),H2p+3∩H2p+1

(0)
)

)
.

We will sometimes write ψ(·; u, ψ0) to denote the solution of (1) associated with control
u and initial data ψ0 when we will need to keep track of such a dependency.

Remark 4.2. Notice that when µ satisfies (Hreg), the multiplication operators

ϕ 7→ µϕ, (96)

ϕ 7→ eiαµϕ, α ∈ R, (97)

maps continuously H7
(0) and H7 ∩H5

(0) into H7 ∩H5
(0) but does not map continuously H7

(0)

into H7
(0). Moreover, the operator

ϕ 7→ 2µ′ϕ′ + µ′′ϕ, (98)

maps continuously H7 ∩H5
(0) into H6 ∩H3

(0) and the operator

ϕ 7→ µ′2ϕ, (99)

maps continuously H7 ∩H5
(0) into H7 ∩H5

(0). Indeed, for (96), Leibniz formula gives for

n = 0, 1, 2,

(µϕ)(2n) =

n∑
k=0

(
2n

2k

)
µ(2k)ϕ(2n−2k) +

n−1∑
k=0

(
2n

2k + 1

)
µ(2k+1)ϕ(2n−2k−1).

Thus, if ϕ ∈ H7
(0), for all n = 0, 1, 2, (µϕ)(2n) vanishes at x = 0, 1 because for all k ∈

{0, . . . , n}, ϕ(2n−2k) does and for all k ∈ {0, . . . , n − 1}, µ(2k+1) does. This gives the

continuity of (96). Notice that one can’t go higher as for (µϕ)(6), in the sum, the term
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µ(5)ϕ′ doesn’t vanish at 0 and 1. The other continuities are proved the same. These
continuities will be the key to prove the well-posedness of the equations considered in the
following (see Remark 4.3, Sections 5.2 and 5.3).

Remark 4.3. Thanks to Remark 4.2 on (96), from Theorem 4.1 with p = k = 2, one
deduces that, when µ satisfies (Hreg), for every ψ0 ∈ H11

(0), φ ∈ C
2([0, T ], H7

(0)) and u, v ∈
H2

0 (0, T ), the Schrödinger equation i∂tψ(t, x) = −∂2
xψ(t, x)− u(t)µ(x)ψ − v(t)µ(x)φ, (t, x) ∈ (0, T )× (0, 1),

ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, T ),
ψ(0, x) = ψ0(x), x ∈ (0, 1).

admits a unique solution ψ ∈ C2([0, T ], H7
(0)(0, 1)) with ψ(T ) in H11

(0)(0, 1). Moreover, for

every R > 0, there exists C = C(T, µ,R) > 0 such that if ‖u‖H2
0 (0,T ) < R, this solution

satisfies

‖ψ(T )‖H11
(0)
, ‖ψ‖C2([0,T ],H7

(0)
) 6 C

(
‖ψ0‖H11

(0)
+ ‖v‖H2

0 (0,T )‖φ‖C2([0,T ],H7
(0)

)

)
. (100)

This will be the regularity on solutions used in all this paper.

4.2. Dependency of the solution with respect to the initial condition. From the
well-posedness result given in Theorem 4.1, one can deduce the following result about the
dependency of the solution of (1) with respect to the initial condition.

Proposition 4.4. Let T > 0, µ satisfying (Hreg) and ψ0 ∈ H11
(0)(0, 1) and τ ∈ R. For all

R > 0, there exists C = C(T, µ,R) > 0 such that for all u ∈ H2
0 (0, T ) with ‖u‖H2

0 (0,T ) < R,

one has

‖ψ(T ; u, ψ1(τ) + ψ0)− ψ(T ; u, ϕ1)e−iλ1τ − e−iATψ0‖H11
(0)
6 C‖u‖H2

0 (0,T )‖ψ0‖H11
(0)
.

Proof. Define, for all t ∈ [0, T ], Λ(t) := ψ(t; u, ψ1(τ) +ψ0)−ψ(t; u, ϕ1)e−iλ1τ − e−iAtψ0.
Notice that Λ is the solution of,

i∂tΛ = −∂2
xΛ− u(t)µ(x)Λ− u(t)µ(x)e−iAtψ0,

with Dirichlet conditions and Λ(0, ·) = 0. Therefore, Remark 4.3 gives the existence of
C > 0 such that

‖Λ(T )‖H11
(0)
6 C‖u‖H2

0 (0,T )‖e−iAtψ0‖C2([0,T ],H7
(0)

) = C‖u‖H2
0 (0,T )‖ψ0‖H11

(0)
.

�

4.3. Controllability in projection by the linear test with simultaneous esti-
mates. In this section, we recall the local controllability result in projection by the linear
test given in [15] as it will be useful in this paper. To that end, we introduce the following
notations: if J is a subset of N∗, we define the space H := SpanC (ϕj , j ∈ J) and the
orthogonal projection on H given by PJ(ψ) = ψ −

∑
j 6∈J
〈ψ,ϕj〉ϕj for all ψ ∈ L2(0, 1).

Theorem 4.5. Let (p, k) ∈ N2 with p > k, J a subset of N∗ and µ ∈ H2(p+k)+3((0, 1),R)

such that µ(2n+1)(0) = µ(2n+1)(1) = 0 for all n = 0, . . . , p− 1 and

there exists a constant c > 0 such that for all j ∈ J, |〈µϕ1, ϕj〉| ≥
c

j2p+3
. (101)

Then, the Schrödinger equation (1) is STLC in projection around the ground state with

controls in Hm
0 (T0, T ) and targets H

2(p+m)+3
(0) for every m ∈ {0, . . . , k} with the same

control map.
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More precisely, for all initial time T0 > 0 and final time T > T0, there exists C, δ > 0 and
a C1-map ΓT0,T : ΩT0 × ΩT → Hk

0 ((T0, T ),R) where

ΩT0 := {ψ0 ∈ S ∩H2(p+k)+3
(0) ; ‖ψ0 − ψ1(T0)‖

H
2(p+k)+3
(0)

< δ}, (102)

ΩT := {ψf ∈ H ∩H
2(p+k)+3
(0) ; ‖ψf − PJ (ψ1(T )) ‖

H
2(p+k)+3
(0)

< δ}, (103)

such that ΓT0,T (ψ1(T0), ψ1(T )) = 0 and for every (ψ0, ψf ) ∈ ΩT0 ×ΩT , the solution of (1)
on [T0, T ] with control u := ΓT0,T (ψ0, ψf ) and initial condition ψ0 at t = T0 satisfies

PJ (ψ(T )) = ψf , (104)

with the following boundary conditions on the control

u2(T ) = . . . = uk+1(T ) = 0, (105)

where here (un)n∈N denotes the iterated primitives of u vanishing at T0. Besides, for all
m in {−(k + 1), . . . , k}, the following estimates hold

‖u‖Hm
0 (T0,T ) 6 C

(
‖ψ0 − ψ1(T0)‖

H
2(p+m)+3
(0)

+ ‖ψf − PJψ1(T )‖
H

2(p+m)+3
(0)

)
. (106)

5. Error estimates on the expansion of the solution

The goal of this section is to compute the power series expansion of the solution ψ of
the Schrödinger equation (1) up to order 3 with a sharp error estimate, as it is the key to
prove Theorem 1.4. In all this section, if not mentioned, we will work with controls u at
least in H2

0 (0, T ) and with a dipolar moment µ satisfying (Hreg).

5.1. Formal expansion of the solution. Formally, expanding the solution of (1) around
the trajectory (ψ1, u ≡ 0),

• the first-order term Ψ of the expansion of ψ is solution of, i∂tΨ = −∂2
xΨ− u(t)µ(x)ψ1(t, x),

Ψ(t, 0) = Ψ(t, 1) = 0,
Ψ(0, x) = 0,

(107)

which can be explicitly computed as,

Ψ(t) = i
+∞∑
j=1

(
〈µϕ1, ϕj〉

∫ t

0
u(τ)ei(λj−λ1)τdτ

)
ψj(t), t ∈ [0, T ]. (108)

• The second-order term ξ of the expansion of ψ is solution of, i∂tξ = −∂2
xξ − u(t)µ(x)Ψ(t, x),

ξ(t, 0) = ξ(t, 1) = 0,
ξ(0, x) = 0,

(109)

• and the third-order term ζ of the expansion of ψ is solution of, i∂tζ = −∂2
xζ − u(t)µ(x)ξ(t, x),

ζ(t, 0) = ζ(t, 1) = 0,
ζ(0, x) = 0.

(110)

The goal of this section is to quantify in which way the following expansion holds rigorously

ψ ≈ ψ1 + Ψ + ξ + ζ. (111)

Such expansion will be studied under the following asymptotic.

Definition 5.1. Given two scalar quantities A(T, u) and B(T, u), we will write A(T, u) =
O (B(T, u)) if there exists C, T ∗ > 0 such that for any T ∈ (0, T ∗), there exists η > 0 such
that for all u ∈ H2

0 (0, T ) with ‖u‖H2
0 (0,T ) < η, we have |A(T, u)| 6 C|B(T, u)|.
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Thus, the notation O refers to the convergence ‖u‖H2
0 (0,T ) → 0 and holds uniformly with

respect to the final time on a small time interval [0, T ∗]. All estimates will be computed
under this asymptotic as the goal stated in Theorem 1.4 is prove H2

0 -STLC.
But first, before computing any estimate, we state a well-posedness result about all the

equations considered, which directly stems from Remark 4.3.

Proposition 5.2. Let µ satisfying (Hreg) and u in H2
0 ((0, T ),R). Then, there exists a

unique solution ψ (resp. Ψ, ξ and ζ) of (1) (resp. (107), (109) and (110)) belonging to
C2([0, T ], H7

(0)(0, 1)) with ψ(T ) (resp. Ψ(T ), ξ(T ) and ζ(T )) in H11
(0)(0, 1). Moreover, the

following estimate holds,
‖ψ‖C2([0,T ],H7

(0)
) = O (1) . (112)

5.2. An auxiliary system. Our goal is to prove that when µ satisfies (4), (Hquad) and
(Hcub), the leading term of the solution ψ of the Schrödinger equation (1) along the lost di-

rection is namely the cubic term
∫ T

0 u1(t)2u2(t)dt in the asymptotic given in Definition 5.1.
Thus, we seek to prove that such a cubic term can absorb both the quadratic term and the
terms of order higher than four. Therefore, classical error estimates on the expansion (111)
involving the L2-norm of the control u are not sharp enough because can’t be absorbed
by such a cubic term. As in Section 3.4.2, one can compute sharper estimates, involving
rather the L2-norm of the time primitive u1 of the control u by introducing the new state

ψ̃(t, x) := ψ(t, x)e−iu1(t)µ(x), (t, x) ∈ [0, T ]× [0, 1]. (113)

This new state satisfies the following equation, called the auxiliary system
i∂tψ̃ = −∂2

xψ̃ − iu1(t)(2µ′(x)∂xψ̃ + µ′′(x)ψ̃) + u1(t)2µ′(x)2ψ̃,

ψ̃(t, 0) = ψ̃(t, 1) = 0,

ψ̃(0, x) = ϕ1.

(114)

Proposition 5.3. Let µ satisfying (Hreg) and u1 in H3
0 ((0, T ),R). There exists a unique

solution ψ̃ of (114) in C2([0, T ], H7 ∩H5
(0)), which satisfies

‖ψ̃‖C2([0,T ],H7∩H5
(0)

) = O (1) . (115)

Moreover, the following equality holds in H5
(0)(0, 1) for every t ∈ [0, T ],

ψ̃(t) = ψ1(t)−
∫ t

0
e−iA(t−τ)

(
u1(τ)

(
2µ′∂x + µ′′

)
ψ̃(τ) + iu1(τ)2µ′2ψ̃(τ)

)
dτ. (116)

To prove (116), we need to recall the following smoothing effect first proved in [6] and
then generalized in [15].

Proposition 5.4. Let (p, k) ∈ N2. There exists a non-decreasing function C : [0,+∞)→
(0,+∞) such that for all T > 0 and for all f ∈ Hk

0 ((0, T ), H2p+3 ∩ H2p+1
(0) (0, 1)), the

function G : t 7→
∫ t

0 e
−iA(t−τ)f(τ)dτ belongs to Ck([0, T ], H2p+3

(0) (0, 1)) with the following

estimate,
‖G‖

Ck([0,T ],H2p+3
(0)

)
6 C‖f‖

Hk((0,T ),H2p+3∩H2p+1
(0)

)
. (117)

Remark 5.5. Because of the term ∂xψ̃ in (114), up to now, the well-posedness of the
auxiliary system is only understood through its link (113) with the Schrödinger equation
and is not proved directly using for example a fixed-point argument on the formulation
(114). However, one needs to be very careful: the multiplication by the exponential factor
in (113) preserves the regularity but not the boundary conditions of ψ. More precisely,
the continuity of the operators given in Remark 4.2 is the key to know which boundary
conditions can be deduced for the auxiliary system from the Schrödinger equation and
which can’t.
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Proof of Proposition 5.3. Regularity. By Proposition 5.2, under these hypotheses, the so-
lution ψ of the Schrödinger equation (1) is C2([0, T ], H7

(0)). Thus, from the continuity

given in Remark 4.2 on (97), the function ψ̃ defined by (113) is C2([0, T ], H7 ∩ H5
(0)).

Moreover, (115) follows from (112).

Equation. For this regularity, the Schrödinger equation (1) is satisfied for every t in H5
(0).

Thus, computations prove that (114) holds for every t in H5∩H3
(0) using Remark 4.2 with

(98) and (99).

Uniqueness. For every function ψ̃ satisfying the first equation of (114) for every t ∈ [0, T ]
in H5 ∩ H3

(0), an energy estimate proves that its L2-norm is preserved. This implies the

uniqueness for solutions in C2([0, T ], H7∩H5
(0)) (see [16, Prop. 4.6 and 4.7] for more details

on such an energy estimate).

Weak formulation. Denote by ψ̂ the right-hand side of (116). The continuity of (98)

and (99) stated in Remark 4.2 imply that the functions integrated in the definition of ψ̂
belong to H2

0 ((0, T ), H5∩H3
(0)). Thus, the smoothing effect stated in Proposition 5.4 with

(p, k) = (1, 2) entails that ψ̂ belongs to C2([0, T ], H5
(0)). Moreover, computations proves

that ψ̂ satisfies (114) for every t ∈ [0, T ] in H5 ∩ H3
(0). Thus, the uniqueness allows to

prove (116). �

5.3. Computation of the expansion of the auxiliary system. One can compute by

hand the expansion of the solution ψ̃ of the auxiliary system (114) around the ground
state, up to order 3.

First-order term. The linearized system of (114) around the trajectory (ψ1, u = 0) is given
by 

i∂tΨ̃ = −∂2
xΨ̃− iu1(t) (2µ′∂xψ1 + µ′′ψ1) ,

Ψ̃(t, 0) = Ψ̃(t, 1) = 0,

Ψ̃(0, x) = 0.

(118)

Linearizing (113), Ψ̃ is also given by,

Ψ̃(t) = Ψ(t)− iu1(t)µψ1(t), t ∈ [0, T ], (119)

where Ψ is the solution of (107). Recall that by Proposition 5.2, Ψ belongs to C2([0, T ], H7
(0)).

Thus, using the continuity of (96) given in Remark 4.2 and (119) entail that Ψ̃ belongs to
C2([0, T ], H7 ∩H5

(0)). As before, using Proposition 5.4 with (p, k) = (1, 0), the following

equality holds in H5
(0)(0, 1) for every t ∈ [0, T ],

Ψ̃(t) = −
∫ t

0
e−iA(t−τ)u1(τ)

(
2µ′∂xψ1(τ) + µ′′ψ1(τ)

)
dτ, (120)

and moreover, the following estimate holds

‖Ψ̃‖C0([0,T ],H5
(0)

(0,1)) = O
(
‖u1‖L2(0,T )

)
. (121)

Moreover, the solution of (118) can be computed explicitly as

Ψ̃(t) =
+∞∑
j=1

(
(λj − λ1) 〈µϕ1, ϕj〉

∫ t

0
u1(τ)ei(λj−λ1)τdτ

)
ψj(t), t ∈ [0, T ]. (122)
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Second-order term. The second-order term of the expansion of (114) around the ground
state is the solution of

i∂tξ̃ = −∂2
xξ̃ − iu1(t)(2µ′∂xΨ̃ + µ′′Ψ̃) + u1(t)2µ′2ψ1,

ξ̃(t, 0) = ξ̃(t, 1) = 0,

ξ̃(0, x) = 0.

(123)

Identifying the second order terms in (113), ξ̃ can also be given by,

ξ̃(t) = ξ(t)− iu1(t)µΨ̃(t) +
u1(t)2

2
µ2ψ1(t). (124)

Thus, from the regularity of ξ given in Proposition 5.2, on Ψ̃ and the continuity of the
operators given in Remark 4.2, ξ is in C2([0, T ], H7 ∩ H5

(0)). Moreover, the following

equality holds in H5
(0)(0, 1) for every t ∈ [0, T ],

ξ̃(t) = −
∫ t

0
e−iA(t−τ)

[
u1(τ)

(
2µ′∂xΨ̃(τ) + µ′′Ψ̃(τ)

)
+ iu1(τ)2µ′2ψ1(τ)

]
dτ. (125)

As all the integrated terms belongs for τ fixed to H3
(0), by Remark 4.2, the triangular

inequality together with the fact that for every s ∈ R, eisA is an isometry from H3
(0) to

H3
(0), gives that

‖ξ̃‖C0([0,T ],H3
(0)

(0,1)) = O
(
‖u1‖L1‖Ψ̃‖C0([0,T ],H4

(0)
) + ‖u1‖2L2

)
= O

(
‖u1‖2L2

)
, (126)

using (121). Besides, substituting the explicit form of Ψ̃ given in (122) into (125), the
solution can be explicitly computed as

ξ̃(t) = −i
+∞∑
j=1

(
〈µ′2ϕ1, ϕj〉

∫ t

0
u1(τ)2ei(λj−λ1)τdτ

)
ψj(t)

+
+∞∑
j=1

(∫ t

0
u1(τ)

∫ τ

0
u1(s)k̃quad,j(τ, s)dτds

)
ψj(t), (127)

where, for all j ∈ N∗, the quadratic kernel k̃quad,j is given by

k̃quad,j(τ, s) :=
+∞∑
n=1

(λ1 − λn)(λn − λj)〈µϕ1, ϕn〉〈µϕn, ϕj〉ei((λj−λn)τ+(λn−λ1)s). (128)

Thanks to Remark 1.1, all the quadratic kernels k̃quad,j defined in (128) are bounded
in C4(R2,C). This regularity is the key to perform integrations by parts and reveal a
coercivity quantified by the H−3-norm of the control, as stated in the following result.

Lemma 5.6. If the control u ∈ L2(0, T ) is such that u2(T ) = u3(T ) = 0, then, for all
j ∈ N∗,

〈ξ̃(T ), ψj(T )〉 = −i
3∑
p=1

Apj

∫ T

0
up(t)

2ei(λj−λ1)tdt+

∫ T

0
u3(t)

∫ t

0
u3(τ)∂2

1∂
2
2 k̃quad,j(t, τ)dτdt.

(129)

Proof. Let j ∈ N∗. Thanks to (175), the computations given in (127) give directly

〈ξ̃(T ), ψj(T )〉 = −iA1
j

∫ T

0
u1(t)2ei(λj−λ1)tdt+

∫ T

0
u1(t)

∫ t

0
u1(τ)k̃quad,j(t, τ)dτdt. (130)
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Besides, for all m ∈ N and H in C2(R2,C), if um+1(T ) = 0, integrations by parts lead to∫ T

0
um(t)

∫ t

0
um(τ)H(t, τ)dτdt =

∫ T

0
um+1(t)2

(
1

2

d

dt
(H(t, t))− ∂1H(t, t)

)
dt

+

∫ T

0
um+1(t)

∫ t

0
um+1(τ)∂1∂2H(t, τ)dτdt.

Therefore, (129) is deduced from (130) applying this equality successively for m = 1 and

H = k̃quad,j and for m = 2 and H = ∂1∂2k̃quad,j and also noticing that

∀p = 2, 3,
1

2

d

dt

(
∂p−2

1 ∂p−2
2 k̃quad,j(t, t)

)
− ∂p−1

1 ∂p−2
2 k̃quad,j(t, t) = −iApje

i(λj−λ1)t.

�

In particular, under (Hquad), the quadratic term, along the lost direction, is given by

〈ξ̃(T ), ψK(T )〉 = −iA3
K

∫ T

0
u3(t)2ei(λK−λ1)tdt+

∫ T

0
u3(t)

∫ t

0
u3(τ)∂2

1∂
2
2 k̃quad,K(t, τ)dτdt.

(131)
Thus, namely, the leading quadratic term along the lost direction of the expansion is given

by
∫ T

0 u3(t)2dt.

Third-order term. The third-order term of the expansion of (114) around the ground state
is the solution of

i∂tζ̃ = −∂2
xζ̃ − iu1(t)

(
2µ′∂xξ̃ + µ′′ξ̃

)
+ u1(t)2µ′2Ψ,

ζ̃(t, 0) = ζ̃(t, 1) = 0,

ζ̃(0, x) = 0.

(132)

As before, thanks to (113), the cubic term can also be given by

ζ̃(t) = ζ(t)− iu1(t)µξ̃(t) +
u1(t)2

2
µ2Ψ̃(t) + i

u1(t)3

6
µ3ψ1(t), t ∈ [0, T ]. (133)

Thus, the cubic term ζ̃ belongs to C2([0, T ], H7 ∩H5
(0)). Moreover, the following equality

holds in H5
(0)(0, 1) for every t ∈ [0, T ],

ξ̃(t) = −
∫ t

0
e−iA(t−τ)

[
u1(τ)

(
2µ′∂xξ̃(τ) + µ′′ξ̃(τ)

)
+ iu1(τ)2µ′2Ψ̃(τ)

]
dτ, (134)

and the following estimate holds, using the triangular inequality

‖ζ̃‖C0([0,T ],H1
(0)

(0,1)) = O
(
‖u1‖3L2(0,T )

)
. (135)

Using the explicit computations of Ψ̃ and ξ̃ given in (122) and (127), one gets that the
third-order term is given by

ζ̃(T ) =

+∞∑
j=1

(
i

∫ T

0
u1(t)2

∫ t

0
u1(τ)k̃1

cub,j(t, τ)dτdt+ i

∫ T

0
u1(t)

∫ t

0
u1(τ)2k̃2

cub,j(t, τ)dτdt

−
∫ T

0
u1(t)

∫ t

0
u1(τ)

∫ τ

0
u1(s)k̃3

cub,j(t, τ, s)dsdτdt
)
ψj(T ), (136)
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where the cubic kernels are given by

k̃1
cub,j(t, τ) :=

+∞∑
n=1

(λ1 − λn)〈µϕ1, ϕn〉〈µ′2ϕn, ϕj〉ei[(λj−λn)t+(λn−λ1)τ ], (137)

k̃2
cub,j(t, τ) :=

+∞∑
n=1

(λn − λj)〈µ′2ϕ1, ϕn〉〈µϕn, ϕj〉ei[(λj−λn)t+(λn−λ1)τ ], (138)

and

k̃3
cub,j(t, τ, s) :=

+∞∑
p=1

+∞∑
n=1

(λ1 − λn)(λn − λp)(λp − λj)

× 〈µϕ1, ϕn〉〈µϕn, ϕp〉〈µϕp, ϕj〉ei[(λj−λp)t+(λp−λn)τ+(λn−λ1)s]. (139)

Thanks to Remark 1.1, the kernels k̃1
cub,j and k̃2

cub,j are bounded in C2(R2,C) and the

kernel k̃3
cub,j is bounded in C1(R2,C). Formally, in an asymptotic of small time, (136)

entails that the cubic term behaves as
∫ T

0 u2
1(t)u2(t)dt as k̃icub,j(t, τ) ≈ k̃icub,j(0, 0) for

i = 1, 2 at first order and as the third term of (136) is a higher order cubic term.

5.4. Sharp error estimates for the auxiliary system. The goal of this section is to
compute sharp error estimates on the expansion of the auxiliary system.

Proposition 5.7. If µ satisfies (Hreg), then the following error estimates on the expansion
of the auxiliary system hold,

‖ψ̃ − ψ1 − Ψ̃‖L∞((0,T ),H2
(0)

(0,1)) = O
(
‖u1‖2L2(0,T )

)
, (140)

‖ψ̃ − ψ1 − Ψ̃− ξ̃ − ζ̃‖L∞((0,T ),L2(0,1)) = O
(
‖u1‖4L2(0,T )

)
. (141)

Proof. Proof of the linear remainder. We have seen in Proposition 5.3, that the following
equality holds in H5

(0) for all t ∈ [0, T ],(
ψ̃ − ψ1

)
(t) = −

∫ t

0
e−iA(t−τ)

(
u1(τ)(2µ′∂x + µ′′)ψ̃(τ) + iu1(τ)2µ′2ψ̃(τ)

)
dτ,

where for τ fixed, every term under this integral belongs to H5∩H3
(0). Thus, the triangular

inequality and the isometry of eiAs from H3
(0) to H3

(0) for every s give,

‖ψ̃ − ψ1‖L∞((0,T ),H3
(0)

) = O
(
‖u1‖L1‖ψ̃‖L∞((0,T ),H4

(0)
) + ‖u1‖2L2‖ψ̃‖L∞((0,T ),H3

(0)
)

)
= O (‖u1‖L2) , (142)

using estimate (116) on ψ̃. Notice that, by Cauchy-Schwarz inequality, we indeed have
‖u1‖L1 = O(‖u1‖L2) as the definition of O given in Definition 5.1 also means we work in
small time.

Proof of (140). Using (116) and (120), the following equality holds in H5
(0) for all t ∈ [0, T ],

(ψ̃ − ψ1 − Ψ̃)(t) = −
∫ t

0
e−iA(t−τ)

(
u1(τ)

(
2µ′∂x + µ′′

)
(ψ̃ − ψ1)(τ) + iu1(τ)2µ′

2
ψ̃(τ)

)
dτ.

Once again, for τ fixed, every term belongs to H5 ∩H3
(0) thanks to Remark 4.2, so using

once again the triangular inequality,

‖ψ̃ − ψ1 − Ψ̃‖L∞H2
(0)

= O
(
‖u1‖L1‖ψ̃ − ψ1‖L∞H3

(0)
+ ‖u1‖2L2‖ψ̃‖L∞H2

(0)

)
= O(‖u1‖2L2),

using the estimate (142) on the linear remainder and estimate (116) on ψ̃.



30 MÉGANE BOURNISSOU

Proof of cubic remainder. As before, in H5
(0),

(ψ̃ − ψ1 − Ψ̃− ξ̃)(t)

= −
∫ t

0
e−iA(t−τ)

(
u1(τ)

(
2µ′∂x + µ′′

)
(ψ̃ − ψ1 − Ψ̃)(τ) + iu1(τ)2µ′

2
(ψ̃ − ψ1)(τ)

)
dτ.

And thus, using the triangular inequality, (142) and (140), one gets

‖ψ̃ − ψ1 − Ψ̃− ξ̃‖L∞H1
(0)

= O
(
‖u1‖L1‖ψ̃ − ψ1 − Ψ̃‖L∞H2

(0)
+ ‖u1‖2L2‖ψ̃ − ψ1‖L∞H1

(0)

)
= O(‖u1‖3L2). (143)

Proof of (141). Finally, in H5
(0),

(ψ̃ − ψ1 − Ψ̃− ξ̃ − ζ̃)(t) = −
∫ t

0
e−iA(t−τ)

(
u1(τ)

(
2µ′∂x + µ′′

)
(ψ̃ − ψ1 − Ψ̃− ξ̃)(τ)

+ iu1(τ)2µ′
2
(ψ̃ − ψ1 − Ψ̃)(τ)

)
dτ.

And thus, using (140) and (143), one gets (141). �

In a nutshell, when (Hreg), (Hlin), (Hquad) and (Hcub) are satisfied, for the expansion of
the auxiliary system along the lost direction,

• by (131), the leading quadratic term is given by
∫ T

0 u3(t)2dt,

• by (136), the leading cubic term is given by
∫ T

0 u1(t)2u2(t)dt,
• and by (141) among every term of order higher than four, the leading term is given

by (
∫ T

0 u1(t)2dt)2.

Therefore, in the asymptotic of controls small in H2, along the lost direction, the cubic
term prevails on the linear term (because it vanishes) but also on the quadratic term and
on the terms of order higher or equal than four. This is why, in the next proposition, we
state that along the lost direction, we only keep the dominant cubic term and all other
terms are seen as (small) pollution, the bigger pollution being given by the quadratic term.

Let us stress that, in another asymptotic on controls, for example, in the asymptotic of
controls small in H3, this does not hold any more: Gagliardo-Nirenberg inequalities prove
that the quadratic term prevails on the cubic term (and on the higher-order terms), and
thus one can deny H3-STLC using such a quadratic term as done in [16].

Corollary 5.8. Let µ satisfying (Hreg), (Hlin), (Hquad). Let u ∈ H2
0 (0, T ) be a control such

that u2(T ) = u3(T ) = 0. Then, the solution ψ̃ of the auxiliary system (114) associated to
the initial condition ϕ1 satisfies

〈ψ̃(T ), ψK(T )〉 − i
∫ T

0
u1(t)2

∫ t

0
u1(τ)k̃1

cub,K(t, τ)dτdt

− i
∫ T

0
u1(t)

∫ t

0
u1(τ)2k̃2

cub,K(t, τ)dτdt = O
(
‖u3‖2L2(0,T ) + ‖u1‖3L1(0,T )

)
, (144)

where we recall that k̃1
cub,K and k̃2

cub,K are respectively defined by (137) and (138).

Proof. The computations (122), (131), (136) and the error estimate (141) give that the
right-hand side of (144) is estimated by

O
(
‖u3‖2L2(0,T ) + ‖u1‖3L1(0,T ) + ‖u1‖4L2(0,T )

)
.



STLC OF THE SCHRÖDINGER EQUATION DESPITE A DRIFT, THANKS TO A CUBIC TERM 31

However, for every control u such that u2(T ) = u3(T ) = 0, integrations by parts and then
Cauchy-Schwarz inequality prove that

‖u1‖4L2 =

(∫ T

0
u′(t)u3(t)dt

)2

6 C‖u′‖2L2(0,T )‖u3‖2L2(0,T ) = O(‖u3‖2L2(0,T )),

as we recall we work in the asymptotic of controls small in H2
0 (see Definition 5.1). �

5.5. Sharp error estimates for the Schrödinger equation. From the expansion of
the auxiliary system, one can deduce sharp error estimates on the expansion of the solution
of the Schrödinger equation (1).

Proposition 5.9. Let µ satisfying (Hreg). Then,

‖ψ − ψ1 −Ψ‖L∞((0,T ),L2(0,1)) = O
(
‖u1‖2L2(0,T ) + |u1(T )|2

)
, (145)

‖ψ − ψ1 −Ψ− ξ − ζ‖L∞((0,T ),L2(0,1)) = O
(
‖u1‖4L2(0,T ) + |u1(T )|4

)
. (146)

Proof. The proof of (145) and (146) are very similar. Thus, we only prove (146). Using all
the links (113), (119), (124) and (133) between the expansions of the Schrödinger equation
and of the auxiliary system, one gets

(ψ − ψ1 −Ψ− ξ − ζ) (T ) = eiu1(T )µ(ψ̃ − ψ1 − Ψ̃− ξ̃ − ζ̃)(T ) + (eiu1(T )µ − 1)ζ̃(T )

+ (eiu1(T )µ − 1− iu1(T )µ)ξ̃(T ) + (eiu1(T )µ − 1− iu1(T )µ− u1(T )2

2
µ2)Ψ̃(T )

+ (eiu1(T )µ − 1− iu1(T )µ− u1(T )2

2
µ2 − iu1(T )3

6
µ3)ψ1(T ).

The first term is estimated by ‖u1‖4L2 thanks to the estimate (141) on the auxiliary system.

Doing an expansion of eiu1(T )µ, the second term (resp. the third, fourth and fifth term)

is estimated by |u1(T )|‖ζ̃(T )‖L2 (resp. |u1(T )|2‖ξ̃(T )‖L2 , |u1(T )|3‖Ψ̃(T )‖L2 and |u1(T )|2).

Then, estimates (121), (126) and (135) on Ψ̃, ξ̃ and ζ̃ together with Young inequalities
lead to (146). �

To conclude on the error estimate of the expansion of the Schrödinger equation, one
needs to estimate the boundary term u1(T ). This can be done for specific motions of the
solution.

Lemma 5.10. For every u in H2
0 (0, T ) such that the solution of (1) satisfies

〈ψ(T ; u, ϕ1), ϕ1〉 = 〈ψ1(T ), ϕ1〉, (147)

then, the following estimate holds

|u1(T )| = O
(
‖u1‖2L2(0,T )

)
. (148)

Proof. Thanks to the explicit computation of Ψ given in (108), one gets

〈ψ(T ), ϕ1〉 = 〈ψ1(T ), ϕ1〉+ ie−iλ1T 〈µϕ1, ϕ1〉u1(T ) +O
(
‖ (ψ − ψ1 −Ψ) (T )‖L2(0,1)

)
As 〈µϕ1, ϕ1〉 6= 0 by (5), assumption (147) together with the estimate (145) of the quadratic
remainder lead to

u1(T ) = O
(
‖u1‖2L2(0,T ) + |u1(T )|2

)
.

By definition of O (see Definition 5.1), we work with controls arbitrary small in H2
0 , thus,

such estimate entails (148). �

Corollary 5.11. Let µ satisfying (Hreg). Then, for every control u ∈ H2
0 (0, T ) such that

the solution of (1) satisfies (147), the following estimate holds,

‖ψ − ψ1 −Ψ− ξ − ζ‖L∞((0,T ),L2(0,1)) = O
(
‖u1‖4L2(0,T )

)
. (149)
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5.6. The non overlapping principle. In this paper, it is quite useful to use non over-
lapping controls as already seen in Section 3. Moreover, if v (resp. w) is a control defined
on (0, T1) (resp. on (0, T2)), it would be every convenient to have

ψ(T1 + T2; v#w, ϕ1) = ψ(T1; v, ϕ1) + ψ(T2; w, ϕ1),

where recall that the concatenation of two controls is defined in (14). However, it is not
the case. That is why, in the following section, we estimate precisely the evolution of the
solution along the lost direction, to then use it in Section 6 for non overlapping controls.

5.6.1. For the quadratic term.

Proposition 5.12. Let 0 < T1 < T2. If µ satisfies (7) and (8), then for all control u
in H2

0 (0, T2) such that u1(T1) = u2(T1) = u3(T1) = u2(T2) = u3(T2) = 0, the solution of
(109) satisfies

|〈ξ(T2; u, ϕ1), ψK(T2)〉 − 〈ξ(T1; u, ϕ1), ψK(T1)〉|

= O
(
‖u3‖2L2(0,T2) + |u1(T2)|‖u2‖L1(0,T2) + |u1(T2)|2

)
. (150)

Proof. Using the link with the auxiliary system (124) and the explicit form of Ψ̃ given in
(122), one has, for every T ∈ [0, T2],

〈ξ(T ), ψK(T )〉 = 〈ξ̃(T ), ψK(T )〉−u1(T )

∫ T

0
u1(t)kquad,T (t)dt−u1(T )2

2
〈µ2ϕ1, ϕK〉ei(λK−λ1)T ,

where the quadratic kernel kquad,T is given by,

kquad,T (t) =
+∞∑
n=1

(λn − λ1)〈µϕ1, ϕn〉〈µϕp, ϕn〉ei[(λn−λ1)t+(λK−λj)T ]. (151)

Thus, if the control satisfies u1(T1) = 0, then,

〈ξ(T2), ψK(T2)〉 − 〈ξ(T1), ψK(T1)〉 = 〈ξ̃(T2), ψK(T2)〉 − 〈ξ̃(T1), ψK(T1)〉

+ u1(T2)

∫ T2

0
u1(t)kquad,T2(t)dt− u1(T2)2

2
〈µ2ϕ1, ϕK〉ei(λK−λ1)T2 .

The first term of the right-hand side is estimated by O(‖u3‖2L2(0,T2)) using the explicit

computation of ξ̃ given in (131). The second term of the right-hand side is naturally
estimated by O(|u1(T2)|‖u1‖L1(0,T2)) as the kernel is bounded. However, such estimate
will not be sharp enough to use in the sequel of this paper (and more precisely in the
proof of Proposition 6.2. Thus, one can compute a shaper estimate by performing one
integration by parts in the integral. This gives that the second term is estimated by
O(|u1(T2)|‖u2‖L1(0,T2)) noticing that k′quad,T2

is still bounded thanks to Remark 1.1. �

5.6.2. For the cubic term.

Proposition 5.13. Let 0 < T1 < T2. For every control u in H2
0 (0, T2) such that u2(T1) =

u2(T2) = 0, the solution of (132) satisfies∣∣∣〈ζ̃(T2), ψK(T2)〉 − 〈ζ̃(T1), ψK(T1)〉
∣∣∣

= O
(
‖u1‖3L1(0,T2) + ‖u1‖2L2(T1,T2)‖u1‖L1(0,T2) + ‖u2‖L∞(T1,T2)‖u1‖2L2(0,T2)

)
. (152)
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Proof. Using the explicit form of ζ̃ given in (136), one has,

〈ζ̃(T2), ψK(T2)〉 − 〈ζ̃(T1), ψK(T1)〉 = i

∫ T2

T1

u1(t)2

∫ t

0
u1(τ)k̃1

cub,K(t, τ)dτdt

+ i

∫ T2

T1

u1(t)

∫ t

0
u1(τ)2k̃2

cub,K(t, τ)dτdt+O
(
‖u1‖3L1(0,T2)

)
,

as the kernel k̃3
cub,K defined in (139) is bounded in C0(R3,C). The first term of the right-

hand side is bounded by ‖u1‖2L2(T1,T2)‖u1‖L1(0,T2) as k̃1
cub,K is also bounded. Moreover, it

would seem natural to estimate the second term by ‖u1‖L1(T1,T2)‖u1‖2L2(0,T2). However, as

before, it would not provide an estimate sharp enough to use in the sequel of the work.
One can compute a sharper estimate by performing one integration by parts to get that
the second term of the right-hand side is bounded by,∣∣∣∣∫ T2

T1

u2(t)u1(t)2k̃2
cub,K(t, t)dt+

∫ T2

T1

u2(t)

∫ t

0
u1(τ)2∂1k̃

2
cub,K(t, τ)dtdτ

∣∣∣∣
= O

(
‖u2‖L∞(T1,T2)‖u1‖2L2(0,T2)

)
,

as the kernel k̃2
cub,K defined in (138) is bounded in C1(R2,C). �

Proposition 5.14. Let 0 < T1 < T2. For every control u in H2
0 (0, T2) such that u1(T1) =

u2(T1) = u2(T2) = 0, the solution of (110) satisfies

|〈ζ(T2), ψK(T2)〉 − 〈ζ(T1), ψK(T1)〉| = O
(
‖u1‖3L1(0,T2) + ‖u1‖2L2(T1,T2)‖u1‖L1(0,T2)

+ ‖u2‖L∞(T1,T2)‖u1‖2L2(0,T2) + |u1(T2)|‖u1‖2L2(0,T2) + |u1(T2)|3
)
. (153)

Proof. Using the link with the auxiliary system (133) and the explicit computations of Ψ̃

and ξ̃ given in (127) and (136), one gets, for all T ∈ [0, T2],

〈ζ(T ), ψK(T )〉 = 〈ζ̃(T ), ψK(T )〉+ iu1(T )

∫ T

0
u1(t)2k1

cub,T (t)dt

+ iu1(T )

∫ T

0
u1(t)

∫ t

0
u1(τ)k2

cub,T (t, τ)dτdt− u1(T )2

2

∫ T

0
u1(t)k3

cub,T (t)dt

− iu1(T )3

6
〈µ3ϕ1, ϕK〉ei(λK−λ1)T ,

where the cubic kernels are given by,

k1
cub,T (t) := −i

+∞∑
n=1

〈µ′2ϕ1, ϕn〉〈µϕn, ϕK〉
∫ T

0
u1(t)2ei[(λn−λ1)t+(λK−λn)T ]dt,

k2
cub,T (t, τ) :=

+∞∑
p=1

+∞∑
n=1

(λ1 − λn)(λn − λp)〈µϕ1, ϕn〉〈µϕn, ϕp〉〈µϕp, ϕK〉

× ei[(λp−λn)t+(λn−λ1)τ+(λK−λp)T ],

k3
cub,T (t) := −

+∞∑
n=1

(λn − λ1)〈µϕ1, ϕn〉〈µ2ϕn, ϕK〉ei[(λn−λ1)t+(λK−λn)T ].
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So, if the control satisfies u1(T1) = 0, one gets

〈ζ(T2), ψK(T2)〉 − 〈ζ(T1), ψK(T1)〉 = 〈ζ̃(T2), ψK(T2)〉 − 〈ζ̃(T1), ψK(T1)〉

+ iu1(T2)

∫ T2

0
u1(t)2k1

cub,T2(t)dt+ iu1(T2)

∫ T2

0
u1(t)

∫ t

0
u1(τ)k2

cub,T2(t, τ)dτdt

− u1(T2)2

2

∫ T2

0
u1(t)k3

cub,T2(t)dt− iu1(T2)3

6
〈µ3ϕ1, ϕK〉ei(λK−λ1)T2 .

From the estimate on the auxiliary system (152) and the boundness of the kernels, one
deduces (153). �

From the behaviors of the quadratic and cubic terms given in (150) and (153), from the
error estimate (149) and from the estimate (148) on the boundary term u1(T1), one can
deduce the following estimate.

Theorem 5.15. Let 0 < T1 < T2, µ satisfying (4), (7) and (8). For every control u in
H2(0, T2) such that u1(T1) = u2(T1) = u3(T1) = u2(T1) = u2(T2) = u3(T2) = 0, if the
solution of (1) satisfies the specific motion (147), then, one has

|〈ψ(T2), ψK(T2)〉 − 〈ψ(T1), ψK(T1)〉| = O
(
‖u3‖2L2(0,T2) + ‖u1‖2L2(0,T2)‖u2‖L1(0,T2)

+ ‖u1‖3L1(0,T2) + ‖u1‖2L2(T1,T2)‖u1‖L1(0,T2) + ‖u2‖L∞(T1,T2)‖u1‖2L2(0,T2)

)
.

6. Motions in the lost directions

6.1. Motions in the lost directions ±iϕK . As for the bilinear toy-model (58), the
motions in the ±iϕK directions are done in two steps.

• First, we initiate the motion along ±iϕK by noticing that when µ satisfies (Hlin),
(Hquad) and (Hcub), along iϕK , the solution is mainly driven by the cubic term∫ T

0 u1(t)2u2(t)dt which enables us to move in both + and −iϕK directions. This
work is done in Proposition 6.1. At this end of this first step, along the other
directions (ϕj)j∈N∗− {K}, the error is possibly ‘big’ (in a sense to precise).
• Then, this error is corrected using the exact local controllability in projection result

given in Theorem 4.5. However, one needs to make sure that such ‘linear’ motions
don’t induce a too large error along iϕK and preserve the work done in the first
step. This is done Proposition 6.2.

Proposition 6.1. For all T > 0, there exists C, ρ > 0 and a continuous map b 7→ ub from
R to H2

0 (0, T ) such that,

∀b ∈ (−ρ, ρ), |〈ψ(T ; ub, ϕ1), ψK(T )〉 − ib| 6 C|b|1+ 1
41 . (154)

Moreover, for all p ∈ [1,+∞] and k ∈ Z, k ≥ −3, there exists C > 0 such that,

∀b ∈ (−ρ, ρ), ‖ub‖Wk,p(0,T ) 6 C|b|
1
41

(7−4k+ 4
p

)
, (155)

and for all ε ∈ (0, 3
4), there exists C > 0 such that for all b ∈ (−ρ, ρ),

‖ψ(T ; ub, ϕ1)− ψ1(T )‖H2m+7
(0)

(0,1) 6 C|b|
1
41

(10−4m−4ε), ∀m = −3, . . . , 2. (156)

Proof. Let T > 0 and ρ ∈ (0, T
41
4 ). For all b ∈ R∗, we define the control ub by,

∀t ∈ [0, T ], ub(t) := sign(b)|b|
7
41φ(3)

(
t

|b|
4
41

)

where φ ∈ C∞c (0, 1) such that

∫ 1

0
φ′′(θ)2φ′(θ)dθ =

1

CK
, (157)
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where CK is defined in (10). Notice that for all b ∈ (−ρ, ρ), ub is supported on (0, |b|
4
41 ) ⊂

(0, T ).

Size of the control. Let p ∈ [1,+∞] and k ∈ Z, k ≥ −3. Recall that, if k is negative, we

still write u(k) to denote u|k| the |k|-th primitive of u. For k > 0, by Poincaré’s inequality,

there exists C > 0 such that ‖ub‖Wk,p 6 C‖u(k)
b ‖Lp . For k < 0, it holds by definition (2)

of the negative norms. Thus, by definition (157) and performing the change of variables

t = |b|
4
41 θ, one has, for all b ∈ (−ρ, ρ), b 6= 0,

‖ub‖pWk,p(0,T )
6 C

∫ |b| 441
0

∣∣∣∣∣|b| 141 (7−4k)φ(3+k)

(
t

|b|
4
41

)∣∣∣∣∣
p

dt

6 C‖φ(3+k)‖pLp(0,1)|b|
1
41

(p(7−4k)+4).

Continuity of the map b 7→ ub. The continuity from R∗ to H2
0 (0, T ) directly stems from

the dominated convergence theorem. Moreover, the size estimate (155) with k = p = 2
gives the existence of C > 0 such that,

∀b ∈ (−ρ, ρ), b 6= 0, ‖ub‖H2
0 (0,T ) 6 C|b|

1
41 .

Thus, the map b 7→ ub can be continuously extended at zero with u0 = 0.

Expansion of the solution. As u1(T ) = 0, by (113), the end-point of ψ and ψ̃ are the same.

Thus, it suffices to prove (154) with ψ̃ instead of ψ. Moreover, Corollary 5.8 gives the
following expansion of order 3 of the auxiliary system, when b goes to zero,∣∣∣〈ψ̃(T ; ub, ϕ1), ψK(T )〉 − i

∫ T

0
u1(t)2

∫ t

0
u1(τ)k̃1

cub,K(t, τ)dτdt

− i
∫ T

0
u1(t)

∫ t

0
u1(τ)2k̃2

cub,K(t, τ)dτdt
∣∣∣ 6 C|b| 4241 , (158)

as by (155), one has the following estimates: ‖u3‖2L2 6 C|b|
42
41 and ‖u1‖3L1 6 C|b|

45
41 . Then,

substituting the explicit form of the control (157) and performing the change of variables

(t, τ) = (|b|
4
41 θ1, |b|

4
41 θ2), the two integral terms of (158) are given by

i sign(b)|b|
(∫ 1

0
φ′′(θ1)2

∫ θ1

0
φ′′(θ2)k̃1

cub,K(|b|
4
41 θ1, |b|

4
41 θ2)dθ2θ1

+

∫ 1

0
φ′′(θ1)

∫ θ1

0
φ′′(θ2)2k̃2

cub,K(|b|
4
41 θ1, |b|

4
41 θ2)dθ2θ1

)
.

Expanding the kernels when b goes to zero, as they are both bounded in C1(R2,C), one
gets that (158) can be written as∣∣∣∣〈ψ̃(T ; ub, ϕ1), ψK(T )〉 − ib(k̃1

cub,K(0, 0)− k̃2
cub,K(0, 0))

∫ 1

0
φ′′(θ)2φ′(θ)dθ

∣∣∣∣ 6 C|b| 4241 .
Moreover, looking at the definition of CK , k̃1

cub,K and k̃2
cub,K given respectively in (10),

(137) and (138), one can notice that k̃1
cub,K(0, 0)− k̃2

cub,K(0, 0) = CK . Thus, the previous

equality leads to (154) by choice of φ given in (157).

Size of the end-point. Using the explicit form of Ψ given in (108), one gets,

‖ψ(T )− ψ1(T )‖H2m+7
(0)

6

∥∥∥∥(〈µϕ1, ϕj〉
∫ T

0
ub(t)e

i(λj−λ1)(t−T )dt

)∥∥∥∥
h2m+7(N∗)

+ ‖(ψ − ψ1 −Ψ)(T )‖H2m+7
(0)

, m ∈ {−3, . . . , 2} (159)
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Yet, for all j ∈ N∗, j > 2 and k ∈ Z with k > −3, by integrations by parts (integrating u
when k < 0 or differentiating u when k > 0), one gets,∣∣∣∣∫ T

0
ub(t)e

i(λj−λ1)tdt

∣∣∣∣ =

∣∣∣∣(λj − λ1)−k
∫ T

0
u

(k)
b (t)ei(λj−λ1)tdt

∣∣∣∣ 6 C|λj − λ1|−k|b|
1
41

(11−4k),

(160)
using estimates (155) with p = 1. This also holds for j = 1 as u1(T ) = 0. By interpolation,
such estimates hold for all j ∈ N∗ and k ∈ [−3, 3] with a uniform constant with respect
to k. Let ε ∈ (0, 3/4) and m ∈ {−3, . . . , 2}. Taking k = ε + m + 1

4 ∈ [−3, 3] in (160),
summing over j ∈ N∗ and using Remark 1.1 to estimate the coefficients (〈µϕ1, ϕj〉)j∈N∗ ,
one gets∥∥∥∥(〈µϕ1, ϕj〉

∫ T

0
ub(t)e

i(λj−λ1)(t−T )dt

)∥∥∥∥
h2m+7(N∗)

6 C

+∞∑
j=1

1

j1+4ε

1/2

|b|
1
41

(10−4m−4ε).

(161)
Moreover, [15, Proposition 4.5] gives the existence of C > 0 such that for all m = −3, . . . , 2,

‖(ψ − ψ1 −Ψ)(T )‖H2m+7
(0)

6 C‖ub‖Hm(0,T )‖ub‖H2(0,T ) 6 C|b|
1
41

(10−4m), (162)

using (155) to estimate the size of the controls. Then, (159), (161) and (162) lead to
(156). �

Proposition 6.2. The vector iϕK is a small-time H2
0 -continuously approximately reach-

able vector associated with vector variations Ξ(T ) = iψK(T ). More precisely, for all T > 0,
there exists C, ρ > 0 and a continuous map b 7→ wb from R to H2

0 (0, T ) such that,

∀b ∈ (−ρ, ρ), ‖ψ(T ; wb, ϕ1)− ψ1(T )− ibψK(T )‖H11
(0)

(0,1) 6 C|b|
1+ 1

82 , (163)

with the following size estimate on the family of controls,

‖wb‖H2
0 (0,T ) 6 C|b|

1
41 . (164)

Proof. Definition of the control. Let 0 < T1 < T . To move along the ±iϕK directions, we
use non overlapping controls. More precisely, we define, for all b ∈ R,

wb := ub1l[0,T1] + vb1l[T1,T ], (165)

where (ub)b∈R is the family of controls defined on [0, T1] constructed in Proposition 6.1
and

vb := ΓT1,T (ψ(T1; ub, ϕ1), ψ1(T )) ,

where ΓT1,T is the control operator constructed in Theorem 4.5 with J = N∗ − {K} and
(p, k) = (2, 2).

Size of the controls. Because we use non overlapping controls, for all b ∈ R,

‖wb‖H2
0 (0,T ) = ‖ub‖H2

0 (0,T1) + ‖vb‖H2
0 (T1,T ) 6 C|b|

1
41 + ‖vb‖H2

0 (T1,T ), (166)

using the size estimate (155) on the family (ub)b∈R with p = k = 2. On [T1, T ], using the
linear estimates (106) on ΓT1,T and the estimates (156) on the end-point of the solution at

time T1, for all ε ∈ (0, 3
4), one gets the existence of C > 0, such that for all b small enough

and for all m ∈ {−3, . . . , 2},

‖vb‖Hm
0 (T1,T ) 6 C ‖ψ(T1; ub, ϕ1)− ψ1(T1)‖H2m+7

(0)
(0,1) 6 C|b|

1
41

(10−4m−4ε). (167)

Taking ε < 1
4 , estimate (167) with m = 2 and (166) imply (164).

Motion along iϕK . By construction of ΓT1,T (see (104)), we already know that

Pψ(T ; wb, ϕ1) = ψ1(T ) = P (ψ1(T ) + ibψK(T )) ,
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where P denotes the orthogonal projection on SpanC (ϕj , j ∈ N∗ − {K}). Thus, to prove
(163), it only remains to prove that

|〈ψ(T ; wb, ϕ1), ψK(T )〉 − ib| 6 C|b|1+ 1
82 . (168)

By definition of (ub)b∈R, one already has that

|〈ψ(T1; ub, ϕ1), ψK(T1)〉 − ib| 6 C|b|1+ 1
41 .

Thus, it remains to prove that the linear correction used on the time interval [T1, T ] didn’t
destroy such an estimate, and more precisely, to prove that

|〈ψ(T ; wb, ϕ1), ψK(T )〉 − 〈ψ(T1; wb, ϕ1), ψK(T1)〉| 6 C|b|1+ 1
82 .

By Theorem 5.15, the left-hand side is estimated by

O
(
‖w3‖2L2(0,T ) + ‖w1‖2L2(0,T )‖w2‖L1(0,T )

+ ‖w1‖3L1(0,T ) + ‖v1‖2L2(T1,T )‖w1‖L1(0,T ) + ‖v2‖L∞(T1,T )‖w1‖2L2(0,T )

)
. (169)

Thus, it remains to prove that the estimates (155) on (ub)b∈R and (167) on (vb)b∈R are sharp

enough so that the previous quantity can be neglected in front of |b|1+ 1
82 . For example,

using these estimates in H−3, one has

‖w3‖2L2(0,T ) = ‖u3‖2L2(0,T1) + ‖v3‖2L2(T1,T ) 6 C
(
|b|

42
41 + |b|

44
41
− 8ε

41

)
6 C|b|

42
41 ,

for b small enough, choosing ε < 1
4 . Similarly, one gets,

‖w1‖2L2(0,T )‖w2‖L2(0,T ) 6 C
(
|b|

26
41 + |b|

28
41
− 8ε

41

)(
|b|

17
41 + |b|

18
41
− 4ε

41

)
,

‖w1‖3L1(0,T ) 6 C
(
|b|

45
41 + |b|

42
41
− 12ε

41

)
,

‖v1‖2L2(T1,T )‖w1‖L1(0,T ) 6 C|b|
28
41
− 8ε

41

(
|b|

15
41 + |b|

14
41
− 4ε

41

)
.

Choosing ε < 1
24 , for b small enough, every term can be neglected in front of |b|1+ 1

82 .

In (169), it only remains to estimate ‖v2‖L∞(T1,T )‖w1‖2L2(0,T ). As (167) provides only

estimates of (vb)b∈R in L2-spaces, one needs to use a Gagliardo-Nirenberg inequality (see
[50, Theorem p.125]) to estimate ‖v2‖L∞(T1,T ). More precisely, there exists C > 0 such
that

‖v2‖L∞(T1,T ) 6 C‖v1‖1/2L2(T1,T )
‖v2‖1/2L2(T1,T )

+ C‖v2‖L2(T1,T ).

Thus, thanks to (167), vb in W−2,∞ is estimated by

‖v2‖L∞(T1,T ) 6 C|b|
16
41
− 4ε

41 .

And, finally, one has

‖v2‖L∞(T1,T )‖w1‖2L2(0,T ) 6 C|b|
16
41
− 4ε

41

(
|b|

26
41 + |b|

21
41
− 4ε

41

)
which is also neglected in front of |b|1+ 1

82 . This concludes the proof of (163).

Continuity of b 7→ wb. The map b 7→ ub of (6.1) is continuous from R to H2(0, T1).
Besides, the continuity of b 7→ vb from R to H2

0 (T1, T ) stems from the regularity of ΓT1,T
(see Theorem 4.5) and of the solution of the Schrödinger equation with respect to the
control (see (100)). This gives the continuity of the map b 7→ wb constructed by (165). �

Remark 6.3. The sharp estimates (167) on the control operator ΓT1,T of [16] together
with the sharp estimate (169) on the evolution of the solution along the lost direction are
the key to prove the motions along the first lost direction iϕK .



38 MÉGANE BOURNISSOU

6.2. Motions in the lost directions ±ϕK . As for the toy-models (44) and (58), the
second approximately reachable vector can be deduced from the first one using a proof
inspired by [40, Th. 6]. The following statement and its proof are very similar to the one
done in finite dimension in Section 3.4.4. One only needs to be careful about the functional
setting.

Proposition 6.4. The vector ϕK is a small-time H2
0 -continuously approximately reachable

vector associated with vector variations Ξ(T ) = ψK(T ). More precisely, there exists T ∗ > 0
such that for all T ∈ (0, T ∗), there exists C, ρ > 0 and a continuous map b 7→ vb from R
to H2

0 (0, T ) such that,

∀b ∈ (−ρ, ρ), ‖ψ(T ; vb, ϕ1)− ψ1(T )− bψK(T )‖H11
(0)

(0,1) 6 C|b|
1+ 1

82 , (170)

with the following size estimate on the family of controls,

‖vb‖H2
0 (0,T ) 6 C|b|

1
41 . (171)

Proof. Denote by (ub)b∈R the control variations associated with iϕK constructed in Propo-
sition 6.2. The goal is to prove that the existence of C > 0 such that for all (α, β) ∈ R2

small enough,∥∥∥ψ(3T ; uα#0[0,T ]#uβ, ϕ1)− ψ1(3T )− (iβe2i(λK−λ1)T + iα)ψK(3T )
∥∥∥
H11

(0)

6 C|(α, β)|1+ 1
82 . (172)

Thus, for all T ∈
(

0, π
2(λK−λ1)

)
and b ∈ R, taking β = − b

sin(2(λK−λ1)T ) and α = −β cos(2(λK−
λ1)T ), this proves the existence of a family (vb)b∈R satisfying (170) and (171). So, it re-
mains to prove (172). First, by definition of (ub)b∈R in Proposition 6.2, there exists C > 0
and ρ > 0 such that for all α ∈ (−ρ, ρ),

‖ψ(T ; uα, ϕ1)− ψ1(T )− iαψK(T )‖H11
(0)
6 C|α|1+ 1

82 with ‖uα‖H2
0 (0,T ) 6 C|α|

1
41 .

(173)
Then, on [T, 2T ], no control is activated, so ψ(2T ) = e−iATψ(T ) and (173) becomes∥∥ψ(2T ; uα#0[0,T ], ϕ1)− ψ1(2T )− iαψK(2T )

∥∥
H11

(0)

6 C|α|1+ 1
82 . (174)

Then, using the semi-group property of the Schrödinger equation, one has,

ψ(3T ; uα#0[0,T ]#uβ, ϕ1) = ψ(T ; uβ, ψ(2T ; uα#0[0,T ], ϕ1)).

Together with the estimate Proposition 4.4 about the dependency of the solutions of the
Schrödinger equation with respect to initial condition, one has∥∥∥ψ(3T ; uα#0#uβ, ϕ1)− ψ(T ; uβ, ϕ1)e−iλ12T − e−iAT (ψ(2T ; uα#0, ϕ1)− ψ1(2T ))

∥∥∥
H11

(0)

6 C‖uβ‖H2
0 (0,T ) ‖ψ(2T ; uα#0, ϕ1)− ψ1(2T )‖H11

(0)
.

Using estimate (164) on (uβ) and (174) on ψ(2T ; uα#0, ϕ1)−ψ1(2T ), the right-hand side

of the previous inequality is estimated by C|β|
1
41 |α|. Then, using once again the estimate

(174) on ψ(2T ; uα#0, ϕ1)− ψ1(2T ) and the definition of (uβ)β given by (163), one has,∥∥∥ψ(3T ; uα#0[0,T ]#uβ, ϕ1)− ψ1(3T )− iβψK(T )e−iλ12T − iαψK(3T )
∥∥∥
H11

(0)

6 C|β|
1
41 |α|+ C|α|1+ 1

82 ,

which gives (172) and this concludes the proof.
�
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6.3. Proof of Theorem 1.4: The H2
0−STLC of the Schrödinger equation. The

goal of this section is to prove Theorem 1.4 using the systematic approach developed in
Section 2. More precisely, we apply Theorem 2.3 with ET := H2

0 (0, T ) for all T > 0,
X := H11

(0)(0, 1) and

FT : (ψ0, u) 7→ ψ(T ; u, ψ0),

where ψ is the solution of the Schrödinger equation (1) with ψ(0) = ψ0. Let us now check
that the assumptions of Theorem 2.3 hold in this setting (with the adaptation discussed
in Remark 3.2).

(A1) By [15, Prop. 4.2], it is known that when µ satisfies (Hreg), the end-point map is
C1 around (ϕ1, 0). The C2-regularity is proved similarly, and thus, the proof is
left to the reader.

(A2) By [15, Prop. 4.2], the differential at (ϕ1, 0) is given by dFT (ϕ1, 0).(Ψ0, v) = Ψ(T ),
where Ψ is the solution of the linearized system i∂tΨ = −∂2

xΨ− v(t)µ(x)ψ1(t, x),
Ψ(t, 0) = Ψ(t, 1) = 0,
Ψ(0, x) = Ψ0.

Thus, for all Ψ0 ∈ H11
(0), T 7→ dFT (ϕ1, 0).(Ψ0, 0) = e−iATΨ0 is continuous on R

and dF0(ϕ1, 0).(Ψ0, 0) = Ψ0.
(A3) By the uniqueness result stated in Theorem 4.1, one can check that, for all T1, T2 >

0, ψ0 ∈ H11
(0), u ∈ H

2
0 (0, T1) and v ∈ H2

0 (0, T2),

ψ(T1 + T2; u#v, ψ0) = ψ(T2; v, ψ(T1; u, ψ0)).

(A4) By [15, Prop. 4.3], when µ satisfies (Hlin), the reachable set of the linearized system
around the ground state is given by

H = SpanC (ψj(T ); for all j ∈ N∗ − {K}) .
This space doesn’t depend on T , is closed, and is of codimension 2 in L2(0, 1).

(A5) By Proposition 6.2 and Proposition 6.4, when µ satisfies (Hlin), (Hquad) and (Hcub),
both iϕK and ϕK are small-time H2

0 -continuously approximately reachable vectors.

By Theorem 2.3, when µ satisfies (Hreg), (Hlin), (Hquad) and (Hcub), the Schrödinger
equation (1) is H2

0 -STLC around the ground state with targets in H11
(0)(0, 1).

Appendix A. Existence of a function µ satisfying all the hypotheses

Remark A.1. In this appendix, the coefficients (ApK)p=1,2,3 and CK respectively defined
in (7), (8), (9) and (10) are seen as quadratic or cubic forms with respect to µ. Moreover,
the definition given in terms of series can be tricky to use. Thus, we use instead the
expressions in terms of Lie brackets given in Remark 1.2. Computing the Lie brackets,
one gets that for all µ satisfying (Hreg), the quadratic (resp. cubic) forms A1

K and CK are
given by

A1
K(µ) = 〈µ′2ϕ1, ϕK〉 and CK(µ) = −4〈µ′2µ′′ϕ1, ϕK〉. (175)

The similar expression of A2
K is quite heavy. Computing the associated Lie bracket and

then ‘symmetrizing’ the associated quadratic form (see [16, Proposition A.3] for more
details), one gets the existence of a constant C > 0 such that for all µ satisfying (Hreg),
one has

|A2
K(µ)− 〈µ(3)2

ϕ1, ϕK〉| 6 C‖µ‖2H2(0,1).

[16, Proposition A.3] also provides a similar approximate expression of A3
K , but it will not

be useful.

Theorem A.2. Let K ∈ N∗, K > 2. There exists µ satisfying (Hreg), (Hlin), (Hquad) and
(Hcub).
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Remark A.3. To prove Theorem A.2, it is enough to prove the existence of a function
µ ∈ H11((0, 1),R) ∩H4

0 (0, 1) satisfying (4), (7), (8), (9), (10) and

suppµ ⊂ [0, 1), (176)

µ(5)(0) 6= 0, (177)

∀j ∈ N∗ − {K}, 〈µϕ1, ϕj〉 6= 0. (178)

Indeed, when the boundary conditions (3) hold, thanks to (11) of Remark 1.1, assumption
(5) is equivalent to

µ(5)(0)± µ(5)(1) 6= 0 and ∀j ∈ N∗ − {K}, 〈µϕ1, ϕj〉 6= 0.

The proof of Theorem A.2 is in four steps.

• First, using Baire theorem to deal with the infinite number of non-vanishing con-
ditions, one can find a function µref satisfying (4), (10), (177) and (178). Notice
that only the non-vanishing condition (9) is not treated at this stage as the strat-
egy of the two following steps, relying on oscillating functions, would destroy this
condition.
• Then, using some analyticity and the isolated zeros theorem, one constructs µ̂ref

a perturbation of µref satisfying (7) while conserving all the previous properties
already satisfied by µref .
• Similarly, one constructs then µ̃ref a perturbation of µ̂ref satisfying (8) while con-

serving all the previous properties satisfied by µ̂ref .
• Finally, using the construction of a quadratic basis, from µ̃ref , one constructs a

new function satisfying (9) in addition to the previous conditions.

Proof of Theorem A.2. Let K ∈ N∗, K > 2 and x ∈ (0, 1) such that ϕK(x) = 0. As ϕ1 > 0
on (0, 1) and ϕ′K(x) > 0, one may assume the existence of δ > 0 such that ϕ1ϕK > 0 on
(x, x+ δ) and ϕ1ϕK < 0 on (x− δ, x). Let η ∈ (0, x− δ) such that ϕ1ϕK 6= 0 on (0, η).

Step 1: Existence of µ in H11∩H4
0 (0, 1) supported on [0, η) and satisfying (4), (10), (177)

and (178). In this step, we work with the H11(0, 1)-topology. Denote by

E :=
{
µ ∈ H11((0, 1),R); µ ≡ 0 on

[η
2
, 1
]

and µ satisfies (4)
}
∩H4

0 (0, 1),

U := {µ ∈ E ; µ satisfies (10), (177) and (178)} .

The goal of Step 1 is to prove that U is not empty. As E is not empty, it suffices to prove
that U is dense in E . Moreover, denoting by

C := {µ ∈ E ; CK(µ) 6= 0} , V :=
{
µ ∈ E ; µ(5)(0) 6= 0

}
and Uj := {µ ∈ E ; 〈µϕ1, ϕj〉 6= 0} ,

U is the intersection of all the open subsets V, C and Uj for j ∈ N∗ − {K}. Thus, as E is
a complete space (because closed in H11), by Baire theorem, to prove that U is dense in
E , it suffices to prove that V, C and Uj for j ∈ N∗ − {K} are dense in E . The density of V
is clear. Let j ∈ N∗ − {K}.
Uj is dense in E. Let µ∗ in E such that 〈µ∗ϕ1, ϕj〉 = 0 and let ε > 0. As the linear forms
µ 7→ 〈µϕ1, ϕK〉 and µ 7→ 〈µϕ1, ϕj〉 are linearly independent (for j 6= K), one can find
ν ∈ C∞c (0, η2 ) such that 〈νϕ1, ϕK〉 = 0 and 〈νϕ1, ϕj〉 6= 0. Then µε := µ∗ + ε

‖ν‖ν is in Uj
with ‖µε − µ∗‖H11 < ε.

C is dense in E. Let µ∗ in E such that CK(µ∗) = 0 and let ε > 0. By a similar construction
than the one given in [16, Theorem A.4], one can find ν ∈ C∞c (0, η2 ) such that 〈νϕ1, ϕK〉 = 0
and CK(ν) 6= 0. Then, by (175), ε 7→ CK(µ∗+ ε

‖ν‖ν) is a polynomial of degree 3 vanishing

at zero. Thus, there exists ε∗ > 0 such that this polynomial doesn’t vanish on (0, ε∗).
Hence, for all ε ∈ (0, ε∗), µε := µ∗ + ε

‖ν‖ν is in C with ‖µε − µ∗‖H11 < ε.
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Step 2: Existence of µ in H11 ∩H4
0 satisfying (4), (7), (10), (176), (177) and (178). Let

µref in H11 ∩H4
0 constructed at Step 1, supported on [0, η) and satisfying (4), (10), (177)

and (178). The goal of this step is to prove that if µref doesn’t already satisfy (7) (we
assume that A1

K(µref) < 0, the case A1
K(µref) > 0 is similar), then one can construct a

perturbation of µref satisfying (7) while conserving the properties already satisfied by µref .
To that end, one can consider the following ‘basis’ functions.

• Let µ0 in C∞c
(
x+ δ, 1+x+δ

2

)
such that 〈µ0ϕ1, ϕK〉 = 1.

• Let J− and J+ two open intervals of respectively (x− δ, x) and (x, x+ δ). For all
ε > 0 and λ 6= 0, we define

µε,λ(x) :=

√
ε|λ|

|ϕ1(x(λ))ϕK(x(λ))|
g

(
x− x(λ)

ε

)
, x ∈ [0, 1], (179)

where g ∈ C∞c (0, 1) such that
∫ 1

0 g
′(y)2dy = 1 and x(λ) := x+1lλ>0 + x−1lλ<0

where x± are in J± (thus, sign(ϕK(x±)) = ±1). Notice that µε,λ is supported on
(x−, x−+ ε)∪ (x+, x+ + ε) and thus on J−∪J+ for ε small enough. Formally, µε,λ
is constructed so that A1

K(µε,λ) ≈ λ.

We consider perturbations of µref of the following form,

νε,λ := µref + µε,λ − 〈µε,λϕ1, ϕK〉µ0, ε > 0, λ 6= 0. (180)

Notice that all the functions have disjoint supports (see Figure 1) so that the quadratic
and cubic forms can be seen as additive. Moreover, by construction, for all ε > 0 and
λ 6= 0, νε,λ already satisfies (4), (176) and (177).

0

µref

η x−δ J−

µε,λ

x J+

µε,λ

x+δ 11+x+δ
2

µ0

Figure 1. The supports of the functions used in Step 2 are depicted.

Step 2.1: For all ε small enough, there exists λ(ε) > 0 such that νε,λ(ε) satisfies (7). The
goal is to construct a one-parameter family of functions such that the following quantity
vanishes,

Q(ε, λ) := A1
K(νε,λ) = A1

K(µref) +A1
K(µε,λ) + 〈µε,λϕ1, ϕK〉2A1

K(µ0). (181)

Regularity of Q. Looking at (179), one could fear some lack of regularity for Q with
respect to λ. However, as A1

K(µref) < 0, one only needs to study Q on (R∗+)2. Moreover,
substituting the expression (179) and performing the change of variables x = εy+x+, one
has, for all ε > 0 and λ > 0,

〈µε,λϕ1, ϕK〉 =

√
ελ

ϕ1(x+)ϕK(x+)

∫ x++ε

x+
g

(
x− x+

ε

)
ϕ1(x)ϕK(x)dx

= ε3/2

√
λ

ϕ1(x+)ϕK(x+)

∫ 1

0
g(y)ϕ1(εy + x+)ϕK(εy + x+)dy. (182)

Thus, the map (ε, λ) 7→ 〈µε,λϕ1, ϕK〉 is analytic on (R∗+)2. Similarly, using the computation
of A1

K given in (175), one gets, for all ε > 0 and λ > 0,

A1
K(µε,λ) =

λ

ϕ1(x+)ϕK(x+)

∫ 1

0
g′(y)2ϕ1(εy + x+)ϕK(εy + x+)dy. (183)

Hence, the map (ε, λ) 7→ A1
K(µε,λ) is also analytic on (R∗+)2. Thus, Q is analytic on (R∗+)2.
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For ε small enough, Q(ε, ·) can take both signs. Doing a Taylor expansion with respect to
ε of (183), one gets the existence of C > 0 such that for all ε > 0 and λ > 0,∣∣A1

K(µε,λ)− λ
∣∣ 6 Cλε. (184)

Thus, (181), (182) and (184) lead to the existence of C > 0 such that for all ε ∈ (0, 1) and
λ > 0,

|Q(ε, λ)−A1
K(µref)− λ| 6 Cλε. (185)

Thus, there exists ε∗ > 0 such that for all ε ∈ (0, ε∗),

Q

(
ε,−

A1
K(µref)

2

)
< 0 and Q

(
ε,−

3A1
K(µref)

2

)
> 0.

For ε small enough, Q(ε, ·) is increasing. Differentiating (182) and (183) with respect to
λ and performing again an expansion with respect to ε in the spirit of (184), one gets the
existence of C > 0 such that for all ε > 0 and λ > 0, |∂λQ(ε, λ)− 1| 6 Cε. Thus, for ε > 0
small enough, ∂λQ(ε, ·) is positive.

Conclusion. Applying the intermediate value theorem, one gets for all ε ∈ (0, ε∗) the

existence of λ = λ(ε) ∈
(
−A1

K(µref)
2 ,−3A1

K(µref)
2

)
such that Q(ε, λ(ε)) = 0, meaning that

νε,λ(ε) defined in (180) satisfies (7) by definition (181) of Q.

Step 2.2: The map ε 7→ λ(ε) is continuous. As for all ε ∈ (0, ε∗), Q(ε, λ(ε)) = 0, recalling
the definition (181) of Q, one has

λ(ε) = λ(ε)−A1
K(µε,λ(ε))−A1

K(µref)− 〈µε,λ(ε)ϕ1, ϕK〉2A1
K(µ0) =: λ(ε)H(ε)−A1

K(µref).

Using (182) and (183), H is analytic on (0, ε∗) with |H(ε)| 6 Cε for all ε ∈ (0, ε∗). Thus,
for all ε and ε0 in (0, ε∗),

|λ(ε)− λ(ε0)| 6 Cε|λ(ε)− λ(ε0)|+ |λ(ε0)||H(ε)−H(ε0)|.
Reducing ε∗ if needed, the continuity of ε 7→ λ(ε) on (0, ε∗) stems from the one of H.

Step 2.3: The map ε 7→ λ(ε) is analytic. Let ε0 ∈ (0, ε∗). By construction, Q(ε0, λ(ε0)) =
0. Besides, in Step 2.1, we proved that ∂λQ(ε0, λ(ε0)) > 0 and that Q is analytic on
(0, ε∗)×R∗+. Hence, by the implicit function theorem, there exists an open neighborhood
V of ε0, an open neighborhood W of λ(ε0) and an analytic function Λ : V → W such that

(ε ∈ V, λ ∈ W and Q(ε, λ) = 0) ⇔ (ε ∈ V and λ = Λ(ε))

As ε 7→ λ(ε) is continuous, locally λ = Λ and thus, ε 7→ λ(ε) is analytic on (0, ε∗).

Step 2.4: There exists ε such that νε,λ(ε) satisfies (178) and (10). By a similar computation
than the one in (182), one gets, for all j ∈ N∗, ε > 0 and λ > 0,

〈νε,λϕ1, ϕj〉 = 〈µrefϕ1, ϕj〉+ ε3/2

√
λ

ϕ1(x+)ϕK(x+)

∫ 1

0
g(y)ϕ1(εy + x+)ϕj(εy + x+)dy

− 〈µε,λϕ1, ϕK〉〈µ0ϕ1, ϕj〉.

As (ε, λ) 7→ 〈µε,λϕ1, ϕK〉 is analytic on (R∗+)2 (see Step 2.1) and ε 7→ λ(ε) is analytic
on (0, ε∗) (see Step 2.3) , for all j ∈ N∗ − {K}, the map ε 7→ 〈νε,λ(ε)ϕ1, ϕj〉 is analytic
on (0, ε∗). It can also be extended by continuity at zero with the value 〈µrefϕ1, ϕj〉 6= 0
by construction of µref . Similarly, using (175), ε 7→ CK(νε,λ(ε)) is analytic on (0, ε∗) and
can be extended continuously at zero with the value CK(µref) 6= 0. Thus, the functions
(ε 7→ 〈νε,λ(ε)ϕ1, ϕj〉)j∈N∗−{K} and ε 7→ CK(νε,λ(ε)) are analytic and non-zero on (0, ε∗).
Hence, by the isolated zeros theorem, there exists ε ∈ (0, ε∗), such that for all j ∈ N∗−{K},
〈νε,λ(ε)ϕ1, ϕj〉 6= 0 and CK(νε,λ(ε)) 6= 0, meaning that νε,λ(ε) satisfies (10) and (178).

Step 3: Existence of µ in H11 −H4
0 satisfying (4), (7), (8), (10), (176), (177) and (178).

The proof of Step 3 is quite similar to the one of Step 2. Let µ̂ref constructed at Step 2
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satisfying (4), (7), (10), (176), (177) and (178). As in Step 2, the goal is to prove that
if µ̂ref doesn’t already satisfy (8) (we assume that A2

K(µ̂ref) < 0), then one can construct
a perturbation of µ̂ref satisfying (8) while conserving the properties already satisfied by

µ̂ref . Let Ĵ+ and I+ (resp. Ĵ− and I−) open disjoint intervals of (x − δ, x) − J− (resp.
(x, x+ δ)− J+). In this step, we consider the following new ‘basis’ functions.

• Let µ̂0 in C∞c
(

1+x+δ
2 , 1

)
such that 〈µ̂0ϕ1, ϕK〉 = 1 and A1

K(µ̂0) = 0.

• By [16, Theorem A.4], there exists µ±1 in C∞c (I±) such that 〈µ±1 ϕ1, ϕK〉 = 0 and
A1
K(µ±1 ) = ±1.

• For all ε > 0 and λ 6= 0, we define

µ̂ε,λ(x) := ε5/2

√
|λ|

|ϕ1(x(λ))ϕK(x(λ))|
g

(
x− x(λ)

ε

)
,

where g ∈ C∞c (0, 1) such that
∫ 1

0 g
(3)(y)2dy = 1 and x(λ) := x̂+1lλ>0 + x̂−1lλ<0,

where x̂± are in Ĵ±. Notice that for ε small enough, the support of µ̂ε,λ is in

Ĵ− ∪ Ĵ+. Formally, this time, µ̂ε,λ is constructed so that A2
K(µ̂ε,λ) ≈ λ.

In this step, we consider perturbations of µ̂ref of the form,

ν̂ε,λ := µ̂ref + µ̂ε,λ − 〈µ̂ε,λϕ1, ϕK〉µ̂0 +
√∣∣A1

K(µ̂ε,λ)
∣∣µ− sign(A1

K(µ̂ε,λ))
1 , ε > 0, λ 6= 0.

Once again, we made sure that all the functions considered have disjoint supports (see
Figure 2) so that the quadratic and cubic forms can be seen as additive.

0

µ̂ref

η x−δ I−

µ±1

J−

µ̂ref

Ĵ−

µ̂ε,λ

x Ĵ+

µ̂ε,λ

I+

µ±1

J+

µ̂ref

x+δ 11+x+δ
2

µ̂ref µ̂0

Figure 2. The supports of the functions used in Step 3 are depicted.

Moreover, by construction, for all (ε, λ) ∈ R∗+ × R∗, ν̂ε,λ already satisfies (4), (7), (176)
and (177). Then, define

Q̂(ε, λ) := A2
K(ν̂ε,λ) = A2

K(µ̂ref) +A2
K(µ̂ε,λ) + 〈µ̂ε,λϕ1, ϕK〉2A2

K(µ̂0)

+ |A1
K(µ̂ε,λ)|A2

K(µ
− sign(A1

K(µ̂ε,λ))
1 ). (186)

The end of Step 3 is exactly the same as the one of Step 2.

• Applying the intermediate value theorem to Q̂(ε, ·), one proves the existence of

a continuous map ε 7→ λ(ε) such that for all ε small enough, Q̂(ε, λ(ε)) = 0 and
thus, ν̂ε,λ(ε) satisfies (8). Notice that because of the last term in (186), one could

fear some lack of regularity of Q̂. However, as λ 7→ A1
K(µ̂ε,λ) is continuous on

R∗+ with a computation similar to (183), sign(A1
K(µ̂ε,λ)) is locally constant around

λ = −A2
K(µ̂ref).

• Then, one uses the implicit function theorem to get that ε 7→ λ(ε) is analytic and
thus, with the isolated zeros theorem, to get the existence of an ε such that ν̂ε,λ(ε)

satisfies (10) and (178).

Step 4: Existence of µ in H11 ∩ H4
0 satisfying (4), (7), (8), (9), (10), (176), (177) and

(178) . Let µ̃ref constructed at Step 3 satisfying (4), (7), (8), (10), (176), (177) and (178).

Assume that A3
K(µ̃ref) = 0, otherwise µ̃ref already satisfies (9). Let J̃− and J̃+ two open

disjoint intervals of respectively (x−δ, x)− (J−∪ Ĵ−∪I−) and (x, x+δ)− (J+∪ Ĵ+∪I+).

By [16, Theorem A.4], there exists ν in C∞c (J̃±) such that

〈νϕ1, ϕK〉 = A1
K(ν) = A2

K(ν) = 0 and A3
K(ν) = 1.
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Define for all ε ∈ R, νε := µ̃ref + εν. By construction, for all ε ∈ R∗, νε satisfies (4),
(7), (8), (9), (176) and (177) because the functions have disjoint supports. Moreover, the
maps ε 7→ CK(νε) and ε 7→ 〈νεϕ1, ϕj〉 for all j ∈ N∗ − {K} are polynomial, so analytic
and non-vanishing at zero by construction of µ̃ref . So, by the isolated zeros theorem, there
exists ε ∈ R∗ such that νε satisfies (10) and (178). �
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di Trieste: an International Journal of Mathematics, 48:1–17, 2016.

[24] Shirshendu Chowdhury and Sylvain Ervedoza. Open loop stabilization of incompressible Navier-Stokes
equations in a 2d channel using power series expansion. J. Math. Pures Appl. (9), 130:301–346, 2019.

[25] Jean-Michel Coron. On the small-time local controllability of a quantum particle in a moving one-
dimensional infinite square potential well. Comptes Rendus Mathematique, 342(2):103–108, 2006.

[26] Jean-Michel Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 2007.
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