
HAL Id: hal-03600586
https://hal.science/hal-03600586

Submitted on 7 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comprehensive Survey of Attacks without Physical
Access Targeting Hardware Vulnerabilities in IoT/IIoT

Devices, and Their Detection Mechanisms
Nikolaos-Foivos Polychronou, Pierre-Henri Thevenon, Maxime Puys, Vincent

Beroulle

To cite this version:
Nikolaos-Foivos Polychronou, Pierre-Henri Thevenon, Maxime Puys, Vincent Beroulle. A Compre-
hensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and Their Detection Mechanisms. ACM Transactions on Design Automation of Electronic
Systems, 2022, 27 (1), pp.1-35. �10.1145/3471936�. �hal-03600586�

https://hal.science/hal-03600586
https://hal.archives-ouvertes.fr

1

A Comprehensive Survey of Attacks without Physical
Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms

NIKOLAOS-FOIVOS POLYCHRONOU, Univ. Grenoble Alpes, CEA, LETI, DSYS, FRANCE

PIERRE-HENRI THEVENON, Univ. Grenoble Alpes, CEA, LETI, DSYS, FRANCE

MAXIME PUYS, Univ. Grenoble Alpes, CEA, LETI, DSYS, FRANCE

VINCENT BEROULLE, Univ. Grenoble Alpes, Grenoble INP, LCIS, FRANCE

With the advances in the field of the Internet of Things (IoT) and Industrial IoT (IIoT), these
devices are increasingly used in daily life or industry. To reduce costs related to the time required
to develop these devices, security features are usually not considered. This situation creates a major
security concern. Many solutions have been proposed to protect IoT/IIoT against various attacks
most of which are based on attacks involving physical access. However, a new class of attacks has
emerged targeting hardware vulnerabilities in the micro-architecture that do not require physical
access. We present attacks based on micro-architectural hardware vulnerabilities and the side effects
they produce in the system. In addition, we present security mechanisms that can be implemented
to address some of these attacks. Most of the security mechanisms target a small set of attack
vectors, or a single specific attack vector. As many attack vectors exist, solutions must be found
to protect against a wide variety of threats. This survey aims to inform designers about the side
effects related to attacks and detection mechanisms that have been described in the literature. For
this purpose, we present two tables listing and classifying the side effects and detection mechanisms
based on the given criteria.

CCS Concepts: ∙ Security and privacy → Intrusion detection systems; Embedded systems se-
curity; Hardware security implementation; Side-channel analysis and countermeasures;
Intrusion detection systems; Embedded systems security; Hardware security implementa-
tion.

Additional Key Words and Phrases: IoT, IIoT, security, attacks, hardware vulnerabilities, side

effects, detection, detection mechanisms

Authors’ addresses: Nikolaos-Foivos POLYCHRONOU, nikolaos.polychronou@cea.fr, Univ. Grenoble Alpes,
CEA, LETI, DSYS, 17 Avenue des Martyrs, F-38000, Grenoble, Isere, FRANCE; Pierre-Henri THEVENON,
Pierre-henri.THEVENON@cea.fr, Univ. Grenoble Alpes, CEA, LETI, DSYS, 17 Avenue des Martyrs, F-
38000, Grenoble, Isere, FRANCE; Maxime PUYS, Maxime.PUYS@cea.fr, Univ. Grenoble Alpes, CEA, LETI,
DSYS, 17 Avenue des Martyrs, F-38000, Grenoble, Isere, FRANCE; Vincent BEROULLE, vincent.beroulle@
lcis.grenoble-inp.fr, Univ. Grenoble Alpes, Grenoble INP, LCIS, 50 Rue Barthélémy de Laffemas, Valence,

Drome, FRANCE, 26000.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from permissions@acm.org.

c○ 2021 Association for Computing Machinery.
1084-4309/2021/1-ART1 $15.00

https://doi.org/10.1145/3471936

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3471936

1:2 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

ACM Reference Format:
Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE.
2021. A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabil-
ities in IoT/IIoT Devices, and their Detection Mechanisms. ACM Trans. Des. Autom. Electron.
Syst. 1, 1, Article 1 (January 2021), 39 pages. https://doi.org/10.1145/3471936

1 INTRODUCTION

Internet of Things (IoT) and Industrial IoT (IIoT) devices are becoming increasingly popular
and now represent a significant part of the computational devices market. IoT and IIoT range
from simple to more complex devices. Their primary principle is the interaction with the user
or environment and the exchange of data mainly through a communication interface. IoT
and IIoT can be invasive in individual lives or the industrial environment. They also handle
a large amount of information and data that they either process, store, or transmit through
a network. A high percentage of this information is sensitive to the user or the industry.
For example, a voice controller handles user requests and consequently processes patterns
corresponding to their habits or daily life. A smart lock may store the entry passwords to
an individual’s house. An actuator or automated machine programmed to produce/design
a product of some security concern. Due to their popularity and the amount of sensitive
information they can potentially handle, IoT and IIoT are the object of increasing attention
from attackers. Attackers take advantage of the lack of security features in IoT/IIoT to
penetrate the system and undertake their malicious activity. Attack campaigns such as
Stuxnet [20] and Mirai [47] demonstrated the high risk of cyber-attacks. These campaigns
led designers to place more emphasis on security for IoT/IIoT.
In today’s systems two main classes of vulnerabilities are found: software and hardware

vulnerabilities. Software vulnerabilities are flaws or defects in the software code that allow
attackers to exploit the Operating System (OS), or applications in the system, to gain some
privileges. In contrast, hardware vulnerabilities are flaws present in the hardware system.
For example, the Rowhammer [91] attack exploits faults generated in the Dynamic Random
Access Memory (DRAM) due to repeated access to the same memory locations over a
short period of time. Hardware vulnerabilities allow attackers to directly exploit interactions
with the system’s electronic components, without the need for a software vulnerability, and
regardless of the OS.
Traditionally, hardware attacks are used to extract information through leakages such

as computing time, power consumption, electromagnetic radiation, or injection of faults
into the hardware. Thus, if attackers have physical access to the device, they can employ
methods such as laser injection fault attacks [18, 89], the Joint Test Action Group (JTAG)
interface [59, 80] or voltage/clock glitch attacks [11, 48] to attack the system.

Due to the complex architectures of modern systems, the attack surface has increased. A
new class of Software Attacks Targeting Hardware Vulnerabilities (SATHV) in the various
units of the system has emerged. The units targeted include the memory (e.g., cache,
DRAM), debugging interfaces, power, and frequency management modules or solutions used
to optimize the computation time such as the out-of-order and speculative execution. In
contrast with the usual hardware attacks mentioned earlier, which require physical access,
SATHV attacks can be performed remotely. If attackers do not have physical access to
the targeted device, they must access it using communication interfaces such as WiFi
or Bluetooth. They can then perform a remote access attack such as clock/voltage fault
attacks [78, 90] or a JavaScript Cache side-channel attack (Cache SCA) [34, 70]. Cache
SCA [57], Rowhammer [91], Spectre [46] and Meltdown [56] correspond to some of the most

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3471936

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:3

serious non-invasive attacks to have occurred that rely on hardware vulnerabilities. This
new class of attack poses a severe threat to the security of modern devices, and specific
countermeasures must consequently be deployed.
It is common to develop patches to resolve problems related to software vulnerabilities

following their detection. In contrast, hardware vulnerabilities tend to be less extensively
researched than software vulnerabilities. This distinction could be justified by the fact that
security researchers have more limited access to deployed system architectures. Typically,
software tools (e.g., anti-virus, firewalls, anti-malware) can ensure the system is safe from
attacks involving injection of malicious code taking advantage of software vulnerabilities.
Anti-virus software compares information obtained from the system with known malware
information stored in databases. Firewalls filter information coming from the internet. Anti-
malware systems work like anti-viruses, but using different methods like signature check,
heuristics, sandboxing. However, although these security features may be able to detect the
software part of an attack, they cannot always detect hardware-related vulnerabilities [52, 68].
Thus, if the attacker induces a fault in the hardware, these software tools often have no
access to this information [52].
To make the system safe with respect to hardware attacks, several physical protections

have been developed. Such as active shields protecting against invasive probing attacks [24],
fault-tolerant redundant hardware systems [10] to prevent fault attacks, dual coil [40] or light
sensors [12] to protect against electromagnetic attacks. Because of the extensive research
into physical protections, we consider that they are already implemented in systems which
are physically accessible to prevent physical attacks. Based on this assumption, this survey
does not include attacks like electromagnetic emission analysis, power consumption analysis,
leakage power analysis, fault attacks like electromagnetic, clock, voltage, temperature glitches,
laser attacks, cold boot, bus probing, etc.

In contrast to physical attacks, it is more challenging to secure the system against SATHV.
Both hardware and software detection mechanisms have been proposed in the literature
to address SATHV. As previously mentioned, a software implementation of a detection
mechanism frequently has no access to hardware information and it raises the load of the
processor. As a result, hardware-implemented detection mechanisms are favored. These
mechanisms have the advantage of not degrading the system performance as much as a
software implementation, and can directly access hardware information that could allow
attacks to be detected.

The information that both software and hardware detection mechanisms rely on to detect
the attacks are the side effects of SATHV. The term side effects, which will be used throughout
the survey, includes all the signals, configurations, and modifications of the system that
change their nominal value or area of values due to the execution of SATHV alongside
legitimate software. The side effect selection is critical to determine the detection capability
of a detection mechanism.

Threat model. In our threat model, we make the following assumptions. Assumption 1 is
that the attackers have no physical access to the targeted system. In general, the industrial
environment provides limited access to systems, and consumer IoT are stored within the
user’s home. Moreover, when IoT devices can become a target of their own users, we consider
physical protections to exist. Examples of such protections include an integrated secure
element or detection of attempts to dismantle the device. Above, we mentioned some of
the physical protections that can be used to protect the system against physical attacks.
Assumption 2 is that the attackers in our threat model had access to the system. During

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

this access, they introduced or implemented a piece of malicious code on the system. This
could be achieved for example by loading a corrupted application, or introducing a bug
into the application code, or the OS. Furthermore, network interfaces e.g., WiFi, Bluetooth,
Ethernet, can be used to gain access. Assumption 3 is that devices equipped with an OS
are targeted. Some examples of OS in our threat model are Linux, embedded Linux, and
Android. We will not consider devices like micro-controllers, as we are only interested in
devices with more complex microprocessor architectures such as smartphones. The attackers’
aim is to gain additional levels of privilege or to extract sensitive information from the
system. Assumption 4 is that the attacker may already have privileges. Privilege escalation
can be achieved due to an OS bug. OS bugs are frequently discovered and allow attackers to
gain access to the - normally protected - system information. The attacks studied could be
considered malware and are based on software code targeting a hardware vulnerability in
the system microarchitecture.

Problematic. As more SATHV appear each year, this type of attack needs to be counter-
acted. One way to do this is by mitigating the attacks, and another way is by monitoring
the system to detect them. Because mitigation does not resolve the problem, monitoring,
detection, and reaction represent a more definitive solution. To help designers take SATHV
into account, they must be aware of most of the existing SATHV and the hardware vulnera-
bilities they target. In addition, detection mechanisms addressing SATHV described in the
literature should be presented.
Because SATHV can induce a fault in the hardware, they can bypass all the security

checks present in the OS. In addition, software-implemented mechanisms only have access
to a limited amount of information on hardware side effects which could reveal the attacks.
Furthermore, the hardware side effects access to software are architecture-independent.
As mentioned above, software solutions introduce large performance overheads, as both
detection mechanisms and running applications requiring access to the Central Processing
Unit (CPU). The attack may detect the detection mechanism, and in response hide its
malicious behavior [65]. This is possible as the attack and the detection mechanism share
system resources. Finally, depending on the application, some software detection mechanisms
might be unacceptable. For all these reasons, software solutions to SATHV are limited.
However, hardware implementations also have limitations. For example, the cost of the
added design time, extra features in the system design, and the difficulty updating hardware
after its production counteracts the benefits of this type of approach. In addition, most of
the detection mechanisms implemented in the literature are focused on the detection of
specific attacks. For example [21] detects only three variants of Cache CSA, [3] detects only
Meltdown, and [55] detects only Rowhammer and Spectre. The aforementioned solutions
have no general fair cost strategy to detect a large set of attacks, and the mechanisms
require update depending on the application and the platform. This raises severe problems
as new attacks appear every year and a large database of attack vectors exists. Detection
mechanisms limited to specific attacks which cannot be upgraded in the future to include
new attacks will not be adopted by vendors.

During an attack of the system, numerous side effects appear. Detection mechanisms rely
on these side effects to detect the attack. It is thus important to create a collection of attack
side effects, but also to list the side effects used by the detection mechanisms described in
the literature. This database could serve as a tool for security designers, who want to find
out what is used in current detection mechanisms that might be useful for modification or
inclusion in their own mechanisms.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:5

Related work. Many surveys of security and privacy in embedded systems, and more
specifically in IoT and IIoT have been published. Here, we will initially present and cate-
gorize existing surveys. We will predominantly focus on surveys dealing with attacks on
IoT/IIoT systems and security mechanisms. Most of the surveys conducted previously
present mitigation techniques. However, as indicated above, mitigation techniques target
specific attacks and can only limit the impact or make the attack more difficult to implement
without resolving the issue.

In 2019, Ehret et al. [27] presented a survey of hardware security techniques targeting
low-power System on Chip (SoC) designs. The techniques presented mostly mitigate attacks
without detecting them, and require the attacker to try harder. The authors classified the
techniques based on which attacks each technique could mitigate. In another study published
in 2019, Lokhande et al. [58] presented attacks targeting hardware architecture to bypass
OS security. The authors discussed the operations performed at the hardware level and the
different exploits that rely on faults in these operations. The surveys focused on a limited
set of attacks and ultimately the authors questioned the impact on system security. Also in
2019, Szefer [88] presented the key features of the processor micro-architectural functional
units, which make covert and side channel attacks possible. After presenting several covert
and side channel attacks, Szefer et al. present some software and hardware defenses. The
defenses presented focused only on mitigating the attacks, not on their detection. In 2020,
Sengupta et al. [83] presented attacks to the different system layers, e.g., physical, network,
software, data. These authors also presented countermeasures for each layer, thus producing
a taxonomy of the security research in IoT and IIoT. In a similar survey also published in
2020, Kwong et al. [50] attempted to present a comprehensive review of all major security
attacks faced by the IoT industry and the existing mitigation techniques. The authors discuss
the potential benefits and shortcomings of the different techniques by analyzing their pros
and cons. However, the survey only dealt with software attacks and remained relatively
general, not going deep into the source of the vulnerabilities. Finally, another comprehensive
survey from 2020 was published by Akram et al. [2]. This survey only related to cache
side-channel attacks (cache SCA) and how they could be detected. The survey covered a
broad range of detection mechanisms for cache SCA, and presented a taxonomy of these
mechanisms.

Contributions. The key contributions of the survey presented in this article, compared to
the previously published surveys in the area of IoT/IIoT, are as follows: it is the first survey
to list most of the SATHV, alongside their targeted hardware vulnerabilities, and their side
effects. The side effects are also classified based on a set of proposed criteria. Detection
mechanisms implemented in modern devices, considering the previously mentioned threat
model are listed, and the mechanisms studied are finally classified according to a specified
set of criteria.

This survey thus provides an insight into SATHV and the hardware vulnerabilities targeted.
We further discuss the side effects of each attack, which correspond to the footprints of each
attack. These attack footprints can be used to implement detection mechanisms to monitor
for the side effects and thus detect attacks. As previously mentioned, the goal is to address
multiple threats simultaneously. We present a taxonomy of the side effects, from which the
reader can determine whether attacks cause similar side effects, have some correlation, or
are completely different.

Finally, hardware mechanisms based on detection of side effects described in the literature
are presented. These mechanisms attempt to address the security issues targeted by the

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

attacks included in our threat model. These mechanisms are classified according to the
criteria we define and describe. We have focused our survey on detection mechanisms, as
we want to react instantaneously to find and delete the malware. In most cases, mitigation
techniques (countermeasures or mechanisms to slow the attack) are specific to one attack
and cannot completely protect against all attacks. In contrast, detection mechanisms could
be used to deal with multiple attacks and eliminate threats. We believe design detection
mechanisms addressing all attacks are needed because systems have become too complex to
address the increasing demands, for example, on memory and speed. The increase in system
complexity in turn augments the number of possible attacks. Attackers can use more than
one attack to intrude the system, potentially bypassing detection mechanisms implemented
for a specific attack or attack variant. A detection mechanism addressing a variety of attacks
is therefore desirable. Designers of detection mechanisms can refer to our table and list of
detection mechanisms to extract information that will help with their goal.

To the best of our knowledge, this is the first survey describing software attacks targeting
hardware vulnerabilities in the context of micro-architecture and presenting relevant detection
mechanisms. The goal of this article is to help security designers to obtain information
on the detection mechanisms that have been implemented, and the side effects through
which to detect attacks. Because detection mechanisms implemented in the literature focus
on specific attacks rather than a set of multiple attacks, this survey should help designers
make their system more secure following their vulnerability analysis. With this knowledge,
and the annotated lists of side effects and detection mechanisms presented in this survey,
security designers could benefit by designing their detection mechanisms depending on the
limitations of their application and their system.

In summary, our key contributions are:

∙ Presentation of software attacks targeting hardware vulnerabilities in the system
micro-architecture and listing their side effects.

∙ Presentation of registers and signals to help extract information to detect SATHV
attacks.

∙ Introduction of a set of criteria by which to classify the side effects of the attacks.
∙ Discussion of detection mechanisms addressing the attacks presented. Detection mecha-
nism designers could benefit by acquiring information on the limitations and advantages
of the current detection mechanisms. Subsequently, they could use this knowledge to
improve these implementations through modifications, or use the implementation idea
to create a more complex and capable mechanism to detect a broader range of attacks.

∙ Classification of the detection mechanisms according to a set of criteria. The criteria will
help detection mechanism designers to choose the most appropriate and cost-effective
mechanisms for their platform and applications, and based on their vulnerability
analysis.

Outline. The remainder of the paper is structured as follows. In section 2, we present
SATHV targeting IoT and IIoT systems. The attacks presented target hardware vulnerabili-
ties in the system architecture, and the methods used to exploit these vulnerabilities are
implemented in software. We also list the side effects of these attacks. In section 3, we go
into more technical detail for each of the side effects listed for each attack. The side effects of
the attacks are summarized in a table. In section 4 we provide a set of classification criteria
for the side effects presented in section 3. In section 5, we discuss detection mechanisms
described in the literature, which address the security issues associated with the attacks pre-
sented. We define some classification criteria and propose a taxonomy table for the detection

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:7

mechanisms. Finally, in section 6, we discuss some choices, limitations, and improvements
in relation to the survey presented, before concluding our article. The conclusion analyzes
choices and limitations with regard to the data used for the classifications and analysis of
the vulnerabilities, and proposes some improvements to be implemented in our future work.

2 IOT/IIOT ATTACKS, SYSTEM HARDWARE VULNERABILITIES, AND SIDE
EFFECTS

In this section, we focus on software attacks targeting the system micro-architecture and
involving hardware vulnerabilities. Hardware vulnerabilities may be the result of a design
flaw, an implementation flaw, or an incorrect configuration. Attacks that target a hardware
vulnerability but require physical access to the system are not included as they are beyond
the scope of our threat model. In addition, as it is not possible to list all of the attacks
presented in the literature, we present attack vectors that target different system units. If an
attack vector has several variants, we present the variant that best describes the vulnerability.
These choices were made as we wished to focus on the side effects of each attack vector.
Furthermore, variants of an attack frequently present similar side effects. Where this is not
the case, we have clearly stated the variants of the attack presenting distinct side effects.

To begin with, we will give some background information on the terms used in this section.
This will help the reader to follow our analysis. Next, we divide the attacks according to
the unit they target, e.g., the memory, the out-of-order and speculation units, the debug
interface, the power, frequency, and thermal units. Subsequently, we provide a general insight
into each attack in three parts. We start with a quick description of the vulnerability followed
by some ways of exploiting it that have been mentioned in the literature, without going
into detail on how they work and how to perform them – such detail can be found in the
bibliography. Finally, we list the side effects produced by each of the attack vectors described.
Later in the paper, we will present further technical details of the side effects and how they
affect the system, and can be detected.
It should be noted that we list side effects related to both ARM and Intel architectures,

as well as running Linux OS. ARM is a leading architecture in IoT/IIoT devices, whereas
Intel focuses more on high-performance processors. Despite this, Intel has also increased its
attention on the IoT market, for example through the design of the 11th Gen Core. The
side effects reported in the referenced literature and presented in this survey relate to these
architectures and OS. Nonetheless, this choice does not limit the range of our threat model,
which covers multiple architectures and rich OSs. The architecture will be mentioned before
the presentation of the side effects, to notify readers and avoid confusion. If the side effects
are observable only in a specific architecture, this information is mentioned.

2.1 Background

In the following subsections, we will use some terms during the SATHV analysis. This
subsection is included to help the reader better understand the concept of the attacks
described.

TrustZone is a security feature introduced by ARM. It is an extension implemented in the
hardware that aims to provide a secure execution environment. The environment is made
secure by splitting the resources of the microprocessor into two execution worlds, normal
and secure [64]. The hardware restricts the access of normal applications to the resources
labeled as secure.

Differential Fault Analysis (DFA) is a technique that forces a cryptographic implementation
to compute incorrect results and attempts to take advantage of them. Using DFA it is

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

possible to retrieve cryptographic keys by analyzing and comparing the correct and faulty
output pairs. DFA is used to inject faults with clock glitches, voltage glitches, lasers, etc. A
DFA in the AES implementation was demonstrated in [1].

2.2 Memory Attacks

We will start by describing attacks dealing with vulnerabilities related to memory. These
attacks target information stored in the memory, by corrupting it, or using it as a side-
channel. We describe attacks related to cache and DRAM memory. The attacks presented
are cache SCA, Rowhammer, DRAMA and DMA attacks.

Cache SCA. Cache SCA are among the most basic side channels exploited. The fundamen-
tal hardware vulnerability exploited by a cache covert channel is that it is faster to access
directly from the cache than the main memory. In addition to the time consideration, Cache
SCA channels take advantage of other hardware vulnerabilities. Thus, the Flush+Flush [37]
attack exploits the hardware vulnerability of the timing difference when serving the ”flush”
instruction. When the targeted address to be flushed is available in the cache memory, the
flush instruction deals with the request more slowly. Attackers can gain knowledge on the
execution path by measuring the aforementioned timing-based side effects.
Various techniques have been used to perform a cache SCA. Some of the exploits are:

Evict+time [72], Prime+Probe [57], Flush+Flush, Flush+Reload [93], Evict+Reload [39],
Prime+Count [22]. To present an example of a technique, during Flush+Reload the attacker
flushes a targeted address. If the victim uses this address, the system will reload it as it was
just flushed by the attacker leading to a cache miss. After the victim executes, the attacker
reloads the address. If the victim reloaded the address, a hit occurs e.g., the time needed
to access the address is shorter. If the victim did not use the address, a miss occurs e.g., a
longer access time is observed as the data must be retrieved from the main memory.

Some of the exploits relying on cache SCA are presented here. [72] attack AES OpenSSL
on x86, whereas [74] and [13] attack the RSA OpenSSL and RSA SGX SDK version. In
[39] attackers observed the cache to extract the users’ keystrokes, and in [71], they attacked
the javascript sandbox. The cache side-channel is also the covert channel used for other
vulnerabilities such as Meltdown [56] and Spectre [45]. [94] attacks AES in TrustZone and
[22] uses the side channel to transfer images from the secure world to the normal world
in TrustZone. Both these approaches attack the AES by extracting the key based on the
access pattern of the AES T-table. Furthermore, attacks on the Translation Lookaside Buffer
(TLB) caches have been reported, such as attacks on the implementation of cryptographic
algorithms [33], or which bypass the kernel Address Space Layout Randomization (ASLR)
protection [36].

Most cache SCA rely on timing differences either when loading values from the cache/main
memory or serving a flush request. To obtain these timing differences, attackers monitor
the Performance Monitoring Units (PMUs) for ARM [8] or Performance Counter Monitor
(PCM) for Intel [92]. For a cache SCA to work, the attacker must know how the physical
addresses in the main memory are mapped to the virtual addresses used by the process. In
most cache SCA techniques, this is necessary because a process using only virtual addresses
must know where in the cache the targeted memory contents are mapped as most cache
architectures are physically addressed. The translation information can be found in the page
tables stored by the OS. In Linux, the attacker can use an OS file (proc/PID/pagemap) to
obtain this information and find the translations. If this option is unavailable, the attacker

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:9

could try to reverse-engineer the mapping through more complex techniques [75] such as
huge pages.
Having seen the resources used by attackers to mount a successful attack, we observed

that access to the PMUs or proc/PID/pagemap is not necessary. The main side effects of
cache SCA are related to the use of caches and small loops. These effects increase several
stats such as cache misses [21, 23], cache hits [21], cache accesses [21], number of executed
instructions [21], number of CPU clock cycles [21], speculative branches taken [23], retired
branches [23]. The side effects observed values will be different for each architecture. Because
of the distinct implementations, Intel is typically more vulnerable to cache SCA than ARM.
Some of the reasons are the existence of the clflush instruction and DC CVAC, DC CIVAC,
DC ZVA in Intel and ARMv8, which are not present in ARMv7. In addition, the random
replacement policy in ARM caches makes eviction techniques more complex. Nevertheless,
the pattern of side effects remains the same for both architectures – resulting in increased or
decreased values. This comment applies to all attack vectors which use or bypass the cache,
as we will explain later.

Finally, because the attacks are implemented in a loop, attackers must prevent the interrupt
scheduler from inducing noise by interrupting the attack process. Following the same logic,
attackers have to prevent the CPU and the compiler from reordering the instructions in
their attack loop.

Rowhammer. Rowhammer is a hardware vulnerability in the Dynamic Random Access
(DRAM) memory, that was first presented in [43]. Modern DRAMs have an increased cell
density, which increases the electrical interaction between cells. The vulnerability exploited
by Rowhammer is due to charge disturbances in DRAM capacitors, caused by the repeated
access to neighboring rows. Attackers can modify the stored context of a targeted address,
by repeatedly accessing the two neighboring rows that sandwich it. To do this, attackers use
the pseudocode listed in Algorithm 1. The Rowhammer vulnerability depends on several
parameters such as the frequency of the row activation interval, the refresh interval, and the
data patterns.
The Rowhammer vulnerability has been exploited in a variety of scenarios. In [77] and

[91] attackers induced faults in an OS page table and effectively gained some privileges. In
[51] and [19] attackers performed a DFA on the RSA key. These examples showcase the
potentially severe consequences of the Rowhammer vulnerability.

Algorithm 1 Rowhammer pseudocode

1: while time <DRAM refresh interval do
2: LD/ST address 1
3: LD/ST address 2
4: flush address 1
5: flush address 2
6: memory barrier
7: end while

The Rowhammer attack involves a considerable number of steps, each of which produces
side effects. The primary side effect of the attack is the increased number of accesses to the
same memory locations, which the attacker uses to induce faults in the neighboring rows.
The attack shares many similarities with cache SCA, as the attacker must bypass the cache
levels to directly address the DRAM. This explains why the attack induces an increased

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

number of cache misses [54], hits [35] and accesses [54]. Interestingly, interaction with the
CPU is unnecessary. [29] presents the GLitch attack, which performed the Rowhammer
from the GPU, thus bypassing the CPU. Through control of a malicious website, attackers
can get remote code to execute on a smartphone without relying on any software bug, as
demonstrated by the researchers.
To use this hardware vulnerability, attackers must also know the virtual to physical

mapping of addresses. However, sometimes this is not enough as the memory controller
maps the physical addresses differently to the DRAM addresses. As the attacker must know
the exact location of the addresses neighboring the target in the DRAM physical address
space, finding these neighbors in the physical address space is not sufficient for a successful
attack. These DRAM mappings are not always available from vendors, and thus the mapping
functions must be reverse engineered to perform the attack. As the attack might require
reverse engineering, timing differences of accesses within the DRAM must be calculated
using the PMUs.

Furthermore, attackers also need to prevent the interrupt scheduler from inducing noise by
interrupting the attack process. Similarly, the CPU, the compiler, and the memory controller
must be prevented from reordering instructions and memory accesses. The overall number
of page faults (known as the page fault ratio) is low [73]. This side effect is visible because
the attack repeatedly accesses the same DRAM cells, though the attack process has limited
interaction with the OS page fault handler. Repeatedly accessing the same addresses does
not force the OS page fault handler to bring a missing page in the page table, thus producing
the low page fault ratio. In addition, the number of branches taken is increased and the
branch mispredictions are reduced [55].

DRAMA. This attack was presented in [75]. The hardware vulnerability exploited is the
timing difference between accessing data from the DRAM row buffer or the DRAM. The
row buffer acts like a cache for a DRAM row. A request served from an active row is faster
than a request that requires a new row to be accessed. [75] presents two attack scenarios
using the DRAM as a covert channel. In one of the covert channels, sender and receiver
occupy different rows in the same DRAM bank. The sender continuously accesses a row in
the DRAM. The receiver also continuously accesses a target address in the same DRAM
and measures the average access time. If the addresses map to different rows, a longer access
time is observed due to the row conflict. In contrast, if the addresses map to the same row,
a decreased access time is observed. Sender and receiver can map the access time difference
to ’0’ and ’1’ to send a message.
The DRAMA attack shares some side effects with the Rowhammer attack. Firstly, an

increased number of accesses to the same memory row is observed. The attack also induces
an increased number of cache misses, hits and accesses because the attackers must address
the DRAM directly, by bypassing the caches. Reordering of instructions from the CPU
and compiler, and reordering of memory accesses through the memory controller must be
prevented. Interrupts are also prevented in the DRAMA attack.
Furthermore, the attackers must synchronize the covert channel. To do so, the attacks

make use of Time Stamp Counters (TSC). TSC is a 64-bit register in x86 processors that
counts the number of cycles since reset. The counter is used only to synchronize the two
channels, so any precise counter could be used as an alternative, such as the PMU cycle
counter. The side effects of reverse engineering are also visible here. Finally, PMUs are used
to measure the timing difference of accessing an active or inactive row buffer.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:11

Direct Memory Access (DMA) attacks. The DMA feature was introduced to allow periph-
erals rapid access to the memory without the involvement of the host CPU. The peripherals
gain access to the whole host memory, completely bypassing the CPU. In this scenario,
the CPU can perform other tasks while DMA transfers occur. This option gives freedom
to a peripheral to read/write to all the DMA-accessible memory ranges. The hardware
vulnerability exploited in this attack is the potential direct access to the memory bypassing
the CPU, OS, and hardware access verifications.
Some attacks implemented that exploited the DMA vulnerability are DAGGER [87],

ThunderClap [60], [63], and pcileech [30]. DMA attacks using the GPU’s ability to access
the DMA feature have been presented [95]. The attack needs a malicious driver and access
to the kernel. As the authors propose, this access can be obtained using kernel exploits, by
bypassing capability checks, or by exploiting kernel module loader weaknesses.
During a DMA attack, side effects are primarily observed on the system bus. A higher

bus activity can be observed, as the attacker tries to read and write to memory locations
using the DMA functionality, without interference from the CPU. Several events related
to bus statistics can be observed, for example, memory bus transactions including burst
transactions, invalidate transactions, partial reads, and writes.

2.3 Transient Execution Unit Attacks

With the aim of increasing CPU speed, vendors sometimes allow hardware to perform
operations for subsequent instructions ahead of time or even out-of-order. To achieve this,
the CPU must be able to predict the control flow, data dependencies, or even data. If the
CPU prediction is correct, the operation continues. If the prediction was incorrect, it flushes
the pipeline, restores the context before the prediction, and continues with the correct data.
This offers the benefit that the time spent performing instructions ahead of time, is almost
the same as stalling the CPU to wait for the calculated data to arrive. This ability gave rise
to a new class of attacks called Transient Execution Attacks. Although the architectural
effects and results of transient instructions are discarded, micro-architectural side effects
remain after the transient execution. An example of such residual effects is the cache state
that can subsequently be exploited by the attacker [16].

Meltdown. Meltdown is one of the most recent severe attacks exploited [56] corresponding
to a hardware vulnerability related to the out-of-order execution. The hardware vulnerability
exploited is access to restricted memory locations bypassing security checks due to the
out-of-order execution. A vulnerable CPU allows an unprivileged process to load data from
a privileged (kernel or physical) address into a temporary CPU register [56]. The attacker
can then extract the information using a cache side-channel. Meltdown mostly affects Intel-
based processors, but IoT devices based on ARM processors have also been reported to be
vulnerable. Some vulnerable ARM-based processors including the ARM-Cortex A72 used
in the Raspberry Pi 4 and Exynos 9820 used in Samsung Galaxy S10. A research from
Graz university [38] also indicates that the Meltdown vulnerability could be exploited in the
Samsung Galaxy S7 due to its use of an Intel chip. Since the original paper was published,
several variants of the attack have been reported [14], [15], [26], [85], [44].

The primary side effect of Meltdown is related to the access to restricted memory. When a
malicious process attempts to access a memory location that is not part of the process, the
request will eventually fail, creating a segmentation fault. The access violation is caught after
the content of the requested memory location is transferred to the cache. When the violation
is determined, the requesting process is notified by the OS, e.g., by raising a SIGSEGV event

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

in Linux [3]. Segmentation faults that occur in memory locations close to each other can
be marked as suspicious side effects, and can be extracted by kernel tracing. As Meltdown
uses the cache as a side-channel to extract the information after inducing the fault, all the
cache side effects listed above will also be visible here. The number of cache loads is a new
interesting feature measured in the literature [28].

Spectre. Spectre [45] is another novel attack that was presented alongside the Meltdown
vulnerability. Spectre is a hardware vulnerability related to speculative execution. The
vulnerability relies on dedicated control or data flow prediction mechanisms, thus it tran-
siently bypasses software-defined security policies (e.g., bound checking, function call/return
abstractions, memory stores) to leak secrets out of the program’s intended code/data paths
[16]. If the processor does not know the future instruction stream for a program, it will
speculate on the branch path. To succeed, the CPU saves the context of the current state
and speculatively executes instructions. By speculative instruction execution, attackers can
access context for which they should not have permission, and extract it through a cache
side-channel. Following its publication, like Meltdown, many variants of Spectre emerged
[44], [46], [49], [41].
For Spectre, the side effects observed are an increased number of branches and branch

mispredictions during attacks. In contrast, the branch miss rate is decreased [55].

𝑏𝑟𝑎𝑛𝑐ℎ 𝑚𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 = 𝑏𝑟𝑎𝑛𝑐ℎ 𝑚𝑖𝑠− 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠/𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

This is because the attacker tries to train the branch predictor by calling the conditional
branch many times with different input values that make the condition true [55]. As explained
for Meltdown above, Spectre also uses the cache side-channel, and will thus produce similar
side effects. The number of cache loads and cache references [55] also increases. Although
Spectre has many variants, the side effects remain the same for most of them. According
to [17], which examined the different Spectre variants and conducted a classification of
them, three out of four variants use the same training and extraction methods, with the
only difference being the mechanism exploited. As the aforementioned side effects rely on
training of the predictor and the cache SCA to extract the information, three out of four
variants present similar side effects. Only Spectre variant 4, which relies on the load/store
dependencies, uses an alternative training method and might induce different side effects.
For the other variants, the side effect values might differ, but the patterns should remain
the same.

2.4 Debug Unit Attacks

The processor’s debug unit is a hardware module designed to help developers debug hardware
and software running on the processor. In combination with a software debugger, it allows
developers to debug application software, operating systems, or processor-based hardware
systems. Unrestricted access to this information leaves the system vulnerable to attackers.
For our purposes, we refer to the debug component inside the system, and not the debug
interface which requires physical access.

Nailgun. The Nailgun attack was presented in [67]; it targets ARM cores. This attack was
made possible as the hardware does not check access privileges when in the debug state.
Using this hardware vulnerability consequently, a component with low privilege can access
resources of a higher privilege mode. Nailgun exploits this hardware vulnerability to attack
the system, specifically by misusing the ARM debug components Embedded Trace Macrocell
(ETM), Program Trace Macrocell (PTM) [5], [4] to extract sensitive information.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:13

The attack relies on authentication signals [6] (signals that control whether non-invasive
or invasive debugging is allowed in the non-secure or secure state) and whether they are
enabled in the targeted system (vendors suggest that these signals be disabled after the
development phase, but this is not the case for all manufacturers). This attack requires no
physical access, unlike JTAG/debug interface attacks. The Nailgun attack has been possible
since ARMv7. In this model, an on-chip processor can debug another processor (the debug
target) on the same chip. Two attack scenarios are possible, depending on the authentication
signals and whether the CPU inserts the debug state during the attack.
In the non-invasive scenario, Nailgun can infer the AES encryption key, based on the

AES table-lookup implementation in the secure world. The ETM debug component can
reconstruct the instruction accessed and data addresses involved in the encryption algorithm
execution. The secret key can be inferred by reverse engineering the page table entries
accessed.

In the invasive scenario, Nailgun demonstrates how an application running in non-secure
EL1 (privilege level for the rich-OS) can arbitrarily execute payloads in EL3 (privilege level
for the firmware). The attackers used a payload to extract fingerprint data from the secure
world as proof of concept. The main steps in this type of attack are as follows: initially, the
attackers must induce the debug state. Next, they must change the register value containing
the first instruction after exiting the debug state. An Secure Monitor Call (SMC) instruction
is inserted to take the processor to EL3. Then, the register value must be modified, holding
the instruction indicated by the exception vector in EL3. The modified instruction will point
to an arbitrary payload introduced by the attacker. The processor will execute the payload,
and finally, the attacker must restore the modified register values to their initial values.
The ETM is used by the attacker to monitor the addresses accessed by a secure-world

application. In the invasive attack scenario, the attacker uses a memory-mapped interface
(Debug Communications Channel) to access system registers allowing communication between
the attacker-controlled processor and the victim core. In addition, the attacker accesses
system registers to insert and execute instructions when the system is in the debug state. The
attacker modifies the register, which holds the first instruction to be executed after leaving
the debug state. Moreover, the attacker modifies the instruction to which the exception
vectors point [67]. When a secure application is running, whether these registers and features
are used during the debug state can be checked. In ARM architecture, access to the system
registers of ETM and PMU can raise an interrupt, thus preventing access to the EL3 secure
OS [66].

eXecute-Only Memory (XOM). XOM memory was introduced to protect one vendor’s
Intellectual Property (IP) from other developers, even though they retain access to the
binary code through the debug interface. Thus, code can be executed but read or write
access to it is prevented [7]. Despite this protection, attackers can halt a processor when
it is executing sensitive information. If the execution stops, the sensitive information is
retained in the CPU resisters or the Static Random Access Memory (SRAM) contents. The
attacker may then be capable of partially recovering information by looking at the remnant
information [7]. Interrupts or debugging features, such as halting the processor, can be used
to stall the execution and extract information. Consequently, the hardware vulnerability of
restricted access data being available in system registers after an execution halting, allows
sensitive information to be extracted, when no permission has been granted.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

In [82], the attackers used the single-step feature of the debug interface or an interrupt-
driven approach, to execute elements in the XOM and reverse engineer the targeted instruc-
tions. The interrupt-driven approach does not require any debugging capabilities but only
privileged code execution on the target device.

Some vendors do not allow the processor to be stalled when executing code contained in
the XOM. However, halting is permitted outside this region when the processor executes a
function or an interrupt handler. For example, STM32Lx and STM32F4 allow the halt, but
not STM32F7 and STM32H7.
The XOM attack presented above causes the following side effects. To start with, the

attacker must use the single-step debug feature during execution of the protected code. If
this option is unavailable, interrupts may be raised after the protected code is executed.
The two above side effects are visible multiple times in the same memory context. The
attacker executes a loop to obtain output information multiple times by processing the
targeted memory context for different inputs. For the method with interrupts, the System
Tick (SYSTick) timer is used to synchronize the interrupts [82].

2.5 Power and Clock Management Unit Attacks

The power and clock management hardware units responsible for providing the necessary
voltage levels and clocks throughout the system. The need for power and energy efficiency
has led to hardware-software management mechanisms. Dynamic Voltage and Frequency
Scaling (DVFS) is a technique designed to save energy based on energy demands during
runtime. When applying this technique, hardware regulators collaborate with the OS,
which keeps track of the runtime demands. Flip-flops in synchronous circuits must follow
specific constraints [81], so the system operates correctly. Both frequency and power have
an impact on these constraints, which explains why the operating points of the device must
be calculated in accordance with frequency and voltage levels. A deviation in the (voltage,
frequency) operating points from safe levels can lead the hardware to produce faulty results.
The hardware is vulnerable to these deviations, and attackers can take advantage of these
vulnerabilities to attack the system.

Clkscrew [90] is an attack performed by software with low privileges which gains access to
the power management hardware. The attack is implemented by a CPU with at least two
cores. Because cores are powered at the same voltage, the attacker modifies the frequency of
the victim core to induce a timing fault. This type of timing fault is a hardware vulnerability
that is mostly exploited using hardware attacks, such as clock glitches [48]. In this case, it
is exploited using software code that pushes the frequency operation point in the power
management hardware to its limits.

As proof of concept, the authors implemented two attacks. In the first attack, they induced
a fault in an AES round and performed a differential fault analysis. In the second, they
induced a fault in the RSA key during TrustZone execution. A crafted signature signed by
the fault key was loaded to allow a malicious app to be introduced into the secure world of
TrustZone.

Voltjockey is another attack based on the power unit [78]. The attack is very similar
to Clkscrew, but the error is due to an increase in propagation delay, as the result of a
modified voltage. Like Clkscrew, the Voltjockey timing fault is a hardware vulnerability
mostly exploited using hardware attacks such as voltage glitches [11]. The attacker core runs
at low frequency, whereas the victim core runs in high frequency. By inducing a sudden drop
in the voltage, the timing constraint is not respected. The low-frequency core is unaffected,

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:15

but the high-frequency victim core is severely affected. The proof of concepts is similar to
the Clkscrew attack. Both attacks were demonstrated in commodity ARM devices.
The side effects mentioned below relate to Linux-ARM devices. However, similar effects

could be observed with other platforms and OS, as DVFS is a common feature in most
modern devices.

The Clkscrew and Voltjockey attacks need access to a malicious driver, to allow them to
change the configurations of the frequency and voltage. To modify the frequency, the Phase-
Locked Loop (PLL) unit register configurations are modified, and frequency configurations
outside the operation range are used. To modify the voltage, the Power Management
Integrated Circuit (PMIC) drivers, and Subsystem Power Manager (SPM) registers are
altered to change the supplied power configurations. Operating Performance Points (OPPs)
other than those specified by the vendors are used. Interrupts of the victim cores are disabled
during the attack period, to reduce the noise of the targeted time of the induced fault.
Finally, both attacks use cache side channels to profile the executed code, consequently
triggering the same side effects as cache SCA.

2.6 Thermal Monitor Unit Attacks

Temperature Side Channel. The temperature is another interesting feature of the system,
that is not often exploited. Temperature plays a vital role in the correct operation of a
device, and temperature leakage measurements could be used as a side-channel. Modern
CPUs use temperature monitors to prevent the system from overheating and manage power
consumption. This information can be retrieved from special CPU registers. The thermal
channels are interesting, as a defender could reset resources (e.g., cache, registers) to eliminate
the side channel. However, the heat produced during the computation can be observed
even after the end of the process, making it difficult to eliminate this covert channel. This
hardware vulnerability due to the thermal footprint of system operation can be exploited to
extract sensitive information.

A thermal side channel was presented in [61]. The authors of that study observed that the
higher the operating frequency, the higher the core temperature. In the first attack scenario,
the residual heat in one core is monitored. In the second scenario, the temperature of a core
is monitored from a second core, thus establishing a covert channel between the two cores.
The attacker performs a computationally intensive process (the DVFS will decide to increase
the frequency) to send a ’1’ and remains idle to send a ’0’. This attack was demonstrated
on an Intel platform.

When the attackers use the available thermal monitor to establish a covert channel, they
have to access the Digital Thermal Sensor (DTS) data through the coretemp kernel module.
Coretemp is a Linux-specific module that allows access to Intel DTS. A thermal fingerprint
that differs from the nominal fingerprint may be observed because the attacker changes the
CPU’s operating frequency from high to idle. By doing so, the temperature of the CPU
changes accordingly. As explained before, when the CPU operates at a high frequency, the
temperature is higher than when it operates at idle state frequency.

2.7 Summary

The attacks mentioned here cover a large surface in IoT/IIoT systems that are equipped
with an OS and can perform complex functionalities. Based on the information presented,
the reader should have a good understanding of the existing class of software attacks
targeting hardware vulnerabilities. The vulnerabilities were presented briefly by referring
to the exploits targeting the vulnerabilities. The side effects, which we list in this section,

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

will be more fully explained in section 3. As several attacks manipulate the memory, they
share a large number of side effects. Table 1 presents attack vectors manipulating the cache
or the main memory. We chose not to list attack variants, as the vulnerability is mostly
the same. Because they are omitted from our threat model, we did not list invasive attacks
on the system, such as laser fault attacks, clock, and voltage glitch attacks, cold boot, and
bus probing. In addition, electromagnetic side-channel analysis attacks, power consumption
analysis, and leakage power analysis were not mentioned, because we focus on attacks that
can be mostly mounted from inside the system.

Table 1. Attack vectors related to memory manipulation

Attacks
Cache
CSA

Rowhammer DRAMA
DRAM covert

channel
DMA Meltdown Spectre

Clkscrew/
Voltjockey

Cache access/
manipulation

X X X X X X X

DRAM
manipulation

X X X X

Cache as the
covert channel

X X X X

DRAM as a
covert channel

X X

3 ATTACK SIDE EFFECT ANALYSIS

In this section, we list and explain the side effects presented briefly in section 2. In the previous
section, we focused on the attack procedures, targeted vulnerabilities, and goals. Here, we list
and describe files, hardware events and registers, which can be used to obtain information
to detect the attacks. Furthermore, we provide an insight into why the attacks produce
these side effects. This information is important as the detection mechanism designers may
have to deal with unexpected results. Examples of such unexpected incidences are evasive
SATHV, which try to hide their malicious activities by inserting normal operations during
code execution. The inserted normal operations will shift the behavior of the system, but
result in side effects with normal values. Knowing why an attack produces particular side
effects should help the designer take into consideration possible ways an attacker might try
to modify the side effects being monitored.

If our threat model is limited to a specific attack vector, monitoring multiple side effects
of the attack could increase the probability of its detection. In contrast, if our threat model
includes all possible attack vectors in the device to be protected, we must carefully select
the side effect set to be monitored. To our benefit, several attack vectors induce the same
side effects. In both cases, detection mechanism designers can use our list of side effects to
construct a first monitoring set in their threat model. Finally, we present a table listing all
the side effects for attack vectors which present some similarities in their side effects set.
The table does not include side effects which are only visible for a single attack vector as we
considered it obvious that attacks with unique side effects will need a dedicated detection
mechanism. By presenting only attack vectors with some similarity in their side effects, the
designer can potentially find an optimum monitoring set to detect them all. Hereafter, the
terms indicated in parentheses correspond to the short terms entered in the tables.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:17

3.1 Side effects obtained through PMU registers

The PMUs are special-purpose registers which allow us to gather hardware-specific events
related to the CPU units. These units support CPU execution profiling. Detailed information
on the events gathered for ARM and Intel architectures can be found in [9] and [25].
Attackers use these units as support during attacks. These features cannot simply be

disabled as legitimate processes also use the PMU, for example to perform scheduling and
timing of interruptions. Furthermore, designers use the PMUs for debugging, tuning, and
to compare their applications. Multiple attack vectors, presented in the previous section,
manipulate the PMUs to exploit the targeted vulnerabilities. For example, cache attacks
[37, 57, 72] rely on timing differences to distinguish a cache miss from a cache hit. Attackers
access the PMU cycle counters to extract timing information. The TSC Intel counter, or
the Cycle Counter Register (CCNT) in ARM, measure the CPU cycles providing the timing
information. The ARM PMU cache refill event1 is used by the Prime+Count [22] to perform
its attack.
For the benefit of a detection mechanism, these special-purpose registers can also be

accessed to extract information relating to the PMU states. Initially, the detection mechanism
can monitor access to the PMU and debug units. In ARM, the system can be configured to
raise an interrupt whenever there is a read in the PMUs. In addition, a detection mechanism
can monitor various PMU hardware events, such as events related to the cache, branch
prediction, bus access, etc.

As some attacks manipulate the cache state, it may be relevant to monitor cache-relevant
hardware events (e.g., cache misses, hits, accesses, etc.) to observe differences from the
nominal behavior. A cache miss describes the situation when we search for, but do not find,
the desired content in the cache layers. The cache content is written to the cache following
transfer from the main memory. A cache hit describes the situation when the desired content
is directly served from a cache layer. Cache access (or cache references) count any load or
store operation or page table walk access, which performs a look-up in the cache. A cache
load counts the number of loads to the cache, and is used more for the last-level cache. Cache
miss events are a good indicator of cache manipulation. When an attacker evicts the targeted
cache address, an increase in cache misses is observed. When the target application accesses
these targeted lines, a cache miss will occur, and the requested information must be obtained
from the main memory. Rowhammer and DRAMA require the cache to be bypassed, as
they require direct access to the DRAM. To bypass the caches, Rowhammer flushes/evicts
the cache address corresponding to the targeted physical address. The goal is to directly
obtain the information from the DRAM and not from the copies stored in the caches. When
Rowhammer accesses the evicted address once again, a cache miss occurs at all levels in
the cache. Furthermore, in cache SCA the eviction will cause the targeted application to
return misses from these locations, and the requested information must be obtained from
the main memory. Attackers can thus time their accesses to observe which locations are
accessed by the application targeted. As previously mentioned, during Flush+Reload, a miss
will occur when the target application does not access this location. In contrast, a hit will
indicate access by the victim. As a result, cache access events are also increased due to the
intensive manipulation of the cache state. When an attacker uses eviction techniques instead
of flushing, multiple loads must be performed to evict the targeted address. Table 1 provides
a summary of the attacks that manipulate the state of the cache.

1The cache refill event counts how many cache lines have been updated.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

To obtain valuable information, attacks must execute their malicious code multiple times,
in a loop. An attacker must execute the same piece of code multiple times to reduce noise or
calculate every possibility, such as all possible key values during AES encryption. Examples
are loops which manipulate the cache state to bring it into a known state, or the loop
continuously accessing the same DRAM location to induce a Rowhammer fault. These
loops introduce CPU overheads, and an attack detection mechanism can therefore monitor
PMU events to detect deviations from the nominal state. Two events are relevant to the
observed overhead: the number of instructions executed, and the number of clock cycles.
The number of instructions executed (Num exec instr)2 counts the instructions executed
inside the specified timing window from the counter activation. The number of clock cycles
(Num clk cycles)3 counts the number of CPU clock cycles completed during the same time
window. If the attacker executes the malicious code in a loop, the number of instructions
executed and clock cycles completed will increase.

In addition, side effects of execution of continuous loops are visible in the branch prediction
unit, e.g., due to an increased number of branches taken, and a decreased number of branch
mispredictions. Branch mispredictions decrease as the loop takes the same branch multiple
times, although they may also increase as in the case of mistraining during execution
of Spectre. The effects of using continuous loops can be observed through PMU events
related to branch control. The retired branches taken (Ret Br taken) event counts when
the last micro-operations (uOp) of a branch instruction retire4. Another event to monitor is
the number of speculative retired branches taken (Spec Ret Br Taken), which counts the
number of speculative and retired macro conditional branches taken5. In addition, the event
mispredicted branches (Br Mis Prdct) counts when the last uOp of a branch instruction
retires, when the misprediction of the branch prediction hardware is corrected at execution
time6.

The bus is another part of the system that can be monitored to identify side effects. DMA
attacks make heavy use of the bus. Hardware events that can be monitored through the CPU
are available. The events (BUS STATS)7 count memory bus activity. Because Rowhammer
and DRAMA both make extensive use of the bus during attack loops, we therefore believe
similar side effects should be observed for these attacks.
For all the events noted above, a detector can be deployed in both Intel and ARM

architectures. Events and registers may have different names, and consequently different
platforms may also be present in the same architecture. For Intel, in the table, we use
the event names from Intel Ivy Bridge, and for ARM events, we use names from ARM
Cortex-A57.

3.2 Other side effects

Apart from the PMUs that provide us with direct access to hardware-related side effects, we
can check other units, registers, or files for any modifications. Examples are OS files, the
interrupt controller, and memory-mapped registers.
To perform an attack, the attacker must have knowledge of the system and they must

bring it to a known state. Working with this information, they will try to eliminate noise and

2Event name INST RETIRED for Intel and ARM.
3Event name CPU CLK UNHALTED for Intel and CPU CYCLES for ARM.
4Event name BR INST RETIRED in Intel and BR RETIRED in ARM.
5Event name BR INST EXEC.TAKEN CONDITIONAL in Intel and BR PRED in ARM.
6Event name BR INST RETIRED.MISPRED in Intel and as BR MIS PRED in ARM.
7Event name BUS TRANS in Intel and MEM ACCESS in ARM.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:19

thus take better measurements. Attacks that manipulate the cache state or the main memory
need information on the virtual to physical mapping. This information is necessary as the
last level cache (shared memory in most systems) is usually physically indexed, but the
processes use virtual addresses. Each process has its own virtual memory mapping. Attackers
will therefore need to translate their virtual address to the physical address of the last-level
cache. Using this information, they can evict the targeted physical addresses, which are the
same between processes. For example, during a Rowhammer attack, the attackers must know
which virtual address maps to the targeted DRAM’s physical address. Repeatedly accessing
the memory address can cause a fault to appear in the neighboring row. The side effect of
using the Linux virtual file proc/PID/pagemap, which lets a user-space process determine
which physical frame each virtual page maps to, can be observed. However, in most recent
kernel versions, the pagemap is only accessible with root privileges. The side effects of using
huge pages can also be observed, these are used as an alternative to reverse engineering the
mapping. As mentioned above, when a huge page is used, e.g., a 2-MB page, the last 21 bits
of the address are used as an offset. These 21 bits are the same for the virtual and physical
addresses, and consequently only a small number of bits must be reversed-engineered. This
method requires more effort from the attacker point of view [62]. To refer to these two
methods providing the mappings, we use the event name (Access proc/PID/pagemap, use of
transparent huge pages).
Many exploits target attack-specific events during execution of the victim code, e.g., to

induce a fault in the last round of AES, or try to perform their exploit within a specific time
window. For example, in Rowhammer to induce a fault, the same location must be accessed
a certain number of times. The CPU optimizing the execution of processes may interfere
with execution of the malicious code, resulting in noisy measurements for the attacker. An
example of an attempt to avoid this consequence is the side effect of disabling the interrupt
scheduler. The attacker disables the interrupt scheduler in the victim process as otherwise
the interrupt scheduler will introduce noise into the measurements. This noise is introduced
due to the uncertainty of the time required to execute the victim process when an interrupt
is raised during the process. The time to serve the interrupt is unknown. For the example
of AES, an interrupt is raised and the time required to serve it increases the difficulty of
inducing the fault at the opportune moment.
Similar noise is induced due to the side effects of re-ordering instructions or memory

accesses. The CPU uses instruction re-ordering to speed up execution of a process by
allowing instructions to be executed out of the original program order by running ahead of
sequential instruction code and exploiting existing instruction-level parallelism [69]. The CPU
accomplishes instruction re-ordering using re-order buffers (ROBs). Re-ordering introduces
noise because the attacker does not know the exact order in which the instructions execute
or their timing. We refer to this event as (CPU instr re-order dsbl). In addition, the compiler
re-orders instructions to speed up code execution. This introduces noise into the data
measured by the malicious loop because the instruction stream might not be that expected.
This side effect, which we refer to as (Compiler instr re-order dsbl) is not listed in our table
because no detection mechanism can monitor it, and it is therefore of no use to the designer.
However, we believe it is important that readers be aware of this side effect.

Another unit that induces noise by re-ordering is the memory controller. This component
re-orders memory accesses to speed up access to the main memory and optimize memory
system performance. If, for example, the memory controller re-orders accesses during a
DRAMA attack, a faulty covert channel might be created. We refer to this event as (Mem cntrl
access re-order). The memory controller can be monitored to extract side effects regarding

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

Rowhammer. To induce a fault in the DRAM using the Rowhammer attack, the attacker
must access the same memory location multiple times. The event (Num Mem ADDR)8

counts the number of total memory accesses to the same cells in a time window chosen
by the designer as a threshold for attack detection. This event assumes knowledge of the
physical memory addresses accessed by the process.
Furthermore, attackers who wish to establish a covert channel must synchronize trans-

mission and reception. Synchronization reduces the uncertainty of sampling outside the
appropriate window. The TSC, as previously mentioned, corresponds to a register counting
the number of CPU cycles since the last reset. This register provides us with the highest
possible precision, it can be accessed using the RDTSC instruction in Intel. The TSC register
is Intel-specific. Any other precise counter could be used as an alternative. For example,
SYSTick counts down to zero and generates an interrupt with the aim of providing a fixed
time interval between interrupts.
Side effects are also visible through OS events. During Meltdown, segmentation faults

(SIGSEGV) can be monitored. A SIGSEGV occurs when a reference to a variable falls
outside the segment where that variable resides or writes to a location in a read-only segment.
However, the defender must take care as the Transactional Synchronization Extensions
(TSX) extension and Restricted Transactional Memory (RTM) interface can be used to
bypass segmentation faults. In addition, during the Rowhammer attack, the page fault miss
rate is reduced. A page fault occurs when a running process accesses a memory page that is
not currently mapped in the Memory Management Unit (MMU). A low page fault miss rate
can be produced when a process runs in a loop repeatedly accessing the same addresses, as
in the case of Rowhammer. In this case, the page resides in the page table, and any reference
to it will constitute a hit.
To detect thermal covert channels and power-frequency fault attacks the nominal con-

figuration of the On-Chip Thermal Sensors and Operating Performance Points OPP can
be monitored. A detection mechanism can monitor access to on-chip thermal sensors. The
attacker accesses the sensors to measure the temperature and establish the temperature
covert channel, for example using Intel Digital Thermal Sensors and the Coretemp file in
Linux. Consequently, monitoring the system temperature to detect abnormal temperature
fingerprints may also help detect the attack. Moreover, attacks targeting the Power and
frequency units such as [90] and [78] modify OS files and system registers dedicated to clock
management or operating voltage. A detection mechanism may not accept configurations
that differ from the ones in the OPP Linux file as pairs not specified in this file may not be
nominal. As mentioned above, the OPP file stores frequency and voltage pairs supported by
the device. Consequently, monitoring configurations of the memory-mapped registers of the
Power Management Unit and PLL may help detect malicious changes.

Attacks exploiting the debug interface capabilities also leave traces. When a malicious
code accesses the ETM to extract some information, a mechanism can be used to detect this
access. As mentioned for the PMU access, the system can be configured to raise an interrupt
and trap it to ensure EL3 is maintained (security level of the firmware/secure monitor [76])
during access to the ETM registers. We can also check accesses to other system registers if
certain instructions9 are used [66]. Attackers can use the SMC instruction to change from the
non-secure to the secure world during debugging. Furthermore, the use of SMC exceptions
can be monitored. The effects introduced are all extracted from ARM architecture.

8Num Mem ADDR 1 >x OR (Num Mem ADDR 1 >x & Num Mem ADDR 2 >y)
9Instructions (MRC, STC),(MRS) and (MCR, LCD),(MSR) to move and read register values in ARM

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:21

Finally, attackers who attempt to extract information from a protected memory (XOM)
will need to execute the same context multiple times and raise multiple interrupts inside the
XOM memory. As explained in subsection 2.4, the targeted instruction must be executed
for different inputs and the different outputs extracted from the system registers. From the
input-output combination, attackers can reverse-engineer the context of the location targeted.
However, because attackers must halt the execution after each targeted instruction, they
must raise an interrupt. Multiple execution and interruption patterns inside the protected
memory may be used to raise an alarm.

3.3 Summary of attack vector side effects

From this presentation of all the side effects reported in the literature for the main attack
vectors, we have produced a summary Table 2. In this table, we summarize attack vectors
producing side effects with at least some overlap. As mentioned before, an attack vector
producing unique side effects requires a specific detection mechanism monitoring a set of
these effects if the attack is to be detected. In contrast, attack vectors which share some side
effects allow designers to identify an optimum set of side effects to be monitored. This avoids
the need to monitor all side effects and results in cheaper implementation. For this reason,
we do not present the debug unit and thermal unit attack vectors, as their side effects are
unique compared to the others. Our intention is to aid the reader to better compare the side
effects of different types of attack. For the two attack vectors not listed in the table, the
reader should refer to subsection 2.4 and subsection 2.6.
From Table 2, the reader has access to a list of the side effects in the third column. For

each side effect, we have indicated which attack vectors produce it. Readers could use this
information to choose side effects, depending on the types of attack they want to detect.
Furthermore, readers can choose attacks to detect and determine the most appropriate
side effects to monitor. For example, PMUs only allow a specific number of events to be
monitored. The designers should choose among the side effects those that correlate the best
with the chosen attacks, as some cover a broad range of attacks.

4 CLASSIFICATION OF SIDE EFFECTS

4.1 Side effect criteria

The goal of this section is to define some criteria by which to classify the side effects. The
selection of side effects to be used in the implementation of a detection mechanism will
depend on these criteria and the application monitored. For example, some side effects are
deeply embedded in the system micro-architecture, and observation of these depends on the
knowledge and privileges available to the designer. Designers are ultimately responsible for
determining the parameters that best serve their design and the system’s limitations. It is
worth mentioning that these criteria are defined by us, but other criteria could be equally
valid to classify side effects. The criteria we chose are as follows: Hardware or Software
side effect, Register or Interface based, and Usage in an existing detection mechanism. We
will start by describing each criterion and we subsequently present the taxonomy, Table 3
provides a summary of the classification.

Hardware or Software side effects. The nature of the side effect is determinant in the
implementation of a detection mechanism. A software side effect may be more easily accessed
from a software-implemented detection mechanism than through a hardware mechanism.
This could be due to the difficulty in translating the software side effect in a form that a
hardware mechanism could process to detect an attack. For example, segfaults are available

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

Table 2. List of side effects induced by different attacks

Attacks

Memory
Trans

exec

Power,
freq,
Ther-
mal
Unit

R
o
w
-

h
a
m
m
e
r

C
S
A

D
R
A
M

A

D
M

A

M
e
lt
d
o
w
n

S
p
e
c
tr
e

C
lk
sc

re
w

V
o
lt
-

jo
c
k
e
y

Side effects

P
M

U
s

Cache

Cache miss X X X X X X

Cache hit X X X X

Cache access X X X X X

LLC Load X X

CPU stats
Num exec instr X X

Num clk cycles X X

Branch cntrl

Ret Br taken X X X

Spec Ret Br Taken X X

Br Mis Prdct X X

Bus stats BUS STATS X X X

Use of PMUS X X X X X X

OS
SIGSEGV X

Low page fault miss rate X

Virtual to
physical map-
ping transla-
tion or reverse
engineering

Access
proc/PID/pagemap, use
of transparent huge pages

X X X X

Interrupts Interrupt disable X X X X

re-order
CPU instr re-order dsbl X X X X

Mem cntrl
Mem cntrl access re order X X

Num Mem ADDR X X

Synchronization Time Stamp Counter
(TSC) for synchronization

X

only as software events. On the other hand, a hardware side effect might be inaccessible
through a software mechanism due to a lack of privileges or accessibility of software to the
hardware itself.

Source. A criterion corresponding to the source of the side effect can be defined. In our
case, the source may be a register or interface. A register is a special memory in the system,
used to store information locally in the system. An interface is a layer used by several
system modules to communicate with each other. A side effect could be a value stored in
a register that needs to be checked to determine whether it retains the desired nominal
value, or an interface event e.g., an interrupt raised that effects a change in the system.
The observability of the side effect in the register or the interface is worth discussing. Some
registers or interfaces are easily observed with a debugger, whereas others are hidden for
non-authorized users.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:23

Used in an existing detection mechanism. This criterion could benefit designers if the side
effect is already used by some existing detection mechanism. For example, the side effect
could be used in several detection mechanisms because it is simple to acquire and correlates
strongly with an attack. On the other hand, a side effect may not have been used, because
it is difficult to obtain, e.g., a software implementation may not have the required privileges
to extract information from the hardware. Alternatively, the side effect may only correlate
weakly with the attack, thus making other side effects more suitable. It should be noted that
PMUs can only be used to count a certain number of events, even if the options of events to
count are numerous. In addition, if a designer uses Neural Networks (NNs), the complexity
of the system increases with the number of inputs used. These are some reasons why certain
side effects may not have been used by designers.

Other. Other criteria that can be used to classify side effects could be the availability of
the side effect depending on the platform. For example, as indicated, cache SCA detection
mechanisms use performance counters. Cache load events are only available on some Intel
architectures, and Intel SGX security implementation forbids access to these performance
counters during enclave execution. These constraints have led security designers to investigate
new ways of detecting attacks. In addition, some events provided by the ARM debug
infrastructure may not be available on Intel platforms. The debug unit side effects used
to date are all ARM-specific events. Intel provides other debugging events that were not
included in this study. Another interesting fact is that some attacks are more efficient on
certain platforms or architectures, e.g., cache SCA on Intel platforms due to the existence of
the clflush instruction.

Moreover, the availability of the side effects could refer to the moment at which the attack
side effect becomes available. The attack side effect could be obtained during the attack
or once the attack has been completed. The availability of side effects during an attack
determines whether we can prevent the attack in the first place, or whether we can simply
prevent further exploitation by the attacker. This comes with the cost that the attackers
were able to manipulate the system at least once before any intervention can be made to
stop them. For example, segmentation faults are only available after the OS recognizes
the violation. Furthermore, segmentation faults may be produced by benign applications.
Because of this potential confusion, we may not be able to detect the attack immediately.
The attacker may thus manipulate the system several times before a possible attack is
identified. For side effects obtained from PMUs, the effects are available only if the specific
counter is active. In addition, the availability of events depends on the frequency at which
the counted values are checked. For example, if a software mechanism is implemented that
regularly checks the PMU, it might be possible to detect the attack, but only at the cost of
a high performance overhead. In contrast, if the PMU is checked less often, the attack might
be missed. In this scenario, the designer must determine the best trade-off. Similar logic
applies when register values must be checked, to detect possible use of non-nominal values.

Another interesting criterion is the efficiency of attack detection based on the information
provided by side effects. Side effect efficiency in this context is not the same as detection
accuracy. Rather, the attack could leave behind only some traces, which could be useful
for evaluation. In addition, these traces might not correlate to a high degree with the
attack. This situation will limit our capacity to detect the attack using current mechanisms.
Furthermore, multiple side effects might be used to create a side effects pattern. Single
value side effects typically require simpler implementations, setting thresholds for values
between a set range. On the other hand, to monitor one or more side effect patterns requires

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

more complex implementations. The detection method used by the mechanisms might not
rely on a single value, but rather on side effect waveforms throughout the attack. Complex
techniques involving neural networks are now being used to detect side effects, such as in [21],
[23], and [79]. For example, cache hits or cache accesses do not provide enough information
to identify a malicious process, and instead, the designer must use a combination of cache
side effects to come to a decision. Alternatively, if the designer knows the physical addresses
accessed, the frequency of access to specific locations provides enough information to detect
the Rowhammer or DRAMA attacks based on only one side effect. For the last two criteria,
not enough non-trivial information could be extracted to consider including them in our
classification table.

4.2 Taxonomy of side effects

Table 3 presents a summary of the side effects mentioned in this paper. The taxonomy
table classifies these side effects based on the defined criteria. Readers can thus compare the
side effects, find where they are employed, which attacks produce them, and finally choose
those that best fit their mechanisms. Side effects are listed in the second column and the
defined criteria in the second row. From this presentation, we can make some interesting
observations. The side effects could be SW or HW. Depending on the nature of the side effect,
as previously mentioned, a detection mechanism may not have access to it. For example,
SIGSEGV is difficult to obtain from a HW implementation. In addition, as SIGSEGV is
a side effect visible only after the attack, it is not an ideal candidate for monitoring. In
contrast, register-accessible side effects might be obtained more quickly directly through the
HW than through the SW.
In the table, we indicate some detection mechanisms relying on the side effects. These

detection mechanisms will be presented in more detail in section 5.

5 ATTACK DETECTION MECHANISMS

A detection mechanism is an added layer of system protection. Its function is to detect
malicious behavior in the system and notify the system so that corresponding actions are
initiated. Detection relies on the observation of side effects left behind by an attack. As IoT
and IIoT are becoming more frequent targets for attackers, today detection mechanisms
can be considered a necessity. Some detection mechanisms are already integrated into these
systems. In this section, we present detection mechanisms based on detection of events that
are already implemented for the attack vectors listed in this survey. We also define some
classification criteria, which we use to present the taxonomy presented in Table 4. We believe
these criteria will help designers to find a model that fits their conceptual plan or to compare
their implementation with solutions that have already been implemented. For example, the
accuracy criterion can help designers to compare how accurately their model detects the
attack or to choose the most accurate implemented model, and integrate it into their model.

5.1 Memory attacks

5.1.1 Rowhammer detection mechanisms.

ARMOR. ARMOR was presented in [31], it is a hardware detection mechanism designed
as a run-time memory hot-row detector, that monitors the activation stream at the memory
interface level. ARMOR can detect which rows are in danger of being hammered by using
counters to count the number of activations per row. It does not require knowledge of the
logical-to-physical mapping of the memory. The storage overhead depends on the size of the

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:25

Table 3. Classification of side effects

Criteria

Side effects HW/SW Source Detection Mechanism Other Attacks

C
a
ch
e

Cache miss HW Reg [21] (L3 misses), [23]
(L3-L2-L1 misses),
[55] (LLC miss)

Availability1 Rowhammer, CSA,
Meltdown, Spectre,

DRAMA

Cache hit HW Reg [21] (L2 hits) Availability1 Rowhammer, CSA,
DRAMA

Cache access HW Reg [21] (L3 accesses),
[55] (LLC references)

Availability1 Rowhammer, CSA,
Spectre, DRAMA

Cache Ld HW Reg No Available only
in some Intel
platforms

Spectre, Meltdown

In
st
r Num Exec

Instr
HW Reg [21] Availability1 CSA

IPC HW Reg [23] Availability1 CSA

B
ra
n
ch
es

Spec Ret
Br Taken

HW Reg [23] Availability1 CSA, Spectre

Ret Br Taken HW Reg [55] Availability1 Spectre, Rowhammer

Br Mis Prdct HW Reg [55] Availability1 Spectre, Rowhammer

SIGSEGV SW Kernel
interface

[3] Available
after the fault

Meltdown

B
u
s

Num Mem
ADDR

HW Interface [31], [53], [84], [43] Efficient to
detect DRAM

attacks

Rowhammer, DMA,
DRAMA

BUS TRANS HW Reg [86] Efficient to
detect DRAM

attacks

DMA, SCA,
Rowhammer,
DRAMA

U
n
it
s

SPM PMIC HW/SW Reg No Availability2 Clkscrew, Voltjockey

PLL HW Reg No Availability2 Clkscrew, Voltjockey

OPP SW DVFS OS
-file

No Available
immediately

OS file

Clkscrew, Voltjockey

DTS HW/SW Reg
Interface

No Availability2 Thermal monitor
SCA

Intrp dsbl HW Reg No Availability2 Rowhammer, CSA,
DRAMA, Spectre,

Meltdown, Clkscrew,
Voltjockey

1 Available to export only if selected.
2 Depends on frequency with which the nominal register value is checked.

memory monitored and the nature of the attacks: one-sided Rowhammer or double-sided
Rowhammer; the double-sided Rowhammer doubles the storage overhead. ARMOR provides
99.99% accuracy on the targeted addresses and the number of activations. It mitigates
attacks by informing the memory controller about the targeted row, which triggers the
Targeted Row Refresh (TRR) command to refresh the victim rows. In addition, it uses a
buffer as a cache for the hammered rows to send them out of the memory. The performance
overhead of ARMOR only depends on the number of hammered rows and is only caused by
the need to refresh the two rows adjacent to the victim row.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

Counter-Based Tree Structure. This solution, presented by [84], represents another ap-
proach using counters. Instead of using counters for each row, the proposed solution tries to
minimize the number of counters used by assigning one counter to a group of rows in each
bank. If the bank has 𝑁 rows and 𝑀 counters are used, when the counter reaches a threshold,

the DRAM module performs
𝑁

𝑀
+ 2 refreshes on the

𝑁

𝑀
of the group plus the two adjacent

rows. Because a significant number of rows must be refreshed when the threshold is reached,
the performance overhead increases dramatically. To address this increase, the mechanism
uses a counter-based tree, which classes the rows in groups of variable size depending on
their access frequency. Thus, hot rows are mapped to smaller groups, and consequently
victim rows can be more precisely identified.

Time Window Counter (TWiCe). TWiCe is a detection mechanism proposed by [53].
TWiCe is also a counter-based detection solution. Like Counter-Based Tree structures,
TWiCe tries to minimize the number of counters used. It assigns a counter to a row only
if the row is activated, and periodically invalidates the counters associated with rows that
are not frequently activated. The number of counters used depends on the characteristics of
the DRAM module; each bank has a counter table. TWiCe, rather than being implemented
as a memory controller or DRAM extension, relies on Register Clock Drivers (RCD). The
solution adds a new DRAM command ARR (Adjacent Row Refresh), which notifies the
DRAM of the need to refresh the rows adjacent to the aggressor. The DRAM is involved
because neither the RCDs nor the memory controller knows the logical-to-physical mapping.

5.1.2 Cache Side Channel.

Hardware Performance Counters. Hardware performance counters are the most common
tool used to detect cache SCA. In [21], they were used to implement a detection mechanism
that could be run in user space (HPC-Chiappetta). The perf-stat command in Linux runs and
gathers performance counter statistics from the PMU. Due to the limited resolution of the
perf-stat (the time interval between two consecutive samples is 100ms, which is much longer
than the time necessary to complete some attacks), HPC-Chiappetta was developed as a new
process with a higher resolution. This new process can run from the user space, but requires
the same privileges as the process monitored. Three detection mechanisms were developed:
The first is based on the correlation between the victim and the spy process, for which
the Last Level Cache (LLC) accesses were shown to be a good correlation indicator. The
second approach is based on anomaly detection, whereby malicious processes were considered
normal and all others as anomalies. The third solution is based on Neural Networks (NNs),
using the LLC accesses and misses, L2 cache hits, total execution cycles, and executed
instructions to train the system. The proposed solution demonstrated high accuracy and fast
detection time. Another machine learning approach presented in [23] uses the Instruction
Per Cycle (IPC), L3 cache miss, L2 cache miss, L1 cache miss, and the speculative and
retired branch counters to train the system. In this solution (HPC-Cho), the Intel PCM
from the user-space was used to access the counters. The authors also modified the tool to
enhance the resolution. The detection range for attacks depends on the counters selected.

MASCAT. All the above examples are run-time detection mechanisms. MASCAT [42] is
an offline detection solution, which statically analyses binary elf files. In these files, MASCAT
searches for characteristics exhibited by micro-architectural attacks. MASCAT can detect
cache and DRAM attacks. For cache SCA, MASCAT looks for the use of high-resolution
timers, memory barriers that serialize reads, and cache evictions. For DRAM SCA, it looks

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:27

for cache evictions, the use of fine-grained timers, and memory barriers. The offline tool uses
these patterns to detect malicious binary code before it is loaded onto the device.

5.2 JTAG monitor

The debug interface is a critical part of system development. It gives developers a lot of
freedom, allowing them to develop a fault-free system. However, attackers can also take
advantage of this feature to explore the state of the system. In [79], the authors proposed a
two-layer learning-based protection scheme to enhance the existing security of JTAG. In
their implementation, layer 1 performs a basic check that verifies whether basic rules for
JTAG operations are violated. A basic check should detect attacks that violate the basic
rules of JTAG operation, such as illegal operation code (opcode). Layer 2 classifies the
sequence of opcodes as normal or attacking, using a support vector machine (SVM) classifier.
The authors use a hardware implementation because a JTAG attack should be detected in
real-time, when a JTAG instruction is loaded.

5.3 DMA attacks

The authors of [86] implemented the Bus Agent Runtime Monitor (BARM), a DMA attack
detection mechanism, as a Linux kernel module. For their implementation, they use an
Intel architecture. The method is based on modeling the expected memory bus activity
and comparing it to the actual activity. Any additional bus activity when accessing the
platform’s main memory is measured. This additional bus activity is the Achilles heel of
DMA-based attacks, which BARM uses to reveal and stop the attack. The mechanism counts
events called BUS TRANS MEM, which summarize all bursts (full cache line), partial
reads/writes (non-burst), and invalid memory transactions. The other counters used by
BARM are general-purpose counters that count certain BUS TRANS MEM events. The
general approach is to count bus events caused by user space and kernel space processes
with a single counter. All other processor bus transactions, from other bus system masters,
can be distinguished by the extensions .THIS AGENT and .ALL AGENTS.

5.4 Thermal monitor

In [32] on-chip monitors are proposed as a means to identify attacks on systems. The authors
use a dedicated hardware system to monitor for and prevent attacks. In their implementation,
they use a processing monitor, which verifies the run time behavior and compares it to the
expected behaviour determined by static analysis. In addition, they implement a thermal
monitor, which monitors the temperature at various points in the physical core to detect
abnormal patterns. Abnormal temperature patterns may be used in an attack to slow or
halt the processor. In the implementation described, ring oscillator-based sensors are used,
which provide a digital output and can be included in sensors for microprocessors. The
ring oscillator is by its nature unstable and oscillates at a frequency determined by the
delay across each inverter. This delay is also temperature-dependent. The resolution of the
thermal monitor is two degrees per degree Celsius, with very good temperature linearity in
the range close to operating temperature limits. The monitor presented uses a threshold
to define abnormal temperatures. The threshold can be adapted to the running process to
allow for processes that use more power and consequently dissipate more thermal energy.
This adaptability eliminates the problem of designing a monitor that is too conservative or
too optimistic, which would leave some paths open to attackers that would not be detected.
Major vendors also use thermal monitors to monitor the system temperature as part of
power and temperature management.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:28 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

5.5 Transient execution attacks

Transient execution attacks, like Meltdown and Spectre, rely - as explained above - on flaws
in CPU design. Patches to resolve the problem have been implemented, but due to the
number of different variants cannot address all of these types of attack. To fully address
the problem, new designs must be implemented. Detection mechanisms proposed for these
attacks exploit information from side effects of the flaws and the side-channel analysis used
to extract the information.

5.5.1 Meltdown and Spectre. During the Meltdown attack, the attacker process requests
access to a memory location not belonging to it. Eventually, the request fails, causing the OS
to raise a segmentation fault (SIGSEGV). The authors of [3] proposed MeltdownDetector
(MeltDetector), implemented in software as a modified Linux or a dynamic instrumentation
script using SystemTap. The monitor filters out benign 𝑠𝑒𝑔𝑓𝑎𝑢𝑙𝑡𝑠. If 𝑠𝑒𝑔𝑓𝑎𝑢𝑙𝑡𝑠, occurring
at closely spaced memory addresses increase above a threshold, an alarm is raised and the
IDs of the processes inducing the warnings are reported. The mechanism induces a flush of
the caches if a 𝑠𝑒𝑔𝑓𝑎𝑢𝑙𝑡 is detected, even if the monitor raises an alarm. The monitor does
this to prevent leakage of even a single byte of information. This mechanism introduces a
performance overhead, because of the time required to flush the cache, and because benign
𝑠𝑒𝑔𝑓𝑎𝑢𝑙𝑡𝑠 may occur. For example, some processes use 𝑠𝑒𝑔𝑓𝑎𝑢𝑙𝑡𝑠 to speed up some types of
operation. The designers argue that these are occasional or rare. Another limitation of the
design is that if the attack produces a certain type of 𝑠𝑒𝑔𝑓𝑎𝑢𝑙𝑡, it might be able to bypass the
monitor. The accuracy of the monitor, measured by computing the proportion of bytes that
are successfully read/leaked, is less than 3%. Thus, using nothing but 𝑠𝑒𝑔𝑓𝑎𝑢𝑙𝑡𝑠 to detect
the attack is not efficient. For example, attackers could abuse the Restricted Transactional
Memory (RTM) interface in Intel, if this is available, to suppress an exception event [28]. In
addition, Spectre attacks do not raise a page fault, as this scenario is handled inside the
CPU. To detect these attacks, the authors proposed to monitor LLC loads and misses or
LLC references and misses. The corresponding monitor must be implemented in the OS
to access these counters. The sampling frequency of the counters plays a vital role in the
occurrence of false positives, and attackers could time their attack to bypass detection, by
reading a small number of bytes and then sleeping for a period of time. In [54], a monitor
for Spectre attacks is presented. This monitor uses the performance counters to gather the
necessary information to train the machine learning classifier. The events monitored are
retired branch instructions, branch mispredictions, LLC misses, and LLC references. It also
calculates the branch miss rate and the LLC miss rate:

𝑏𝑟𝑎𝑛𝑐ℎ 𝑚𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 = 𝑏𝑟𝑎𝑛𝑐ℎ 𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠/𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

𝐿𝐿𝐶 𝑚𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 = 𝐿𝐿𝐶 𝑚𝑖𝑠𝑠𝑒𝑠/𝐿𝐿𝐶 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

The monitor (LI-Spectre) successfully detects Spectre attacks with high accuracy. In a more
recent version [55], the authors also detected Rowhammer with the same implementation (LI-
Rowhammer). We believe that this detection mechanism can detect three out of four Spectre
variants because the side effects monitored concern mistraining of the branch predictor
and the cache as a side-channel to extract the information. The only variant that might
remain undetectable is Spectre variant 4 as the branch predictor plays no role in this attack.
However, the cache is still used to extract the information.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:29

5.6 Detection mechanism classification criteria

We have identified several criteria that can be used to compare and characterize detection
mechanisms for the different attack vectors. It should be noted that this list of criteria is
not exhaustive. Nevertheless, it includes a set of criteria that we consider to be the most
important based on our study of the attack vectors and their detection mechanisms. The
criteria presented are the following:

CPU or Hardware modification. This criterion applies primarily to detection mechanisms
implemented in hardware. A detection mechanism must inevitably modify the system when
it is added. The question here is whether the detection mechanism needs to modify the
CPU or Instruction Set Architecture (ISA), or a hardware module of the system to obtain
information or to be added as an extra feature. For example, a detection mechanism could
be added as an independent module in the system, connected to the main bus, or it could
be part of the CPU or perhaps another controller. Some mechanisms also require the OS to
be modified.

Privilege level. To implement detection mechanisms, the privilege level (user, OS, or
system) accorded to the defender is important. A user-level mechanism may not have access
to higher-level privilege mechanisms, for example, PMUs are only accessible from the OS
level, or it must rely on more noisy results, provided by the operating system to the user for
safety reasons. A system-level mechanism has access to the hardware itself, increasing the
number of resources and the speed with which the necessary information can be obtained.

Detection Accuracy. Detection accuracy should be considered as a primary criterion for
comparing detection mechanisms or identifying a mechanism as useful or not. Detection
accuracy can be divided into True Positives (𝑇𝑃) and True Negatives (𝑇𝑁). True positives
are observations where the actual and predicted attacks were true. True negatives are
observations where the actual and predicted normal applications were true. Inaccuracy is
also divided into False Positives (𝐹𝑃) and False Negatives (𝐹𝑁); in this case, False positives
or False alarms are observations where normal applications are reported as attacks. False
negatives are observations where actual attacks were present but were reported as normal
applications. A common metric used to assess detection accuracy is sensitivity. Sensitivity is
defined as:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Another metric is the F-score, which measures the global trade off between precision and
sensitivity, and is defined as:

𝐹𝑠𝑐𝑜𝑟𝑒 =
2 * (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

where precision (the proportion of positive observations that are truly positive) is the number
of True positives divided by the number of True positives and False positives:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

This metric is used as some mechanisms are very good at detecting an attack, but are overly
sensitive, leading to a high number of False alarms.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:30 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

Detection Overhead. Detection overhead is another metric we considered. The mechanisms
used for detection necessarily incur some overhead in the system. We primarily consider the
performance overhead, and more specifically the runtime detection overhead. The runtime
detection overhead could be due to slowing down of the process that we want to secure due
to the mechanism running in order or in parallel. This overhead will depend on how much
the detection mechanism interferes with the running process, to make a decision based on
the information obtained.

Storage - Area Overhead. No implementation of a detection mechanism comes for free for
the system. Thus, any detection mechanism must be implemented as a dedicated hardware
module. Consequently, there will be memory requirements and space required to build it,
both of which add to the cost of the system. In addition, software implementation requires
extra memory to be made available. In limited memory environments, like IoT and IIoT
applications, limiting this overhead is crucial.

Detection Speed. The speed at which the detection mechanism detects an attack is also
another essential criterion for evaluating any detection mechanism. A mechanism’s detection
speed depends on the attack vector. Some attacks need to perform a small number of steps
before the attack succeeds, while others must perform complex executions before even starting
the actual attack. For example, the Rowhammer attack requires multiple preparatory steps
before the attacker can perform an attack with a useful impact. In contrast, a fault attack
delivers a more direct and rapid impact on the system. A detection mechanism could detect
the attack after the leakage or fault, or before the attacker can retrieve any information
or induce a negative effect on system results. It is, naturally, preferable that detection
mechanisms detect attack vectors before they produce useful results for the attackers.

Other. Another criterion that could be used to compare the detection mechanism is online
or offline detection. A detection mechanism could be implemented offline to detect malicious
code before it is loaded by the system. This could be a first defence against attacks. Offline
detection relies on known attack patterns, thus it cannot detect new or modified attack
vectors. In contrast, online detection uses real-time and offline information to detect an
attack. Based on the online information obtained, an online detection mechanism can detect
modified attack vectors. MASCAT is the only offline detection mechanism presented in this
survey, which explains why this criterion is not included in our summary table.

5.6.1 Table presentation. We present all the information from this section in Table 4, which
classifies the detection mechanisms according to the criteria defined above. The following
remarks are necessary before presenting the classification table. N∖A (”Not Applicable”)
was used when we were unable to find the value for a criterion in the literature, or when the
criterion does not apply to the particular detection mechanism. In the accuracy criterion,
the sensitivity metric was used for most of the detection mechanisms, except that presented
in [21], for which the 𝐹𝑠𝑐𝑜𝑟𝑒 was used. Readers could use the information presented in this
table to choose from among the detection mechanisms presented those that best fit their
design criteria. In addition, designers could use it to compare the detection mechanisms
implemented in their systems to the mechanisms presented, in accordance with our defined
criteria.

6 CONCLUSION

In this paper, we performed a survey on a specific class of malicious attack vectors targeting
IoT and IIoT devices. These attacks target both the computer micro-architecture hardware

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:31

Table 4. Taxonomy table of the detection mechanisms

Criteria

Mechanism Modification Privilege Accuracy Detection
Overhead

Speed Storage
Area

[31] ARMOR HW-Memory
controller

System 99.99% less than
0.09%

Before
faults

800Bytes-
1.6KB for
4GB of
RAM

[84]
Counter-Based
Tree Structure

HW-DRAM System N/A N/A Before
faults

Number
of

counters

[53] TWiCe HW-DRAM System N/A less than
0.3% 2

Before
faults

2.71KB
per 1GB
DRAM
bank

[21] HPC-
Chiappetta

No OS/User F-score 1 less than
2.3%

less than
2.6ms 3

N/A

[23] HPC-Cho No OS/User more
than
91.9%

less than
1.1%

less than
2.4s 4

N/A

[42] MASCAT SW User 100%,
less than
4% 𝐹𝑃

No
overhead

N/A No
overhead

[79] JTAG
monitor

HW System more
than

87.8% for
SVM

No
overhead

520 clk
cycles 5

1.79% of
chip area

[3] MeltdownDe-
tector

OS
OS more than

OS less
than
0.97%

N/A N/A

SystemTap -
Linux

99% SystemTap
less than
0.38%

[54] LI-Spectre SW OS/User 100%,
0.77% 𝐹𝑃

N/A N/A N/A

[55]
LI-Rowhammer

SW OS/User 100%, 0%
𝐹𝑃

N/A N/A N/A

[86] BARM SW OS N/A 3.50% N/A N/A
1 F-score=0.509 for AES (Anomaly detection), F-score=0.932 for Neural network (AES), F-score=1
for Anomaly detection and Neural network (ECDSA).

2 The overhead is due to additional row activations.
3 Time before completion of the attack in a same-OS scenario.
4 Time needed to detect an attack, when the detection limit is set to 5s for safe operation.
5 CPU clock cycles needed to make a per-instruction prediction.

vulnerabilities and side-channel leakages. The attacks presented showcased the use of software
code to exploit hardware vulnerabilities in the target systems and allow the attacker to extract
sensitive information, implant malicious code, or gain access to privileged code. We referred
to these attacks as Software Attacks Targeting Hardware Vulnerabilities (SATHV). Even the
debug unit attack presented in this survey can be performed remotely. As previously said,
this is possible due to the new debug capabilities introduced in recent ARM architectures,
which no more require physical access to the device. We did not consider attacks requiring
physical access and assumed the existence of physical protections or barriers making physical
access to the devices difficult, due to environmental limitations. We focused on recently

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:32 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

exploited attacks and presented the side effects left behind during the attack. In addition
to these attacks, we presented an overview of existing detection mechanisms. In section 3
and section 4 we discussed the side effects, and later in section 5 we listed and explained
several mechanisms that could be used to detect this type of attack.
Furthermore, we proposed a number of classification criteria based on side effects which

should allow designers to select the most appropriate observations for their application.
For each attack, we presented only the side effects reported in the literature or exploited
by detection mechanisms, other side effects may also exist. In the related works, detection
mechanism designers used the side effects presented to detect potential attacks due to the
high correlation of these side effects with the attack vector to be protected against. However,
this side-effect selection correlates best in their model of implementation. This does not
necessarily mean that another set of side effects will not be suitable or more appropriate
in different implementations of the same mechanism. Another reason governing selection
could be the ease of access to the side effects, allowing a less complicated implementation of
detection mechanisms.

We believe that IoT and IIoT Systems require more robust security solutions. The criteria
defined here should help designers to compare a wide variety of relevant aspects when
designing a new detection mechanism. Most of the solutions presented were developed to
deal with a specific attack vector. The detection mechanisms presented only consider a
limited subset of attacks. No overall solution is available which would simultaneously consider
multiple attack vectors and vulnerabilities. However, designers do not know in advance
which attack vectors will be used, and must therefore implement and concurrently optimize
multiple detection mechanisms. The information presented here can support designers in
their selection of a first set of side effects to be monitored and provide a first insight into
previously implemented detection mechanisms that should help them achieve the best attack
detection possible.
Finally, we present some perspectives for future work. In this survey, we used data

extracted from published scientific papers to generate a collection of side effects due to
SATHV execution. The platforms and architectures were often different between studies.
However, we know that the platform used to evaluate a system plays a major role as the
side effects will change depending on the system configuration, for example, cache size,
cache replacement policy, type of branch predictor, etc. A better approach would be to
implement all the attacks and detection mechanisms on the same platform. This would
allow us to measure all the side effects induced and make a more precise classification. This
experimentation will create a database of platform-specific side effects. A more general
experimental platform is necessary to create a database of SATHV side effects. The same
considerations apply to the detection mechanisms. We are also interested in studying whether
the implementation of detection mechanisms in the platform affects system behavior with
respect to side effects. Additionally, we believe, that implementing different mechanisms
in a single platform is not efficient. Attacks are constantly increasing, and as previously
indicated, a global and re-configurable/upgradable solution is required. In addition, after
analyzing the efficiency of an overall supervision solution monitoring the software-related
side effects exploiting hardware vulnerabilities, we will add some physical attacks to our
threat model.

ACKNOWLEDGMENTS

This work benefitted from funding through the French government’s IRT Nanoelec program,
reference ANR-10-AIRT-05.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:33

REFERENCES

[1] Eltayeb Salih Abuelyaman and Balasubramanian Devadoss. 2005. Differential Fault Analysis. In
Proceedings of The 2005 International Conference on Internet Computing, ICOMP 2005, Las Vegas,
Nevada, USA, June 27-30, 2005, Hamid R. Arabnia and Rose Joshua (Eds.). CSREA Press, 535.

[2] Ayaz Akram, Maria Mushtaq, Muhammad Khurram Bhatti, Vianney Lapotre, and Guy Gogniat. 2020.

Meet the Sherlock Holmes’ of Side Channel Leakage: A Survey of Cache SCA Detection Techniques.
IEEE Access 8 (2020), 70836–70860. https://doi.org/10.1109/ACCESS.2020.2980522

[3] Taha Atahan Akyildiz, Can Berk Guzgeren, Cemal Yilmaz, and Erkay Savas. 2019. MeltdownDetector:

A Runtime Approach for Detecting Meltdown Attacks. IACR Cryptol. ePrint Arch. 2019 (2019), 613.

https://eprint.iacr.org/2019/613
[4] ARM. 2009. ARM1176JZF-S technical reference manual (Revision H). https://developer.arm.com/

documentation/ddi0301/h. Accessed on 26.6.2020.

[5] ARM. 2013. CoreSight Technical Introduction (Version 1.0). https://developer.arm.com/documentation/
epm039795/latest. Accessed on 26.6.2020.

[6] ARM. 2016. ARMv8-M Processor Debug (Version 1.0). https://developer.arm.com/documentation/
100734/0100/. Accessed on 26.6.2020.

[7] ARM. 2017. Arm Compiler User Guide (Version 6.9). https://developer.arm.com/documentation/
100748/0609. Accessed on 26.6.2020.

[8] ARM. 2017. ARM Cortex-R52 Processor Technical Reference Manual (Version 1.0). https://developer.

arm.com/documentation/100026/0100. Accessed on 26.6.2020.

[9] ARM. 2018. Arm Cortex-A76AE Core Technical Reference Manual (Version 0.1). https://developer.
arm.com/documentation/101392/0000/. Accessed on 26.6.2020.

[10] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan. 2006. The
Sorcerer’s Apprentice Guide to Fault Attacks. Proc. IEEE 94, 2 (2006), 370–382. https://doi.org/10.
1109/JPROC.2005.862424

[11] Noemie Beringuier-Boher, Kamil Gomina, David Hely, Jean-Baptiste Rigaud, Vincent Beroulle, Assia
Tria, Joel Damiens, Philippe Gendrier, and Philippe Candelier. 2014. Voltage glitch attacks on mixed-
signal systems. In 2014 17th Euromicro Conference on Digital System Design. IEEE, 379–386.

[12] Vincent Beroulle, Philippe Candelier, Stephan De Castro, Giorgio Di Natale, Jean-Max Dutertre,
Marie-Lise Flottes, David Hély, Guillaume Hubert, Régis Leveugle, Feng Lu, Paolo Maistri, Athanasios

Papadimitriou, Bruno Rouzeyre, Clément Tavernier, and Pierre Vanhauwaert. 2014. Laser-Induced

Fault Effects in Security-Dedicated Circuits. In VLSI-SoC: Internet of Things Foundations - 22nd
IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2014,

Playa del Carmen, Mexico, October 6-8, 2014, Revised and Extended Selected Papers (IFIP Advances

in Information and Communication Technology, Vol. 464), Luc Claesen, Maŕıa Teresa Sanz-Pascual,
Ricardo Reis, and Arturo Sarmiento-Reyes (Eds.). Springer, 220–240. https://doi.org/10.1007/978-3-

319-25279-7 12

[13] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and Ahmad-
Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache Attacks Are Practical. In 11th USENIX

Workshop on Offensive Technologies, WOOT 2017, Vancouver, BC, Canada, August 14-15, 2017,
William Enck and Collin Mulliner (Eds.). USENIX Association. https://www.usenix.org/conference/
woot17/workshop-program/presentation/brasser

[14] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark
Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting the

Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In 27th USENIX Security

Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, William Enck and
Adrienne Porter Felt (Eds.). USENIX Association, 991–1008. https://www.usenix.org/conference/

usenixsecurity18/presentation/bulck

[15] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark
Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. 2019. Breaking Virtual Memory

Protection and the SGX Ecosystem with Foreshadow. IEEE Micro 39, 3 (2019), 66–74. https:

//doi.org/10.1109/MM.2019.2910104
[16] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner,

Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In 28th USENIX Security Symposium, USENIX Security 2019, Santa

Clara, CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX Association,

249–266. https://www.usenix.org/conference/usenixsecurity19/presentation/canella

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/ACCESS.2020.2980522
https://eprint.iacr.org/2019/613
https://developer.arm.com/documentation/ddi0301/h
https://developer.arm.com/documentation/ddi0301/h
https://developer.arm.com/documentation/epm039795/latest
https://developer.arm.com/documentation/epm039795/latest
https://developer.arm.com/documentation/100734/0100/
https://developer.arm.com/documentation/100734/0100/
https://developer.arm.com/documentation/100748/0609
https://developer.arm.com/documentation/100748/0609
https://developer.arm.com/documentation/100026/0100
https://developer.arm.com/documentation/100026/0100
https://developer.arm.com/documentation/101392/0000/
https://developer.arm.com/documentation/101392/0000/
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1007/978-3-319-25279-7_12
https://doi.org/10.1007/978-3-319-25279-7_12
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1109/MM.2019.2910104
https://doi.org/10.1109/MM.2019.2910104
https://www.usenix.org/conference/usenixsecurity19/presentation/canella

1:34 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

[17] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner,
Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In 28th USENIX Security Symposium, USENIX Security 2019, Santa

Clara, CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX Association,
249–266. https://www.usenix.org/conference/usenixsecurity19/presentation/canella

[18] Gaetan Canivet, Paolo Maistri, Régis Leveugle, Jessy Clédière, Florent Valette, and Marc Renaudin.

2011. Glitch and Laser Fault Attacks onto a Secure AES Implementation on a SRAM-Based FPGA. J.
Cryptol. 24, 2 (2011), 247–268. https://doi.org/10.1007/s00145-010-9083-9

[19] Pierre Carru. 2017. Attack trustzone with rowhammer. https://grehack.fr/2017/program.

[20] Thomas M. Chen and Saeed Abu-Nimeh. 2011. Lessons from Stuxnet. Computer 44, 4 (2011), 91–93.
https://doi.org/10.1109/MC.2011.115

[21] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real time detection of cache-based side-
channel attacks using hardware performance counters. Appl. Soft Comput. 49 (2016), 1162–1174.
https://doi.org/10.1016/j.asoc.2016.09.014

[22] Haehyun Cho, Penghui Zhang, Donguk Kim, Jinbum Park, Choong-Hoon Lee, Ziming Zhao, Adam
Doupé, and Gail-Joon Ahn. 2018. Prime+Count: Novel Cross-world Covert Channels on ARM TrustZone.
In Proceedings of the 34th Annual Computer Security Applications Conference, ACSAC 2018, San

Juan, PR, USA, December 03-07, 2018. ACM, 441–452. https://doi.org/10.1145/3274694.3274704

[23] JongHyeon Cho, TaeHyun Kim, TaeHun Kim, and Youngjoo Shin. 2019. Real-Time Detection on
Cache Side Channel Attacks using Performance Counter Monitor. In 2019 International Conference on

Information and Communication Technology Convergence, ICTC 2019, Jeju Island, Korea (South),
October 16-18, 2019. IEEE, 175–177. https://doi.org/10.1109/ICTC46691.2019.8939797

[24] Jean-Michel Cioranesco, Jean-Luc Danger, Tarik Graba, Sylvain Guilley, Yves Mathieu, David Naccache,

and Xuan Thuy Ngo. 2014. Cryptographically secure shields. In 2014 IEEE International Symposium
on Hardware-Oriented Security and Trust, HOST 2014, Arlington, VA, USA, May 6-7, 2014. IEEE

Computer Society, 25–31. https://doi.org/10.1109/HST.2014.6855563

[25] Intel Corporation. 2017. Intel R○ 64 and IA32 Architectures Performance Monitoring Events. Intel
Corporation.

[26] Intel Corporation. 2020. Q2 2018 Speculative Execution Side Channel Update. https://www.intel.com/

content/www/us/en/security-center/advisory/intel-sa-00115.html. (2020).
[27] Alan Ehret, Karen Gettings, Bruce R. Jordan, and Michel A. Kinsy. 2019. A Survey on Hardware

Security Techniques Targeting Low-Power SoC Designs. In 2019 IEEE High Performance Extreme

Computing Conference, HPEC 2019, Waltham, MA, USA, September 24-26, 2019. IEEE, 1–8. https:
//doi.org/10.1109/HPEC.2019.8916486

[28] David Fiser and William Gamazo Sanchez. 2018. Detecting attacks that exploit meltdown and spectre
with performance counters. TrendMicro - https://www.trendmicro.com/en us/research/18/c/detecting-
attacks-that-exploit-meltdown-and-spectre-with-performance-counters.html.

[29] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Grand Pwning Unit: Accelerating
Microarchitectural Attacks with the GPU. In 2018 IEEE Symposium on Security and Privacy, SP
2018, Proceedings, 21-23 May 2018, San Francisco, California, USA. IEEE Computer Society, 195–210.

https://doi.org/10.1109/SP.2018.00022
[30] Ulf Frisk. 2016. pcileech. https://github.com/ufrisk/pcileech accessed 26.6.2020.
[31] Mohsen Ghasempour, Mikel Lujan, and Jim Garside. 2015. ARMOR: A Run-time Memory Hot-Row

Detector.(2015).
[32] Guy Gogniat, Tilman Wolf, and Wayne P. Burleson. 2006. Reconfigurable Security Support for Embedded

Systems. In 39th Hawaii International International Conference on Systems Science (HICSS-39 2006),

CD-ROM / Abstracts Proceedings, 4-7 January 2006, Kauai, HI, USA. IEEE Computer Society.
https://doi.org/10.1109/HICSS.2006.409

[33] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation Leak-aside Buffer:
Defeating Cache Side-channel Protections with TLB Attacks. In 27th USENIX Security Symposium,

USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, William Enck and Adrienne Porter

Felt (Eds.). USENIX Association, 955–972. https://www.usenix.org/conference/usenixsecurity18/
presentation/gras

[34] Daniel Gruss, David Bidner, and Stefan Mangard. 2015. Practical Memory Deduplication Attacks in

Sandboxed Javascript. In Computer Security - ESORICS 2015 - 20th European Symposium on Research
in Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part I (Lecture Notes

in Computer Science, Vol. 9326), Günther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl (Eds.).

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1007/s00145-010-9083-9
https://grehack.fr/2017/program
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1145/3274694.3274704
https://doi.org/10.1109/ICTC46691.2019.8939797
https://doi.org/10.1109/HST.2014.6855563
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://doi.org/10.1109/HPEC.2019.8916486
https://doi.org/10.1109/HPEC.2019.8916486
https://www.trendmicro.com/en_us/research/18/c/detecting-attacks-that-exploit-meltdown-and-spectre-with-performance-counters.html
https://www.trendmicro.com/en_us/research/18/c/detecting-attacks-that-exploit-meltdown-and-spectre-with-performance-counters.html
https://doi.org/10.1109/SP.2018.00022
https://github.com/ufrisk/pcileech
https://doi.org/10.1109/HICSS.2006.409
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity18/presentation/gras

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:35

Springer, 108–122. https://doi.org/10.1007/978-3-319-24174-6 6

[35] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. 2018. Another Flip in the Wall of Rowhammer Defenses. In 2018 IEEE

Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California,
USA. IEEE Computer Society, 245–261. https://doi.org/10.1109/SP.2018.00031

[36] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Mangard. 2016. Prefetch

Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM,

368–379. https://doi.org/10.1145/2976749.2978356
[37] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016. Flush+Flush: A Fast and

Stealthy Cache Attack. In Detection of Intrusions and Malware, and Vulnerability Assessment - 13th
International Conference, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Proceedings (Lecture
Notes in Computer Science, Vol. 9721), Juan Caballero, Urko Zurutuza, and Ricardo J. Rodŕıguez

(Eds.). Springer, 279–299. https://doi.org/10.1007/978-3-319-40667-1 14

[38] Daniel Gruss, Michael Schwarz, and Moritz Tipp. 2020. https://www.youtube.com/watch?v=
UTSJf05pw-0

[39] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template Attacks: Automating At-
tacks on Inclusive Last-Level Caches. In 24th USENIX Security Symposium, USENIX Security 15, Wash-
ington, D.C., USA, August 12-14, 2015, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Association,

897–912. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss

[40] Naofumi Homma, Yu-ichi Hayashi, Noriyuki Miura, Daisuke Fujimoto, Daichi Tanaka, Makoto Nagata,
and Takafumi Aoki. 2014. EM Attack Is Non-invasive? - Design Methodology and Validity Verification of

EM Attack Sensor. In Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings (Lecture Notes in Computer

Science, Vol. 8731), Lejla Batina and Matthew Robshaw (Eds.). Springer, 1–16. https://doi.org/10.

1007/978-3-662-44709-3 1
[41] Jann Horn. 2018. Speculative execution, variant 4: speculative store bypass. https://bugs.chromium.

org/p/project-zero/issues/detail?id=1528.

[42] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2018. MASCAT: Preventing Microarchitectural
Attacks Before Distribution. In Proceedings of the Eighth ACM Conference on Data and Application

Security and Privacy, CODASPY 2018, Tempe, AZ, USA, March 19-21, 2018, Ziming Zhao, Gail-Joon

Ahn, Ram Krishnan, and Gabriel Ghinita (Eds.). ACM, 377–388. https://doi.org/10.1145/3176258.
3176316

[43] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson,
Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In ACM/IEEE 41st International Symposium on Computer

Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014. IEEE Computer Society, 361–372.
https://doi.org/10.1109/ISCA.2014.6853210

[44] Vladimir Kiriansky and Carl A. Waldspurger. 2018. Speculative Buffer Overflows: Attacks and Defenses.

CoRR abs/1807.03757 (2018). arXiv:1807.03757 http://arxiv.org/abs/1807.03757
[45] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,

Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2018. Spectre Attacks: Exploiting Speculative

Execution. CoRR abs/1801.01203 (2018). arXiv:1801.01203 http://arxiv.org/abs/1801.01203
[46] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,

Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre

Attacks: Exploiting Speculative Execution. In 2019 IEEE Symposium on Security and Privacy, SP
2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 1–19. https://doi.org/10.1109/SP.2019.00002

[47] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey M. Voas. 2017. DDoS in the
IoT: Mirai and Other Botnets. Computer 50, 7 (2017), 80–84. https://doi.org/10.1109/MC.2017.201

[48] Thomas Korak, Michael Hutter, Baris Ege, and Lejla Batina. 2014. Clock Glitch Attacks in the Presence

of Heating. In 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2014, Busan,
South Korea, September 23, 2014, Assia Tria and Dooho Choi (Eds.). IEEE Computer Society, 104–114.
https://doi.org/10.1109/FDTC.2014.20

[49] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael B. Abu-Ghazaleh.
2018. Spectre Returns! Speculation Attacks using the Return Stack Buffer. In 12th USENIX Workshop on

Offensive Technologies, WOOT 2018, Baltimore, MD, USA, August 13-14, 2018, Christian Rossow and

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1007/978-3-319-24174-6_6
https://doi.org/10.1109/SP.2018.00031
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1007/978-3-319-40667-1_14
https://www.youtube.com/watch?v=UTSJf05pw-0
https://www.youtube.com/watch?v=UTSJf05pw-0
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://doi.org/10.1007/978-3-662-44709-3_1
https://doi.org/10.1007/978-3-662-44709-3_1
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://doi.org/10.1145/3176258.3176316
https://doi.org/10.1145/3176258.3176316
https://doi.org/10.1109/ISCA.2014.6853210
https://arxiv.org/abs/1807.03757
http://arxiv.org/abs/1807.03757
https://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1109/FDTC.2014.20

1:36 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

Yves Younan (Eds.). USENIX Association. https://www.usenix.org/conference/woot18/presentation/
koruyeh

[50] Deepa Krishnan and Adesh Mallya. 2020. A Survey on Security Attacks in Internet of Things and

Challenges in Existing Countermeasures. In Proceedings of International Conference on Wireless
Communication. Springer, 463–469.

[51] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. Rambleed: Reading bits in

memory without accessing them. In 41st IEEE Symposium on Security and Privacy (S&P).

[52] Nica Latto. 2020. What Are Meltdown and Spectre? Avast Academy - Security - Other threats.
https://www.avast.com/c-meltdown-spectre Acessed 7 December 2020.

[53] Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn. 2019. TWiCe: preventing
row-hammering by exploiting time window counters. In Proceedings of the 46th International Symposium

on Computer Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019, Srilatha Bobbie Manne,
Hillery C. Hunter, and Erik R. Altman (Eds.). ACM, 385–396. https://doi.org/10.1145/3307650.3322232

[54] Congmiao Li and Jean-Luc Gaudiot. 2018. Online Detection of Spectre Attacks Using Microarchitectural

Traces from Performance Counters. In 30th International Symposium on Computer Architecture and
High Performance Computing, SBAC-PAD 2018, Lyon, France, September 24-27, 2018. IEEE, 25–28.
https://doi.org/10.1109/CAHPC.2018.8645918

[55] Congmiao Li and Jean-Luc Gaudiot. 2019. Detecting Malicious Attacks Exploiting Hardware Vulnerabili-
ties Using Performance Counters. In 43rd IEEE Annual Computer Software and Applications Conference,
COMPSAC 2019, Milwaukee, WI, USA, July 15-19, 2019, Volume 1, Vladimir Getov, Jean-Luc Gaudiot,

Nariyoshi Yamai, Stelvio Cimato, J. Morris Chang, Yuuichi Teranishi, Ji-Jiang Yang, Hong Va Leong,
Hossain Shahriar, Michiharu Takemoto, Dave Towey, Hiroki Takakura, Atilla Elçi, Susumu Takeuchi,
and Satish Puri (Eds.). IEEE, 588–597. https://doi.org/10.1109/COMPSAC.2019.00090

[56] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown:

Reading Kernel Memory from User Space. In 27th USENIX Security Symposium, USENIX Security

2018, Baltimore, MD, USA, August 15-17, 2018, William Enck and Adrienne Porter Felt (Eds.).
USENIX Association, 973–990. https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[57] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-Level Cache Side-

Channel Attacks are Practical. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015. IEEE Computer Society, 605–622. https://doi.org/10.1109/SP.2015.43

[58] Vaibhav G. Lokhande and Deepti Vidyarthi. 2019. A study of hardware architecture based attacks to

bypass operating system security. Secur. Priv. 2, 4 (2019). https://doi.org/10.1002/spy2.81
[59] Fabien Majéric, Benoit Gonzalvo, and Lilian Bossuet. 2018. JTAG Fault Injection Attack. IEEE Embed.

Syst. Lett. 10, 3 (2018), 65–68. https://doi.org/10.1109/LES.2017.2771206
[60] A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce, Peter G. Neumann, Simon W.

Moore, and Robert N. M. Watson. 2019. Thunderclap: Exploring Vulnerabilities in Operating System

IOMMU Protection via DMA from Untrustworthy Peripherals. In 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The
Internet Society. https://www.ndss-symposium.org/ndss-paper/thunderclap-exploring-vulnerabilities-

in-operating-system-iommu-protection-via-dma-from-untrustworthy-peripherals/
[61] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller, Lothar Thiele, and

Srdjan Capkun. 2015. Thermal Covert Channels on Multi-core Platforms. In 24th USENIX Security Sym-

posium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015, Jaeyeon Jung and Thorsten
Holz (Eds.). USENIX Association, 865–880. https://www.usenix.org/conference/usenixsecurity15/

technical-sessions/presentation/masti

[62] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen, and Aurélien Francillon.
2015. Reverse Engineering Intel Last-Level Cache Complex Addressing Using Performance Counters. In
Research in Attacks, Intrusions, and Defenses - 18th International Symposium, RAID 2015, Kyoto,
Japan, November 2-4, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9404), Herbert Bos,

Fabian Monrose, and Gregory Blanc (Eds.). Springer, 48–65. https://doi.org/10.1007/978-3-319-26362-

5 3
[63] Benôıt Morgan, Eric Alata, Vincent Nicomette, and Mohamed Kaâniche. 2016. Bypassing IOMMU

Protection against I/O Attacks. In 2016 Seventh Latin-American Symposium on Dependable Computing,

LADC 2016, Cali, Colombia, October 19-21, 2016. IEEE Computer Society, 145–150. https://doi.org/
10.1109/LADC.2016.31

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.avast.com/c-meltdown-spectre
https://doi.org/10.1145/3307650.3322232
https://doi.org/10.1109/CAHPC.2018.8645918
https://doi.org/10.1109/COMPSAC.2019.00090
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1002/spy2.81
https://doi.org/10.1109/LES.2017.2771206
https://www.ndss-symposium.org/ndss-paper/thunderclap-exploring-vulnerabilities-in-operating-system-iommu-protection-via-dma-from-untrustworthy-peripherals/
https://www.ndss-symposium.org/ndss-paper/thunderclap-exploring-vulnerabilities-in-operating-system-iommu-protection-via-dma-from-untrustworthy-peripherals/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.1109/LADC.2016.31
https://doi.org/10.1109/LADC.2016.31

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:37

[64] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and Sarah Martin. 2016. TrustZone
Explained: Architectural Features and Use Cases. In 2nd IEEE International Conference on Collabora-
tion and Internet Computing, CIC 2016, Pittsburgh, PA, USA, November 1-3, 2016. IEEE Computer

Society, 445–451. https://doi.org/10.1109/CIC.2016.065

[65] Zhenyu Ning and Fengwei Zhang. 2017. Ninja: Towards Transparent Tracing and Debugging on
ARM. In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,

August 16-18, 2017, Engin Kirda and Thomas Ristenpart (Eds.). USENIX Association, 33–49. https:
//www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ning

[66] Zhenyu Ning and Fengwei Zhang. 2019. Hardware-Assisted Transparent Tracing and Debugging on ARM.

IEEE Trans. Inf. Forensics Secur. 14, 6 (2019), 1595–1609. https://doi.org/10.1109/TIFS.2018.2883027
[67] Zhenyu Ning and Fengwei Zhang. 2019. Understanding the Security of ARM Debugging Features. In

2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019.
IEEE, 602–619. https://doi.org/10.1109/SP.2019.00061

[68] Graz University of Technology. 2018. Meltdown and Spectre Vulnerabilities in modern computers leak

passwords and sensitive data. website page. https://meltdownattack.com/ Found in Questions and
Answers - Can my antivirus detect or block this attack.

[69] José R. Garćıa Ordaz, Marco Antonio Ramı́rez Salinas, Luis A. Villa Vargas, Herón Molina Lozano,

and Cuauhtémoc Peredo Maćıas. 2012. A Reorder Buffer Design for High Performance Processors.
Computación y Sistemas 16, 1 (2012). http://cys.cic.ipn.mx/ojs/index.php/CyS/article/view/1369

[70] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis. 2015. The

Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015, Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.). ACM, 1406–1418.

https://doi.org/10.1145/2810103.2813708
[71] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis. 2015. The

Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. In Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015, Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.). ACM, 1406–1418.

https://doi.org/10.1145/2810103.2813708

[72] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Countermeasures: The Case
of AES. In Topics in Cryptology - CT-RSA 2006, The Cryptographers’ Track at the RSA Conference

2006, San Jose, CA, USA, February 13-17, 2006, Proceedings (Lecture Notes in Computer Science,

Vol. 3860), David Pointcheval (Ed.). Springer, 1–20. https://doi.org/10.1007/11605805 1
[73] Mathias Payer. 2016. HexPADS: A Platform to Detect ”Stealth” Attacks. In Engineering Secure

Software and Systems - 8th International Symposium, ESSoS 2016, London, UK, April 6-8, 2016.
Proceedings (Lecture Notes in Computer Science, Vol. 9639), Juan Caballero, Eric Bodden, and Elias
Athanasopoulos (Eds.). Springer, 138–154. https://doi.org/10.1007/978-3-319-30806-7 9

[74] Colin Percival. 2005. Cache missing for fun and profit. BSDCan.
[75] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard. 2016. DRAMA:

Exploiting DRAM Addressing for Cross-CPU Attacks. In 25th USENIX Security Symposium,

USENIX Security 16, Austin, TX, USA, August 10-12, 2016, Thorsten Holz and Stefan Savage
(Eds.). USENIX Association, 565–581. https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/pessl

[76] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A Comprehensive Survey. ACM
Comput. Surv. 51, 6 (2019), 130:1–130:36. https://doi.org/10.1145/3291047

[77] Rui Qiao and Mark Seaborn. 2016. A new approach for rowhammer attacks. In 2016 IEEE International

Symposium on Hardware Oriented Security and Trust, HOST 2016, McLean, VA, USA, May 3-5, 2016,
William H. Robinson, Swarup Bhunia, and Ryan Kastner (Eds.). IEEE Computer Society, 161–166.
https://doi.org/10.1109/HST.2016.7495576

[78] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. 2019. VoltJockey: Breaching TrustZone

by Software-Controlled Voltage Manipulation over Multi-core Frequencies. In Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).
ACM, 195–209. https://doi.org/10.1145/3319535.3354201

[79] Xuanle Ren, Ronald D. Blanton, and Vı́tor Grade Tavares. 2016. A Learning-Based Approach to
Secure JTAG Against Unseen Scan-Based Attacks. In IEEE Computer Society Annual Symposium

on VLSI, ISVLSI 2016, Pittsburgh, PA, USA, July 11-13, 2016. IEEE Computer Society, 541–546.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/CIC.2016.065
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ning
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ning
https://doi.org/10.1109/TIFS.2018.2883027
https://doi.org/10.1109/SP.2019.00061
https://meltdownattack.com/
http://cys.cic.ipn.mx/ojs/index.php/CyS/article/view/1369
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/978-3-319-30806-7_9
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://doi.org/10.1145/3291047
https://doi.org/10.1109/HST.2016.7495576
https://doi.org/10.1145/3319535.3354201

1:38 Nikolaos-Foivos POLYCHRONOU, Pierre-Henri THEVENON, Maxime PUYS, and Vincent BEROULLE

https://doi.org/10.1109/ISVLSI.2016.107

[80] Kurt Rosenfeld and Ramesh Karri. 2010. Attacks and Defenses for JTAG. IEEE Des. Test Comput. 27,
1 (2010), 36–47. https://doi.org/10.1109/MDT.2010.9

[81] Nahi Jnanena Sadrusham. 2015. Timing Constraints. http://asic-soc.blogspot.com/2015/02/timing-
constraints.html. Accessed on 26.6.2020.

[82] Marc Schink and Johannes Obermaier. 2019. Taking a Look into Execute-Only Memory. In 13th

USENIX Workshop on Offensive Technologies, WOOT 2019, Santa Clara, CA, USA, August 12-13,
2019, Alex Gantman and Clémentine Maurice (Eds.). USENIX Association. https://www.usenix.org/
conference/woot19/presentation/schink

[83] Jayasree Sengupta, Sushmita Ruj, and Sipra Das Bit. 2020. A Comprehensive Survey on Attacks,
Security Issues and Blockchain Solutions for IoT and IIoT. J. Netw. Comput. Appl. 149 (2020).

https://doi.org/10.1016/j.jnca.2019.102481

[84] Seyed Mohammad Seyedzadeh, Alex K. Jones, and Rami G. Melhem. 2017. Counter-Based Tree
Structure for Row Hammering Mitigation in DRAM. IEEE Comput. Archit. Lett. 16, 1 (2017), 18–21.

https://doi.org/10.1109/LCA.2016.2614497

[85] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Register State using Microarchitec-
tural Side-Channels. CoRR abs/1806.07480 (2018). arXiv:1806.07480 http://arxiv.org/abs/1806.07480

[86] Patrick Stewin. 2013. A Primitive for Revealing Stealthy Peripheral-Based Attacks on the Computing
Platform’s Main Memory. In Research in Attacks, Intrusions, and Defenses - 16th International
Symposium, RAID 2013, Rodney Bay, St. Lucia, October 23-25, 2013. Proceedings (Lecture Notes

in Computer Science, Vol. 8145), Salvatore J. Stolfo, Angelos Stavrou, and Charles V. Wright (Eds.).
Springer, 1–20. https://doi.org/10.1007/978-3-642-41284-4 1

[87] Patrick Stewin and Iurii Bystrov. 2012. Understanding DMA Malware. In Detection of Intrusions and

Malware, and Vulnerability Assessment - 9th International Conference, DIMVA 2012, Heraklion, Crete,
Greece, July 26-27, 2012, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 7591),

Ulrich Flegel, Evangelos P. Markatos, and William K. Robertson (Eds.). Springer, 21–41. https:

//doi.org/10.1007/978-3-642-37300-8 2
[88] Jakub Szefer. 2019. Survey of Microarchitectural Side and Covert Channels, Attacks, and Defenses. J.

Hardware and Systems Security 3, 3 (2019), 219–234. https://doi.org/10.1007/s41635-018-0046-1

[89] Shahin Tajik, Heiko Lohrke, Fatemeh Ganji, Jean-Pierre Seifert, and Christian Boit. 2015. Laser Fault
Attack on Physically Unclonable Functions. In 2015 Workshop on Fault Diagnosis and Tolerance in

Cryptography, FDTC 2015, Saint Malo, France, September 13, 2015, Naofumi Homma and Victor

Lomné (Eds.). IEEE Computer Society, 85–96. https://doi.org/10.1109/FDTC.2015.19
[90] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. 2017. CLKSCREW: Exposing the Perils

of Security-Oblivious Energy Management. In 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and Thomas Ristenpart (Eds.).
USENIX Association, 1057–1074. https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/tang
[91] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clémentine Maurice,

Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida. 2016. Drammer: Deterministic

Rowhammer Attacks on Mobile Platforms. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016, Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM, 1675–1689.

https://doi.org/10.1145/2976749.2978406
[92] Thomas Willhalm, Roman Dementiev, and Patrick Fay. 2012. Intel performance counter monitor-a better

way to measure cpu utilization. Dosegljivo: https://software. intel. com/en-us/articles/intelperformance-

countermonitor-a-better-way-to-measure-cpu-utilization.[Dostopano: September 2014] (2012).
[93] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution, Low Noise, L3

Cache Side-Channel Attack. In Proceedings of the 23rd USENIX Security Symposium, San Diego,
CA, USA, August 20-22, 2014, Kevin Fu and Jaeyeon Jung (Eds.). USENIX Association, 719–732.

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

[94] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y. Thomas Hou. 2016. TruSpy: Cache
Side-Channel Information Leakage from the Secure World on ARM Devices. IACR Cryptol. ePrint
Arch. 2016 (2016), 980. http://eprint.iacr.org/2016/980

[95] Zhiting Zhu, Sangman Kim, Yuri Rozhanski, Yige Hu, Emmett Witchel, and Mark Silberstein.
2017. Understanding The Security of Discrete GPUs. In Proceedings of the General Purpose GPUs,

GPGPU@PPoPP, Austin, TX, USA, February 4-8, 2017. ACM, 1–11. https://doi.org/10.1145/3038228.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/ISVLSI.2016.107
https://doi.org/10.1109/MDT.2010.9
http://asic-soc.blogspot.com/2015/02/timing-constraints.html
http://asic-soc.blogspot.com/2015/02/timing-constraints.html
https://www.usenix.org/conference/woot19/presentation/schink
https://www.usenix.org/conference/woot19/presentation/schink
https://doi.org/10.1016/j.jnca.2019.102481
https://doi.org/10.1109/LCA.2016.2614497
https://arxiv.org/abs/1806.07480
http://arxiv.org/abs/1806.07480
https://doi.org/10.1007/978-3-642-41284-4_1
https://doi.org/10.1007/978-3-642-37300-8_2
https://doi.org/10.1007/978-3-642-37300-8_2
https://doi.org/10.1007/s41635-018-0046-1
https://doi.org/10.1109/FDTC.2015.19
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://doi.org/10.1145/2976749.2978406
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
http://eprint.iacr.org/2016/980
https://doi.org/10.1145/3038228.3038233
https://doi.org/10.1145/3038228.3038233

A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT
Devices, and their Detection Mechanisms 1:39

3038233

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3038228.3038233
https://doi.org/10.1145/3038228.3038233

	Abstract
	1 Introduction
	2 IoT/IIoT attacks, system hardware vulnerabilities, and side effects
	2.1 Background
	2.2 Memory Attacks
	2.3 Transient Execution Unit Attacks
	2.4 Debug Unit Attacks
	2.5 Power and Clock Management Unit Attacks
	2.6 Thermal Monitor Unit Attacks
	2.7 Summary

	3 Attack side effect analysis
	3.1 Side effects obtained through PMU registers
	3.2 Other side effects
	3.3 Summary of attack vector side effects

	4 Classification of side effects
	4.1 Side effect criteria
	4.2 Taxonomy of side effects

	5 Attack detection mechanisms
	5.1 Memory attacks
	5.2 JTAG monitor
	5.3 DMA attacks
	5.4 Thermal monitor
	5.5 Transient execution attacks
	5.6 Detection mechanism classification criteria

	6 Conclusion
	Acknowledgments
	References

