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ABSTRACT
Mobility demand analysis is increasingly based on smart card data,
that are generally aggregated into time series describing the vol-
ume of riders along time. These series present patterns resulting
from multiple external factors. This paper investigates the problem
of decomposing daily ridership data collected at amultimodal trans-
portation hub. The analysis is based on structural time series models
that decompose the series into unobserved components. The aim of
the decomposition is to highlight the impact of long-term factors,
such as trend or seasonality, and exogenous factors such as mainte-
nance work or unanticipated events such as strikes or the COVID-19
health crisis. We focus our analysis on incoming flows of passengers
to two transport lines known to be complementary in the Parisian
public transport network. The available ridership data allows analysis
over both long-term and short-term time horizons including signifi-
cant events that have impacted people’s mobility in the Paris region.
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1. Introduction

The analysis of mobility in public transport is increasingly based on numerical data, such
as ticketing data. These data allow a rich analysis of public transport use and user mobility
behaviors, both from a temporal and spatial points of view, despite their incompleteness
(Bagchi andWhite 2004; Borgnat, Come, andOukhellou2017).Many studies in the literature
have been devoted to the exploitation of ticketing data and the development of math-
ematical models for their analysis. Depending on the targeted objective, a distinction is
usuallymade between unsupervisedmethodswith an exploratory purpose and supervised
methods with a prediction or classification objective. Various clustering approaches have
been developed to highlight group structures in user routines (Lathia et al. 2013; Briand
et al. 2016; He, Agard, and Trépanier 2020) or in the use of transport systems (Poussevin
et al. 2015; El Mahrsi et al. 2016). Principal Component Analysis (PCA) is another unsuper-
vised method used by Luo, Cats, and van Lint (2017) to provide insight into the underlying
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structure of flow dynamics within a metro network. In the supervised framework, several
researchers have investigated the development ofmodels based on statistical andmachine
learning for the prediction of ridership in metro stations (Roos, Bonnevay, and Gavin 2016;
Toque et al. 2020) or in buses (Cui et al. 2016; Zhang et al. 2020).

This paper deals with the decomposition of ticketing data by using time series decom-
position models, which benefit from modeling and interpretability power. Time series
decomposition models are state-space models that associate a set of latent components
(or states) with an observed time series. The latent components each evolve according to a
set of equations that can be deterministic or stochastic. The raw signal is difficult to inter-
pret as such. However, once decomposed using an ad hocmodel, it is possible to detect a
long-term trend, repeating seasonal patterns (day, week, year), calendar phenomena (bank
holidays,. . . ), or the influence of exogenous phenomena. However, the implementation
requires databases collected over relatively long time periods and the incorporation of a
priori knowledge in the model calibration to increase the interpretive power. These mod-
els have been widely used in several application fields such as economics (Koopman and
Ooms2011), tourism (Chenet al. 2019),meteorology (Murthy, Saravana, andRajendra 2019)
or energy consumption (Mousavi and Ghavidel 2019) and are of great interest in analyzing
mobility data. This paper focuses on models for the decomposition of time-series of tran-
sit station ridership. For this purpose, we used datasets on passenger flows collected over
nine years in the railway station ‘LaDéfenseGrandeArche’which is locatedon amultimodal
transport hub in the Paris region known as ‘La Défense’. Ticketing logs collected by Auto-
mated Fare Collection (AFC) systemswere used to capture the volume of incoming flows to
two transport lines at this station: an express rail line (RER A) that crosses the Paris region in
the East-West direction and ametro line (line 1) that serves downtownParis. These two lines
have the advantage of sharing several stations and thus highlight possiblemodal shift phe-
nomena. Considering station ridership data as time series anddecomposing it intomultiple
underlying components allows us to study its structure and answer several questions:

• How do the variations in the original series translate into each component?
• What is the impact of exogenous events on passengers’ decisions to use one transport

line or the other?

The contributions of this article are the following:

• A time series of public transport ridership is very often noisy, and it can be challeng-
ing to identify the effect of a factor of interest on this series. Using structural time-series
models, we decompose passenger flows into several components to which we assign
meaning. The analysis of isolated components is valuable when studying the effect of
recent events that have impacted passenger habits (strikes, Covid-19 pandemic).

• We compare the effects of exogenous factors (such as strikes) on the use of two public
transport lines at the same station that have common routes but differ in their mode of
operation: the metro line is driverless and automated, which is not the case of the RER
line.

• In methodological terms, we will address the critical issues related to the use and
calibration of these models to decompose the daily ridership series. We will study
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the impact of different configurations based on the decomposition models’ predictive
ability.

The article is organized as follows. Section 2provides a state of the art on thework carried
out on ticketing data and time series decomposition models. Section 3 details the mobility
dataset considered in this paper and presents the expected challenges. Section 4 presents
the formalism of structural time series models for mobility data. Section 5 details the cal-
ibration steps of the model and provides the main results obtained on the ridership data
of the two transit stations. Section 6 concludes this paper and outlines prospects for future
work.

2. Related work

2.1. Methods of time seriesmodeling

With themultiplication of the amount of available data, particularly in time series, different
types of models have been developed to exploit the precision and richness of both spatial
and temporal data.

For stationary time series containing autocorrelation phenomena between the different
events occurring at different times, themethods generally used are autoregressive process
(AR) models, moving average process (MA) models, and autoregressive moving average
models (ARMA) which are a combination of the previous two models (Shumway and Stof-
fer 2000, 77–90). For non-stationary time series, a differentiation operation is necessary
to obtain a stationary series. This differentiation is taken into account in autoregressive
integrated moving average (ARIMA) models (Shumway and Stoffer 2000, 133–137) and
in seasonal ARIMA (SARIMA) models, which are suitable for time series with a seasonal
component (Shumway and Stoffer 2000, 148–156).

Another category of models are decomposition models, which subdivide time series
into multiple underlying components, each representing an aspect of the original time
series. The components can then be used to reconstruct the original series by addition or
multiplication. Each component is characterized by a certain pattern, such as a long-term
trend, weekly and annual seasonality, and an unexplained noise component. The analysis
of the components’ characteristics resulting from the decomposition thus allows a direct
interpretation of the model.

In the work of Grieser, Trömel, and Schönwiese (2002) on the decomposition of time
series of monthly temperatures using a generalized additive model (GAM), the following
questions are addressed:

• Is there a significantly increasing or decreasing trend in the observed series?
• Does the seasonality change over time?
• Are there extreme values in the observations that cannot be explained by the different

components?

A well-known type of decomposition model is seasonal and trend decomposition using
LOESS (LOcally Estimated Scatterplot Smoothing) or STL. Zhu andGuo (2017) used this type
of model to decompose time series of the number of cab trips in different locations in New
York in order to separate the trend from seasonality and residuals.
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There is also a class of models that we refer to as structural time series decomposition
(STS) models (Harvey 1990). These stochastic models are particular cases of dynamic lin-
ear models (DLM) (Petris, Petrone, and Campagnoli 2009). With such models, it is possible
to express interpretable deterministic and stochastic components and make predictions
independently. Two application areas have been addressed with these models: prediction,
mainly, and anomaly detection.

2.2. Some applications of structural models for time series decomposition

Structural models for time series decomposition are used in many domains of application
due to their flexibility.

They can be used to separate an effect of interest from those of other irrelevant fac-
tors. Honjo, Shiraki, and Ashina (2018) quantified the effect of changing consumer behavior
on electricity consumption, induced by the setting up of an energy conservation policy in
Japan following the Fukushima disaster in 2011.

Predictions can be performed with these models. Some short-term prediction work was
carried out at an hourly time horizon by Dordonnat et al. (2008), also in the electricity con-
sumption field. Long-termpredictions (a few years), especiallywhenusing aggregated data
at larger temporalities, are also proposed in Murthy and Kumar (2020), Rodriguez, Pineda,
and Olariaga (2020) and Bian et al. (2019), while Chen et al. (2019) proposed a multivariate
model to account for seasonality to predict long-term tourist demand. Another contribu-
tion of the predictions consists in comparing the performances of deterministic models
with those of stochastic models (Lisi and Pelagatti 2016).

Anomaly detection is a major application of structural decomposition models. The aim
is to better understand the impact of certain types of events. Methods incorporating indi-
cator variables in the models have been developed to detect atypical values or changes
in behavior. It is then a matter of combining these models’ potential with indicator satura-
tion to see changes in behavior in the series. This approach was developed byMarczak and
Proietti (2016) to detect behavioral changes in the industrial production of five European
countries with the financial crisis of 2008.

2.3. Mobility analysis and structural models for time series decomposition

In mobility, structural decompositionmodels have also been used for prediction purposes,
as in Almannaa, Elhenawy, and Rakha (2020). The authors developed structural models to
predict the rate of a bike sharing system usage. We can also cite the work carried out by
Doorley et al. (2014), where these models were used for short-term prediction of bicycle
flows. The Kalman filter was used to make successive predictions without going through
the filtering step. In their study on the prediction of time series of car counts at someDublin
intersections, Ghosh, Basu, and O’Mahony (2009) presented the decomposition of a time
series into three components: trend, seasonality, and residuals. A multivariate model was
used to account for a set of time series of car counts. Bian et al. (2019) used the same kind of
model to forecast themonthly traffic volume of the next twelvemonths from a key corridor
in New-Jersey.

In this paper, we focus on applying these models to time series of daily incoming rid-
ership to two transport lines. The availability of data over a long period (9 years) with the
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advent of several punctual or redundant events (maintenance work, strikes, health crisis)
constitutes an opportunity and a motivation for this type of analysis.

3. Case study

3.1. Empirical settings

The Parisian public transport system includes several types of rail services. First, 16 metro
lines serve Paris mainly but also some of the inner suburbs. Second, a set of 5 express rail
lines complete this network by serving Paris aswell as outer suburbs. In this articlewe study
two of these transport lines known to be in competition because they partly share similar
routes: the RER A line and theMetro 1 line. The two lines differ in various respects, however.
The RER A line is a 109 km express rail line which serves the western and eastern suburbs
and crosses Paris, as does the Metro 1 line, where it stops at 5 major stations, 4 of which
connected with the Metro 1 line. The RER A line is used by an average of 309.36 million
people per year. The Metro 1 line is a 16.6 km line with 25 closely-spaced stations in central
Paris. The line is used by an average of 181.2 million people per year.

The specific focus of this study is the incoming flowof people to these two transport lines
at the ‘La Défense Grande Arche’ station. People entering the RER A line from ‘La Défense
Grande Arche’ station can go to the western suburbs or to the eastern suburbs via Paris
while those entering the Metro 1 line can only go to Paris. Since 2011 there have been no
major changes to the infrastructure of these two lines (no extensions) or in their immediate
environment. However, the Metro line 1 has been fully automated since December 2012.
Figure 1 illustrates the routes and stations of the two transport lines and shows that the two
lines are parallel when crossing Paris.

A comparative study of two transport lines known to be competing and complementary
can provide the transport operator with valuable information. The study of the impact of
multiple events on the use of transport lines could eventually help the operator to better
anticipate a large influx of people to one line rather than the other. This case study can
therefore be adapted to other such cases where transport lines partially follow a common
route.

3.2. Data description

The daily inflow counts dataset was collected between 01/01/2011 and 07/31/2020 for two
public transport lines (RER A and metro 1). These data were provided by the Paris public
transport operator (Régie Autonome des Transports Parisiens, RATP). Figure 2 presents the
daily counts and shows that there aremore incoming flows to theRER line than to themetro
line (40%more crowded when averaged over all days in the dataset).

We can already have an idea of the underlying structures that govern the ridership time
series by considering Figure 2. The average daily inflows per year are given by Figure 3. For
the RER A the figure shows a long-term trend of decreasing ridership from 2012 to 2014,
then an increasing trend from 2015 to 2018, and a decrease in 2019 and 2020. For metro 1,
on the other hand, there is a constant increase in ridership except for 2020.

Two kinds of seasonalities can be seen in the ridership. First on a yearly scale, off-peak
periods (vacations) and peak periods during the year are visible as can be seen in Figure 4
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Figure 1. Routes and stations for Metro 1 and RER A lines in the Paris region. Station ‘La Défense Grande
Arche’ has been highlighted in bold. (RATP/EDT 2021. © OpenStreetMap contributors (The data is avail-
able under the Open Database License. Base map and data from OpenStreetMap and OpenStreetMap
Foundation). Ile de France Mobilité 2020, last update: 2021/04/21).

Figure 2. Time series of daily inflow counts to RER A line and metro 1 line at ‘La Défense Grande Arche’
station for the time period 2011–2020.
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Figure 3. Daily inflow counts averaged per year to RER A line and metro 1 line at ‘La Défense Grande
Arche’ station.

Figure 4. Time series of daily inflow counts to RER A line and metro 1 line at ‘La Défense Grande Arche’
station for the year 2011.

for the year 2011 which shows a typical pattern of yearly seasonality. Second on a weekly
scale, weekdays have higher flows than weekend days. Indeed, a large number of workers
commute to ‘La Défense’ hub daily, and about 85% of them use public transportation. This
weekly seasonality is visible in Figure 5where themedians, 1st and 3rd quartiles of ridership
on the different days of the week were calculated over the year 2011. It is noteworthy that
standarddeviations are high, thus underlining agreat diversity in thehub’s temporal usage.
These two phenomena of periodic variations of the ridership should be taken into account
in the modeling as yearly and weekly seasonalities.

These seasonal effects do not explain all the phenomena; the time series remain very
noisybecause they are subject tomultiple external factors. Those listed in Table 1 are known
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Figure 5. Boxplots of daily inflow counts for each day of the week over the year 2011 for RER A line and
metro 1 line at ‘La Défense Grande Arche’ station.

Table 1. Exogenous variables included in the mod-
els.

Exogenous variables

Bank holidays
Extra days off
Summer maintenance work of the RER A on working days
Summer maintenance work of the RER A on non-working days
Maintenance work of metro 1 on working days
Maintenance work of metro 1 on non-working days
Transport operator strike days
Days of free travel on the transit network
Days of lockdown, Covid-19 period
Post-lockdown days, Covid-19 period

to have an impact on daily ridership and were included in the models as explanatory vari-
ables. Most of these factors have been divided between working days and non-working
days to account for the calendar effect. Bynon-workingdayswemeanweekenddays aswell
as bankholidays. On thesedays, there is very littlework activity as opposed toworkingdays,
which are weekdays without bank holidays. We also consider maintenance events, strike
days, and the health crisis period with the days of lockdown and post-lockdown. Finally we
take into account the days when the urban transit system was free: during pollution peaks
or car-free days; very few validation data were reported for these specific days.

3.3. Application objectives

To thebest of our knowledge, no studies have yet been conductedon thedecompositionof
time series applied to transit station ridership data. Considering the long time horizon over
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which thedatasetwas collected, it is interesting todecompose the time series to identify the
impact of each exogenous factor on known or specific mobility behaviors (e.g. transfers).
The transport operator provideduswith nine-year ticketing data from two transport lines in
themultimodal transport hub: RER A andmetro 1. These lines are competing because they
serve several stations in commonbut theyare also complementary: theRER line servesmore
distant suburbs than themetro 1 line but the latter has a denser network of stations within
Paris. One of the lines is automated (metro line 1), the other (RER line) is with a driver. A
decompositionwork on these time series will be an interesting case study. It will allow us to
compare the effect of different exogenous factors, such as maintenance work or vacations,
on the usage of these two competing lines. The temporal depth of our data will also allow
us to examine two recent events that strongly impacted people’s movements: the period
of the strike against the pension reform in December 2019 and the period of the Covid-
19 health crisis. This paper focuses on structural models of decomposition of daily station
riderships capturedby ticketingdata. The first objectivewas toquantify the effect of various
exogenous factors on use of the lines. The second objective was to compare these effects
between two major and competing transport lines in the Paris region.

4. Description of the decompositionmodel structures

Each of the daily series describing the evolution of the number of passengers entering a
transport line (RER A or metro 1) will be represented by the time series (y1, . . . , yn), where
yt > 0 (t = 1, . . . , n) is the number of people entering the line at day t, n being the num-
ber of observation days available. An additive structural model was chosen to represent
the series log(yt) (Equation (1)), which amounts to modeling the series yt in multiplicative
form (Equation (2)). The logarithmic transformation has the advantage of forcing predic-
tions of the number of passengers to remain positive while stabilizing the data variance
(see Appendix 4). The model adopted is written as:

log(yt) = lt + st + ft +
p∑

j=1

β
(j)
t X(j)

t + νt , (1)

yt = elt × est × eft ×
p∏

j=1

eβ
(j)
t X(j)

t × eνt , (2)

where lt is the trend describing the long-term evolution of the series, st is the weekly sea-
sonal component, ft is the yearly seasonal component and νt is the residual component
which is assumed to be distributed following a zero mean normal density, of variance σ 2

ν .
The model described by Equation (1) also takes into account the dependence of data yt on
p explanatory variables noted (X(1)

t , . . . , X(p)
t ). Regression coefficients associatedwith these

factors are noted (β
(1)
t , . . . ,β(p)

t ). Stochastic models describing each of the components of
the model are explained below.

• The trend lt is a stochastic local level model defined as follows:

lt = lt−1 + b + ωl
t (3)

where b is a drift parameter and ωl
t is white Gaussian noise.
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Table 2. Summary table of components parameters.

Initial component parameters

Component Variance Expectation Variance

Trend σ 2
l ml0 Cl0

(Equation (3))
Weekly seasonality σ 2

s ms0 Cs0
(Equation (4))
Yearly seasonality σ 2

fu
= σ 2

f∗u
mfu,0 Cfu,0

(Equations (6) and (7)) mf∗u,0 Cf∗u,0
Regression coefficients σ 2

β(j) m
β

(j)
0

C
β

(j)
0

(Equation (8))
Residuals σ 2

ν

(Equation (1))

• The weekly seasonal component st is modeled in the stochastic form as follows:

st = −
6∑

j=1

st−j + ωs
t , (4)

where ωs
t is white Gaussian noise. This representation allows weekly seasonal patterns

to evolve while ensuring that the sum of 7 consecutive terms of st has a zero expected
value.

• The yearly seasonal component is modeled in the following trigonometric form, which
reduces the number of its parameters:

ft =
k∑

u=1

fu,t (5)

fu,t = fu,t−1 cos λu + f∗u,t−1 sin λu + ω
fu
t (6)

f∗u,t = −fu,t−1 sin λu + f∗u,t−1 cos λu + ω
f∗u
t , (7)

whereω
fu
t andω

fu∗
t are white Gaussian noises of the same variance. It is a combination of

k stochastic cycles whose trigonometric representation is defined from the frequencies
λu = 2πu/365 for u ∈ {1, . . . , k}.

• The regression coefficients associated with the exogenous variables X(j)
t are assumed to

evolve following a Gaussian randomwalk defined by:

β
(j)
t = β

(j)
t−1 + ω

β(j)

t , (8)

where ω
β(j)

t is a white Gaussian noise.

Note that for all components, all the residual terms are white Gaussian noise whose
variances are summarized in Table 2. Initial values of components also follow Gaussian
distributions whose parameters are specified in Table 2.

The term θ = (σ 2
l , σ

2
b , . . . .) will denote the set of unknown parameters of the model,

described in Table 2, and xt the vector of latent components of the model also known as
state vector:

xt = (lt , st , st−1, . . . , st−6, f1,t , f∗1,t , . . . , fk,t , f
∗
k,t ,β

(1)
t , . . . ,β(p)

t )T
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Estimating the state vector xt , knowing the set of parameters θ , is mainly based on the
Kalman filter whose key steps are detailed in Appendix 1. The estimation of the unknown
parameter θ can be achieved via different methods including maximum likelihood and
quasi-Newton methods. For more details, the reader is referred to Appendix 1.

5. Results and discussion

In the calibration of the model, we aim to reduce its complexity while maintaining a satis-
factory quality of data representation. We first selected which components should be con-
sidered and how they should be expressed in order tomake sense of the decomposition. As
some model parameters could not be deduced a priori, we used the AIC and RMSE criteria
presented in Appendix 2 to choose them. Once the configuration was fixed, the parame-
ters of the resulting model were estimated by the maximum likelihood method using the
quasi-Newtonmethod implemented by the BFGS algorithm (Appendix 1). We relied on the
R toolbox dlm initiated by Petris (2010). The detailed calibration of the model is presented
in Appendix 3. The model finally retained has deterministic yearly and weekly seasonali-
ties. Its trend is constrained to keep only the long-term evolutions. It integrates covariates
with a stochastic regression coefficient, and the yearly seasonality is based on a decom-
position into six harmonics. The components estimated from the selected model are then
analyzed. In our situation, the trend and the seasonal components were used to analyze
natural variations in the station ridership, while components resulting from the explanatory
variables were used to analyze the effect of anticipated periods (e.g. maintenance work on
the metro/RER lines) and disturbances (e.g. strikes, Covid-19 health crisis).

The decomposition results are presented for each component: the state posterior expec-
tation, and the95%confidence interval calculatedwith the stateposterior variance, for each
daybetween2011and2020. Theyare representedwith solidblack lines andgrey filled areas
respectively on the figures in Sections 5.1–5.4. Componentswere log scaled, in particular, to
visualize confidence intervals better. For some components it will be important to differen-
tiate working days from non-working days that will be represented with red and blue dots
respectively (in Sections 5.2–5.4). The exponential transformation of the regression coeffi-

cients eβ
(s)
t of each exogenous variable s made it possible to quantify the impact of each

variable on the transport line ridership. For a given day t, variable smultiplies the ridership

by the value eβ
(s)
t in relation to a reference level of ridership. For example, take the effect

of the variable s = ‘Maintenance work days on RER line’ which has the value eβ
(s)
t = 0.7 on

a given day: this implies that maintenance work days impact ridership and explains why
there is only 70% ridership.

5.1. The natural variations in station ridership

Figure 6 (metro) and Figure 7 (RER) present the original patterns of transport ridership time
series as well as the trend and the seasonality components.

Trends of changes in ridership over the years show differences between the two trans-
port lines. For themetro (see Figure 6), we note an increase in ridership over the years, with
an acceleration starting in 2017. This can be explained by the rise in traffic on the east-west
Parisian axis, induced by an increasing concentration of jobs in the west, particularly in the
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Figure 6. Decomposition of the time series of flows entering the metro line (yt) into log-scaled trend
(lt), log-scaled annual seasonality (ft), and log-scaled residuals (νt) (left panel).
Log-scaled annual profile of the ft component with the different vacation periods in blue and enlargement over four weeks
of log-scaled weekly seasonality st (right panel)

Figure 7. Decomposition of the time series of flows entering the RER line (yt) into log-scaled trend (lt),
log-scaled annual seasonality (ft), and log-scaled residuals (νt) (left panel).
Log-scaled annual profile of the ft component with the different vacation periods in blue and enlargement over four weeks
of log-scaled weekly seasonality st (right panel).

‘La Défense’ district. For the RER (see Figure 7), the trend lt shows a profile that is more
difficult to interpret as it declines between 2011 and 2014, unlike the metro. We link this
decrease to the creation of two new exits from a tramway line adjacent to the RER line after
2012, which no doubt modified the movement dynamics in the whole western part of the
exchange pole. The increase that follows is in linewith the dynamics observed in themetro.
The decrease in this component, as well as the increase in its uncertainty during the period
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Figure 8. Log-scaled weekly seasonality st and 95% confidence intervals for flows entering the RER line
(purple) and the metro line (green).

from the end of 2019 to the year 2020, are attributable to the impacting events of strikes
and the COVID-19 pandemic.

The two transport lines show similar yearly seasonal components ft . The significant
troughs between July and October correspond to the summer vacation periods associated
with a considerable drop in station ridership (eft = 0.67 for RER and 0.74 for metro). The
summer vacations are responsible for a decrease of nearly 30% in the number of visitors
for the two lines. The other school holidays (winter, spring, autumn, and Christmas) are
also apparent. Note the presence of over-crowding periods just before the Christmas vaca-
tions. There is, however, a difference between the two profiles during the first part of each
year, before the summer vacations: metro line ridership fluctuates more between holiday
and work periods than RER line ridership, which remains more constant. The uncertainty is
higher during summer vacations than during the rest of the year. As wewill see later, main-
tenance work often occurs at these times, significantly modifying the ridership from one
year to the next.

Theweekly seasonal components st are difficult to visualize with this scale. We therefore
present a comparative magnification of the two profiles in Figure 8. The weekly seasonal
component coefficients est associate each day of the week with a percentage of ridership
relative to a reference level. They thus reflect the level of ridership on each of these days.
The profiles between the two transport lines are very similar with high weights allocated

to weekdays (eβ
(s)
t > 1.2, ridership 20% higher than a reference level) and low weights

assigned to the weekend (ridership around 60% of the reference level on Saturdays and
40% on Sundays). A slight difference can be observed between weekdays with known pat-
terns in public transport: Mondays are slightly less busy, and there is also a small decrease
on Wednesdays (a day without school for some children). Tuesdays and Thursdays attract
more people. Note that there seem to be more significant differences between weekdays
and weekends for the RER than for the metro.
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Figure 9. Log-scaled component associated with maintenance work on the RER line and 95% confi-
dence interval for incoming flows in the RER line. Summers between 2015 and 2020 are represented.

Residuals νt allow us to detect days when the model has not, or wrongly, taken an
effect into account. For the two transport lines, we note that some days with unantici-
pated transport breakdowns or events requiring the closure of lines for a large part of the
day are associated with large residuals. For example, September 21, 2019 has a large resid-
ual because a demonstration prevented the arrival of the metro at the ‘La Défense Grande
Arche’ station.

5.2. Analysis of the impact ofmaintenance work

Maintenance work has a strong impact on the ridership dynamics of the transport hub. It
can cause flow decreases or transfers. Beginning with the RER line maintenance work peri-
ods: each summer since 2015, it has been subject to work that requires the line to be shut
down during weekdays and/or weekends. To visualize the effect of this maintenance work,
we will represent the regression coefficients of maintenance work multiplied by the asso-
ciated class indicators. Results are shown in Figure 9 for the impact of work on RER line
ridership and in Figure 10 for the metro line.

These results reveal notable differences between the two transport lines: while the
impact is strongly negative on RER line ridership, the opposite is true for the metro line.
This result underlines the importance of metro line 1 as a substitute for RER line A to cross
Paris.

The impact of maintenance work on the use of the RER line is not total; it falls to a mini-

mumof eβ
(s)
t = 0.3 in 2017. As ‘La Défense Grande Arche’ is an interchange station, flows of

people can continue to transit through the access area to the RER line to reach other lines;
the drop nevertheless underlines that most people no longer transit through this area. Fur-
thermore, note the lesser importance of work on the RER line ridership decrease during the
2019 and 2020 summers compared to other summers (Figure 9). During these two sum-
mers, maintenance work only took place on weekends (except for the week of the 15th
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Figure 10. Log-scaled component associated with maintenance work on the RER line and 95% confi-
dence interval for incoming flows in the metro line. Summers between 2015 and 2020 are represented.

August in 2019 with maintenance work every day). We make two assumptions to explain
this phenomenon:

• Since the work took place every day from 2015 to 2018, more people chose to go on
vacation during the summer or shifted to another transportation mode (e.g. car).

• The work took place between the transport hub and Paris from 2015 to 2018 and then
within Paris itself in 2019 and 2020: an alternative to metro line 1 was possible for the
inhabitants of eastern Paris wishing to go to ‘La Défense’ in 2019 and 2020. This can be
seen from the regression coefficients for the metro, which are lower in 2019 and 2020
than in other years.

Like the RER line, the metro line is sometimes shut down because of maintenance work.
Figure 11 shows the regression coefficients associated with this effect. Maintenance work
on the metro line had a considerable impact on metro line ridership. Unlike the access
area to the RER line, the metro line area is not a transfer area, and almost no one comes
in when the line is stopped. Similarly, as for maintenance work on the RER line, we note a
flow transfer phenomenon, this time from the metro to the RER line whose use increased
slightly.

On the different charts, large confidence intervals are associated with the effects on the
metro line. Due to the few days of maintenance work on the metro line, the uncertainty is
significant. In particular, the impact of the work is very variable over the few days on which
it takes place.

5.3. Strike periods: analysis of the case of the long strike of December
2019–January 2020

The period fromDecember 2019 to January 2020 was characterized by amassive mobiliza-
tion against the reformof the French pension system. Support for the strikewas very strong
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Figure 11. Log-scaled component associated with maintenance work on the metro line and 95%
confidence interval for incoming flows in the RER and metro lines.

Figure 12. Log-scaled components associated with strike effect and 95% confidence intervals for
incoming flows in RER and metro lines for the period from December 2019 to January 2020.

at the RATP transport operator, severely disrupting its entire public transportation network.
Comparison of the impact of this strike on the riderships of the two lines is visualized in
Figure 12.

The study of these profiles shows that while the effect of the strike was negative for RER
line ridership, it was positive for the metro line from December 7. This phenomenon is due
to a transfer of flows from the RER line to the metro line. The metro is an automatic metro
line that maintained normal service during the strike, while the RER traffic was severely dis-
rupted. This phenomenon also led to numerous situations of congestion and overloading
of themetro. RER traffic improvedafter theChristmasholidays. In Figure 12,wehave framed
the Christmas holidays period, which separates two trends:
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• Before the vacation: The first weeks of the strike were particularly difficult for RER traf-
fic. The strike had a very marked effect on RER traffic, as it explains a decrease of more

than half in RER line ridership (eβ
(s)
t coefficient below 0.5). On the other hand, passen-

ger flows at themetro line increased steadily: the coefficient increases from eβ
(s)
t = 1 on

the 3rd day of the strike to more than 1.5 at the beginning of the vacation. As the strike
progressed, while the RER traffic was severely disrupted, the effect of the transfer to the
metro linewas increasingly significant, to the point of overloading the line bymore than
50% above reference use.

• After the vacation: As the situation improved for RER traffic, there was a gradual return
to a normal RER and metro line ridership situation.

Note the presence of the two Sundays December 8 and 15 (circled in red in Figure
12) during which there was almost no use of the RER line: the RER traffic was indeed
wholly cut off on those days. Uncertainty remained practically constant throughout
the period, except for Christmas Day and New Year’s Day: the cumulative effect of
these particular days and the strike makes the estimation of the strike’s impact more
uncertain.

5.4. Lockdown and post-lockdown periods related to the Covid-19 pandemic

The public transport sector was heavily impacted by the Covid-19 pandemic, making it a
key case study. Gkiotsalitis and Cats (2020) proposed a network-wide model that can set
the optimal frequency of transport lines under different distancing scenarios. The lockdown
period due to the Covid-19 pandemic had, unsurprisingly, a considerable impact on the use
of the transport hub. Most of the office workers who travel daily to ‘La Défense’ could not
go towork during this period because of the lockdown. The post-lockdown period also sig-
nificantly impacted the hub usage since telecommuting was strongly recommended. Here
more than anywhere else, the Covid-19 pandemic period had a decisive effect on travel
habits. We present the regression coefficients associatedwith the periods of lockdown and
post-lockdown in Figure 13.

For both transport lines (see Figure 13), there is an effect of the almost total loss of
ridership during the lockdown period fromMarch 17, 2020, to May 11, 2020. The β

(s)
t coef-

ficient is around -3 during this period and thus eβ
(s)
t around zero. There is no noticeable

difference between weekdays and weekends: no one was present at the access to the lines
on any day. We note an odd behavior that maximizes the lockdown effect the day before
post-lockdown for the RER.

The impact of the post-lockdown period (fromMay 11th), which is very visible in Figure
13, shows similarities and differences between the two lines. First of all, there is, for both
cases, a slow return to a normal situation with a surprising wave profile: post-lockdown
had a stronger effect on the decrease in ridership on weekdays than on weekend days.
While this effect is visible in both cases, it is more pronounced for the RER line than for the
metro. In addition to being a place of work, ’La Défense’ is also a major shopping center in
the Parisian region. Companies maintained pressure to keep telecommuting beyond legal
post-lockdown. There may have been a stronger psychological acceptability of taking risks
for shopping and individual leisure activities than for work.
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Figure 13. Log-scaled components associated with lockdown/post-lockdown periods and 95% confi-
dence interval for incoming flows in RER and metro lines.

We assume that, while this period of social distancing resulted in a strong incentive to
adopt telecommuting, the impacts on weekend habits, i.e. shopping in this case, are dif-
ferent. Since the RER suburban train connects the ‘La Défense’ hub to more suburbs than
metro line 1, it affects more people, making this hypothetical effect more visible on the
RER line ridership than on the metro one. We frame the summer vacation period, which
seemed to completely suppress the wave profile of a return to normal. Uncertainty also
increasedduring this period. Thevacationperiod completely changed the return-to-normal
profile, no doubt due to the fact that during the summer vacation, the RER line was under
maintenance work on weekends (circled in blue in Figure 13). The phenomenon of declin-
ing use of stations can therefore be explained by two variables: post-lockdown period and
maintenancework. For this reason, uncertainty also increased during the summer vacation.

6. Conclusion

This paper has presented the analysis of ticketing data collected at several control points of
amultimodal transportationhub, each servingaccess to a transport line, basedon structural
models of time series decomposition. We focused our analysis on daily ridership collected
over nine years. The strength of such models lies in their explanatory capacity. They are
capable of highlighting long-term phenomena on the ridership, such as the trend and sea-
sonality (annual, weekly) and the impact of exogenous factors, whether anticipated, such as
maintenance work or not, such as strikes or the Covid-19 health crisis. Through the regres-
sion coefficients of the decomposition model, we can quantify this impact separately for
each factor, which is impossiblewith other learning-basedmodels. Thesemodels also allow
us to predict daily ridership over several time horizons. Since both transit lines serve the
same transit stations, the decomposition was able to identify and quantify some modal
shifts between the two lines, particularly duringperiods ofmaintenancework. In this article,
we have addressed all the questions relating to the estimation of thesemodels’ parameters,
in order to obtain a decomposition appropriate to the data under consideration. However,
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despite their strong descriptive aspect, structural time series models require fine calibra-
tion and extensive statistical knowledge. Moreover, it is necessary to succeed in combining
business knowledge with modeling choices. Some practical cases that can use this type of
work may concern feedback on the impact of typical events such as maintenance work or
strikes.

Several extensions to this work are to be expected. It will be interesting to work
at a shorter time-scale, to study events with well-localized effects, such as concerts or
evening work. The extension to multivariate time series is also a relevant continuation of
this work. A multivariate model considering several mobility data would implicitly intro-
duce a covariance structure between the error terms of the different time series, thus
providing us with correlation information between the errors of several series. Another
avenue of work would be to combine this type of model with machine learning mod-
els to predict or detect anomalies over short or medium-term time horizons. the fine
analysis of residuals can also allow the detection of outliers A transferability of this
work to other case studies is possible due to the adaptability of these models. For this
reason we make available the source code for the analyzes with the dlm package at
https://github.com/pdenailly/TransportHub_TimeSeriesDecomposition.
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Appendices

Appendix 1. Model estimation

Kalman filter allows to estimate the state vector xt , given the parameters θ . Detailed formulas can be
found in Shumway and Stoffer (1982). Three estimation stages are generally used in this framework:
prediction, filtering, and smoothing. Noting xst the expectation of xt conditionally to observeddata up
to time s andPst the covariancematrix of xt conditionally to observed data up to time s, the prediction,
filtering and smoothing steps are defined as follows:

• The prediction step consists in evaluating xt−1
t and Pt−1

t based on xt−1
t−1 and Pt−1

t−1.
• The filtering step consists in evaluating xtt and P

t
t based on the current observation log(yt) and the

quantities xt−1
t and Pt−1

t . It is a matter of correcting the predictions obtained in the previous step,
using this new available information. Kalman filter generally refers to the iterated prediction and
filtering steps for t = 1, . . . , n.

• The purpose of the smoothing step is to calculate xnt and Pnt knowing all the data. These two
quantities are recursively obtained for t = n, . . . , 1.

Several methods can be used to estimate state space model parameters. One example is the
expectation-maximization (EM) algorithm, originally developed byDempster, Laird, and Rubin (1977)
and then exploited by Shumway and Stoffer (1982) for the estimation of linear state space model
parameters. For our model, the EM algorithm aims at maximizing log-likelihood with respect to all
parameters θ . The algorithm iterates two steps until convergence: a step to estimate smoothed
components xnt knowing the parameters and a parameter update step knowing the smoothed
components.

Another parameter estimation method used in the state space models framework is the quasi-
Newton method implemented in the BFGS algorithm, which is based on a gradient projection and
on the approximation of the hessian matrix of log-likelihood by a matrix with limited memory (Byrd
et al. 1995). This was the method chosen in the present study as convergence is generally faster
than with the EM algorithm and restrictions on parameter spaces are accepted (Petris, Petrone, and
Campagnoli 2009).



22 P. DE NAILLY ET AL.

Appendix 2. Criteria for comparingmodels

To evaluate different models so as to select the best one, we based our work on two criteria:

• The Akaike information criterion or AIC (Akaike 1974), defined by

AIC = −2L + 2κ , (A1)

where L is themodel log-likelihood and κ the number of estimated parameters. Note that the best
model is the one minimizing the AIC criterion.

• The root mean square error between observations and forecasts (RMSE), evaluated on a test
sample for different forecasting horizons h ≥ 1:

RMSE(h) =
√√√√n−h∑

i=1

(ŷi+h(i) − yi+h)
2

n − h
, (A2)

where ŷi+h(i) is the forecast of yi+h obtained from observations (y1, . . . , yi).

Appendix 3. Model calibration

The model should give priority to the descriptive aspect rather than the predictive one to make as
much sense as possible of the decomposition; a preference for deterministic components will materi-
alize this point. To determine a suitablemodel for our data, we first specified some apriori knowledge
about the configuration it should take. This is first of all, the choice of which components should be
included in the model. In Section 3.2 we determined that long-term trends, weekly and yearly sea-
sonalities seemed to explain a large part of the variations in ridership and some possible exogenous
factors. More specifically, we look for a model with a slow evolution of trends, deterministic and sta-
ble seasonal components in which there is little variability. Some exogenous effects should also be
added, with the possibility of varying in intensity to quantify their impact at different periods. These
choices are formalized in the components as follows:

• Trend
To ensure that the trend (Equation (3)) only reflects changes in ridership over the long term (9
years), we constrained the trend’s variance not to exceed an upper bound (< 3 × 10−7).

• Weekly seasonality
To better visualize the effect of the different days of the week on station ridership, we chose a
deterministic component that does not contain stochastic modifications (ωs

t = 0).
• Yearly seasonality

Similarly to the weekly seasonal component, we opted for a deterministic yearly component. Vari-

ances σ 2
ωfu

and σ 2
ωf∗u of the error terms were set to zero so that the two errors ω

fu
t and ω

f∗u
t are zero

(see Equations (5) to (7)). Theobjective herewas tohighlight the variations in ridership, on average,
over a year.

• Regression coefficients
The effect of exogenous factors should be allowed to vary over time to take account of their
temporal evolution. Thus, no constraint was imposed on the parameters σ 2

β(j) of this component.

The number of harmonics in the annual seasonal component is not a parameter that can be
calibrated a priori, so this choice will bemade on the basis of the AIC (Akaike 1974) and RMSEmetrics.

Considering the constraints described above, several model configurations were compared for
the two transport lines: the absence of an annual seasonal component (k = 0) and the number of
harmonics k varying overall 2, 4, 6, 8, 10, 12. These different models were tested with and without
the presence of explanatory variables. The choice of the number of harmonics was based on the
minimization of the AIC criterion evaluated over the learning period (years 2011–2015), and the
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Figure A1. RMSE criterion obtained for different configurations of the model over the years 2016 and
2017 by varying the h forecast horizon from 1 to 7.

RMSE calculated on the test basis (years 2016 and 2017) both described in Appendix B1. The criteria
obtained for each of the considered configurations are given in Table A1 and Figure A1.

Table A1 shows that theAIC criterion is betterwhen the number of harmonics increases. This result
is consistent because the number of parameters to be estimated does not increase when the num-
ber of harmonics of the annual component is increased, but the likelihood does. The AIC criterion
obtained from models with covariates is better than that obtained from models without covariates.
Between models with 10 and 12 harmonics, there is no significant improvement in the AIC criterion.
The RMSE criterion is more interesting here to distinguish between the models. As expected, the
increase in thepredictionhorizonh leads to an increase in theprediction error.Modelswith covariates
improve prediction performance. Several observations emerge from Figure A1:

• Formodelswithout exogenousvariables, the choiceof tenharmonics is better for theRERdata, and
the model without the annual component is better for metro data. While an annual component
capable of capturing peak and off-peak periods is a good addition to the first case model, it is
penalizing in the second case. The 2017 and 2018 summer ridership profiles are totally modified
due to RER line maintenance work.

• For models with exogenous variables, despite close prediction capabilities between the differ-
ent models, versions with k = 6 harmonics seem to be slightly better than the others for both
transport lines (Metro 1 for h = 4, 5, 6, 7 and RER A for h = 2, 3, 4, 5, 6, 7).
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Table A1. AIC criterion obtained for different configurations of
the model: number of harmonics (yearly component), presence or
absence of covariates.

AIC

Transport line Harmonics Without covariates With covariates

0 836 −3880
2 822 −4108
4 800 −4280

RER A 6 766 −4430
8 762 −4504
10 754 −4514
12 750 −4540
0 942 −4262
2 930 −4634
4 916 −4846

Metro 1 6 900 −4994
8 874 −5122
10 872 −5158
12 872 −5168

Appendix 4. Choice of model type between additive andmultiplicative

The aim of this appendix is to compare multiplicative (Equation (A3)) and additive (Equation (A4))
decomposition models in order to select the model that is most suitable to explain our flow data.

log(yt) = lt + st + ft +
p∑

j=1

β
(j)
t X(j)

t + νt , (A3)

yt = lt + st + ft +
p∑

j=1

β
(j)
t X(j)

t + νt , (A4)

There are two ways to decide between the two types of models:

• Empirical observations
The multiplicative model can deal with the cumulative effect of several components that

negatively affect the flows, while an additive model can theoretically consider component accu-
mulations as negative. This is what we have observed by visualizing one-step predictions made
with the two forms of models. For example, let’s take August 2017, where a bank holiday occurred
on August 15, during the summer holidays. Figure A2 shows the incoming traffic in the RER A sta-
tion and the predictionsmade by the twomodels. It can be seen that the additivemodel considers
a very strong effect which, when combined with the summer holiday effect, leads to a distorted
prediction during the bank holiday.

• Comparisons between predictive capabilities
These two models are compared based on their predictive capacities over several time hori-

zons. To do this, we used the notion of RMSE per forecast horizon (see Appendix 2). Learning
periods covered the years 2011–2015, and the test basis was the year 2016. The results are pre-
sented in Figure A3. The multiplicative model provides better predictions for the RER A daily
inflows than the additive model, whatever the forecast horizon (h). This result is less pronounced
for metro 1, where the multiplicative model is only better for predictions at h = 4 to h = 7. In
this case, summer maintenance work was carried out. At small forecast horizons, the Kalman
algorithm’s filtering phase has more difficulty correcting the components in the case of log data
of themultiplicativemodel than in the case of non-log data of the additivemodel when themain-
tenance period is encountered. At larger forecast horizons, the difference disappears because the
components had more time to adapt to the change.
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Figure A2. Observed and one-day ahead predicted daily inflows of people to the RER A line at La
Défense Grande Arche station. Observed counts are in black, predictions made with the additive model
in red, and predictions made with the multiplicative model in purple.

Figure A3. RMSE(h) errors calculated for forecast horizon (h) ranging from 1 to 7 over the year 2016 for
the additive and multiplicative models applied to daily inflows to RER A (top) and Metro 1 (bottom).

We chose the multiplicative model for our series decomposition. This model has the advantage
over the additive model of forcing observed values to remain positive, and its prediction capacities
are close to those of the additive model.
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