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 sont les variantes les plus efficaces. Parmi les trois codages testés, aucun ne supplante les autres. La température initiale, la longueur du palier de température, le facteur multiplicatif de décroissance de la température et le test d'arrêt ont été étudiés au moyen d'un plan factoriel 2 4 . Le paramètre le plus important est la longueur du palier de température, le moins important est la température initiale, et le coefficient de décroissance de la température et le nombre de paliers pour effectuer l'arrêt ont une importance similaire.

Introduction

Contrairement aux méthodes classiques de la recherche opérationnelle (programmation mathématique, programmation mixte, programmation dynamique, méthodes arbores-centes), les algorithmes stochastiques de type Recuit Simulé (RS) n'exigent aucune connaissance des propriétés mathématiques du problème; il est seulement nécessaire de pouvoir évaluer la qualité d'une solution. Il s'agit là d'un point qui plaide en leur faveur pour des applications en Génie des Procédés, où les fonctions objectifs sont généralement évaluées à partir de modèles de simulation complexes, dont aucune expression analytique n'est Nomenclature A coefficient utilisé pour calculer la valeur initiale de la température B coefficient utilisé pour calculer la longueur du palier de température C coefficient utilisé dans le schéma de décroissance de la température D nombre de paliers successifs sur lesquels la solution courante demeure inchangée (test d'arrêt) ddl nombre de degrés de liberté f fonction objectif f * valeur de la fonction objectif pour la solution théorique fa valeur minimale de la fonction objectif déterminée par la procédure du recuit simulé GA probabilité de [START_REF] Gauber | Time-dependent statistics of the Ising Model[END_REF], décroissance de la température de [1] GK probabilité de [START_REF] Gauber | Time-dependent statistics of the Ising Model[END_REF], décroissance de la température de [START_REF] Kirkpatrick | Simulated annealing: theory and applications[END_REF] h amplitude de l'intervalle de confiance pour sm2 H matrice d'Hadamard I matrice identité MA probabilité de [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF], décroissance de la température de [1] MK probabilité de [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF], décroissance de la température de [ disponible, ce qui rend impossible l'étude de leurs propriétés mathématiques. De plus, ces algorithmes sont également faciles à mettre en oeuvre (le moteur est commun, il y a moins de programmation spécifique à chaque problème traité). Le Tableau 1 récapitule les différences entre une approche de type recherche opérationnelle et la résolution du même problème par un algorithme stochastique. Ce Tableau semble plaider de fac ¸on irrévocable en faveur des algorithmes stochastiques, mais le fait que la précision des résultats ne soit pas maîtrisée, car les conditions d'arrêt ne le sont pas, constitue un handicap pour ces derniers. Par ailleurs, les algorithmes stochastiques comportent un grand nombre de paramètres, dont un mauvais réglage peut conduire à des solutions de piètre qualité. Néanmoins, ils sont très efficaces pour la détermination rapide de bonnes solutions à un problème posé, c'est pourquoi ils sont actuellement très en vogue.

Applications en génie des procédés

Au cours des deux dernières décennies, les méthodes d'optimisation stochastiques ont largement été mises en oeuvre dans divers domaines du génie des procédés, comme le montre l'étude statistique effectuée par [START_REF] Pibouleau | A survey of optimisation tools through ESCAPE symposia[END_REF]. Sans vouloir être exhaustif, il existe à titre d'exemple, des applications à la conception de séquences de séparation [START_REF] Floquet | Separation sequence synthesis: how to use simulated annealing procedure?[END_REF][START_REF] Laquerbe | Conception de séquences de séparation par un algorithme génétique[END_REF], de réseaux d'échangeurs de chaleur [START_REF] Dolan | Algorithmic efficiency of simulated annealing for heat exchanger network design[END_REF][START_REF] Athier | Synthesis of optimum heat exhanger networks by simulated annealing[END_REF], de réacteurs pour l'industrie chimique [START_REF] Cordero | Conception optimale de réseaux de réacteurs par une méthode mixte[END_REF], de distribution d'énergie [START_REF] Dolan | Process optimization via simulated annealing: application to network design[END_REF], aux problèmes d'ordonnancement [START_REF] Peyrol | Simulation par événements discrets d'un atelier de fabrication de composants électroniques[END_REF], ou à la modélisation des écoulements dans des locaux ventilés [START_REF] Laquerbe | Synthesis of RTD Models via stochastic procedures: simulated annealing and genetic algorithms[END_REF]. D'autres applications concernent l'optimisation [START_REF] Baudet | Ordonnancement à court terme d'un atelier discontinu de chimie fine[END_REF], la conception [START_REF] Bernal-Haro | Multi-objective batch plant design: a two-stage methodology. Part II. Development of a genetic algorithm and results analysis[END_REF] ou le remodelage [START_REF] Dedieu | A retrofit design strategy for multipurpose batch plants[END_REF] d'ateliers discontinus de chimie fine. Le codage des solutions potentielles d'un problème donné constitue un point d'autant plus important des méthodes d'optimisation stochastiques, que le nombre de contraintes est élevé, ce qui est souvent le cas dans les applications en génie des procédés. La stratégie utilisée dans les exemples précédents consistait à introduire directement les contraintes dans le codage. Toutes ces études font ressortir la difficulté de choisir, d'une part entre les variantes possibles, et d'autre part de définir des valeurs des paramètres de contrôle pour obtenir des solutions de bonne qualité [START_REF] Davin | Optimisation des paramètres du recuit simulé en génie des procédés appliquée aux réseaux d'appareillages (réacteurs, échangeurs de chaleur)[END_REF].

Méthode du recuit simulé

Principes de la méthode

La méthode du recuit simulé, popularisée par [START_REF] Kirkpatrick | Simulated annealing: theory and applications[END_REF], est une procédure d'optimisation multi-variables développée depuis une vingtaine d'années environ. Contrairement aux méthodes déterministes, qui sont pour la plupart des méthodes locales, il s'agit d'une procédure évolutive qui permet d'éviter de se bloquer dans des zones de minima locaux, en autorisant occasionnellement un accroissement de la fonction objectif. Elle se fonde sur une analogie entre les problèmes d'optimisation à caractère combinatoire et ceux de la physique statistique représentant le comportement d'une opération thermodynamique, le recuit physique des solides.

Le recuit physique des métaux

Considérons par exemple le cas de la croissance d'un monocristal. La technique du recuit consiste à chauffer préalablement le matériau pour le porter quasiment à l'état liquide. L'état thermodynamique du système peut être traduit par une fonction thermodynamique: l'énergie libre. A l'état liquide, cette énergie est élevée.

Le refroidissement lent du système, en marquant des paliers de température, redistribue l'arrangement des atomes de la matière jusqu'à atteindre un état énergétique faible, celui de grands cristaux, soit un état stable. Cet état stable correspond au minimum absolu de l'énergie libre (E). Si la vitesse de refroidissement n'est pas contrôlée correctement, ou si la température initiale n'est pas suffisamment élevée, le solide n'atteint pas l'équilibre thermique à chaque palier de température; dans de telles circonstances, il est obtenu une structure amorphe, état métastable qui correspond à un minimum local de l'énergie libre. Il est donc nécessaire d'atteindre l'équilibre thermodynamique pour chaque palier de température, qui est caractérisé par une fonction de distribution de Boltzmann des états énergétiques. La probabilité pour un système de posséder une énergie donnée E à la température T est ainsi proportionnelle à exp(-E/k b T ) où k b est la constante de Boltzmann. A proximité du zéro absolu, seuls les états de faible énergie ont une probabilité non nulle d'exister.

Ainsi même à basse température, une transition peut subvenir d'un niveau énergétique bas vers un niveau plus haut. La probabilité de telles transitions est d'autant plus faible que le niveau de température est bas. Ce sont ces transitions qui sont supposées être à l'origine des mécanismes permettant d'atteindre in fine un état d'énergie minimale au lieu de conduire à un état métastable.

Transposition du recuit simulé comme technique d'optimisation

A partir d'un arrangement moléculaire initial (dans ce cas, une solution acceptable S du problème d'optimisation), d'état énergétique E i donné correspondant à une température T i particulière, un nouvel arrangement moléculaire (solution acceptable S ) possédant une énergie E j est généré de manière stochastique. Si la nouvelle solution acceptable a pour effet d'abaisser l'énergie, E j ≤ E i (c'est à dire de diminuer le critère, f(S ) < f(S), le changement s'opère car l'état est plus stable. Si, au contraire, l'état énergétique est plus élevé, E j ≥ E i (le critère croît), la transition peut être acceptée ou non selon une règle statistique. Ces règles d'acceptation permettent de s'extraire de zones à minima locaux, en effet:

• à température élevée, cette probabilité est grande, c'est-àdire que de très nombreuses solutions dégradant le critère seront conservées, on assure ainsi une large exploration de l'espace de recherche; • à température basse, cette probabilité tend vers zéro, donc pratiquement toutes les solutions dégradant le critère seront refusés; la procédure tend alors à se comporter comme une méthode de descente classique.

L'implémentation de la procédure du recuit simulé nécessite de fixer quatre paramètres, qui jouent un rôle déterminant sur son efficacité.

(i) La température initiale. (ii) La longueur du palier de température. (iii) Le schéma de décroissance de la température. (iv) Le nombre de paliers successifs sur lesquels la solution courante S n'évolue pas, et provoque l'arrêt de la recherche.

Objectifs de l'étude

A partir de fonctions mathématiques dont les solutions sont connues, des essais numériques systématiques, fondés sur les plans d'expériences, ont été effectués afin de dégager des idées sur la fac ¸on de fixer les divers paramètres, ainsi que les variantes de mise en oeuvre de la méthode du recuit simulé. En essayant de dégager des grandes orientations dans le choix des paramètres de cet algorithme, cette étude vise à pallier l'empirisme qui est généralement présent dans la mise en oeuvre de ces méthodes, et qui peut conduire à un très grand nombre d'essais avant de déterminer un jeu de paramètres adéquats.

Variantes de mise en oeuvre et paramètres de la procédure du recuit simulé

A partir d'une solution acceptable S, codée en binaire, du problème d'optimisation, une nouvelle solution acceptable S est généré de manière stochastique. Si la nouvelle solution acceptable a pour effet de diminuer le critère, f(S ) < f(S), le changement s'opère car l'état est plus stable. Si, au contraire le critère croît, la nouvelle solution S peut être acceptée ou non selon une règle statistique. La bibliographie fait ressortir l'existence de deux protocoles classiques communément utilisés:

• la procédure de [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF], notée , où l'acceptation de la nouvelle solution est réalisée avec une probabilité égale à:

( f = (f (S ) -f (S))) = exp -f T i si f ≥ 0; p = 1 si f < 0 (1)
• la variante proposée par [START_REF] Gauber | Time-dependent statistics of the Ising Model[END_REF], notée , où la probabilité d'acceptation est uniforme, et définie par:

p( f = (f (S ) -f (S))) = exp -f T i /(1 + exp(-f/T i )) (2) 
En appliquant une de ces règle d'acceptation, qui permettent de s'extraire de zones à minima locaux, sur un palier de température constant, il est assuré que l'évolution du système vers son équilibre thermodynamique, correspond au minimum d'énergie libre atteignable pour la valeur de la température considérée. Lorsque cet équilibre est atteint, après un nombre "suffisant" de transformations élémentaires, la température est abaissée "légèrement" selon un schéma de décroissance donné, le systéme évolue à nouveau pour aboutir à un nouvel état d'équilibre. Il existe deux schémas classiques de décroissance de la température:

• la décroissance géométrique, proposée par [START_REF] Kirkpatrick | Simulated annealing: theory and applications[END_REF], notée :

T i+1 = CT i avec 0 < C < 1 (3) 
• la procédure utilisée par [START_REF] Aarts | Statistical cooling: a general approach to combinatorial optimization problems[END_REF], notée :

T i+1 = T i (1 + (T i ln(1 + C)/3σ)) (4)
où σ désigne l'écart-type de l'ensemble des valeurs calculées de la fonction objectif à la température courante et C, le paramètre qui contrôle la vitesse du recuit; plus C est faible, plus le recuit est lent. Ces procédures sont discutées par [START_REF] Dolan | Algorithmic efficiency of simulated annealing for heat exchanger network design[END_REF][START_REF] Patel | Preliminary design of multiproduct noncontinuous plants using simulated annealing[END_REF].

Outre les variantes qui viennent d'être décrites, l'implémentation de la procédure du recuit simulé nécessite de fixer quatre paramètres, qui jouent un rôle déterminant sur son efficacité.

• La température initiale, dont la dimension (en unité) est celle de la fonction objectif, et dont la valeur dépend directement de la valeur initiale de cette fonction. Son choix devra être tel que la plupart des dégradations sont autorisées en début de procédure, et que seules les transitions améliorant le critère sont acceptées en fin de procédure. Une étude [START_REF] Athier | Synthesis of optimum heat exhanger networks by simulated annealing[END_REF] a montré qu'une valeur initiale de la température de l'ordre de celle de la fonction objectif initiale, conduit à de bons résultats. Ainsi, l'initialisation proposée est définie par:

T = f (S) A ( 5 
)
où f(S) représente la valeur du critère pour la solution initiale S, et A un paramètre à fixer. • La longueur du palier, qui représente le nombre de solutions testées avant d'appliquer le schéma de décroissance de la température, est supposée constante pour l'ensemble des niveaux de température. Si cette longueur est trop faible, l'exploration de l'espace de recherche peut être trop partielle, alors qu'une valeur trop importante peut avoir pour effet de ralentir, voire même de bloquer la recherche. La stratégie proposée consiste à choisir la longueur du palier proportionnelle à la longueur du codage de l'ensemble des n variables du problème:

L = B n i=1
(Longueur du codage de la variable i) (6)

B est le deuxième paramètre à choisir.

• Le troisième paramètre est le coefficient C de réduction de la température, qui doit être tel que:

0 < C < 1 (7)
Une valeur trop faible pour ce coefficient peut provoquer une exploration très partielle de l'espace de recherche. Les valeurs classiques de ce coefficient se situent dans l'intervalle [0.75, 0.95]. • La procédure du recuit simulé est souvent arrêtée lorsque la température devient inférieure à une valeur donnée. Le choix de cette valeur limite, qui conditionne l'efficacité de la recherche, est très délicat car ce terme est étroitement lié aux autres paramètres de la méthode (température initiale, longueur des paliers, schéma de réduction de la température). Ainsi, un test d'arrêt différent portant sur la non évolution de la solution courante S sur D paliers consécutifs a été mis en oeuvre; ce quatrième paramètre D a été choisi tel que:

0 < D = 9 (8) 
L'algorithme de la méthode du recuit simulé est défini par les étapes suivantes.

L'objectif de ce travail consiste en premier lieu à étudier sur des fonctions mathématiques dont les solutions sont connues (fonctions utilisées par [START_REF] Alliot | Intelligence Artificielle et Informatique Théorique[END_REF]), les diverses variantes de la méthode du recuit simulé, reportées ci-dessous:

• GA: Probabilité de [START_REF] Gauber | Time-dependent statistics of the Ising Model[END_REF], décroissance de la température de [START_REF] Aarts | Statistical cooling: a general approach to combinatorial optimization problems[END_REF] • GK: Probabilité de [START_REF] Gauber | Time-dependent statistics of the Ising Model[END_REF], décroissance de la température de [START_REF] Kirkpatrick | Simulated annealing: theory and applications[END_REF] • MA: Probabilité de [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF], décroissance de la température de [START_REF] Aarts | Statistical cooling: a general approach to combinatorial optimization problems[END_REF] • MK: Probabilité de [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF], décroissance de la température de [START_REF] Kirkpatrick | Simulated annealing: theory and applications[END_REF] Ensuite les effets et interactions des quatre paramètres de contrôle (A, B, C et D) seront analysés en utilisant la technique des plans d'expériences centrés.

Fonctions étudiées et divers codages

Pour chaque cas traité, la longueur du codage dépend conjointement de l'intervalle de variation des variables, c'est à dire de l'espace de recherche, et de la précision requise sur ces variables.

Dans toute la suite, il sera considéré que la convergence est atteinte lorsque |f * -fa| < 10 -3 où f * et fa désignent respectivement la solution théorique et la solution approchée par la procédure du recuit simulé.

Les quatre premières fonctions étudiées possèdent plusieurs minima locaux, alors que les deux dernières comportent uniquement un optimum global, mais sont délicates à optimiser. Pour chacune de ces fonctions, trois codages arbitraires sont utilisés, afin d'analyser leur influence. Le codage 1, dans lequel le signe et la partie entière sont codés en binaire, et la première décimale est représentée par quatre bits de poids respectifs 0.1; 0.2; 0.4 et 0.6, dont la somme est supérieure à l'unité. Pour la deuxième décimale, les poids sont divisés par 10, et ainsi de suite. Le codage 2 est analogue au codage 1 en ce qui concerne le signe et la partie entière, et la première décimale est codée par quatre bits de poids respectifs 0.1, 0.2, 0.3 et 0.3, dont la somme vaut 0.9, mais dans laquelle le terme 0.3 apparaît deux fois, ce qui peut créer un biais. Pour la deuxième décimale, les poids sont divisés par 10, et ainsi de suite. Enfin, le codage 3, qui est également analogue au codage 1 pour son signe et sa partie entière, représente la partie décimale par un codage binaire de type entier, qui est par exemple divisé par 1000, si l'on désire coder trois décimales. Les valeurs réelles des variables sont utilisées pour calculer la fonction objectif. La procédure de calcul des valeurs réelles des variables est analogue pour tous les autres codes et toutes les autres fonctions.

Fonction dite "boîte d'oeufs"

Nom: BOITE f (x1, x2) = -x1 sin( |x1|) -x2 sin( |x2|) x1 ∈ [-512, 512], x2 

Fonction de Griewank

Nom: GRIE

f (x 1 , x 2 ) = 0.00025(x1 2 + x2 2 ) -cos(x1) cos x2 √ 2 x1 ∈ [-π, π], x2 ∈ [-π, π] f * = -1 x1 * = x2 = 0
où les composantes x1 et x2 sont définies à 10 -7 près.

Pour les codages 1 et 2, la longueur du codage pour une variable est égale à 34; pour le codage 3, cette longueur vaut 31 (Fig. 2). Pour les codages 1 et 2, la longueur du codage pour une variable est égale à 20; pour le codage 3, cette longueur vaut 18 (Fig. 3).

Fonction de De Jong

Fonction de Michalevitch

Nom: MICHA

f (x) = -sin(x) sin 10x 2 π 20 x ∈ [0, π] f * = -1 x * = π 2
où la composante x est définie à 10 -7 près. La variable étant positive, le signe n'est pas codé; pour les codages 1 et 2, la longueur du codage est égale à 33; pour le codage 3, cette longueur vaut 30 (Fig. 4).

Fonction de Pibouleau

Nom: PIB

f (x1, x2) = (1 -x1) 2 + k(x2 2 -x1 2 ) aveck = 0.001 x1 ∈ [-π, π], x2 ∈ [-π, π] f * = - k 1 -k = -0.001 x1 * = 1 1 -k , x2 * = 0
où les composantes x1 et x2 sont définies à 10 -7 près.

Pour les codages 1 et 2, la longueur du codage pour une variable est égale à 34; pour le codage 3, cette longueur vaut 31 (Fig. 5). 

Fonction de Rosenbrock

Nom: ROS

f (x1, x2) = 100(x1 2 -x2) 2 + (1 -x1) 2 x1 ∈ [-π, π], x2 ∈ [-π, π] f * = 0 x1 * = x2 * = 1
où les composantes x1 et x2 sont définies à 10 -7 près.

Pour les codages 1 et 2, la longueur du codage pour une variable est égale à 34; pour le codage 3, cette longueur vaut 31 (Fig. 6).

Génération d'une solution S voisine de la solution courante S

Les problèmes testés étant purement mathématiques, il est supposé que les codages de chaque variable sont identiques pour toutes, ce qui peut ne pas être le cas pour des problèmes physiques où les variables ont des ordres de grandeurs différents. Ainsi le vecteur binaire S représentant l'ensemble des variables du problème est de longueur m avec m = n × lcode où n et lcode désignent respectivement le nombre de variables du problème et la longueur du codage de chaque variable.

La génération d'une solution S voisine de la solution courante S est effectuée comme suit. Un nombre entier k compris entre 1 et m est généré selon une loi uniforme; pour définir S , on remplace la k iéme composante du vecteur S par son complément binaire.

Comparaison des méthodes

Essais effectués

Pour chaque fonction présentée ci-dessus, les valeurs choisies pour les quatre paramètres A, B, C et D sont reportées dans le Tableau 2.

En utilisant la technique des plans d'expériences centrés, il existe 17 combinaisons de paramètres (en tenant compte du centre des essais présenté en dernière position), comme il est mentionné dans le tableau ci-dessous. Pour chaque combinaison de ces paramètres, cinq essais consécutifs avec initialisations aléatoires ont été réalisés, ce qui conduit à 85 essais par fonction (Tableau 3).

Etude des succès

Rappelons que par définition, un succès est tel que |f * -fa| < 10 -3 où f * et fa désignent respectivement la solution théorique et la solution approchée par la procédure du recuit simulé.

Dans les tableaux de résultats, les conventions suivantes ont été utilisées (Tableaus 4-6):

• Valeurs en caractères normaux: pourcentage de succès (resp. échecs) sur 85 essais pour chaque fonction. • Moy-Méth: pourcentage moyen de succès (resp. échecs) sur les six fonctions, pour chaque méthode. • Moy-Fct: pourcentage moyen de succès (resp. échecs) sur les quatre méthodes, pour chaque fonction.

Etude des échecs notoires

Par définition, un échec notoire est tel que |f * -fa| > 1 où f * et fa désignent respectivement la solution théorique et la solution approchée par la procédure du recuit simulé (Tableaus 7-9). 

Discussion

De l'étude des succès, il peut être conclu que, quelque soit le codage:

• la méthode MK est la plus performante;

• la méthode de [START_REF] Aarts | Statistical cooling: a general approach to combinatorial optimization problems[END_REF] utilisée pour faire évoluer la température est la moins efficace.

Ces deux conclusions sont confirmées par l'étude des échecs.

Il est évident que pour traiter un problème physique, le codage est un élément primordial, qui doit pouvoir représenter sans ambiguïté et de manière biunivoque l'ensemble des solutions acceptables. Dans le cas présent, les trois codages mis en oeuvre satisfont ce principe, ont des longueurs comparables, et l'on ne note pas de différence significative sur les pourcentages moyens de succès et d'échecs par fonction selon le codage utilisé.

Par la suite l'étude sera poursuivie avec la méthode MK, en utilisant par exemple le codage 1.

Etude des effets et des interactions

Données de l'étude

Pour étudier les effets des quatre paramètres cités cidessus, ainsi que leurs interactions, un plan factoriel complet à quatre facteurs a été mis en oeuvre; son format général est donné dans le Tableau 10, où la sous-matrice carrée d'ordre 16 définie par les effets, les interactions et la moyenne constitue une matrice d'Hadamard, notée H, qui vérifie donc:

H T H = 16I (9) 
Pour chaque combinaison de paramètres, le terme sm1 (second membre 1) représente le pourcentage de succès sur les cinq essais réalisés avec initialisations aléatoires, et le terme sm2 donne le nombre moyen (exprimé en milliers) d'évaluations de la fonction objectif. La valeur de sm2 n'est pas reportée lorsque sm1 est nul. Les valeurs des seconds membres sont reportées dans le tableau ci-après pour chacune des six fonctions étudiées (Tableau 11).

Effets et interactions

Les effets et interactions, pour le critère sm1, puis pour le critère sm1/sm2, des variables du plan d'expériences sont reportées dans les tableaux ci-dessous (Tableau 12).

En considérant le seul critère sm1 (pourcentage de succès), on ne peut pas dégager de conclusion nette sur les effets moyens des paramètres A, B, C et D; il en est de même pour leurs interactions (Tableau 12). Ce constat conduit à utiliser un second critère, constitué par le rapport sm1/sm2 (terme supposé nul lorsque sm1 est nul), qui semble mieux représenter l'efficacité d'une méthode (Tableau 13).

Analyse qualitative

Le classement des effets et interactions pour le critère sm1/sm2 est reporté dans le tableau ci-dessous (Tableau 14 
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il semble normal que le paramètre A ait peu d'influence sur la convergence. Ce constat est confirmée par les faibles interactions d'ordre deux faisant intervenir A. Après l'élimination de ce paramètre, on constate, d'après les effets moyens et les interactions, que les paramètres C et D se comportent sensiblement de la même manière, l'effet moyen du paramètre C étant toutefois légèrement plus important.

Analyse quantitative: essais au centre du plan (A = 1, B = 1, C = 0.85, D = 5)

Dans la mesure où pour chaque fonction, au plus cinq mesures par point du plan sont disponibles pour le terme sm1/sm2 (en cas de non convergence pour un essai, le nombre d'évaluations de la fonction objectif n'est pas connu), le test de Fisher portant sur l'égalité des variances est non significatif, et il peut donc être considéré que la variance des mesures σ2(sm2), demeure constante pour l'ensemble des points du plan. La variance commune σ 2 de sm2 pour les effets moyens, les interactions, et la moyenne calculées à partir des 16 mesures, est alors donnée par: Le nombre de réponses assurant la convergence variant selon l'exemple, l'analyse est effectuée fonction par fonction. Dans un premier temps cinq essais (c'est à dire cinq exécutions de la procédure du recuit simulé, avec des initialisations aléatoires) par fonction ont été effectués, et pour certaines (Boîte, Micha, Pib), le nombre d'essais concluants était égal à un (conduisant à un nombre de degrés de liberté (ddl) infini), ou à deux (nombre de ddl égal à un, fournissant une valeur très élevée dans la table de Student). Pour pallier cette difficulté, le nombre d'essais a été augmenté à 10.

σ 2 = 1 16 (16σ 2 (sm2)) = 1 16 (σ 2 (sm2)) (10a) sachant que: sm2 = 1 n n i=1 nev i ; ddl = n -1 (10b) σ 2 (sm2) = 1 n(n -1) n i=1 (nev i -sm2) 2 ( 
La variable considérée est le rapport sm1/sm2, où l'intervalle de confiance pour sm2 a une amplitude égale à h; l'intervalle de confiance pour le rapport sm1/sm2 est donné par:

sm1 sm2 + h , sm1 sm2 -h ( 11 
)
Cet intervalle de confiance n'est pas symétrique par rapport à la valeur de sm1/sm2. On peut aisément se ramener au cas classique d'un intervalle symétrique, en supposant l'écart-type de sm2 faible devant sm2, hypothèse qui a été confirmée par les divers calculs. Soit α1 le terme:

α1 = sm1 sm2 + h = sm1 1 sm2 × 1 1 + h/sm2 ≈ sm1 1 sm2 × 1 - h sm2 (12) 
il vient:

α1 = sm1 1 sm2 - h sm 2 2 = sm1 sm2 - h × sm1 sm 2 2 = sm1 sm2 -β (13) 
avec:

β = h × sm1 sm2 2 (14) 
De même, on a:

α2 = sm1 sm2 -h = sm1 sm2 + β ( 15 
)
où β est toujours défini par la relation [START_REF] Laquerbe | Conception de séquences de séparation par un algorithme génétique[END_REF]. Les valeurs de sm1 et sm2 sont mentionnées dans le Tableau 15. Les nombres d'évaluations (exprimés en milliers) 

Conclusion

Les principales variantes de mise en oeuvre de la méthode du recuit simulé, divers codages des variables, ainsi que les quatre principaux paramètres de contrôle (température initiale, longueur du palier de température, décroissance de la température et test d'arrêt) ont été étudiés à partir de six fonctions dont les solutions analytiques sont connues.

Un plan factoriel complet 2 4 a été mis en oeuvre pour définir les variations des paramètres de contrôle, et pour Dans un premier temps, l'étude du taux de convergence a permis de constater qu'au niveau de la mise en oeuvre, la procédure de [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF] couplée avec le schéma de décroissance de la température de [START_REF] Kirkpatrick | Simulated annealing: theory and applications[END_REF] fournissait les meilleurs résultats, alors que le schéma de décroissance de la température de [START_REF] Aarts | Statistical cooling: a general approach to combinatorial optimization problems[END_REF] conduisait aux plus mauvais. Cette conclusion a été confortée par l'étude du taux d'échecs (c'est à dire de non convergence).

Trois codages pour les variables ont été également utilisés, mais aucune conclusion nette au sujet de leur influence sur le taux de convergence n'a pu être dégagée. Il est évident que pour traiter un problème physique, le codage est un élément primordial, qui doit pouvoir représenter sans ambiguïté et de manière biunivoque l'ensemble des solutions acceptables. Dans le cas présent, les trois codages mis en oeuvre satisfont ce principe, ont des longueurs comparables, et aucune différence significative n'est notée sur les pourcentages moyens de succès et d'échecs par fonction selon le codage utilisé.

Ces deux constats ont conduit à poursuivre l'étude des effets et interactions des quatre paramètres de contrôle avec un seul codage et l'implémentation de Metropolis -Kirkpatrick. Le plan factoriel complet 2 4 a été mis en oeuvre pour les six fonctions avec cinq essais à chaque sommet du plan, et avec deux types de réponses: le pourcentage de succès (sm1) et l'efficacité définie par le rapport sm1/sm2 où sm2 représente le nombre d'évaluations (exprimé en milliers) de la fonction objectif. En considérant la seule réponse sm1, aucune conclusion nette n'a pu être dégagée sur les effets moyens et interactions des paramètres, alors que la réponse sm1/sm2 a permis de constater qualitativement et quantitativement des tendances claires. L'étude quantitative a été réalisée pour chaque fonction, de fac ¸on classique au centre du plan à partir de 10 essais avec initialisations aléatoires.

Le calcul des intervalles de confiance a permis de déterminer les seuils de signification des effets et interactions. Pour l'ensemble des six fonctions, l'effet moyen le plus important est dû au paramètre B (qui définit la longueur du palier de température en fonction de la longueur du codage des variables), tandis que le paramètre A (qui permet de calculer la température initiale en fonction de la valeur initiale de la fonction objectif) avait l'effet moyen le plus faible. En effet, le paramètre A donne la température initiale, et dans la mesure où le test d'arrêt est effectué sur la non évolution de la fonction objectif sur D paliers consécutifs, et non sur une valeur minimale de la température, il semble normal que ce paramètre ait peu d'influence sur la convergence. Ce constat a été confirmée par la non signification des interactions d'ordre deux faisant intervenir A, ainsi que par la non signification de l'interaction d'ordre quatre. Les paramètres C (coefficient de décroissance géométrique de la température) et D se comportent sensiblement de la même manière, avec un léger avantage pour C.

En conclusion, et en l'absence de toute autre information, il peut être préconisé d'utiliser la méthode du recuit simulé avec les éléments suivants:

• acceptation d'une solution dégradant la fonction objectif: règle de Metropolis; • décroissance de la température: schéma géométrique de Kirkpatrick; • valeur initiale de la température: valeur de la fonction objectif pour la solution initiale (A = 1); • longueur du palier de temperature: somme des longueurs des codages de chaque variable (B = 1); • coefficient de réduction de la température: 0.85 (C = 1); • nombre de paliers successifs sur lesquels la solution demeure inchangée: 5 (D = 1).

On suggère le centre du plan pour les paramètres A, B, C, et D, car se placer au niveau haut permet d'assurer un bon taux de convergence avec toutefois un nombre élevé d'évaluations de la fonction objectif (paliers de température longs, nombre élevé de paliers successifs pour l'arrêt de la procédure), alors que le niveau bas peut conduire à des taux de convergence assez faibles. Le centre du plan réalise donc un compromis acceptable.

  ∈ [-512, 512] f * -837. 966 (solution théorique) x1 * = x2 * = 420.97 (solutions théoriques) où les composantes x1 et x2 sont définies à 10 -3 près (Fig. 1).
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  10c) où n représente le nombre d'essais pour une combinaison donnée de paramètres (ici n = 5) et nev i est le nombre d'évaluations de la fonction objectif pour l'essai i. L'écart-type des estimations se déduit donc de celui des mesures (σ(sm2)) en le divisant par quatre. De fac ¸on classique, l'étude des variances et des intervalles de confiance est restreinte au centre du plan, qui correspond à A = 1, B = 1, C = 0.85 et D = 5.

  ). L'effet moyen le plus important constaté est dû au paramètre B, et le paramètre A a l'effet moyen le plus faible. En effet, le paramètre A représente la fac ¸on d'initialiser la température, et dans la mesure où le test d'arrêt est effectué sur la non évolution de la fonction objectif sur D paliers consécutifs et non sur une valeur minimale de la température,

	Tableau 11															
	Valeurs des seconds members													
	Boîte		Jong			Grie		Micha		Pib		Ros		Essai
	sm1	sm2	sm1	sm2		sm1	sm2	sm1		sm2	sm1	sm2	sm1	sm2	
	0		100	3		80	6	20		0.4	100	7	0			1
	0		100	3		80	5	20		0.25	60	4	0			2
	40	5	100	36		80	54	20		0.3	100	78	20		14	3
	20	4.7	100	36		100	70	20		0.4	100	72	40		1.5	4
	0		100	14		100	31	60		2.8	8 0	3 0	2 0		7	5
	0		100	13		100	27	40		1	100	36	20		6	6
	60	26	100	198		100	358	0			100	390	40		7	7
	0		100	184		80	290	20		0.6	80	318	20		5.8	8
	20	15	100	6		100	1052	20		0.6	100	11	20		2	9
	0		6 0	4		8 0	9	2 0		0 .6	6 0	7	0			1 0
	20	6.6	100	45		80	89	40		4	80	77	40		1.7	1 1
	20	4.7	100	43		80	80	40		4	40	38	0			12
	40	3.8	100	29		80	126	20		0.2	100	63	0			13
	0		100	29		80	45	20		2.7	80	544	0			14
	40	3	100	226		80	350	20		14	100	460	20		85	15
	40	2.7	100	210		80	340	40		12	100	485	20		8	16
	Tableau 12															
	Effets et interactions pour le critère sm1												
	Fonction	A	B	C	D	AB	AC	AD	BC	BD	CD	ABC	ABD	ACD	BCD	ABCD
	Boîte	-8.75	11.25 3.75	3.75 -1.25 -3.75	1.25	1.25 -3.75	3.75 -1.25	8.75 1.25	1.25	3.75
	Jong	-2.5	2 .5	2.5	-2.5	2 .5	2 .5	-2.5	-2.5	2 .5	2 .5	-2.5	2 .5	2.5	-2.5	-2.5
	Grie															

  des estimations, le nombre de degrés de liberté, la valeur de la variable de Student t, la valeur absolue h de l'intervalle de confiance pour sm2, et enfin la valeur absolue β de la borne de l'intervalle de confiance pour le rapport sm1/sm2. Les intervalles de confiance sont calculés au niveau de probabilité de 95%.Rappelons qu'un effet ou une interaction est significatif si son intervalle ne contient pas la valeur zéro; dans le cas contraire, cet élément est considéré comme non significatif. A partir des valeurs reportées dans le Tableau 13, sont mentionnés dans le Tableau 18 uniquement les éléments significatifs; les cellules vierges correspondent à des termes non significatifs.A titre d'exemple, l'intervalle de confiance pour l'effet de A pour la fonction Boîte qui est [-0.95 -1.17; -0.95 + 1.17] = [-2.12; + 0.22], permet de conclure que l'effet de A est non significatif.De même, l'intervalle de confiance pour l'effet de B pour la fonction Boîte, égal à [2.38 -1.17; 2.38 + 1.17] = [1.21; 3.55], indique qu'il est significatif.Cette étude statistique confirme et affine les résultats fournis par l'analyse qualitative, à savoir que l'effet de A est négligeable, celui de B est prédominant, C et D jouent des rôles comparables, avec un léger avantage pour C. Les interactions d'ordre deux faisant intervenir A ne sont pas significatives, ce qui est moins net pour les interactions d'ordre trois, et l'interaction d'ordre quatre est négligeable dans la majorité des cas.

	Tableau 15		
	Valeurs de sm1 et sm2		
	Fonction	sm1	sm2
	Boîte	40	3.182
	Jong	100	7.724
	Grie	80	13.578
	Micha	40	1.041
	Pib	90	42.973
	Ros	40	10.780
	des fonctions sont reportés pour chacun des 10 essais dans le
	Tableau 16, où les cellules vierges correspondent à des échecs
	(pas de convergence). Pour chaque fonction, le Tableau 17
	donne la moyenne sm2, l'écart-type σ(sm2), l'écart-type σ