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Introduction

Thanks to synergism in surface tension reduction and
micelle formation, inducing various end-use properties
[1, 2, 3, 4, 5, 6, 7, 8], surfactant mixtures are widely used
in practical applications. The fundamentals of the syn-
ergism in binary systems have been well understood on
the basis of nonideal theories [1, 3, 9, 10, 11, 12, 13],
especially the Regular Solution Approximation (RSA)
[1, 3, 6, 14, 15, 16, 17, 18, 19, 20], and the mixed CMCs
and the concentrations required to produce a given

surface tension reduction can be predicted by means of b
parameters experimentally determined [1, 3, 4, 5, 6, 7, 8,
14, 15, 16, 17] or theoretically calculated [11, 18, 19, 20].
In practical applications such as detergency and en-
hanced oil recovery, ternary and other multicomponent
surfactant mixtures are often encountered: it is therefore
significant to understand the behavior of multicompo-
nent systems. The RSA has been extended to deal with
mixed micelle formation of nonideal multicomponent
systems [14] and for some systems the mixed CMCs have
been successfully predicted from experimental [14, 15,
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16, 17] or theoretical [20] pair interaction parameters of
binary systems. To our knowledge, however, rare studies
on mixed adsorption and surface tension reduction of
nonideal multicomponent systems can be found in the
literature.

In studying mixed adsorption of anionic/cationic
binary systems we have successfully established a surface
tension equation for mixed surfactant solutions by
combining nonideal adsorption theory with the Szysz-
kowski equation [21, 22]. Once the mole fraction and
activity coefficient of either surfactant in the mixed
monolayer are found out, for example, by RSA treat-
ment, the surface tensions of mixed solutions can be
predicted. For multicomponent systems, the surface
tension equations are theoretically applicable, provided
that the mole fraction and activity coefficient of one of
the surfactants in the mixed monolayer can be obtained.

Since the RSA treatments for mixed micelle forma-
tion and mixed adsorption are quite similar, the RSA
treatment for nonideal adsorption of binary systems can
be analogously extended to nonideal multicomponent
systems. In dealing with mixed micelle formation of
ternary surfactant systems by an extended RSA (ERSA)
treatment, however, for some typical anionic/cationic/
nonionic ternary systems, where the anionic/cationic
interaction is much stronger than anionic/nonionic and
cationic/nonionic interactions, the predicted activity
coefficient of the nonionic in the mixed micelle has been
found to be larger than unity, or its mole fraction in the
mixed micelle close to zero. This has been explained as
micellar demixing [23]: due to its low hydrophilicity, the
anionic/cationic complex forms micelles at very low to-
tal concentration and the micelles contain almost no
nonionics. With the increase of total surfactant con-
centration, these micelles will combine with other mi-
celles composed of mainly nonionics. Similar results
would be expected in applying ERSA treatment to the
mixed adsorption of multicomponent systems. On the
other hand, however, ideal mixing between equimolar
anionic/cationic mixture and nonionic surfactant has
been confirmed [16, 24], and a monolayer composed of
an anionic/cationic complex, but excluding nonionic
surfactant, seems impossible, since even a hydrocarbon-
based surfactant and a fluorocarbon-based one form a
miscible adsorption film in spite of the coexistence of
two kinds of micelles in certain conditions [25, 26],
Therefore, the application of the ERSA treatment to
mixed adsorption of nonideal multicomponent systems
might be conditional.

Both surface tension equation and c-LogC curve of
surfactant mixtures show similarity to those of individual
surfactants, and the mixing of a binary mixture with the
third component looks like that of two individual com-
ponents [27]: namely, the mixing of an equimolar anio-
nic/cationic mixture with a nonionic is similar to that of
two nonionic surfactants [24]. This implies that the

mixture of two surfactants can be regarded as a pseudo-
individual surfactant: a ternary system can then be sim-
plified as a pseudo-binary system (PBS) and the RSA for
binary systems can be applied. In this paper both ERSA
and PBS treatments are considered and the predicted and
measured surface tensions for two typical anionic/
cationic/nonionic ternary systems: SDS/Hyamine1622/
AEO7, composed of homogeneous surfactants, and
AES/DPCl/AEO9, composed of commercial surfactants,
in the presence of excess NaCl, are compared.

Theory

The general surface tension equation
of multicomponent systems

The surface tension, c12, of a binary mixed surfactant
solution at a total concentration C12 (lower than the
mixed CMC), can be predicted by the following equa-
tion [21]:

c0 � c12 ¼ niRT C1i ln 1þ KiaifiC12

xs
i f

s
i

� �
i ¼ 1; 2ð Þ ð1Þ

where c0 is the surface tension of pure water or excess
electrolyte solution, C1i and Ki the excess surface con-
centration at saturation and the Langmuir-Szyszkowski
constant of surfactant i, respectively, ai the mole fraction
of surfactant i in total mixed solute in bulk solution, fi
the activity coefficient of surfactant i in bulk solution, xs

i
and f s

i the mole fraction and activity coefficient of sur-
factant i in the mixed monolayer, respectively, R the gas
constant, T the absolute temperature, and ni the number
of particles per molecule of surfactant i whose concen-
tration varies with surfactant concentration. For a pure
surfactant solution, ai =1, xs

i=1, f s
i =1, and Eq. (1)

reduces to the Szyszkowski equation:

c0 � c0i ¼ niRT C1i ln 1þ Kif 0
i C0

i

� �
ð2Þ

where C0
i and c0i are solution concentration and surface

tension of surfactant i, respectively, and f 0
i its activity

coefficient in bulk solution. For a nonionic surfactant,
f 0

i can be regarded as unity, due to its very low con-
centration. For an ionic surfactant, f 0

i can be calculated
from the Debye-Hückel equation [28]. In the presence of
excess electrolyte, f 0

i will not change with surfactant
concentration at a given temperature and can thus
be combined with Ki to constitute a new constant,
K 0i ¼ Kif 0

i , which, together with C1i , can be obtained
directly by fitting the Szyszkowski equation to the
c-LogC curve of the individual surfactant i. In the case
where the same concentration of excess electrolyte is
added to both pure and mixed surfactant solutions,
fi¼ f 0

i , the surface tension of a binary surfactant
solution can be calculated from Eq. (1), once xs

i and f s
i



are obtained, for instance, from RSA treatment [21]. For
ternary or other multicomponent systems, the general
relationship [4, 5, 21]:

aifiC123::: ¼ f s
i xs

i f
0
i C0

i i ¼ 1; 2; 3:::ð Þ ð3Þ

still holds: thus, the general surface tension equation for
a multicomponent system can be written as

c0 � c123::: ¼ niRT C1i ln 1þ KiaifiC123:::

xs
i f

s
i

� �
i ¼ 1; 2; 3:::ð Þ

ð4Þ

where C123... and c123... are the total concentration and
surface tension of the multicomponent solution, respec-
tively. To apply Eq. (4), the key is to obtain xs

i and f s
i . For

this purpose, ERSA and PBS treatments are considered.

The ERSA treatment

Holland and Rubingh [14] have extended the RSA for
binary mixed micelle formation to nonideal multicom-
ponent systems by considering only the pair interaction
parameters. Similarly the RSA for binary mixed adsorp-
tion [4, 5, 6] can also be extended to multicomponent
systems and the following expressions can be obtained:

aifiCijk::: ¼ f s
i xs

i f
0
i C0

i ð3:1Þ

ln f s
i ¼

Xn

j¼1
ðj 6¼iÞ

bs
ij xs

j

� �2
þ
Xn

j¼1
ðj6¼k 6¼iÞ

Xj�1
k¼1

bs
ij þ bs

ik � bs
jk

� �
xs

jx
s
k ð5Þ

where the subscripts i, j, and k... represent the com-
ponents constituting the mixture (i „ j „ k). Thus,
Cijk..., as C123..., denotes the total concentration of the
mixed solution, and bs

ij (i „ j) is the pair interaction
parameter between surfactants i and j in the mixed
monolayer.

In the presence of excess electrolyte, the bulk activity
coefficient of an ionic surfactant will deviate from unity,
but tend towards a constant value, according to the
Debye-Hückel equation [28]. When the same concen-
tration of excess electrolyte is added to a pure or a mixed
surfactant solution, the ionic strengths are equal, fi and
f 0

i on both sides of Eq. (3) counteract each other and
can be eliminated.

For a ternary system, the development of Eq. (5) and
combined with Eq. (3) gives

a1C123 ¼ xs
1C0

1 exp
h
bs
12 xs

2

� �2þbs
13 xs

3

� �2
þ bs

12 þ bs
13 � bs

23

� �
xs
2x

s
3

i
ð6Þ

a2C123 ¼ xs
2C0

2 exp
h
bs
12 xs

1

� �2þbs
23 xs

3

� �2
þ bs

12 þ bs
23 � bs

13

� �
xs
1x

s
3

i
ð7Þ

a3C123 ¼ xs
3C0

3 exp
h
bs
13 xs

1

� �2þbs
23 xs

2

� �2
þ bs

13 þ bs
23 � bs

12

� �
xs
1xs

2

i
ð8Þ

always withX
xs

i ¼ 1 ð9Þ

For known ai (i=1,2,3), bs
ij (i=1,2,3; j=1,2,3; i „ j)

and C0
i (i=1,2,3), the mixture concentration, C123, re-

quired to produce a given surface tension reduction and
the mixed monolayer composition, xs

i (i=1,2,3), can be
numerically calculated from Eqs. (6), (7), (8) and (9),
and the f s

i (i=1,2,3) can then be calculated from Eq. (5).
For a binary mixture, Eqs. (6), (7), (8) and (9) reduce

to the following ones, derived by Rosen and Hua [4, 5, 6]:

a�1C12 ¼ f �s1 x�s1 C0
1 ð10Þ

ð1� a�1ÞC12 ¼ f �s2 ð1� x�s1 ÞC0
2 ð11Þ

where the asterisk denotes binary system, C12 is the total
bulk concentration of a binary mixture composed of
surfactants 1 and 2 required to produce the same surface
tension reduction, and

f �s1 ¼ exp½bs
12ð1� x�s1 Þ

2� ð12Þ

f �s2 ¼ exp½bs
12ðx�s1 Þ

2� ð13Þ

If two of the components, for example, surfactants 1
and 2, are homologues, ideal mixing is usually expected
and their interaction parameters with the third one are
supposed to be equal (bs

12=0 and bs
13 � bs

23=bs
ð12Þ3),

where the subscript (12) refers to the mixture of com-
ponents 1 and 2. Adding Eq. (6) to Eq. (7) gives

ða1 þ a2ÞC123 ¼ xs
1C

0
1 þ xs

2C
0
2

� �
exp bs

ð12Þ3ðxs
3Þ

2
h i

ð14Þ

For an ideal binary mixture, f �s1 ¼ f �s2 ¼ 1 and
x�s1 þ x�s2 ¼ 1. From Eqs. (10) and (11) it is easy to obtain

x�s1 C0
1 þ x�s2 C0

2 ¼ C12 ð15Þ

In a ternary system, xs
1 þ xs

2 6¼ 1, but
xs
1

xs
1
þxs

2
þ

�
xs
2

xs
1
þxs

2

�
¼ 1. By making some transformation, the fol-

lowing equation can be obtained:

xs
1C0

1 þ xs
2C

0
2 ¼ ðxs

1 þ xs
2Þ

xs
1C0

1

xs
1 þ xs

2

þ xs
2C0

2

xs
1 þ xs

2

� �

¼ ðxs
1 þ xs

2ÞC12 ð16Þ

Thus, Eq. (14) can be written as

ða1 þ a2ÞC123 ¼ ðxs
1 þ xs

2ÞC12 exp
h
bs
ð12Þ3ðxs

3Þ
2
i

ð17Þ

or

ð1� a3ÞC123 ¼ ð1� xs
3ÞC12 exp

h
bs
ð12Þ3ðxs

3Þ
2
i

ð18Þ



Equation (17) or (18) suggests that a ternary system
can be simplified as a binary one when two of the
components are homologues or show ideal mixing
properties. Commercial surfactants are often mixtures of
homologues and can be regarded as ‘‘pure’’ surfactants
while dealing with their interactions with other surfac-
tants. Thus, the RSA is applicable to commercial
products.

The PBS treatment

In nonideal ternary surfactant systems the mixing be-
tween any two components is nonideal and the pair
interaction parameters are usually different from each
other. It is possible, however, to regard the binary
mixture as a pseudo-individual component and to use an
apparent activity coefficient to describe its behavior in
the mixed monolayer. The ternary system is thus sim-
plified as a pseudo-binary system and the RSA can be
applied.

To form a ternary system, the following steps are
considered: first, the components 2 and 3 are mixed to
constitute a pseudo-component 23 which displays a
c-LogC curve noted (23) in Fig 1; then the pseudo com-
ponent 23 is mixed with component 1 to form the ternary
system which shows a c-LogC curve noted (123) in Fig. 1.
Applying RSA to this pseudo-binary system gives

a1C123 ¼ f s
1xs

1C
0
1 ð19Þ

ð1� a1ÞC123 ¼ f s
23 1� xs

1

� �
C23 ð20Þ

xs
1

� �2
ln a1C123

xs
1C0

1

h i

1� xs
1

� �2
ln ð1�a1ÞC123

ð1�xs
1ÞC23

h i ¼ 1 ð21Þ

where C23 is the bulk concentration of the pseudo-
component 23 with a bulk composition ratio a2/a3 re-
quired to produce the same surface tension reduction as
the ternary solution at a total concentration C123, f s

23 is
the apparent activity coefficient of the pseudo-compo-
nent 23 in the mixed monolayer, describing the deviation
from ideality of its mixing with component 1. Other
symbols have the same meanings as above.

It is also reasonable to mix the components in any
other order (1 with 2, then with 3, or 1 with 3 then with
2). The general equations can then be obtained:

aiC123 ¼ f s
i xs

i C
0
i ð22Þ

xs
i

� �2
ln aiC123

xs
i C

0
i

h i

1� xs
i

� �2
ln ð1�aiÞC123

ð1�xs
i ÞC123�i

h i ¼ 1 ð23Þ

Since the order of mixing could be random, the total
concentration, C123, of the ternary surfactant system
should satisfy Eqs. (22) and (23) for i=1,2,3 simulta-
neously, and Eq. (9) always holds.

From Eq. (23) for i=1,2,3 and Eq. (9), xs
i (i=1,2,3)

and C123 can be solved numerically without calculating
f s

i and f s
ij, if Cij is known.

The Cij can be predicted based on the pair interaction
parameters, bs

ij, from Eq. (10):

Cij ¼
x�si C0

i exp½bs
ijð1� x�si Þ

2�
a�i

ð24Þ

wherex�si ,correspondingtothebulkcompositiona�i ,canbe
calculated numerically by combining Eqs. (10) and (11):

x�si ¼
a�i ð1� x�si ÞC0

2 exp
h
bs

ijðx�si Þ
2
i

ð1� a�i ÞC0
1 exp

h
bs

ijð1� x�si Þ
2
i ð25Þ

If bs
ij is a constant for a binary mixture (i.e. it does not

change with monolayer composition and surface pres-
sure), it can then be obtained by measuring the c-LogC
curves of individual surfactants and the surface tension
of only one binary mixture [21].

To predict the surface tension of a ternary solution at
C123 by Eq. (4), f s

i should be known: it can be calculated
from Eq. (22).

It is interesting to notice that, with the PBS treat-
ment, the ternary solution concentration, C123, required
to produce a given surface tension reduction and the
mixed monolayer composition, xs

i , can be predicted
without knowing f s

ij, the apparent activity coefficients of
pseudo components, nor even knowing f s

i , the activity
coefficients of individual surfactants, though they are
introduced into the equations.

Extended to systems with m (m>3) components, the
following general equations can be derived from
Eqs. (22) and (23):

Fig. 1 Surface tension variations for pure and mixed surfactant
solutions: pseudo-binary system treatment



aiC123:::m ¼ f s
i xs

i C
0
i ð26Þ

xs
i

� �2
ln aiC123:::m

xs
i C

0
i

h i

1� xs
i

� �2
ln ð1�aiÞC123:::m

ð1�xs
i ÞC123:::m�i

h i ¼ 1 ð27Þ

and Eq. (9) also holds. In Eqs. (26) and (27), C123...m and
C123...m)i are the concentrations of solutions, containing
m and m)i components, respectively, required to pro-
duce a given surface tension reduction. Based on the pair
interaction parameters and c-logC relationships of
individual surfactants, the concentrations of binary,
ternary, ... and finally m-component solutions, required
to produce a given surface tension reduction can be
predicted successively, or, alternatively, the surface ten-
sions of the corresponding solutions can be predicted by
Eq. (4).

Two questions are immediately put forward:

– Are the predictions based on ERSA and PBS treat-
ments equivalent?

– Are the predictions in agreement with experimental
results?

To answer these questions, two ternary systems, SDS/
Hyamine 1622/AEO7, composed of homogeneous surf-
actants, and AES/DPCl/AEO9, composed of commer-
cial surfactants, both in the presence of excess NaCl,
were examined.

Experimental

For the ternary system composed of homogeneous
surfactants, the anionic surfactant, sodium dodecyl sul-
fate (SDS) with a purity of higher than 99% from Sigma
Chemical Co., and the nonionic surfactant, heptaethyl-
eneglycol monododecylether (AEO7) from Nikko
Chemical Co. (Tokyo Japan), were used as received as
no minima in the surface tension curves were found near
their CMCs. The cationic surfactant, Hyamine 1622 or
benzethonium chloride [C(CH3)3-CH2-C(CH3)2-C6H4-
(O-CH2-CH2)2-N(CH3)2-CH2-C6H5]

+Cl)ÆH2O (simply
called Hyamine in this paper) from Sigma Chemical Co.,
which showed a shallow minimum (less than 1 mNÆm)1)
in its surface tension curve, was eluted with petroleum
ether for 48 h and dried at 105 �C before use. The
minimum in its surface tension curve disappeared.

For the ternary system composed of commercial
surfactants, the anionic surfactant was an alkyl ether
sulfate (AES) from Rhodia Co. (Wuxi, China): it was a
slurry product with about 70% active matter produced
by sulfating a C12�C15 fatty alcohol ethoxylate
containing about three ethylene oxide units in average;
its exact concentration was determined by two-phase
titration with a mixed indicator [29]. The nonionic sur-

factant was a polyethoxylated dodecyl alcohol contain-
ing about nine ethylene oxide units in average (AEO9),
with a purity of higher than 99% from Lion Co. Both
were used as received as no minima were found in their
surface tension curves. The cationic surfactant, dod-
ecylpyridinium chloride monohydrate (DPCl) from Al-
drich, was recrystallized three times from an 80/20(v/v)
mixture of petroleum ether and ethanol and the crystals
were dried under reduced pressure slightly above room
temperature. The active matter percentage of the puri-
fied DPCl was 99.8% measured by two-phase titration
against SDS (mixed indicator method) [29]: only a very
shallow minimum (0.3 mNÆm)1) in its c-LogC curve near
the CMC was observed.

Sodium chloride (NaCl) of A.R. degree from
Shanghai Chemicals Co. was used as received.

Surface tensions were measured by the Du Noüy ring
technique with a Krüss K10 tensiometer at 25±0.2 �C.
A constant surface tension value was reached after 10–
30 min for individual surfactant solutions and after
2.5�3 h for binary and ternary surfactant systems.
High-purity water with an electrical conductivity of
0.78 lSÆcm)1 at 25±0.2 �C was used and the measured
surface tensions of pure water and 0.1 mol/L NaCl
solution at 25±0.2 �C were 71.9 and 72.2 mNÆm)1,
respectively.

Results and discussion

Surface tensions of individual surfactants
and pair interaction parameters

SDS, Hyamine and AEO7 are homogenous surfactants.
Hyamine is chosen as a cationic surfactant for its mol-
ecule containing EO groups and is expected not to form
a precipitate at low concentration once mixed with SDS.
The surface tensions of the three individual surfactants
in pure water and in 0.1 mol/LNaCl solution are illus-

Fig. 2 Surface tensions of individual SDS, Hyamine, and AEO7

solutions with or without NaCl at 25 �C. Points: measured values;
lines: calculated by the Szyszkowski equation (parameters in
Table 1)



trated in Fig. 2. The curves can be well fitted by the
Szyszkowski equation with two parameters: the excess
surface concentration at saturation, C1i , calculated from
the Langmuir equation, and the Langmuir-Szyszkowski
constant, (Ki or K

0
i ), listed in Table 1 together with the

measured CMCs. With the addition of excess NaCl, the
c-Log C curves of SDS and Hyamine move to more
dilute concentration ranges but that of AEO7 shows
almost no change, reflecting the quite different tolerance
of ionic and nonionic surfactants to electrolyte. The
saturated adsorption of Hyamine, however, has little
increase with addition of NaCl, probably the branch
hydrocarbon structure hindered the further decrease of
the molecular area at the surface (Fig. 2 and Table 1)

AES and AEO9 are commercial surfactants com-
posed of homologues. Ideal mixing between these ho-
mologues can be expected and the interactions of these
homologous molecules with another type of surfactant
are likely to be similar. Therefore they can be regarded
as ‘‘individual’’ surfactants while dealing with their
mixing with other surfactants. In fact their c-Log C
behavior can be well described by the Szyszkowski
equation with a single adsorption parameter and the
Langmuir-Szyszkowski constant (Table 1), as shown in
Fig. 3. It is therefore expected that the nonideal
adsorption theory is applicable to them.

The presence of EO groups in the AES molecule
makes the negative charge density of the hydrophilic
group decrease and, accordingly, the interaction of AES

with cationic and nonionic surfactants weaken. Thus,
the anionic/cationic complex has relatively high water
solubility and will not precipitate at low concentration.

The individual surfactant concentrations, C0
i , re-

quired to produce given surface tension reductions,
(c0)c), in the presence of 0.1 mol/L NaCl are listed in
Table 2. From these C0

i and Cij (not listed for brevity),
the pair interaction parameters, bs

ij, are calculated from
the relationship

bs
ij ¼

ln
a�i Cij

x�si C0
i

� �
1� x�sið Þ2

¼
ln

ð1�a�i ÞCij

ð1�x�si ÞC0
j

� �

x�sið Þ2
ð28Þ

and shown in Table 3. For the SDS/Hyamine/AEO7

system, although the bs
ij calculated at different bulk

compositions are similar, the main interaction parame-
ter, bs

12, is found to change significantly with surface
tension reduction. It is noticed that in the presence of
excess NaCl, the saturated adsorption of SDS greatly
increases, whereas that of Hyamine slightly increases,
compared with the systems without NaCl. This suggests
that the molecular area of Hyamine in mixed monolayer
will not greatly decrease as that of SDS does due to
electrostatic interaction. At lower bulk concentration,
SDS is less surface-active than Hyamine and has a
smaller mole fraction in mixed monolayer (0.363 at
c=65 mNÆm)1 for a*=0.5). With increasing bulk con-
centration, however, the surface activity of SDS in-
creases faster than that of Hyamine, the mole fraction of
SDS in mixed monolayer then increases (0.464 at
c=35 mNÆm)1 for a*=0.5). The mixed monolayer
composition then changes from asymmetric to nearly
symmetric (1:1) with surface tension reduction and the
interaction parameter increases correspondingly. Thus it
is inappropriate to find an average bs

ij for this system and
all related calculations are based on the local bs

ij listed in
Table 3. On the other hand, in the AES/DPCl/AEO9

ternary system in the presence of 0.1 mol/L NaCl, bs
12,

determined at a bulk composition a�i =0.5, does not
change with surface tension reduction (the mixed
monolayer is always symmetric with surface tension
reduction). Although bs

23 is not a constant, the absolute
values are much smaller compared with that of bs

12; it is
therefore reasonable to use single bs

ij values:
bs
12=)10.25, bs

13=)1.64, and bs
23=)4.36, calculated

Table 1 Excess surface concentrations, Langmuir-Szyszkowski constants and CMCs of individual surfactants at 25 �C

Without NaCl With 0.1 mol/L NaCl

SDS(1) Hyamine(2) AEO7(3) SDS(1) Hyamine(2) AEO7(3) AES(1) DPCl(2) AEO9(3)

C1i (mol/cm2) 3.1·10-10 2.5·10-10 2.74·10)10 4.65·10)10 2.66·10)10 2.82·10)10 4.55·10)10 5.00·10)10 4.31·10)10

Ki 1.41·103 6.2·103 3.36·106
K 0i ¼ Kifi 2.90·104 1.30·106 3.74·106 8.35·105 8.30·103 2.36·106
CMC(mol/L) 6.00·10-3 2.75·10)3 8.30·10)5 1.00·10)3 3.00·10)4 6.80·10)5 2.35·10)5 3.00·10)3 2.00·10)5

Fig. 3 Surface tensions of individual AES, DPCl, and AEO9

solutions with 0.1 mol/L NaCl at 25 �C. Points: measured values;
lines: calculated by the Szyszkowski equation (parameters in
Table 1)



from the data at c=50 mNÆm)1, throughout the calcu-
lations, for they are nearly equal to the average values,
as listed in Table 3.

Mixed adsorption and surface tension
of ternary systems

SDS(1)/Hyamine(2)/AEO7(3) system

The predicted concentrations, C123, required to produce
given surface tension reductions, the mole fractions, xs

i ,
and activity coefficients, f s

i , of surfactants in a mixed

monolayer, and the predicted surface tensions based on
ERSA and PBS treatments are shown in Tables 4 and 5
and Figs. 4, 5 and 6, respectively. Table 4 shows that the
predicted C123 values based on the ERSA treatment are
generally higher than the measured ones by 22 to 29%,
on average, whereas those based on the PBS treatment
are close to the measured ones with a negative difference
less that 5%. Correspondingly, as illustrated in Figs. 4, 5
and 6, the predicted surface tensions are 1.3–2.7 mNÆm)1

higher than and 0.1–0.3 mNÆm)1 lower than experi-
mental results on average, with ERSA and PBS treat-
ments, respectively.

Table 3 Pair interaction parameters, bs
ij (i „ j), in binary systems in the presence of 0.1 mol/L NaCl at 25 �C

c (mN/m) SDS(1)/Hyamine(2)/AEO7(3) AES(1)/DPCl(2)/AEO9 (3)

a�i =0.333 (i=1,1,2) a�i =0.500 (i=1,1,2) a�i =0.667 (i=1,1,2) a�i =0.500(i=1,1,2)

bs
12 bS

13 bS
23 bs

12 bS
13 bS

23 bs
12 bS

13 bS
23 bs

12 bS
13 bS

23

60.0 )8.78 )5.03 )0.40 )9.64 )4.04 )0.64 )9.08 )3.89 )0.22 )9.48 )2.30 )5.10
55.0 )10.24 )4.03 )0.36 )10.93 )3.65 )0.68 )10.45 )3.76 )0.34 )9.80 )1.49 )4.96
50.0 )11.57 )4.48 )1.00 )12.22 )3.90 )1.01 )11.74 )3.81 )0.42 )10.25 )1.64 )4.36
45.0 )12.73 )3.91 )1.09 )13.30 )3.48 )1.17 )12.78 )3.35 )0.59 )10.32 )1.45 )3.20
40.0 )13.96 )3.37 )0.99 )14.54 )3.02 )1.24 )14.02 )2.97 )0.81 )10.43 )1.61 )2.31
35.0 )15.30 )2.86 )1.06 )15.90 )2.63 )1.42 )15.32 )2.51 )1.36
Average )10.04±0.36 )1.70±0.31 )3.99±1.07

Table 4 Experimental and calculated C123 values (mol/L) for the SDS(1)/Hyamine(2)/AEO7(3) ternary system in the presence of 0.1 mol/
L NaCl at 25 �C (ERSA and PBS treatments)

c (mN/m) a1/a2/a3=0.4/0.4/0.2 a1/a2/a3=0.4/0.2/0.4 a1/a2/a3=0.2/0.4/0.4

C123
(m) C123

(c) C123
(m) C123

(c) C123
(m) C123

(c)

ERSA
treatment

PBS
treatment

ERSA
treatment

PBS
treatment

ERSA
treatment

PBS
treatment

60.0 9.80·10)7 1.32·10)6 1.05·10)6 1.30·10)6 1.40·10)6 1.20·10)6 1.10·10)6 1.19·10)6 1.08·10)6

55.0 1.72·10)6 2.16·10)6 1.72·10)6 2.22·10)6 2.92·10)6 2.20·10)6 2.00·10)6 2.57·10)6 2.06·10)6

50.0 2.77·10)6 3.29·10)6 2.62·10)6 3.55·10)6 4.63·10)6 3.44·10)6 3.30·10)6 4.23·10)6 3.24·10)6

45.0 4.10·10)6 4.92·10)6 4.02·10)6 5.50·10)6 7.56·10)6 5.47·10)6 5.40·10)6 6.91·10)6 5.12·10)6

40.0 6.10·10)6 7.22·10)6 5.97·10)6 8.50·10)6 1.16·10)5 8.40·10)6 8.50·10)6 1.08·10)5 7.96·10)6

35.0 9.10·10)6 1.05·10)5 8.76·10)6 1.33·10)5 1.72·10)5 1.28·10)5 1.35·10)5 1.21·10)5 1.22·10)5

d (%) +22.13 )4.89 +28.81 )2.86 +23.61 )4.64

(m): measured
(c): calculated

Table 2 Individual surfactant concentrations, C0
i (mol/L), required to produce a given surface tension reduction in the presence of

0.1 mol/L NaCl at 25 �C

c(mN/m) SDS(1)/Hyamine(2)/AEO7(3) system AES(1)/DPCl(2)/AEO9(3) system

C0
1 C0

2 C0
3 C0

1 C0
2 C0

3

60.0 6.10·10)5 4.20·10)6 1.05·10)6 2.57·10)6 1.91·10)4 1.07·10)6

55.0 1.12·10)4 9.30·10)6 2.62·10)6 4.47·10)6 3.55·10)4 1.74·10)6

50.0 1.95·10)4 2.05·10)5 6.20·10)6 7.24·10)6 5.89·10)4 2.82·10)6

45.0 3.12·10)4 4.50·10)5 1.30·10)5 1.15·10)5 9.12·10)4 4.47·10)6

40.0 5.30·10)4 1.00·10)4 2.65·10)5 1.82·10)5 1.35·10)3 7.24·10)6

35.0 8.80·10)4 2.40·10)4 5.40·10-5



For a ternary mixture containing equal amounts of
SDS and Hyamine (0.4/0.4/0.2 mixture), the mole
fraction of Hyamine in the mixed monolayer is larger
than that of SDS, as in their binary monolayer. This is
because Hyamine has a relatively higher surface activity
[30, 31]. The activity coefficients of SDS and Hyamine
greatly deviate from unity, confirming the expected
strong interaction between the two surfactants. How-
ever, with the increase of the total bulk concentration,
according to ERSA treatment, the predicted mole
fraction of AEO7 tends to zero and the activity coef-
ficient of AEO7 is much larger than unity, so that the
mixed monolayer tends to be nearly completely com-
posed of SDS and Hyamine. This is of course the result
of Eq. (5) for i=3 (f s

3>1 because of bs
12 much more

negative than bs
13 and bs

23). A similar situation has been
met while applying the ERSA treatment to ternary
mixed micelle formation: the micelles formed initially
were nearly completely composed of anionic and cat-
ionic surfactants (micellar demixing) [23]. On the other
hand, since the mixing of an anionic/cationic mixture
with a nonionic surfactant is nearly ideal [16, 24], this
implies that the mole fraction of a nonionic surfactant
in a mixed monolayer could not be zero. It is relatively
difficult to determine the actual composition of a mixed
monolayer, but, from surface tension measurements, it
could be concluded that the ERSA treatment is inap-
propriate for this system, while the PBS treatment gives
satisfactory predictions (Table 4). Apparently, the PBS
treatment is more empirical, but, actually, it is related
to the RSA and also well theoretically based. The
reason why the two treatments give different results

Table 5 Mixed monolayer compositions, xs
i , and activity coefficients, f s

i , for the SDS(1)/Hyamine(2)/AEO7(3) ternary system in the
presence of 0.1 mol/L NaCl at 25 �C (ERSA and PBS treatments)

c (mN/m) ERSA treatment PBS treatment

60.0 55.0 50.0 45.0 40.0 35.0 60.0 55.0 50.0 45.0 40.0 35.0

a1/a2/a3 xs
1 0.3332 0.3770 0.4071 0.4294 0.4457 0.4614 0.3118 0.3424 0.3687 0.3858 0.3992 0.4093

=0.4/0.4/0.2 f s
1 0.02590 0.02048 0.01654 0.01471 0.01221 0.01032 0.02208 0.01790 0.01458 0.01336 0.01129 0.00973

xs
2 0.5062 0.5467 0.5556 0.5522 0.5451 0.5336 0.4037 0.4269 0.4382 0.4452 0.4496 0.4512

f s
2 0.2477 0.1701 0.1157 0.07923 0.05288 0.03277 0.2477 0.1733 0.1167 0.08026 0.05311 0.03236

xs
3 0.1607 0.0764 0.0374 0.0183 0.0093 0.0051 0.2843 0.2303 0.1929 0.1686 0.1507 0.1394

f s
3 1.560 2.168 2.851 4.140 5.938 7.692 0.7035 0.5701 0.4381 0.3668 0.2990 0.2327

a1/a2/a3 xs
1 0.2347 0.3131 0.3628 0.4139 0.4512 0.4743 0.2421 0.2868 0.3194 0.3442 0.3664 0.3847

=0.4/0.2/0.4 f s
1 0.03910 0.03322 0.02617 0.02340 0.01934 0.01653 0.03250 0.02740 0.02209 0.02037 0.01730 0.01512

xs
2 0.2397 0.3690 0.4300 0.4797 0.5063 0.5075 0.2499 0.3116 0.3452 0.3659 0.3825 0.3919

f s
2 0.2780 0.1698 0.1050 0.06997 0.04566 0.02827 0.2287 0.1518 0.09722 0.06644 0.04392 0.02722

xs
3 0.5257 0.3180 0.2073 0.1065 0.0426 0.0183 0.5076 0.4014 0.3351 0.2894 0.2511 0.2231

f s
3 1.016 1.402 1.444 2.185 4.129 6.922 0.9006 0.8368 0.6623 0.5816 0.5050 0.4250

a1/a2/a3 xs
1 0.2065 0.2612 0.3146 0.3653 0.4039 0.4318 0.2163 0.2540 0.2917 0.3169 0.3383 0.3575

=0.2/0.4/0.4 f s
3 0.01993 0.01754 0.01375 0.01211 0.01011 0.008604 0.01637 0.01448 0.01139 0.01036 0.008879 0.007756

xs
2 0.3013 0.4214 0.4698 0.5194 0.5437 0.5446 0.2950 0.3598 0.3831 0.4019 0.4141 0.4205

f s
2 0.3765 0.2623 0.1753 0.1182 0.07956 0.05002 0.3487 0.2463 0.1650 0.1132 0.07689 0.04836

xs
3 0.4923 0.3175 0.2157 0.1154 0.0524 0.0237 0.4887 0.3860 0.3257 0.2810 0.2475 0.2216

f s
3 0.9235 1.238 1.264 1.845 3.112 5.140 0.8419 0.8148 0.6418 0.5606 0.4855 0.4078

Fig. 4 Surface tensions of the SDS/Hyamine/AEO7 ternary system
with 0.1 mol/L NaCl at 25 �C vs SDS concentration. Points:
measured values; dashed lines: calculated by Eq. (4) (ERSA
treatment); solid lines: calculated by Eq. (4) (PBS treatment)

Fig. 5 Surface tensions of the SDS/Hyamine/AEO7 ternary system
with 0.1 mol/L NaCl at 25 �C vs Hyamine concentration. Points:
measured values; dashed lines: calculated by Eq. (4) (ERSA
treatment); solid lines: calculated by Eq. (4) (PBS treatment)



and the interrelationship between them will be dis-
cussed later.

AES/DPCl/AEO9 system

As shown in Table 6, the average differences in predic-
tion of ternary solution concentrations based on the
ERSA treatment for this system are also positive (12–
14%) but much lower than those found for the SDS/
Hyamine/AEO7 system, and the consistence seems
acceptable. Other differences include that the mixed
monolayer is theoretically composed of three surfactants,
the monolayer composition does not change with an in-
crease of bulk concentration, and the calculated activity
coefficient of the nonionic surfactant is not larger than
unity (Table 7). With average negative differences of 4–
6%, the prediction of ternary solution concentrations
based on the PBS treatment again seems better.

It is noticeable that, for this system, the predicted
mole fractions, activity coefficients, and their products
based on both treatments approach each other, and a
quite good agreement between predicted surface tensions
and experimental results is obtained (Table 7, Figs. 7, 8

and 9). The good prediction precision with both treat-
ments for this system is very significant. First, the ter-
nary solution concentrations and the surface tensions
were only predicted from the c-logC curves of individual
surfactants and the pair interaction parameters, which
can be determined by measuring only one surface ten-
sion of a binary solution; second, the predictions based
on the two different treatments approach each other,
indicating that both treatments are interrelated.

On the other hand, however, the different prediction
precisions obtained with the ERSA treatment for the
two ternary systems studied suggest that the applicabil-
ity of the ERSA treatment to nonideal ternary systems is
limited or conditional. By comparison of the pair
interaction parameters of these two systems, the only
apparent difference is that the anionic/cationic interac-
tion in the SDS/Hyamine/AEO7 system is much stronger
than that in the AES/DPCl/AEO9 system. Therefore, it
seems that the ERSA treatment is only applicable to
ternary systems where the anionic/cationic interaction is
not too strong. The following discussion should clarify
this point.

Applicability of the ERSA treatment and interrelation
between the two treatments

Let us designate the anionic, cationic and nonionic
surfactants as component a, c, and n (corresponding to
component 1, 2 and 3) respectively and assume that the
mixing between an anionic/cationic surfactant mixture
and a nonionic surfactant is nearly ideal. With the PBS
treatment, this mixing can be described by

anCacn ¼ f s
n xs

nC0
n ð29Þ

ð1� anÞCacn ¼ f s
ac 1� xs

n

� �
Cac ð30Þ

and the activity coefficients can be calculated from the
following relationships, similar to Eqs. (12) and (13):

f s
n ¼ exp

h
bs
ðacÞnð1� xs

nÞ
2
i

ð31Þ

Fig. 6 Surface tensions of the SDS/Hyamine/AEO7 ternary system
with 0.1 mol/L NaCl at 25 �C vs AEO7 concentration. Points:
measured values; dashed lines: calculated by Eq. (4) (ERSA
treatment); solid lines: calculated by Eq. (4) (PBS treatment)

Table 6 Predicted C123 (mol/L) for the AES(1)/DPCl(2)/AEO9(3) ternary system in the presence of 0.1 mol/L NaCl at 25 �C (ERSA and
PBS treatments)

c (mN/m) a1/a2/a3=(1/3)/(1/3)/(1/3) a1/a2/a3=0.5/0.25/0.25

C123 (m) C123 (c) C123 (m) C123 (c)

ERSA treatment PBS treatment ERSA treatment PBS treatment

60.0 9.12·10)7 1.07·10)6 9.16·10)7 8.51·10)7 1.02·10)6 8.70·10)7

55.0 1.51·10)6 1.83·10)6 1.58·10)6 1.51·10)6 1.76·10)6 1.51·10)6

50.0 2.57·10)6 2.98·10)6 2.57·10)6 2.51·10)6 2.87·10)6 2.46·10)6

45.0 4.47·10)6 4.70·10)6 4.06·10)6 4.07·10)6 4.53·10)6 3.87·10)6

40.0 7.59·10)6 7.41·10)6 6.40·10)6 6.76·10)6 7.13·10)6 6.08·10)6

d (%) +12.2 )5.98 +13.5 )3.84



f s
ac ¼ exp

h
bs
ðacÞnðxs

nÞ
2
i

ð32Þ

where bs
ðacÞn is the apparent interaction parameter of

pseudo-component (ac) with component n and f s
ac the

apparent activity coefficient of pseudo-component (ac).
From the measured C0

n and Cac values and the bulk
mole fraction balance (aac=aa+ac=1)an), xs

n can be
calculated from Eq. (23) and bs

ðacÞn can be calculated
by

bs
ðacÞn ¼

ln anCacn
xs

nC0
n

h i
ð1� xs

nÞ
2
¼

ln ð1�anÞCacn

ð1�xs
nÞCac

h i
ðxs

nÞ
2

ð33Þ

Thus f s
ac can be calculated from Eq. (32). Now, ideal

mixing means f s
ac fi 1, or bs

ðacÞn fi 0.
From Eqs. (10) and (11) the following relationship

can be obtained:

Cac ¼ x�sa C0
af �sa þ x�sc C0

c f �sc ð34Þ

It is reasonable to suppose that, because of the
strong Coulombic interaction, the anionic/cationic
mole fraction ratio in a ternary monolayer, xs

a=xs
c, at a

bulk composition aa/ac is the same as that in a binary
monolayer at the same bulk composition. Thus, the
mole fractions of components a and c in the binary
monolayer at bulk composition aa/ac can be expressed
as

x�sa ¼
xs

a

xs
a þ xs

c
ð35Þ

x�sc ¼
xs

c

xs
a þ xs

c
ð36Þ

Table 7 Mixed monolayer compositions, xs
1, and activity coefficient, f s

1 , for the AES(1)/DPCl(2)/AEO9(3) ternary system in the presence
of 0.1 mol/L NaCl at 25 �C (ERSA and PBS treatments)

c (mN/m) ERSA treatment PBS treatment

60.0 55.0 50.0 45.0 40.0 60.0 55.0 50.0 45.0 40.0

a1/a2/a3=(1/3)/(1/3)/(1/3) xs
1 0.4350 0.4248 0.4248 0.4249 0.4287 0.3995 0.3932 0.3931 0.3930 0.3958

f s
1 0.3219 0.3010

xs
1f s

1 0.1367 0.1183
xs
2 0.1927 0.1836 0.1823 0.1837 0.1894 0.2031 0.1947 0.1932 0.1952 0.1996

f s
2 0.009202 0.007527

xs
2f s

2 0.001678 0.001454
xs
3 0.3724 0.3917 0.3930 0.3917 0.3820 0.3973 0.4115 0.4128 0.4118 0.4045

f s
3 0.8943 0.7358

xs
3f s

3 0.3515 0.3037
a1/a2/a3=0.5/0.25/0.25 xs

1 0.5178 0.5092 0.5092 0.5090 0.5125 0.4648 0.4596 0.4598 0.4594 0.4615
f s
1 0.3886 0.3695

xs
1f s

1 0.1979 0.1699
xs
2 0.1985 0.1903 0.1890 0.1903 0.1958 0.2066 0.1997 0.1982 0.1999 0.2040

f s
2 0.006416 0.005268

xs
2f s

2 0.001213 0.001044
xs
3 0.2838 0.3006 0.3019 0.3008 0.2918 0.3286 0.3412 0.3415 0.3408 0.3347

f s
3 0.8420 0.6386

xs
3f s

3 0.2542 0.2181

Fig. 8 Surface tensions of the AES/DPCl/AEO9 ternary system
with 0.1 mol/L NaCl at 25 �C vs DPCl concentration. Points:
measured; dashed lines: calculated by Eq. (4) (ERSA treatment);
solid lines: calculated by Eq. (4) (PBS treatment)

Fig. 7 Surface tensions of the AES/DPCl/AEO9 ternary system
with 0.1 mol/L NaCl at 25 �C vs AES concentration. Points:
measured; dashed lines: calculated by Eq. (4) (ERSA treatment);
solid lines: calculated by Eq. (4) (PBS treatment)



Combining Eqs. (30), (34), (35) and (36) gives

ð1� anÞCacn ¼ f s
ac xs

aC0
af �sa þ xs

cC0
c f �sc

� �
ð37Þ

On the other hand, from both treatments, the fol-
lowing equation can be obtained:

ð1� anÞCacn ¼ xs
aC0

af s
a þ xs

cC0
c f s

c ð38Þ

Comparing Eqs. (37) and (38), the following rela-
tionship is derived:

f s
ac ¼

xs
aC0

af s
a þ xs

cC0
c f s

c

xs
aC0

af �sa þ xs
cC0

c f �sc
ð39Þ

The relationship at Eq. (39) indicates that the
apparent activity coefficient of the pseudo-component
(ac), f s

ac, is a kind of average activity coefficient, and,
with this relationship, Eqs. (30) and (38) are convertible.
Equation (30) is thus reasonable and the PBS treatment
has a firm theoretical basis. Again due to strong Cou-
lombic interaction, the activity coefficients of anionic
and cationic surfactants in binary systems are expected
to greatly deviate from unity but not to change signifi-
cantly once a nonionic surfactant is added. Thus, from
Eq. (39) it is expected that f s

ac fi 1 (ideal mixing).
For the two systems studied, f s

ac, calculated from
Eq. (39) based on the ERSA treatment, listed in Table 8
as f sðcÞ

ac , is equal or extremely close to unity, indicating

that the ERSA treatment predicts ideal mixing between
an anionic/cationic mixture and a nonionic successfully.
The f s

ac calculated from experimental data and Eqs (32)
and (33) derived from the PBS treatment, expressed as
f sðmÞ

ac , are also listed in Table 8. On the whole, they are in
agreement with f sðcÞ

ac .
From Eq. (32), it is expected that, when f s

ac fi 1, ei-
ther bs

ðacÞn or xs
n must approach zero. Considering the

strong interaction, it is also reasonable to suppose that
anionic and cationic surfactant mole fractions in the
mixed monolayer are almost equal (xs

a � xs
c); bs

ðacÞn can
then be estimated, based on the ERSA treatment, by
combining Eqs. (5) and (31):

bs
ðacÞn �

bs
an xs

a

� �2 þ bs
cn xs

a

� �2 þ ðbs
an þ bs

cn � bs
acÞ xs

a

� �2
2xs

a

� �2
� bs

an þ bs
cn

2
� bs

ac

4
ð40Þ

It is clear that, only in the case where
ðbs

an þ bs
cnÞ=2� bs

ac=4! 0, bs
ðacÞn will approach zero. If

ðbs
an þ bs

cnÞ=2� bs
ac=4>0, xs

n must be close to zero in
order for f s

ac to get close to unity. The AES/DPCl/AEO9

system meets the requirement and the predictions based
on the ERSA treatment are in good agreement with
experiments. For the SDS/Hyamine/AEO7 system,
ðbs

an þ bs
cnÞ=2� bs

ac=4 is positive and its value increases
with surface tension reduction: therefore, the calculated
xs

n decreases and finally tends towards zero, as predicted
by Eq. (32), and correspondingly f s

n is larger than unity
and increases with surface tension reduction (Table 5).
In fact, in the absence of excess NaCl, the anionic/cat-
ionic interaction is even much stronger and certainly
results in ðbs

an þ bs
cnÞ=2� bs

ac=4>0 for such a system, so
that bigger differences between predictions and experi-
ments will be expected when applying the ERSA treat-
ment.

The bs
ðacÞn calculated from Eq. (31) or (32) based on

the PBS treatment is not exactly zero but slightly nega-
tive. This is because the composition of the anionic/
cationic mixed monolayer is not absolutely symmetric,
but enriched with the more surface-active component
[21, 30, 31]. Therefore, the mixed monolayer is not

Table 8 Apparent activity coefficients, f s
ac, and combined pair interaction parameters, ðbs

anþ bs
cnÞ=2� bs

ac =4, for the systems studied

c(mN/m) SDS/Hyamine/AEO7(0.4/0.4/0.2)+0.1 mol/L NaCl AES/DPCl/AEO9((1/3)/(1/3)/(1/3))+0.1 mol/L NaCl

f s
ac

(c) f s
ac

(m) bs
an þ bs

cn

� �
=2� bs

ac=4 f s
ac

(c) f s
ac

(m) bs
an þ bs

cn

� �
=2� bs

ac=4

60.0 1.011 0.9134 0.36 0.9773 0.8585 0.016
55.0 1.003 0.9551 0.68
50.0 1.000 0.9761 0.94
45.0 1.001 0.9701 1.36
40.0 0.9986 0.9735 1.74
35.0 0.9995 0.9793 2.04

Fig. 9 Surface tensions of the AES/DPCl/AEO9 ternary system
with 0.1 mol/L NaCl at 25 �C vs AEO9 concentration. Points:
measured; dashed lines: calculated by Eq. (4) (ERSA treatment);
solid lines: calculated by Eq. (4) (PBS treatment)



completely electroneutral and will have a weak interac-
tion with the added nonionic surfactant.

It is difficult to know the actual composition of the
mixed monolayer, but, from surface tension measure-
ments, it could be concluded that the applicability of the
ERSA treatment to the ternary system seems to depend
on the combined pair interaction parameter,
ðbs

an þ bs
cnÞ=2� bs

ac=4. The more it deviates from zero,
the bigger the difference between predictions and
experiments. When ðbs

an þ bs
cnÞ=2� bs

ac=4! 0, the pre-
dictions based on the ERSA treatment are in good
agreement with experimental results, and ERSA and
PBS treatments tend to be equivalent. On the other
hand, however, the PBS treatment is generally applica-
ble to the nonideal ternary system.

Conclusions

1. The regular solution approximation for mixed
adsorption of nonideal binary surfactant systems is
extended to nonideal ternary surfactant systems.
With the ERSA treatment, the mixed adsorption and
surface tension of nonideal ternary surfactant systems
can be predicted based only on the c-LogC curves
of individual surfactants and pair interaction
parameters.

2. A pseudo-binary system treatment is proposed which
considers the surfactant mixture as an ‘‘individual’’
component interacting with other surfactants. With
the PBS treatment, similar predictions can also be
realized.

3. In the case of two components showing ideal mixing,
a nonideal ternary system is in fact reduced to a
nonideal binary system and the ERSA and PBS
treatments are equivalent. It means that the RSA is
applicable to nonideal binary systems composed of
commercial surfactants that are mixtures of homo-
logues.

4. For two typical anionic/cationic/nonionic nonideal
ternary surfactant systems in the presence of excess
inorganic electrolyte, the PBS treatment gives better
prediction than the ERSA treatment.

5. The PBS treatment is generally applicable to nonideal
ternary systems. The applicability of the ERSA
treatment, however, seems to depend on the com-
bined interaction parameter, ðbs

an þ bs
cnÞ=2� bs

ac=4:
the more positive it is, the larger the difference be-
tween predictions and experimental results. In the
case where ðbs

an þ bs
cnÞ=2� bs

ac=4 fi 0, good agree-
ments between predictions and experiments can be
obtained with both treatments, which, though dif-
ferently derived, are interrelated and tend to be
equivalent.
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