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When a macroscopic-sized non-crystalline sample is illuminated using coherent x-ray radiation,
a bifurcation of photon energy flow may occur. The coarse-grained complex refractive index of the
sample may be considered to attenuate and refract the incident coherent beam, leading to a coherent
component of the transmitted beam. Spatially-unresolved sample microstructure, associated with
the fine-grained components of the complex refractive index, introduces a diffuse component to
the transmitted beam. This diffuse photon-scattering channel may be viewed in terms of position-
dependent fans of ultra-small-angle x-ray scatter. These position-dependent fans, at the exit surface
of the object, may under certain circumstances be approximated as having a locally-elliptical shape.
By using an anisotropic-diffusion Fokker–Planck approach to model this bifurcated x-ray energy flow,
we show how all three components (attenuation, refraction and locally-elliptical diffuse scatter) may
be recovered. This is done via x-ray speckle tracking, in which the sample is illuminated with
spatially-random x-ray fields generated by coherent illumination of a spatially-random membrane.
The theory is developed, and then successfully applied to experimental x-ray data.

I. INTRODUCTION

Speckle-based phenomena and associated measure-
ment techniques, for both radiation and matter wave
fields, appear in numerous optical-physics settings. Ex-
amples include speckle arising from the passage of coher-
ent light through spatially random screens [1], speckle
interferometry [2], photon correlation spectroscopy [3],
speckle correlography [4], Ronchigram aberrometry [5],
fluctuation microscopy [6], ghost imaging [7], vortex net-
works associated with fully developed speckle [8], tur-
bulence in time-dependent optical speckles [9], speckled
microdiffraction patterns arising from focused electron
beams that scatter from amorphous materials [10] and
speckled cross-spectral densities arising from modern un-
dulator sources [11]. This list is far from complete. For
a broad overview, see e.g. the book by Goodman [12].

Our specific focus is x-ray speckle [13]. Again, the
breadth of x-ray speckle phenomena is extensive. Tech-
niques employing x-ray speckle include x-ray photon cor-
relation spectroscopy [14], x-ray ghost imaging [15, 16],
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x-ray near-field speckle analysis [17], x-ray particle image
velocimetry [18], analysis of the x-ray scattering of fo-
cused probes from disordered materials [19], x-ray coher-
ent diffractive imaging [20] and analysis of x-ray speckles
arising from coherent surface diffraction [21]. One partic-
ular use of x-ray speckles is the core topic of the present
paper: x-ray speckle tracking [22, 23].

Recent years have seen the emergence of new x-ray
imaging approaches that tap into x-ray phase information
to reveal weakly-absorbing samples, and access an x-ray
‘dark-field’ signal that reveals the location of spatially-
unresolved microstructure within the sample. The first
phase and dark-field imaging approach used either crys-
tals or multiple gratings to ‘analyze’ the x-ray wavefield
downstream of the sample [24]. More recently, high-
resolution approaches without an analyzer grating have
been shown, instead of using a high-resolution detector
to directly capture how the introduction of the sample
alters the periodic illumination produced by the primary
grating. An x-ray phase shift introduced by the sample
upon the x-ray wavefield will locally transversely shift
or warp the image of the grating pattern, analogous to
the warping of a scene that is viewed with visible light
through an old uneven glass window. This is analogous
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to early visible-light experiments that photographed a
grating pattern to pick up the refractive index variations
introduced by a jet of gas or hot air placed between the
camera and the reference pattern [25–27]. In this ap-
proach, the dark-field signal will be seen as a blurring
of the grating pattern, similar to how a scene viewed
through a ground glass window is blurred. The x-ray
phase and dark-field images are retrieved by either ana-
lyzing sample-induced changes to the grating pattern in
Fourier space, in the case that the illumination is well-
described by a sinusoid [28, 29], or in real-space, via a
series of local cross-correlations [30].

Because the real-space approach to phase and dark-
field retrieval does not require a periodic reference pat-
tern, a new set-up was proposed where a highly-textured
random object like a piece of sandpaper could be used
to create a speckle reference illumination [22, 23]. The
approach has come to be known in the x-ray regime as
‘speckle-tracking’, and initially retrieved phase and dark-
field images by comparing a reference speckle image with-
out the sample to a single exposure where the sample
has now been introduced. This speckle reference pat-
tern, created by the local focusing or defocusing of the x-
ray illumination by sandpaper grains, calls back to early
work on x-ray wavefront characterization that analyzed
a reference intensity pattern created by an array of x-ray
lenses [31], a form of Shack-Hartmann sensor. This ap-
proach, taking advantage of the speckle characteristics in
the deep Fresnel region where the Fresnel number is on
the order of unity, proved itself particularly advantageous
in the x-ray regime where the range of usable propagation
distances is elongated by the short photon wavelength
[17]. Later, equivalent methods were developed with vis-
ible light where the so-called speckle-memory effect also
permits tracking of individual grains between images [32].

While the speckle-based approach provides improved
spatial resolution compared to the early x-ray lens ap-
proach, because any x-ray speckles will be spread across
several detector pixels, the spatial resolution of the re-
trieved images will be limited with this single-sample-
exposure approach. As a result, the speckle-tracking
method has evolved to incorporate information from mul-
tiple exposures, captured as speckles are scanned across
the sample [33]. Since the first demonstration [33], a
number of additional phase and dark-field retrieval meth-
ods have been shown that use multiple sample exposures
[34–37]. Another key step has been the demonstration
of this technique on laboratory x-ray sources, in both
the single [38, 39] and multiple-exposure approaches [40].
Several recent reviews on speckle-tracking provide a full
picture of the developments [41–43].

Two major formalisms for x-ray speckle tracking are
X-ray Speckle-Vector Tracking (XSVT) [35] and Unified
Modulated Pattern Analysis (UMPA) [37]. Both have a
broad domain of applicability, and incorporate multiple
important factors in a robust manner, via a variational
approach based on a suitable functional. The incorpo-
rated factors include attenuation and refraction (trans-

verse phase shifts) due to the sample. In addition, XSVT
and UMPA can incorporate and retrieve the ‘dark-field’
speckle-visibility reduction associated with the position-
dependent small-angle x-ray scattering (SAXS) [44] fans,
that emerge from each point on the exit-surface of the
sample on account of spatially-unresolved microstruc-
ture [33, 38, 45–51]. For many samples, these position-
dependent SAXS fans may be modeled as each being
rotationally-symmetric. When the position-dependent
SAXS fans are not rotationally symmetric, e.g. if they
can be modeled as elliptical, one can instead speak of ‘di-
rectional dark field’ (DDF) imaging [52–54]. The DDF
signal may be accessed using methods employing periodic
gratings [52–54] and spatially-random gratings [55].

More recently, another random-mask speckle-tracking
approach was developed. This third approach is the Op-
tical Flow (OF) method [56], together with its Fokker–
Planck generalization (Multi-modal Intrinsic Speckle
Tracking (MIST)) [57, 58]. We now focus attention on
this third method, which implicitly rather than explic-
itly tracks speckles. The OF method is based on a sim-
ple second-order partial differential equation, namely a
continuity equation that has strong parallels with the
transport-of-intensity equation of paraxial optics [59].
This simplicity is obtained at the cost of being sig-
nificantly less general than the XSVT and UMPA ap-
proaches. In the MIST extension of OF, a Fokker–Planck
[60] generalization of OF speckle tracking is employed
[57, 58, 61]. MIST implicitly tracks the transverse mo-
tion, lensing and diffusion of speckles. Its associated par-
tial differential equation [57], which is of Fokker–Planck
form, is amenable to closed-form solution [58]. The lat-
ter fact is the core motivation for pursuing this particular
approach.

The paper is structured as follows. Section II de-
velops a theoretical description, for directional dark-
field x-ray speckle tracking, via a forward-finite-difference
anisotropic-diffusion Fokker–Planck equation. The key
aim, underpinning this theory, is robust means for ex-
tracting the position-dependent symmetric rank-two dif-
fusion tensor associated with unresolved microstructure
in a sample. Sections III and IV give an experimental
demonstration of these ideas, using hard x-ray radia-
tion. Section V discusses some broader implications of
this work, together with some possible avenues for fu-
ture investigation. Brief concluding remarks are made in
Sec. VI.

II. THEORY

Here we develop the theory for both forward and in-
verse problems [62] of directional dark-field x-ray speckle
tracking, using an anisotropic-diffusion Fokker–Planck
equation. We begin by obtaining the requisite forward-
finite-difference Fokker–Planck equation, which models
speckle formation and subsequent sample-induced defor-
mation, in a manner accounting for the attenuating, re-
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fracting and diffusive properties of the sample. We then
consider the inverse problem associated with two differ-
ent special cases of this model, namely (i) a phase ob-
ject, for which there is no attenuation by assumption, and
(ii) a monomorphous object, in which the object-induced
phase shifts are proportional to the logarithm of the asso-
ciated attenuation. We then examine the relationship be-
tween the diffusion-tensor field appearing in our Fokker–
Planck equation, and the associated position-dependent
SAXS fans associated with unresolved microstructure in
the sample.

A. Anisotropic-diffusion Fokker–Planck formalism
for x-ray speckle tracking

Consider the x-ray speckle-tracking setup that is
sketched in Fig. 1. Here, we see a quasi-monochromatic
x-ray source that paraxially illuminates a thin spatially-
random speckle-generating mask, to produce a refer-
ence speckle image IR(x, y), over the planar surface of a
position-sensitive detector which is perpendicular to the
optical axis z. The reference speckle image may be pro-
duced via either or both of the following mechanisms: (i)
attenuation contrast due to the position-dependent ab-
sorption of x rays as they traverse the spatially-random
mask, (ii) phase contrast due to the position-dependent
phase shifts imparted upon the x rays as they traverse
the mask, with these phase shifts leading upon free-space
propagation to intensity variations over the surface of the
position-sensitive detector [63]. Having recorded the ref-
erence speckle image, we may then perform a second mea-
surement, in which a thin non-absorbing object is placed
in between the speckle-generating mask and the detector.
The distance ∆ from the sample to the detector should be
sufficiently large that the transverse deflections, induced
by the refractive profile of the sample, lead to measurable
transverse shifts in the reference speckles measured in
the absence of the sample. Conversely, ∆ should be suf-
ficiently small that the transverse shifts, of the reference
speckles, should not be more than around two detector
pixels in magnitude. The speckle image IS(x, y), mea-
sured in the presence of both the sample and the mask,
will then have the following property: every x-ray photon
that strikes a given location (x, y) in IS will have struck
a nearby position (x+ δx, y + δy) in IR, and conversely.
This property, which arises from the previously articu-
lated assumption that ∆ be sufficiently small, implies IR
and IS to be connected via a conserved current that lo-
cally preserves the number of detected photons. Stated
differently, local conservation of energy implies there to
be a geometric flow—which may also be termed an opti-
cal flow [64, 65] or a Noether conserved current [66]—that
can be used to smoothly deform IR into IS [56].

It is natural to assume that this flow, which deforms
IR into IS, will have both coherent and diffuse com-
ponents. The coherent component will be due to the
near-monochromatic nature of the illuminating radia-

FIG. 1. Experimental setup for x-ray Multi-modal Instrinsic-
Speckle-Tracking (MIST).

tion, together with the position-dependent phase and
amplitude shifts that are coherently imparted by both
the sample and the speckle-generating mask. The dif-
fuse component will be due to several mechanisms: (i)
the partially-coherent nature of the illumination, (ii) the
presence of spatially-unresolved random micro-structure
in the sample and mask, and (iii) the presence of sharp
edges in both sample and mask. Spatially-unresolved
random micro-structure leads to diffusive x-ray energy
flow on account of position-dependent small-angle x-ray
scattering (SAXS) [44]. Sharp edges lead to diffusive
flow via Young–Maggi–Rubinowicz boundary-diffraction
waves (edge scattering, edge-diffracted rays) [67–71].

All of the above considerations—namely a locally
energy-preserving optical flow, possessing both coher-
ent and diffuse components, that maps IR into IS—may
be quantified using a forward-finite-difference Fokker–
Planck equation [57, 60, 61, 72]. In particular, Eq. (55)
in Ref. [57] generalizes the optical-flow method for x-ray
speckle tracking [56], to give:

IR(r⊥)− IS(r⊥) =
∆

k
∇⊥ · [IR(r⊥)∇⊥φob(r⊥)]

−∆∇2
⊥[Deff(r⊥; ∆)IR(r⊥)]. (1)

Here r⊥ ≡ (x, y), IR(r⊥) and IS(r⊥) are the intensities
of a reference speckle image acquired in the absence and
presence of a sample, respectively, ∆ is the sample-to-
detector distance, k = 2π/λ is the wavenumber of the x
rays, λ is the wavelength, φob is the phase shift caused by
the sample, and ∇⊥ = (∂/∂x, ∂/∂y) denotes the trans-
verse gradient operator. The first term, on the right-hand
side of Eq. (1), quantifies the coherent energy flow that
was described earlier. An identical term appears in the
transport-of-intensity equation (TIE) [59]. Indeed, the
entire first line of Eq. (1) is mathematically identical in
form to a first-order finite-difference form of the TIE.
This correspondence exists because local energy conser-
vation, under transverse energy flow, is the underpinning
principle in both the TIE and the first line of Eq. (1).
The difference lies in the fact that (i) the transverse flow
in the TIE is induced by free-space propagation from
plane to parallel downstream plane in vacuo, whereas (ii)
in the first line of Eq. (1) the transverse flow occurs in
a fixed plane, with the flow induced by a phase object
whose presence smoothly perturbs IR(r⊥) into IS(r⊥)
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[56]. The second term, on the right-hand side of Eq. (1),
describes the diffusive flow via the effective diffusion coef-
ficient Deff(r⊥; ∆). If we assume the mask to be spatially
statistically stationary, and the source to be an extended
incoherent source, then the diffusive effects due to source-
size blur will be describable via a position-independent
additive constant term in Deff(r⊥; ∆). With this under-
standing in place, we henceforth consider Deff(r⊥; ∆) to
quantify only sample-induced contributions, that are due
to both (i) local position-dependent SAXS fans emerg-
ing from each point on the exit surface of the sample,
as well as (ii) edge-diffracted x rays. Note, also, that
the position-dependent sample-induced SAXS fans, as
described by the above formalism, are considered to be
rotationally symmetric (by assumption) at each trans-
verse location over the exit surface of the thin sample.

To generalize Eq. (1) to the case of directional dark-
field imaging [52, 53], in which the position-dependent
SAXS fans have an elliptical transverse profile [53, 73], we
introduce the symmetric rank-two diffusion tensor field
[57, 61] :

Deff(r⊥; ∆) −→

[
D

(xx)
eff (r⊥; ∆) 1

2D
(xy)
eff (r⊥; ∆)

1
2D

(xy)
eff (r⊥; ∆) D

(yy)
eff (r⊥; ∆)

]
. (2)

This enables us to write down a directional-dark-
field generalization of Eq. (1), namely the following
anisotropic-diffusion forward-finite-difference Fokker–
Planck speckle-tracking equation due to Pavlov et al. [58]:

IR(r⊥)−IS(r⊥) =
∆

k
∇⊥ · [IR(r⊥)∇⊥φob(r⊥)]

−∆
∂2

∂x2

[
D

(xx)
eff (r⊥; ∆)IR(r⊥)

]
−∆

∂2

∂y2

[
D

(yy)
eff (r⊥; ∆)IR(r⊥)

]
−∆

∂2

∂x∂y

[
D

(xy)
eff (r⊥; ∆)IR(r⊥)

]
. (3)

Let us now assume that an attenuating object is placed
in the well-resolved reference speckle field. This causes
variations in the registered speckle image, which can be
described by (cf. Eq. (9) in Ref. [74], with incorporation
of Eq. (4) in Ref. [61] and Eq. (51) in Ref. [57]):

IR(r⊥)Iob(r⊥)− IS(r⊥)

=
∆

k
∇⊥ · [IR(r⊥)Iob(r⊥)∇⊥φob(r⊥)]

−∆
∂2

∂x2

[
D

(xx)
eff (r⊥; ∆)IR(r⊥)Iob(r⊥)

]
−∆

∂2

∂y2

[
D

(yy)
eff (r⊥; ∆)IR(r⊥)Iob(r⊥)

]
−∆

∂2

∂x∂y

[
D

(xy)
eff (r⊥; ∆)IR(r⊥)Iob(r⊥)

]
. (4)

Here Iob(r⊥) is the object’s attenuation term. We also
assume that the components of the diffusion tensor,

D
(xx,yy,xy)
eff , are slowly-varying functions of the trans-

verse position (i.e., we can neglect their transverse spa-
tial derivatives, which are small compared to the retained
terms).

The second-order transverse spatial derivatives, ap-
plied to the diffuse-scatter terms on the right side of
Eq. (4), yield several components. For example, the first
of these three diffusely-scattering components gives:

∂2

∂x2

[
D

(xx)
eff (r⊥; ∆)IR(r⊥)Iob(r⊥)

]
=
[
D

(xx)
eff (r⊥; ∆)Iob(r⊥)

] ∂2

∂x2
IR(r⊥)

+ IR(r⊥)
∂2

∂x2

[
D

(xx)
eff (r⊥; ∆)Iob(r⊥)

]
+ 2

∂

∂x
[IR(r⊥)]

∂

∂x

[
D

(xx)
eff (r⊥; ∆)Iob(r⊥)

]
≈D(xx)

eff (r⊥; ∆)Iob(r⊥)
∂2

∂x2
IR(r⊥)

+ IR(r⊥)D
(xx)
eff (r⊥; ∆)

∂2

∂x2
[Iob(r⊥)]. (5)

We have neglected the following terms in the right

hand side of Eq. (5): IR(r⊥)Iob(r⊥) ∂2

∂x2D
(xx)
eff (r⊥; ∆)

and 2IR(r⊥) ∂
∂x [D

(xx)
eff (r⊥; ∆)] ∂

∂x [Iob(r⊥)], because we

have assumed that D
(xx)
eff is a slowly-varying func-

tion everywhere. We have also neglected the term

2 ∂
∂x [D

(xx)
eff (r⊥; ∆)Iob(r⊥)] ∂

∂x [IR(r⊥)], for the following
reason. The intensity of a reference speckle image IR(r⊥),
acquired in the absence of a sample, is produced by a spa-
tially random mask. Therefore, the gradient of such an
intensity map will be a vector field that is rapidly chang-
ing in both direction and magnitude. Thus the scalar
product, of such a random vector field with a more slowly
changing gradient of the product of two functions, can be
neglected. A similar approximation was previously em-
ployed in Refs. [58, 74]. Bearing all of the above points
in mind, we can simplify Eq. (4) as follows:

IR(r⊥)Iob(r⊥)− IS(r⊥)

=
∆

k
IR(r⊥)∇⊥ · [Iob(r⊥)∇⊥φob(r⊥)]

−∆D
(xx)
eff (r⊥; ∆)Iob(r⊥)

∂2

∂x2
IR(r⊥)

−∆D
(xx)
eff (r⊥; ∆)IR(r⊥)

∂2

∂x2
Iob(r⊥)

−∆D
(yy)
eff (r⊥; ∆)Iob(r⊥)

∂2

∂y2
IR(r⊥)

−∆D
(yy)
eff (r⊥; ∆)IR(r⊥)

∂2

∂y2
Iob(r⊥)

−∆D
(xy)
eff (r⊥; ∆)Iob(r⊥)

∂2

∂x∂y
IR(r⊥)

−∆D
(xy)
eff (r⊥; ∆)IR(r⊥)

∂2

∂x∂y
Iob(r⊥). (6)
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Above, we have used an additional approximation, sim-
ilar to that used earlier, namely the neglect of the term
∇⊥[IR(r⊥)] · [Iob(r⊥)∇⊥φob(r⊥)] (see also Refs. [58, 74]).
Here we are again making use of the fact that the inten-
sity of a reference speckle image, acquired in the absence
of a sample, IR, is produced by a random mask. There-
fore, the gradient of such a field is again a vector field
that is rapidly changing in both direction and magnitude.
Thus, the scalar product of such a random vector field
with a more slowly changing phase gradient can be ne-
glected. It is also worth noting that the terms on the right
side of Eq. (6), containing the second-order derivatives of
the object’s attenuation term, become more prominent at
the object’s internal and external boundaries.

A further modification of of Eq. (6) can be achieved by
dividing both sides by IR and rearranging, to give:

IS(r⊥)

IR(r⊥)
= Iob(r⊥)− ∆

k
∇⊥ · [Iob(r⊥)∇⊥φob(r⊥)]

+ ∆D
(xx)
eff (r⊥; ∆)

[
Iob(r⊥)

∂2

∂x2 IR(r⊥)

IR(r⊥)
+

∂2

∂x2
Iob(r⊥)

]

+ ∆D
(yy)
eff (r⊥; ∆)

[
Iob(r⊥)

∂2

∂y2 IR(r⊥)

IR(r⊥)
+

∂2

∂y2
Iob(r⊥)

]

+ ∆D
(xy)
eff (r⊥; ∆)

[
Iob(r⊥)

∂2

∂x∂y IR(r⊥)

IR(r⊥)
+

∂2

∂x∂y
Iob(r⊥)

]
.

(7)

This equation describes a general case of speckle-
based imaging for an attenuating object, where several
terms incorporating the diffusion tensor field are taken
into account. This forward-finite-difference anisotropic-
diffusion Fokker–Planck equation completes our descrip-
tion of the forward problem associated with image for-
mation and subsequent data collection, in the context of
x-ray speckle tracking.

B. Two inverse problems

The formulation of the forward problem in Eq. (7) es-
tablishes the model upon which the associated inverse
problem [62], of recovering sample properties based on
one or more pairs of reference-only and reference-plus-
sample speckle images, may be based. Here we consider
two such inverse problems, corresponding to two differ-
ent limit cases of Eq. (7). These two special cases are:
(i) the sample is assumed to be a phase object, i.e. it is
non-attenuating; (ii) the sample is taken to be monomor-
phous, i.e. its phase shifts are proportional to the loga-
rithm of the associated attenuation, as is the case e.g. for
a thin object that is composed of a single material.

1. Case 1: A Phase object

By definition, Iob(r⊥) = 1 for a pure phase object.
Equation (7) can then be simplified as (cf. Eq. (10) in
Ref. [58] and to Eq. (3) above):

1− IS(r⊥)

IR(r⊥)
=

∆

k
∇2
⊥φob(r⊥)

−∆D
(xx)
eff (r⊥; ∆)

∂2

∂x2 IR(r⊥)

IR(r⊥)

−∆D
(yy)
eff (r⊥; ∆)

∂2

∂y2 IR(r⊥)

IR(r⊥)

−∆D
(xy)
eff (r⊥; ∆)

∂2

∂x∂y IR(r⊥)

IR(r⊥)
. (8)

Equation (8) contains four unknown functions: ∇2
⊥φ(r⊥)

and D
(xx,xy,yy)
eff (r⊥; ∆), which can be found from any four

independent measurements of IS(r⊥) and IR(r⊥) by vary-
ing experimental conditions, e.g., the mask positions.

2. Case 2: A monomorphous object

For a monomorphous (e.g., single-material) object, its
complex index of refraction n can be represented as

n = 1− δ + iβ = 1− γβ + iβ = 1 + β(i− γ), (9)

where

γ =
δ

β
. (10)

Here, the real numbers δ, β denote the refractive index
decrement and the imaginary (absorptive) part of the
complex refractive index, respectively. The value of γ is
considered known from tables or can be experimentally
adjusted by trial and error to match the sample compo-
sition and density (see e.g., Ref. [75]). Then the phase
shift is

φ(r⊥) = −kδt(r⊥), (11)

where t(r⊥) is the projected thickness of the object. The
object’s attenuation term is

Iob(r⊥) = exp[−2kβt(r⊥)]. (12)
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Then Eq. (7) can be rewritten as follows (cf. Eq. (14) in
Ref. [74]):

IS(r⊥)

IR(r⊥)
=

(
1− γ∆

2k
∇2
⊥

)
Iob(r⊥)

+ ∆D
(xx)
eff (r⊥; ∆)

[
Iob(r⊥)

∂2

∂x2 IR(r⊥)

IR(r⊥)
+

∂2

∂x2
Iob(r⊥)

]

+ ∆D
(yy)
eff (r⊥; ∆)

[
Iob(r⊥)

∂2

∂y2 IR(r⊥)

IR(r⊥)
+

∂2

∂y2
Iob(r⊥)

]

+ ∆D
(xy)
eff (r⊥; ∆)

[
Iob(r⊥)

∂2

∂x∂y IR(r⊥)

IR(r⊥)
+

∂2

∂x∂y
Iob(r⊥)

]
.

(13)

As we assume that D
(xx,yy,xy)
eff (r⊥; ∆) are slowly-varying

functions, we can solve Eq. (13) for four unknown func-
tions, namely:

G1(r⊥) =

(
1− γ∆

2k
∇2
⊥

)
Iob(r⊥)

+ ∆

[
D

(xx)
eff (r⊥; ∆)

∂2

∂x2
Iob(r⊥)

]
+ ∆

[
D

(xy)
eff (r⊥; ∆)

∂2

∂x∂y
Iob(r⊥)

]
+ ∆

[
D

(yy)
eff (r⊥; ∆)

∂2

∂y2
Iob(r⊥)

]
, (14)

G2(r⊥) = ∆
[
D

(xx)
eff (r⊥; ∆)Iob(r⊥)

]
, (15)

G3(r⊥) = ∆
[
D

(yy)
eff (r⊥; ∆)Iob(r⊥)

]
, (16)

G4(r⊥) = ∆
[
D

(xy)
eff (r⊥; ∆)Iob(r⊥)

]
. (17)

This can be done by using four independent measure-
ments of IS(r⊥) and IR(r⊥), which may be obtained by
varying experimental conditions, e.g., the mask positions.
Then we can apply the second-order derivatives to the
functions G2,3,4(r⊥):


∂2

∂x2G2(r⊥) ≈ ∆D
(xx)
eff (r⊥; ∆) ∂2

∂x2 Iob(r⊥)
∂2

∂y2G3(r⊥) ≈ ∆D
(yy)
eff (r⊥; ∆) ∂2

∂y2 Iob(r⊥)
∂2

∂x∂yG4(r⊥) ≈ ∆D
(xy)
eff (r⊥; ∆) ∂2

∂x∂y Iob(r⊥).

(18)

Here we have again used our assumption that

D
(xx,yy,xy)
eff (r⊥; ∆) are slowly-varying functions. By com-

bining Eq. (14) and Eq. (18) we can form a new function:

G(r⊥) = G1(r⊥)− ∂2

∂x2
G2(r⊥)− ∂2

∂y2
G3(r⊥)

− ∂2

∂x∂y
G4(r⊥) =

(
1− γ∆

2k
∇2
⊥

)
Iob(r⊥).

(19)

Now we can obtain the object’s projected thickness map
(cf. Eq. (18) in Ref. [74]):

t(r⊥) = − 1

2kβ
loge F−1

{
F [G(r⊥)]

1 + πγ∆λ(u2 + v2)

}
(20)

and subsequently the components of the diffusion tensor:
D

(xx)
eff (r⊥; ∆) = G2(r⊥)/(∆Iob(r⊥))

D
(yy)
eff (r⊥; ∆) = G3(r⊥)/(∆Iob(r⊥))

D
(xy)
eff (r⊥; ∆) = G4(r⊥)/(∆Iob(r⊥)).

(21)

C. Relation between diffusion-tensor field and
position-dependent SAXS fans

Here we consider the relationship between the
diffusion-tensor field (Eq. (2)) and the associated
position-dependent elliptical SAXS fans emanating from
each point on the exit surface of the sample.

If we consider the transverse location (x0, y0) at the
nominally-planar exit surface of the sample, then the re-
sulting anisotropic blurring due to the locally-elliptical
SAXS fan will correspond to an ellipse of (x, y) coordi-
nates in the plane at distance ∆ > 0 downstream of the
sample, with these (x, y) coordinates obeying:

(x− x0)2

D
(xx)
eff (x0, y0; ∆)

+
(y − y0)2

D
(yy)
eff (x0, y0; ∆)

+
(x− x0)(y − y0)

D
(xy)
eff (x0, y0; ∆)

≤ ∆. (22)

The above ellipse field, in which we have a different
ellipse for each transverse location (x0, y0), incorporates
the effects of two distinct but related factors: (i) the
opening angles θ(x0, y0) of the elliptical SAXS fans that
emanate from each point (x0, y0) over the nominally-
planar exit surface of the sample; (ii) the correspond-
ing dimensionless fractions F (x0, y0) of the incident x-
ray photons that are converted to the diffusely-scattering
channel, on account of unresolved micro-structure and
edge scatter from the sample.

See Fig. 3 of Paganin & Morgan [57] for the relations
connecting the following quantities: (i) the effective dif-
fusion coefficients, (ii) the position-dependent SAXS-fan
opening angles, and (iii) the diffuse-scatter fractions. For
an example of such connecting relations, for the ‘xx’
diffuse-scatter channel we have

D
(xx)
eff (x0, y0; ∆)

∆
= F (xx)(x0, y0)

[
θ(xx)(x0, y0)

]2
. (23)

Here, F (xx)(x0, y0) is a dimensionless quantity taking val-
ues between zero and unity, that denotes the fraction
of the incident x rays (at the specified energy) that are
converted to ‘xx’ diffuse scatter by the sample at the
transverse location (x0, y0), with θ(xx)(x0, y0) being the
corresponding local-SAXS-fan opening angle. Similar ex-
pressions may be written down, by replacing (xx) with
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either (yy) or (xy). Note, also, that these three opening
angles may be converted to (i) an angle for the SAXS-
ellipse semi-major axis, (ii) an angle for the SAXS-ellipse
semi-minor axis, and (iii) an angle denoting the angular
orientation of the semi-major ellipse axis.

The form of the right side of Eq. (23) implies that
the effective diffusion coefficients are invariant under the
concurrent mappings{

F (x0, y0)→ F (x0, y0)/α(x0, y0),

θ(x0, y0)→ θ(x0, y0)
√
α(x0, y0).

(24)

Here, α(x0, y0) is a real positive function which may as-
sume otherwise-arbitrary values, provided that, both be-
fore and after the above mapping, the scattering frac-
tions obey F (x0, y0)� 1 and the scattering angles obey
θ(x0, y0) � 1. The physical origin of this invariance is
as follows. Decreasing F (x0, y0) at any fixed transverse
location will decrease the degree of local-SAXS blurring
in the detection plane. Conversely, increasing the cor-
responding SAXS-fan opening angle at the same sample
location will increase the degree of such blurring. These
two opposing influences can be chosen to exactly balance
one another (in the sense of providing an identical mea-
sured map of radiant exposure), in a continuous infinity
of different ways, corresponding to all of the different
choices that can be made for the scalar field α(x0, y0).
This is a fundamental ambiguity in the Fokker–Planck
formalism that underpins the present paper.

The above ambiguity implies that, rather than recov-
ering the SAXS-fan ellipse at any transverse location
(x0, y0), the method is only able to recover a family of
similar concentric ellipses at each (x0, y0) location. Each
member of this family is similar to the actual SAXS el-
lipse at each transverse location (x0, y0), in the sense of
having the same eccentricity and orientation angle, but
which member of the family is the actual SAXS ellipse
remains undetermined.

Fortunately, there are two absolute quantities that may
be extracted, since they are both independent of α(x0, y0)
and are therefore the same for all ellipses in the previously
mentioned family of similar ellipses. These two invariant
directional-dark-field quantities are:

• the eccentricity ε(x0, y0) of the SAXS ellipse at each
transverse location (x0, y0);

• the angular orientation ψ(x0, y0) of each SAXS el-
lipse (note that these angular orientations are only
meaningful modulo π radians, since the major axes
of the ellipses form a director field rather than a
vector field, i.e. they are ‘arrowless vectors’).

Both ε(x0, y0) and ψ(x0, y0) (positive direction is coun-
terclockwise) may be extracted from the symmetrical
quadratic form (see Eq. 2.4-1 in [76]) of an ellipse, where
we assume that the center of this ellipse is at (x0, y0):

a11x
2 + 2a12xy + a22y

2 + a33 = 0. (25)

Hence{
ε(x0, y0) =

√
2Υ/(a11 + a22 + Υ)

ψ(x0, y0) = 1
2 arctan[2a12/(a22 − a11)],

(26)

where

Υ =
√

(a11 − a22)2 + 4a2
12, (27)

which corresponds to Eq. (22).
Subsequently, using Eq. (26), both ε(x0, y0) and

ψ(x0, y0) may be extracted directly from the effective dif-
fusion tensor in Eq. (2), via the following relations:

a11 = D
(yy)
eff (r⊥; ∆)D

(xy)
eff (r⊥; ∆)

a22 = D
(xx)
eff (r⊥; ∆)D

(xy)
eff (r⊥; ∆)

a12 = 1
2D

(xx)
eff (r⊥; ∆)D

(yy)
eff (r⊥; ∆).

(28)

Thus, while this symmetric rank-two diffusion tensor con-
tains three independent components at each transverse
location (x0, y0), the invariance under the mapping of
Eq. (24) implies that only two independent invariant
quantities may be extracted using our Fokker–Planck
speckle-tracking formalism.

Evidently, we have four independent recoverable chan-
nels of information in total, corresponding to four differ-
ent scalar fields at the exit surface of the sample. The
first pair of scalar fields, which is associated with the
coherent channel for x-ray energy flow, is the intensity
Iob(x0, y0) and phase φob(x0, y0) at each point (x0, y0)
on the exit surface of the sample. The other pair of
scalar fields, which is associated with the diffuse chan-
nel for x-ray energy flow, is the eccentricity ε(x0, y0)
and ellipse-orientation ψ(x0, y0) of the local position-
dependent SAXS ellipses emerging from each point on
the sample’s exit surface. A fifth scalar field, namely the
dimensionless scattering fraction F (x0, y0), is not recov-
ered by the formalism developed in the present paper.

The recovered ellipse-eccentricity and ellipse-
orientation fields, namely ε(x0, y0) and ψ(x0, y0)
respectively, can be represented in various ways,
including:

• A color representation in which the brightness of
each pixel is proportional to ε(x0, y0) and the color
is a function of ψ(x0, y0) (modulo π radians);

• A grey-scale representation where the brightness of
each pixel is proportional to ε(x0, y0);

• A color representation in which the color of the
pixel is a linear combination of three different hues
(e.g. red, green and blue) for the three components
of the diffusion tensor. Other choices of color space
may also be employed.

III. EXPERIMENTS

To validate the proposed theoretical approach, exper-
imental x-ray speckle tracking data were collected at
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the European Synchrotron Radiation Facility (ESRF) in
Grenoble, France. The experimental setup corresponds
to Fig. 1. Two distinct experiments were performed.

The first analysis reuses the data collected and pro-
cessed in our previous article [58]. These data consist of
images of a red currant sample collected at ESRF beam-
line BM05. The sample was located approximately 55 m
downstream of the source, in the beam path of the x-ray
photons produced by synchrotron radiation from a 0.85
T dipole bending magnet. The x-ray beam energy was
narrowed to a bandwidth of ∆E/E ≈ 10−4 at the en-
ergy of E = 17 keV, using a double Bragg crystal Si(111)
monochromator located 27 m from the x-ray source. The
speckle generator consisted of a piece of sandpaper with
grit size P800 that was fixed on piezo translation motors
located 0.5 m upstream of the sample. A FReLoN (Fast
Read-Out Low-Noise [77, 78]) e2V camera, coupled to
an optic imaging a thin scintillator, was used to image
the sample from a distance ∆ = 1 m downstream of it.
The effective pixel size of this imaging optical system was
5.8 µm, with a signal to noise of greater than 500.

The second experiment employed a similar type of set-
up, but on another beamline of the ESRF, which is ded-
icated to biomedical imaging (ID17). Here the imaged
sample was a mouse knee, with the x-ray photons being
produced using a 3 T wiggler. The continuous spectrum
of the x-ray source was filtered to a 52 keV narrow energy
band by a double bent Silicon crystal monochromator in
a Laue-Laue configuration. The speckle-generating diffu-
sive membrane was composed of Cu powder (mean grain
size 36 µm). This membrane was placed approximately
140 m downstream of the x-ray source, with the sample
being placed 1 m downstream of the membrane. The x-
ray detector intercepted the beam at a distance ∆ = 11m
beyond the sample. This imaging detector consisted of
a SCMOS (PCO 5.5, Germany) camera coupled to an
optic imaging a LuAG scintillator, with the full system
providing an effective pixel size of approximately 6.31
µm. While the FreLoN detector was designed for hav-
ing a higher signal to noise ratio, this second detector
design was driven by a higher velocity of read-out and
correspondingly lower radiation-dose deposition. Its use
eventually resulted in noisier images that were obtained
using a fraction of the exposure time that was used for
the first sample. Regarding the mouse sample, the im-
ages were obtained several months after the sacrifice of
the animal in accordance with Directive 2010/63/EU,
with the experiments having been performed in an agreed
animal facility (C3851610006) evaluated and authorized
by an Ethical Committee for Animal Welfare (APAFIS
#13792-201802261434542 v3).

For both experiments, the set of reference-speckle im-
ages IR was collected in the absence of the sample and
by moving the diffusive membrane (either sandpaper
or the custom-built membrane composed of Cu pow-
der) to defined positions of the speckle-generator motors.
The sample images IS were acquired while replacing the
sandpaper at precisely the same locations with an accu-

racy on the order of 0.1 µm. The sets of images were
then processed by running a Python3 code on a sim-
ple desktop machine. This code is available under a
MIT license on a GitHub repository located at the url
https://github.com/DoctorEmmetBrown/popcorn.

IV. RESULTS

Figure 2 presents the results obtained on the mouse
knee, in lateral view. We used the first approach (pure
phase object) with a δ value of bone at 52 keV which is
equal to 1.52× 10−7. We report in this figure the recov-
ered phase map (Fig. 2(a)) as well as the three compo-

nents of the darkfield tensor, i.e D
(yy)
eff (Fig. 2(b)), D

(xx)
eff

(Fig. 2(c)) and D
(xy)
eff (Fig. 2(d)). For better statistics

and less noisy results, the displayed darkfield images were
computed with more than the four pairs of acquisitions
(IS , IR) required to solve the system. In this case, ten
pairs of speckle images were used, generating due to the
noise for each pixel an over-determined system of equa-
tions that was solved in the least-squares sense by QR fac-
torization for better numerical accuracy. The δ parame-
ter used for this sample was the value given by http://ts-
imaging.science.unimelb.edu.au/Services/Simple/ where
data are calculated from the NIST X-Ray Form Factor,
Attenuation, and Scattering Tables.

In this figure the different bones can be clearly iden-
tified in the phase and the dark-field images, even
though the images have a noisy appearance on account
of the utilized detector. The three dark-field images (see
Figs. 2(b,c,d,)) show different signals from each other and
are very different compared to the phase image. The
edges of the bones seem to create a strong dark-field sig-
nal and very few other tissues seem to create a dark-field
signal, with the exception of the femoral tendon (indi-
cated by the arrow labeled ‘1’) that is visible in Fig. 2(c).
Interestingly the menisci (indicated by the arrows labeled
‘2’) do not seem to create strong darkfield signals even
though they are clearly visible in the phase image. This is
probably due to their composition, as menisci are mainly
composed of calcified solid cartilage [79] while the corti-
cal bone is composed of hydroxyapatite crystals arranged
to form a porous microstructure. This might be of great
interest for osteoarthritis studies as the thickening of cal-
cified cartilage appears to be one of the first signs of this
disease. Future studies will be designed to study this
phenomenon on a wider range of samples.

Figure 3 presents the results of the experiment which
used a red currant berry as a sample. We used the sec-
ond approach (monomorphous material) with γ = 1146
(value for water at 17 keV), using seven pairs of acqui-
sitions. The respective panels show the thickness map
(Fig. 3(a)), the directional dark-field eccentricity ε(x, y)
(Fig. 3(b)) and the orientation ψ(x, y) of the SAXS-
ellipse semi-major axis (Fig. 3(c)). We again see that
the three presented images display complementary infor-
mation regarding the sample. In particular, the dark-

http://ts-imaging.science.unimelb.edu.au/Services/Simple/
http://ts-imaging.science.unimelb.edu.au/Services/Simple/
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FIG. 2. Results for directional dark-field implicit x-ray speckle tracking of a mouse leg from ten pairs of acquisitions (IR, IS).

(a) Retrieved thickness from MIST converted into a phase map; darkfield tensor components (b) D
(yy)
eff , (c) D

(xx)
eff and (d) D

(xy)
eff .

field quantities plotted in Figs. 3(b,c) reveal information
that is not evident in Fig. 3(a). The eccentricity plot in
Fig. 3(b) highlights the oval-shaped seed near the center
of the berry, with the interior of this feature being notice-
ably brighter than the surrounding background. We also
observe higher diffuse-scatter eccentricity at the edges of
the sample, which is to be expected on account of our pre-
vious comments regarding diffusive flow that is induced
by photon scatter from sample edges [67–71, 80]. The
angular-orientation plot in Fig. 3(c) exhibits several fea-
tures that would be expected for a directional dark-field
signal [52, 53, 73]. The director-field ψ(x, y) clearly traces
out the local tangents to the projected edges of the sam-
ple, as well as the edges of the supporting mount and the
edges of the embedded seed near the center of the sam-
ple. Several fine filaments within the sample also become
visible in this director-field plot. It is also interesting to
observe the textured mixture of many angles in the oval-
shaped feature to the left of the sample, which is sugges-
tive of an ensemble of unresolved fibrous microstructure
with randomly-varying orientations. Finally, the thick-
ness map of the red currant is quantitative. Indeed, the
width of the berry measured from its width on the image
and the pixel size is 8.65 mm while the maximum thick-
ness of the berry calculated at its center is 8.71 mm.

V. DISCUSSION AND FUTURE WORK

A. Discussion

Our Fokker–Planck speckle-tracking model, for the
combined coherent-flow and diffuse-flow channels of x
rays traversing a non-crystalline sample, enables us to
extract information pertaining to both channels. This,
in turn, relates directly to different aspects of the distri-
bution of the complex refractive index within the sample.

The coherent channel corresponds to a coarse-grained
form of the complex refractive index, with the coarse-
graining being induced by the finite size of the detec-
tor pixels as well as the lack of perfect spatial coherence
in the illuminating photon field. Conversely, the diffuse
channel corresponds to a fine-grained form of the com-
plex refractive index, relating to structures that are not
directly spatially resolved by the system, but which nev-
ertheless have a measurable influence that may be ex-
tracted from recorded maps of radiant exposure. In this
sense, the method may be aptly described using the lan-
guage of Kagias et al. [81], as simultaneously extracting
both real-space and reciprocal-space information regard-
ing the sample.

We have given particular emphasis to the recovery
of information associated with the diffuse channel, and
in particular to the directional-darkfield aspects of this
channel. The closed-form analytic solutions, developed in
solving the inverse problem associated with our model,
enable computationally rapid darkfield reconstructions
using a relatively small number of images. We formulated
two different sample models: either a pure phase object
or a single-material object. These two models were tested
on two different experimental x-ray beamlines with two
different samples. The obtained results already seem to
show interesting features on the composition of the bone
and calcified cartilage that needs to be confirmed with
histology.

Next, we briefly discuss our use of the term ‘darkfield’
in the context of our paper. This term has a more general
usage, relating to any form of imaging in which unscat-
tered photons—or other imaging quanta, such as elec-
trons or neutrons—make no contribution to the output
image [82]. This imaging-system property causes sam-
ples, which incompletely cover the field of view, to appear
with positive contrast against a dark background field.
Thus, when we speak of the darkfield signal in our paper,
we are actually referring to a particular form of darkfield
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FIG. 3. Results for directional dark-field implicit x-ray speckle tracking of a red currant berry from seven pairs of acquisitions
(IR, IS). (a) Thickness map; (b) eccentricity ε(x, y) of the elliptical SAXS beam; (c) angular orientation ψ(x, y) of the elliptical
SAXS beam. The orientations are encoded using a HSV color system with Hue=angle, fixed saturation and brightness value
representing the normalized area of the local SAXS ellipse.

signal, namely that which is associated with the diffu-
sion tensors appearing in the anisotropic Fokker–Planck
equation (Eq. (3)) for speckle tracking. For a different
form of darkfield signal in an x-ray imaging setting, see
e.g. the technique for dark-field x-ray microscopy that is
reported in Simons et al. [83].

It is also worth pointing out a partial analogy that
exists, between our technique based on Eq. (3), and
the non-equilibrium dynamics of Brownian motion. In
this analogy, consider a thin sheet of (2 + 1)-dimensional
fluid in non-uniform flow, at two closely-spaced times t1
and t2 > t1. By assumption, this fluid has a position-
dependent temperature T (x, y, t), in addition to being
anisotropic at a microscopic level, as would be the case
e.g. in a flowing liquid crystal [84]. Suppose that small
clusters of pollen grains have been randomly positioned
over the surface of the flowing anisotropic fluid, at time
t1. As the fluid flows, each pollen cluster will be advected.
The timestep t2− t1 is sufficiently small, by assumption,
that the pollen-grain clusters move by distances no larger
than their diameter, in evolving from t1 to t2. The local
displacement of the center of mass of each pollen clus-
ter will be a direct measure of the local velocity of the
fluid. This pollen-cluster advection is analogous to the
‘speckle tracking’ first term on the right side of Eq. (3), if
one replaces the randomly-positioned pollen clusters with
the randomly-positioned illuminating x-ray speckles, and
considers the flow to be induced by placing a transparent
sample in the x-ray beam, rather than letting the pollen-
laden anisotropic fluid evolve from t1 to t2. In this anal-
ogy, ∆ ∝ (t2−t1) and D ∝ T , with the latter fluctuation-
dissipation proportionality arising from the Sutherland-
Einstein-Smoluchowski relation. In addition to being ad-
vected, the pollen clusters will diffuse during the small
time interval from t1 to t2, on account of Brownian mo-
tion associated with the position-dependent temperature
of the fluid. The temperature distribution, together with
the microscopically-anisotropic nature of the fluid film,

imply locally-elliptical diffusion of the pollen-grain clus-
ters over small timesteps t2 − t1. This is analogous to
the second and subsequent ‘anisotropic speckle diffusion’
terms on the right side of Eq. (3).

B. Future work

Here we list several possible avenues for future work.

1. While the formalism and experiment of the present
paper was developed in the specific context of x-
ray radiation, its Fokker–Planck approach is more
broadly applicable to directional dark-field speckle
tracking using other parts of the electromagnetic
spectrum such as already under study with visible
light [85, 86]. Imaging techniques based on alterna-
tive particles providing different imaging contrasts
like electrons or neutrons [87] could benefit as well
from these developments to probe smaller or bulkier
samples since one can readily imagine the possibil-
ity of developing randomly structured membranes
with a broad range of characteristics.

2. Following Refs. [57, 61], the symmetric rank-two
diffusion tensor in Eq. (2) may be considered as
the first member in an infinite hierarchy of pro-
gressively higher-rank tensors, which can be used
to extend the speckle-tracking Fokker–Planck equa-
tion (Eq. (3)) into a Kramers–Moyal form [60].
Higher-order diffusion-tensor fields relate to pro-
gressively higher-order moments of the position-
dependent SAXS fans emanating from each point
on the exit surface of the sample. Reference [57]
gives explicit expressions for these higher-order dif-
fusion tensors. See, also, the earlier papers of Mod-
regger et al. [88, 89], regarding the role of higher-
order SAXS-fan moments in directional dark-field
imaging.
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3. Explicit expressions have been derived for the
local-SAXS contribution to the diffusion tensor in
Eq. (2), together with its higher-order Kramers–
Moyal generalizations [56]. It would be interest-
ing to obtain corresponding edge-scatter-induced
diffusion tensors. Recall, in this context, pa-
pers which show DDF arising from sample edges,
with the semi-major axis of the diffuse-scatter el-
lipse being tangential to sample edges [53]. This
edge-induced DDF signal may be formulated in at
least three different ways: (i) Keller’s concept of
diffracted rays in the geometric theory of diffraction
[90]; (ii) the Young–Maggi–Rubinowicz boundary-
diffraction wave [67–71]; (iii) critical points of the
second kind, resulting from sharp sample edges in
asymptotic approximations to diffraction integrals
[91]. It is also worth noting, in the context of edge-
induced diffuse scatter, that the parabolic equation
of paraxial optics is a complex diffusion equation
with purely imaginary diffusion coefficient. An-
other approach to better isolate and quantify the
edge dark-field effect would be to utilize the ap-
proach in Groenendijk et al. [80] to remove the
propagation-based phase contrast edge fringes from
the sample image before applying the algorithm de-
scribed here. Further computation work could look
at whether the local stretching of a speckle due to
a strong phase gradient can appear as a dark-field
signal (see e.g. discussions in Morgan & Paganin
[61]).

4. Our two-dimensional directional-dark-field recon-
structions could be extended to three-dimensional
reconstructions, i.e. tensor dark-field tomography,
in an analogous manner to what has already been
achieved using periodic-grating methods [92–97].

5. Statistical dynamical diffraction theory [98–102]
would form an interesting perspective from which
one might extend the results of the present paper.

6. The temporal-coherence requirements on x-ray
speckle tracking are lax [103]. Hence our results
might be extended to paraxial polychromatic ra-

diation from sufficiently spatially coherent sources,
although the model would likely need in that case
to correct for some artifacts observed for instance
in Ref. [104].

7. As previously mentioned, XSVT and UMPA mini-
mize suitable functionals, with MIST instead solv-
ing a particular partial differential equation. A
link between all three speckle-tracking approaches
might be explored by recalling the Lagrangian for-
mulation of classical field theory [66]. Here, min-
imization of an action-integral functional leads di-
rectly to an associated partial-differential equation,
namely the Euler–Lagrange equation. Similarly,
minimization of the XSVT and UMPA function-
als might lead to a partial differential equation for
directional-dark-field x-ray speckle tracking.

VI. CONCLUSION

We have developed an anisotropic Fokker–Planck equa-
tion to perform implicit x-ray speckle tracking. The
method is able to recover the directional dark-field signal
associated with spatially unresolved microstructure in a
non-crystalline sample. The method employs illumina-
tion of the sample with several spatially-random masks.
The corresponding directional dark-field signals are ex-
tracted from the measured radiant-exposure maps, using
simple closed-form expressions obtained by solving the
inverse problem set up by the Fokker–Planck forward
model. Our theory has been successfully applied to two
different experimental data sets, obtained using hard x
rays. We conjecture that these ideas may also be applied
to other forms of radiation and matter wave field, such
as visible-light photons, electrons and neutrons.
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P. Bösecke, and M. Giglio, X-ray-scattering informa-
tion obtained from near-field speckle, Nat. Phys. 4, 238
(2008).

[18] S.-J. Lee and G.-B. Kim, X-ray particle image velocime-
try for measuring quantitative flow information inside
opaque objects, J. Appl. Phys. 94, 3620 (2003).

[19] N. A. Clark, B. J. Ackerson, and A. J. Hurd, Multidetec-
tor scattering as a probe of local structure in disordered
phases, Phys. Rev. Lett. 50, 1459 (1983).

[20] J. Miao, P. Charalambous, J. Kirz, and D. Sayre, Ex-
tending the methodology of X-ray crystallography to
allow imaging of micrometre-sized non-crystalline spec-
imens, Nature 400, 342 (1999).

[21] M. S. Pierce, K. C. Chang, D. Hennessy, V. Komanicky,
M. Sprung, A. Sandy, and H. You, Surface x-ray speck-
les: Coherent surface diffraction from Au(001), Phys.
Rev. Lett. 103, 165501 (2009).

[22] S. Berujon, E. Ziegler, R. Cerbino, and L. Peverini,
Two-dimensional x-ray beam phase sensing, Phys. Rev.
Lett. 108, 158102 (2012).

[23] K. S. Morgan, D. M. Paganin, and K. K. W. Siu, X-ray
phase imaging with a paper analyzer, Appl. Phys. Lett.
100, 124102 (2012).

[24] M. Endrizzi, X-ray phase-contrast imaging, Nucl. Instr.
Meth. Phys. Res. A 878, 88 (2018).

[25] J. H. Massig, Measurement of phase objects by simple
means, Appl. Opt. 38, 4103 (1999).

[26] J. H. Massig, Deformation measurement on specular
surfaces by simple means, Opt. Eng. 40, 2315 (2001).

[27] C. D. Perciante and J. A. Ferrari, Visualization of two-
dimensional phase gradients by subtraction of a refer-
ence periodic pattern, Appl. Opt. 39, 2081 (2000).

[28] H. H. Wen, E. E. Bennett, R. Kopace, A. F. Stein, and
V. Pai, Single-shot x-ray differential phase-contrast and
diffraction imaging using two-dimensional transmission
gratings, Opt. Lett. 35, 1932 (2010).

[29] M. Takeda, H. Ina, and S. Kobayashi, Fourier-transform
method of fringe-pattern analysis for computer-based
topography and interferometry, J. Opt. Soc. Am. 72,
156 (1982).

[30] K. S. Morgan, D. M. Paganin, and K. K. W. Siu, Quanti-
tative single-exposure x-ray phase contrast imaging us-
ing a single attenuation grid, Opt. Express 19, 19781
(2011).

[31] S. C. Mayo and B. Sexton, Refractive microlens array for
wave-front analysis in the medium to hard x-ray range,
Opt. Lett. 29, 866 (2004).

[32] P. Berto, H. Rigneault, and M. Guillon, Wavefront sens-
ing with a thin diffuser, Opt. Lett. 42, 5117 (2017).

[33] S. Berujon, H. Wang, and K. Sawhney, X-ray multi-
modal imaging using a random-phase object, Phys. Rev.
A 86, 063813 (2012).

[34] S. Berujon and E. Ziegler, Near-field speckle-scanning-
based x-ray imaging, Phys. Rev. A 92, 013837 (2015).

[35] S. Berujon and E. Ziegler, X-ray multimodal tomogra-
phy using speckle-vector tracking, Phys. Rev. Appl. 5,
044014 (2016).

[36] H. Wang, Y. Kashyap, B. Cai, and K. Sawhney, High
energy x-ray phase and dark-field imaging using a ran-
dom absorption mask, Sci. Rep. 6, 30581 (2016).

[37] M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch,
J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette,
X-ray Phase-Contrast Imaging and Metrology through
Unified Modulated Pattern Analysis, Phys. Rev. Lett.
118, 203903 (2017).

[38] I. Zanette, T. Zhou, A. Burvall, U. Lundström, D. H.
Larsson, M. Zdora, P. Thibault, F. Pfeiffer, and H. M.
Hertz, Speckle-Based X-Ray Phase-Contrast and Dark-
Field Imaging with a Laboratory Source, Phys. Rev.
Lett. 112, 253903 (2014).

[39] H. Wang, Y. Kashyap, and K. Sawhney, From syn-
chrotron radiation to lab source: advanced speckle-
based x-ray imaging using abrasive paper, Sci. Rep. 6,
20476 (2016).

[40] T. Zhou, I. Zanette, M.-C. Zdora, U. Lundström, D. H.
Larsson, H. M. Hertz, F. Pfeiffer, and A. Burvall,
Speckle-based x-ray phase-contrast imaging with a lab-
oratory source and the scanning technique, Opt. Lett.
40, 2822 (2015).

[41] M.-C. Zdora, State of the art of x-ray speckle-based
phase-contrast and dark-field imaging, J. Imaging 4, 60
(2018).

[42] S. Berujon, R. Cojocaru, P. Piault, R. Celestre, T. Roth,
R. Barrett, and E. Ziegler, X-ray optics and beam char-
acterization using random modulation: theory, J. Syn-
chrotron Radiat. 27, 284 (2020).

[43] S. Berujon, R. Cojocaru, P. Piault, R. Celestre, T. Roth,
R. Barrett, and E. Ziegler, X-ray optics and beam char-
acterization using random modulation: experiments, J.
Synchrotron Radiat. 27, 293 (2020).

[44] O. Kratky and O. Glatter, eds., Small Angle X-Ray
Scattering (Academic Press, London, 1982).

[45] E. Pagot, P. Cloetens, S. Fiedler, A. Bravin, P. Coan,
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