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The present work deals with the determination of the optimal operating conditions of
lactic acid synthesis by the alkaline degradation of fructose. It is a complex trans-
formation for which detailed knowledge is not available. It is carried out in a batch
or semi-batch reactor. The ‘‘Tendency Modeling’’ approach, which consists of the
development of an approximate stoichiometric and kinetic model, has been used.
An experimental planning method has been utilized as the database for model devel-
opment. The application of the experimental planning methodology allows compari-
son between the experimental and model response. The model is then used in an
optimization procedure to compute the optimal process. The optimal control prob-
lem is converted into a nonlinear programming problem solved using the sequencial
quadratic programming procedure coupled with the golden search method. The strat-
egy developed allows simultaneously optimizing the different variables, which may
be constrained. The validity of the methodology is illustrated by the determination
of the optimal operating conditions of lactic acid production.

Keywords Lactic acid; Fructose; Batch reactor; Stoichio-kinetic modeling;
Optimization

Introduction

In the modern chemical industry, fine chemical activities have taken an increasingly
important position. Generally, fine chemicals are high added-value, and high tech-
nology products with small production volumes. Due to competition and market
fluctuations, their lifespan is relatively short. Commercial strategies have become
as important as production strategies: the number of multiproduct or multipurpose
plants and the organization of production by campaign have increased. Batch and
flexible installations are used in growing proportion (Parakrama, 1985).
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The classical chemical engineering approach applied in the chemical industry,
which consists of the development of the optimal installation for a given production
according to an imposed volume, is not suitable for the fine chemical industry. The
main concern of industrialists is to produce new products the most rapidly. How-
ever, due to high purity requirements, environmental regulation, and competitive
pressure on the new products, the optimization of batch plants has become an
important objective (Georgakis, 1990; Rippin, 1995).

The current practice in the chemical industry involves the use of optimal
techniques based on experimental planning (Box et al., 1978). These methods do
not attempt to determine a mechanistic interpretation of the transformation. They
make use of an input-output model; although yielding good results in many cases,
they do not allow one to incorporate any existing understanding of the transform-
ation and thus all the information gained from the experience of chemists goes
unused. Moreover, any change in the criterion or in the experimental factors induces
one to repeat the whole procedure, resulting in an additional and expensive experi-
mental effort. The numerical problem of batch reactor performance optimization has
attracted a lot of attention (Bonvin, 1998); numerous numerical optimization tech-
niques are available in the literature (Edgar and Himmelblau, 1988). The optimal
temperature profile or the optimal feed rate profile has been determined for simple
reaction networks and for several criteria such as the maximal concentration of a
desired product (Rippin, 1983). Several types of objective functions can be readily
studied at low cost, but these tools require an accurate model of the process under
consideration. Since fine chemical reactions are usually complex, their kinetics are
poorly known. Classical kinetic studies are not possible because they are time-
consuming in comparison with the duration of the marketing campaigns and the
economic objectives.

An alternative approach has been proposed by Filippi (Filippi-Bossy, 1987,
Filippi et al., 1989). This strategy aims to conserve the numerical approach of
optimization, based upon a structured nonlinear model. The model will not be a
fundamental model but a ‘‘tendency model,’’ i.e., an approximate stoichiometry
and a pseudo-homogeneous kinetic model of the transformation. The tendency
model does not attempt to represent correctly all the reaction mechanisms. It allows
one to propose a mathematical support to integrate available knowledge on the
transformation, thus providing better insight into the process than that offered by
the approach based on a black box model. The aim of this tool is, first of all, to
represent satisfactorily the influence of the most important operating parameters
in order to elaborate an operating protocol leading to the improvement of a given
criterion.

Filippi (Filippi-Bossy, 1987) proposed to use the data collected during an iterat-
ive procedure to update the model. The strategy was initiated by a few experiments
and the data issued from the optimal protocol were added to the database at each
step. The above cycle is repeated until no improvement in the criterion is observed.
This strategy takes into consideration the uncertainties of the model by supposing
that the model becomes increasingly accurate in the course of the iterations. The
whole methodology was used again by Marchal-Brassely (Marchal-Brassely, 1990;
Marchal-Brassely et al., 1992) for the optimization of technical economic criterion
for industrial synthesis, by the computation of optimal temperature and feed rate
trajectories. Rastogi et al. (1990, 1992) have used a slightly modified strategy to
optimize the epoxidation of oleic acid. Cawthon and Knaebel (1989) have used



the ‘‘Tendency Modeling’’ approach for the acrylonitrile-styrene polymerization
reaction. They assumed, however, that the initial model provides a good repre-
sentation of the transformation and consequently computed the optimal tempera-
ture profile without repeating the procedure. Uhlemann (1992) has applied
the same strategy for the optimization of 2-furyl oxirane synthesis. More
recently, Abel et al. (2000) have studied the optimization of an industrial semi-batch
reactor. In their work, they paid particular attention to the case of a cooling system
failure.

With regard to optimization, the overwhelming majority of the studies in the
literature deal with the determination of a temperature profile or a feed rate profile
(Rippin, 1983). Jackson et al. (1971) have shown that for a parallel reaction scheme
and for a criterion such as the maximal concentration of the desired product, optim-
ality is never attained by varying both temperature and feed rate simultaneously. The
optimal policy is always either to operate the reactor isothermally and to control the
reaction by varying the feed rate of one of the reactants or to operate batch-wise and
to use an optimal temperature profile. This seems to be true only for simple
networks, since counter-examples are known in the domain of polymerization (Jang
and Lin, 1991) and in industrial synthesis incorporating technical economical
criterion (Marchal-Brassely et al., 1992).

Thus, the optimization tool used in this work needs to be general and flexible
(i.e., to optimize one or more different variables: temperature and feed rate profiles,
batch time, amount of reactant, etc.) and also to take into consideration the con-
straints on the different variables such as physical constraints on the process (in
order to respect the heating an cooling capacities of the installation) or economic
constraints (purity requirements). Nevertheless, such an optimization problem is a
complex one, and its solution by the classical technique of the Maximum Principle
of Pontryagin, used traditionally, leads to numerical difficulties (Cuthrell and
Biegler, 1987). In this work, the optimization problem is treated as a nonlinear
programming problem that can be solved by standard NLP codes. This technique
was successfully used in batch processes: in batch distillation (Farhat et al., 1990),
for a biochemical reactor (Cuthrell and Biegler, 1989), and for polymerization
reactors (Jang and Lin, 1991).

In this work, the tools leading to the stoichiometric and kinetic model and the
resolution of the optimization problem are described. The methodology will be
illustrated through application to an example of a complex chemical transformation:
the alkaline degradation of fructose. The database is provided by a still available
experimental planning method that allows one to rigorously cover an experimental
domain. The tendency model is developed in one step. The integration of experi-
mental planning in the methodology allows the implementation of step assessing
the accuracy of the model. It concerns the comparison between the experimental
and model tendencies using the response surfaces. Then the optimal operating
conditions will be determined and confirmed by an experimental study.

The Alkaline Degradation of Fructose—Background

With the realization of the progressive depletion of energy supplies of the planet,
interest in alternatives for energy and chemical feed stock has been growing. Among
the renewable resources, biomass ranks first. In this respect, the sugars (from cane,



beet, etc.) represent very important resources and are still used as a base material in
the chemical industry.

Among the sugars, fructose has experienced growing interest, on the one hand
due to its low price and on the other hand due to its reactivity potential. The econ-
omic attractiveness of processes based on fructose is increasing. Among them, we
consider here lactic acid synthesis by the alkaline degradation of fructose.

Lactic acid is a very important commodity chemical (Lipinsky and Sinclair,
1986). Its market has not stopped growing and its world consumption has gone
up from 35000 tons in 1982 to 50000 tons in 1989 (Greffeuille et al., 1989). It
has functional groups (both hydroxyl group and carboxylic acid) that confer its
interesting properties. It is used in numerous domains such as the pharmaceutical,
cosmetics, and food industries, and new applications continue to appear. In
particular, it is possible to make lactic acid copolymers whose biodegradation rate
can be controlled. They present a benign environmental impact and can be used
in packaging or consumer goods instead of the existing thermoplastics.

Lactic acid could be made from:

. Petroleum, thus obtaining the highest purity product but also the most expensive,

. Fermentation processes, requiring high quality process control and a very high
purity of the culture used, which increases production costs,

. The alkaline degradation of sugars (for example, fructose), which allows one to
obtain the least expensive product but with a limited yield.

Nowadays, fermentation processes are the most important part of the pro-
duction of lactic acid. Yield improvement of lactic acid by the alkaline degradation
of fructose may lead to an attractive method of production, competing with
biochemical, processes and enabling one to avoid the shortcomings of the latter.

The alkaline degradation of fructose may be implemented in a simple way by
introducing fructose in an alkaline solution. Nevertheless, the alkaline degradation
of fructose is a nonselective transformation resulting, by means of a very complex
reaction scheme, in numerous by products, such as:

. The isomers of fructose: glucose, mannose, sorbose, psicose, galactose, tagatose,
gulose, etc.

. Formic, acetic, glycolic, glyceric, lactic, threonic, 2,4 and 3,4 dihydroxybutyric,
2-deoxypentonic, saccharinic acids, etc.

. Products of degradation such as cyclopentation, furanic compounds, phenolic
compounds, volatile compounds, oligomers, polymers, colored products, etc.

For many years the degradation of fructose in alkaline medium attracted the
attention of chemists who put forward several pathways to account for the products
formed (Montgomery, 1953; Reintjes and Cooper, 1984; De Bruijn, 1986). All the
reaction mechanisms will not be described here. For simplification, we can say that
the transformation can be roughly decomposed in two kinds of reactions (Figure 1):
isomerizations leading to the different isomers of fructose (reversible reactions)
degradation leading to the different acids (irreversible reactions).

The first step of these two reactions is the formation of an intermediate called
enediol. The enolization may be followed by numerous reactions: elimination,
retroaldolization, rearrangements, etc. Through the enediols, the different acids
may originate from fructose, glucose, mannose, or sorbose (Figure 2).



From a kinetic viewpoint, the isomerization reactions were studied in more
detail (De Bruijn, 1986; MacLaurin and Green, 1969; El Khadem et al., 1987,
1989; Dubois, 1992); however, the results are not easy to compare and reuse due
to the fact that the studies were preformed under different conditions. Among the
most recent studies, it is important to note the works of De Bruijn (1986) and Dubois
(1992). De Bruijn (1986) has proposed a very complex scheme for the transform-
ation. He has studied the transformation in a low alkaline medium under the follow-
ing conditions: 0.01 mole of KOH, 0.025 mole of sugar, and a temperature of 78�C.
He turned his attention to the isomerization reactions. All the acids were gathered
into one constituent (Figure 3) in order to render the kinetic constants determination
easier, especially for the isomerization reactions.

Figure 1. The two types of reactions involved in the alkaline degradation of fructose.

Figure 2. Isomerizations via enolizations; F, fructose; G, glucose; M, mannose, Ps, psicose; E,
enediol; A, acids.



Dubois (1992) has investigated the choice of the base (NaOH, KOH, etc.), the
solvent (H2, DMSO, etc.), and the eventual use of catalyst (resins). Goods results
were obtained with sodium hydroxide as a base and water as a solvent. In these
conditions, the transformation is an homogeneous one and easy to carry out. The
main difficulty remains the analysis of the reaction mixture and the separation
and purification of the products.

Studies have been carried out by Dubois (1992) to improve the yield of lactic
acid by the degradation of fructose. In order to tackle the difficulties in obtaining
a model, the methodology of experimental planning was used. In order to study
the influence of the main variables, the reaction temperature, the initial fructose,
and sodium hydroxide concentrations, on the response of the system (such as yield
in lactic acid), Dubois (1992) has implemented an experimental planning method.
The operating levels are shown in Table I. The centered level is denoted ‘‘0,’’ the high
level ‘‘þ ’’, and the low level ‘‘� .’’

The experiments have been run for a total batch time of nine hours. The amount
of six sugars (fructose (F), glucose (G), mannose (M), sorbose (S), psicose (Ps),
galatose (Gal)) and five acids (lactic acid (AL), acetic aicd (AA), formic acid
(AF), glycolic acid (AGlyco), and glyceric acid (AGlyce), was determined by a
high-performance liquid chromatography (HPLC) analysis (Dubois, 1992). Glucose,
tagatose, and gulose could not be separated, and the glucose amount may have been

Table I. Experimental design

Factor � 0 þ

½NaOH��ðmole � L�1Þ 0.5 1.25 2
Temperature (�C) 40 70 100
½Fructose��ðg � L�1Þ 25 112.5 200

Figure 3. Simplified reaction scheme proposed by De Bruijn (1986).



over-estimated. But, since tagatose and gulose are extremely rare sugars and pro-
duced in very small quantities, the error in the concentrations analysis is negligible.
Essentially, the sugars produced from fructose are glucose, mannose, sorbose, and
psicose. The experimental data are given Table II and are expressed in terms of mass
yield:

RX ¼ amount of X produced

amount of fructose added
� 100

The mass yield of the remaining sugars with respect to the initial amount of fructose
is given by:

Rsugar ¼
P

sugars

initial fructose
� 100

The lactic acid selectivity with respect to the transformed sugars is expressed by:

SAL ¼ lactic acid

ðinitial fructose�
P

sugarsÞ � 100

RND is the mass yield in non-analyzed products.
The relation between the various responses and the different variables is given by

a second-order polynomial model. The analysis of the results from the experimental
planning indicates the following favorable conditions for lactic acid production: a
high initial hydroxide sodium concentration, a low initial fructose concentration,
and a low temperature, namely, [NaOH]0 ¼ 2mol �L�1, [F]0 ¼ 25 g �L�1, and
T ¼ 40�C.

In these optimal conditions, the lactic acid selectivity is 65.8% and its yield is
64.6% (Dubois, 1992). A time-dependent concentration profile for these optimal
conditions (batch-isotherm 40�C) is given in Figure 4.

The work of Dubois (1992) on the alkaline degradation of fructose confirms the
two main directions of the transformations assumed in previous studies (De Bruijn,
1986): the transformation in low alkaline medium favors the sugars’ isomeriza-
tion and the transformation in high alkaline medium favors the sugars’ degradation
leading to acids.

This plan provides a database that is going to be used for the development of the
tendency model of the transformation.

Theoretical Development

The minimum necessary data for the development of the tendency model are:

. Total batch time,

. Reactor temperature,

. Initial compositions,

. Feed rate of the reactant (in the case of semi-batch operation),

. Final concentration of the different constituents.

In the case where material losses are observed due to unmeasured products, the defi-
nition of pseudo-constituents allows one to satisfy the molar component balances.



T
a
b
le

II
.
D
a
ta

o
f
th
e
ex
p
er
im

en
ta
l
p
la
n
n
in
g
:
X

1
¼

½N
a
O
H
�� ,

X
2
¼

te
m
p
er
a
tu
re
,
X

3
¼

½F
ru
ct
o
se
��

R
u
n

X
1

X
2

X
3

R
F

R
A
L

R
G

R
M

R
S

R
P
s

R
G
a
l

R
A

G
ly
ce

R
A

G
ly
co

R
A
F

R
A
A

R
su
cr
e

S
A
L

R
N
D

1
�

�
�

4
.3

3
2
.0

6
.9

5
.0

0
.5

0
.6

0
.1

8
.0

5
.2

7
.4

2
.4

1
7
.4

3
8
.8

2
7
.6

2
þ

�
�

0
.1

6
4
.6

0
.7

1
.0

0
0

0
6
.3

1
.3

4
.6

1
.1

1
.8

6
5
.8

2
0
.3

3
�

þ
�

0
2
8
.8

0
0

0
0

0
3
.6

5
.0

5
.5

4
.9

0
2
8
.8

5
2
.2

4
þ

þ
�

0
6
2
.0

0
0

0
0

0
3
.3

0
.8

2
.8

1
.8

0
6
2
.0

2
9
.3

5
�

�
þ

2
2
.5

0
.8

3
1
.0

1
0
.4

5
.8

0
.5

0
.8

0
.9

1
.5

1
.8

1
.3

7
1
.0

2
.8

2
2
.7

6
þ

�
þ

3
.2

2
8
.1

5
.3

3
.6

0
.6

0
.6

0
.2

3
.6

2
.7

3
.2

1
.5

1
3
.5

3
2
.5

4
7
.4

7
�

þ
þ

9
.6

1
.4

1
2
.2

5
.6

1
.3

1
.2

0
.6

1
.3

2
.9

2
.7

4
.8

3
0
.5

2
.1

5
6
.4

8
þ

þ
þ

0
1
8
.4

0
0

0
0

0
3
.3

5
.4

5
.2

3
.7

0
1
8
.4

6
4

9
�

0
0

4
.0

1
.0

6
3
.1

1
.6

0
.6

0
.4

1
.6

2
.3

2
.5

4
.9

1
5
.7

1
.2

7
2

1
0

þ
0

0
0

3
8
.2

0
0

0
0

0
3
.0

1
.2

2
.8

2
.1

0
3
8
.2

5
2
.7

1
1

0
�

0
2
.5

2
5
.2

6
.4

3
.7

0
.2

0
.4

0
.2

3
.2

2
.6

2
.9

1
.6

1
3
.4

2
9
.1

5
1
.1

1
2

0
þ

0
0

2
4
.1

0
0

0
0

0
3
.6

4
.4

4
.8

3
.9

0
2
4
.1

5
9
.2

1
3

0
0

�
0

5
1
.8

0
0

0
0

0
3
.6

2
.2

2
.4

2
.6

0
5
1
.8

3
7
.4

1
4

0
0

þ
1
.0

4
.2

0
.8

0
.1

0
.4

0
0
.1

2
.9

4
.0

4
.9

7
.0

2
.4

4
.3

7
4
.6

1
5

0
0

0
0

2
0
.6

0
0

0
0

0
4
.0

4
.4

5
.1

3
.8

0
2
0
.6

6
2
.1



Figure 4. Time evolution of the concentrations for the optimal conditions determined by
experimental planning ð½F�� ¼ 25 g � L�1; ½NaOH�� ¼ 2mol � L�1; T ¼ 40�C).



Identification of a Stoichiometric Model

The first step is the identification of an approximate stoichiometric model of the
transformation that correctly fits the batch data. The stoichiometry of a chemical
transformation gives the proportions according to which the different constituents
react or are produced. These proportions are generally integer or semi-integer.

The stoichiometry of a reaction system involving NC species Aj ( j ¼ 1, NC) and
NR reactions Ri (i ¼ 1, NR) can be written:

XNC

j¼1

mijAj ¼ 0 ð1Þ

where mij is the stoichiometric coefficient of Aj in the reaction Ri.

if mij > 0 then Aj is a product in the reaction i
if mij < 0 then Aj is a reactant in the reaction i
if mij = 0 then Aj is not involved in the reaction i

For a batch reactor and a database of NE experiments (1 ¼ 1, NE), the number
of moles of the compound Aj in the chemical transformation, represented by several
reactions Ri, is given by:

njl ¼ nojl þ no
XNR

i¼1

mijXil ð2Þ

where njl is the number of moles of Aj in experiment 1, nojl is the initial number of
moles of Aj in experiment 1, Xil is the extent of reaction Ri in experiment 1, and
no is a normalizing factor equal to the sum of the initial reactants’ moles:

no
XNC

i¼1

nojl 1 ¼ 1;NE ð3Þ

Introducing the molar ratio:

Yjl ¼ yjl � yojl ¼
njl � nojl

no
ð4Þ

Equation (2) leads to:

Yjl ¼
XNR

i¼1

mijXil ð5Þ

This system may be written in a matrix form as follows:

½Yjl� ¼ ½mjl�T½Xil� ð6Þ

or in a simplified matrix notation:

Y ¼ TX ð7Þ

The stoichiometric vectors of each reaction and the corresponding reaction
extents have to be identified. Two algorithms have been proposed in the literature:
the step-by-step method and singular value decomposition.



Step-by-Step Method
This method was developed by Filippi et al. (1986) and used for several industrial
applications (Filippi-Bossy, 1987; Marchal-Brassely, 1990), organic synthesis
(Uhlemann, 1992), and a polymerization system (Cawthon and Knaebel, 1989).
It identifies the stoichiometric coefficients one reaction at a time. First, the algor-
ithm assumes that only one reaction can fit the data. The extents are computed by
the conjugate gradient technique and the stoichiometric coefficients by a least
square method. The search is stopped if the representation is sufficiently good.
Otherwise, a new reaction is added and its stoichiometric coefficients are ident-
ified, maintaining those of the previous reaction unchanged. The number of
reactions is increased by one at each step. The procedure is stopped when the
model accuracy, specified by the user, is obtained. The first reaction is a global
representation of the transformation, and the others are added to complete the
mass balances. The obtained stoichiometric matrix is always a linear combination
of the real one (Garcia, 1993) and the difficulty lies in the recombination of the
identified matrix. It is important to note that at each step, the operator can pro-
pose a stoichiometric vector that is either in agreement with the computed values
(by rounding the real values proposed by the algorithm) or not. In this way, it is
possible to incorporate available information on the transformation to assist the
determination of the stoichiometric network. The flowchart of the procedure is
presented in Figure 5.

Singular Value Decomposition Method
The second algorithm used factorial analysis techniques to separate stoichiometric
vectors and extents of reaction from the data matrix Y given by Equation (7). Hamer
(1989) has applied this technique on fed-batch fermentation examples, and Tsobanakis
et al. (1989) has presented an application with fermentation data. Bonvin and
Rippin (1990) have proposed a more elaborate analysis of this technique for complex
systems. Rastogi et al. (1990) determined the stoichiometry of the epoxydation of oleic
acid. Harmon et al. (1994) have used this tool for the determination of bioprocess
networks.

In this technique the number of required reactions, the stoichiometric
vectors, and the extents are identified. The decomposition of the data matrix is
carried out by a mathematical technique called singular value decomposition
(SVD).

Since information about the transformation is often available from the che-
mist’s experience, an approach called target factor analysis (TFA), which allows
one to use this knowledge in a procedure deriving stoichiometric models, has been
developed by Bonvin and Rippin (1990). This technique enables one to know
whether a postulated stoichiometry from a priori information is compatible with
the abstract factors.

In conclusion, with both methods, the main problem is the combination of the
identified vectors so as to obtain physical meaningful vectors. In both cases, the
problem may be solved by testing the proposed stoichiometries:

. In the iterative method, by forcing at each step one reaction of the postulated
stoichiometry (by beginning with the principal reaction followed by the main
side-reactions)

. In the factor analysis method by testing postulated stoichiometry using TFA.



Identification of a Kinetic Model

If the reactor operates in batch or semi-batch mode, a molar balance gives:

dnj
dt

¼ Fej þRjV ð8Þ

where nj is the number of moles of Aj at instant t, Fej is the feed rate of the
compound Aj ( j ¼ 1, NC), and V is the reactor volume.

And we have:

Rj ¼
XNR

i¼1

mijri ð9Þ

where ri represents the rate of the reactions considered.

Figure 5. Step-by-step method for the stoichiometric model identification.



In this work, the transformation is supposed to be pseudo-homogeneous and the
kinetic law is written as a classical Arrhenius’s law. It is important to emphasize that
the form of kinetic law and its degree of complexity depend on the user and the
desired accuracy of the tendency model.
So, we have:

ri ¼ k0i e
�Ei
RT

YNC

j¼1

C
aij
j ð10Þ

The number of moles of a specie Aj in the reactor at instant t can be written:

nj ¼ n0j þ n0Zj þ n0
YNR

i¼1

mijXi ð11Þ

where

Zj ¼
1

n0

Z t

0

Fejdt with Zj ¼ 0 at t ¼ 0

We thus obtain:

n0
XNR

i¼1

mij
dXi

dt
¼ V

XNR

i¼1

mijri ¼ VRj ð12Þ

dXi

dt
¼ V

n0
ri for i ¼ 1;NR ð13Þ

According to Equation (10), Equation (13) may be written:

dXi

dt
¼ V

no
k0i exp

�Ei

RT

� �YNC

j¼1

C
aij
j for i ¼ 1;NR ð14Þ

where aij is the order of component j in reaction i, T is the reactor temperature, Ei is
the activation energy of reaction i, k0i is the preexponential factor of reaction i, and R
is the perfect gas constant.

Preexponential factors (k0i ), activation energies (Ei), and order (aij) with respect
to each of the reactants for each reaction of the stoichiometric model and the form of
the kinetic laws are unknown. The orders are assumed to be part of the data of the
problem and are chosen a priori to be equal to the absolute value of the stoichio-
metric coefficients of every reactant. The problem is thus the determination of the
preexponential factors and the activation energies for each reaction in order to
minimize the difference between the experimental concentrations and those com-
puted with the identified parameters for the different constituents, according to
the following criterion:

J ¼
XNE

l¼1

XNC

j¼1

C0
0

C0
11

Cf
jl id � Cf

jl exp

� �2

ð15Þ



with

C0
0 ¼

XNE

l¼1

C0
11 ð16Þ

and C0
11 is the concentration of a key reactant in experiment 1.

The criterion is weighted by the ratio C0
0=C

0
11, which allows weighting each

experiment according to the initial concentration of the key reactant in order to avoid
neglecting the experiments with small initial concentrations of the reactants. In order
to improve the effectiveness of the method and reduce the high correlation between
the activation energy and the preexponential factor in Arrhenius’s law, a reparame-
trization is carried out. Only time and temperature are dimensioned parameters.

The different parameters are identified using the Rosenbrock algorithm. But
classical parameter identification techniques can be used. The main difficulties are
the initialization of the parameters and the significant difference between the orders
of magnitude of the component concentrations. The method requires the integration
of system (21). A Runge-Kutta-Merson fourth-order procedure with variable step inte-
gration size is used. The identification is carried out over the entire NE experiments.

Optimization Problem

A general and flexible tool allowing the optimization of different parameters
(temperature, feed rate, amount of reactant, etc.) and respecting possible bounds
and constraints was used. The optimal control problem is a complex one, and in
order to avoid numerical difficulties arising with the use of Pontryagin’s Maximum
Principle, it was formulated as a nonlinear programming problem (Garcia et al.,
1995; Toulouse et al., 1996).

For this purpose, the interval [t0, tf] where t0 is the initial time and tf the final
batch time is divided into a finite number of nint subintervals, and in each subinter-
val the control function is represented by a linear function versus time:

uðtÞ ¼ zj�1 þ ðt� tj�1Þ
zj � zj�1

tj � tj�1

� �
j ¼ 1; n; int ð17Þ

The profiles (temperature or feed rate) are defined by parameters zj and switch-
ing times tj. One of the main advantages of the nonlinear programming approach is
the opportunity to include different types of constraints, for example, physical con-
straints of the process such as constraints on the rate of heating and cooling with
respect to plant capacities. If we denote bmax and bmin the upper and lower bounds
of the temperature variations, the constraints can be expressed by:

ðzj � zj�1Þ � bmaxðtj � tj�1Þ < 0 ð18Þ

ðzj�1 � zjÞ � bminðtj � tj�1Þ < 0 ð19Þ

A constraint can also be imposed to control M, the amount of introduced reactant.
If the amount of reactant is fixed:

Xn int
j¼1

Z tj

tj

/jðt; zjÞdt ¼ M ð20Þ



or If the amount of reactant has to be optimized:

Xn int
j¼1

Z tj

tj

/jðt; zjÞdt � M ð21Þ

To respect high purity requirements often required in fine chemistry, constraints
of purity restricting the formation of a by-product W under a threshold H1 may be
specified in the following manner:

CW � H1 ð22Þ

The problem is then to compute the variables zj (for temperature and feed rate
profile) at each bound of each subinterval so as to improve the objective function
and simultaneously satisfy the bounds and the imposed constraints. The NLP prob-
lem is solved by means of the sequencial quadratic programming (SQP) procedure
described by Pibouleau et al. (1985 a,b). The optimal operation time is searched
by the golden search method. The different states of the system are calculated by
integration of the set of differential equations (21) on each subinterval by a
Runge-Kutta-Merson fourth-order procedure with variable step integration size. The
initial conditions for each period are the final state of the previous one. An example
of temperature profile discretization is given in Figure 6. A more detailed description
of the optimization approach is given by Garcia (Garcia, 1993; Garcia et al., 1995).

In this part, the theoretical framework of our global methodology for the
optimization of batch chemical reactors has been presented. In the following section,
this methodology will be applied to a very complex chemical synthesis: the
production of lactic acid by the alkaline degradation of fructose. Actual industrial
interest in this synthesis has motivated our choice.

Figure 6. Example of profile discretization.



Development of the Stoichio-Kinetic Model

Assumptions: Forming of Pseudo-compounds

The amount of sodium hydroxide is estimated assuming that one mole of sodium
hydroxide is used to produce one mole of acid. The consumption of the former in
the non-analyzed products is assumed to be negligible. In the isomerizations, the
sodium hydroxide is not consumed; it serves only as a catalyst.

The experimental data sometimes show a very important loss in raw materials
due to the non-analyzed products. In order to take this parameter into account
in the model, this quantity was expressed by means of a pseudo-constituent called P.
Its molar concentration was roughly estimated assuming that the production of
lactic, acetic, and formic acids is essentially achieved by means of triose and the
production of glyceric and glycolic acids by means of pentose or hexose; thus one
obtains:

CP ¼ C�
F � ½CF þ CG þ CM þ CSo þ CPs þ CGal þ CAGlyce þ CAGlyco

þ ðCAL þ CAA þ CAFÞ=2�

Some assumptions were made in order to decrease the number of constituents
present in the mixture. De Bruijn (1986) has gathered the different acids into one
pseudo-acid in order to facilitate the determination of the kinetic constants of the
isomerizations. In this work we have assumed that all the sugars, that lead to an
enediol intermediate present similar sensitivities with respect to the operating
variables. All the hexoses were gathered to form a pseudo-constituent FS:

FS ¼ FþGþMþ PsþGal

This assumption implies that the enediol formation reaction has to be very rapid
in comparison with the degradation reactions or that the isomerization reactions are
negligible.

The secondary acids were also grouped to obtain:

A ¼ AGlycoþAGlyceþAAþAF

The sodium hydroxide and the lactic acid (product of interest) were kept
unchanged.

We thus have now a system with only five components: NaOH, FS, AL, A,
and P. The tendency model will have to establish as best as possible the influence
of the operating variables (temperature, initial fructose and sodium hydroxide
concentration) on the result of the transformation through the behavior of these five
constituents or pseudo-constituents.

Stoichiometric Model Identification

For the identification of an approximate stoichiometric model of the transformation
based on the five components described above, the two techniques previously
presented were used (step-by-step and SVD methods).

Since the combination of the nonsensical reactions is a difficult problem we have
chosen to test an a priori stoichiometry stemming from deductive reasoning based on
the available knowledge about the transformation.



The determination of the singular value by singular value decomposition of the
data matrix composed by the dimensionless mole fraction of each constituent gives:

ð3:6478:7820:21540:0:0123Þ

The last two singular values are much smaller than the previous ones. This
indicates that the data may be described adequately by three reactions.

According to the available knowledge about the transformation we have
postulated a stoichiometry with three reactions:

. The first reaction represents the lactic acid formation from fructose and sodium
hydroxide (one mole of fructose gives two moles of lactic acid).

. The Second reaction represents the unknown or non-measured by-product forma-
tion only from fructose, without hydroxide consumption sodium.

. In the third reaction the secondary acids are produced according to a particular
molar ratio between fructose and sodium hydroxide. A ratio of two fructose moles
for three sodium hydroxide moles to form three moles of acids allows a best fit of
the experimental data.

The above postulated stoichiometry is given in Table III.
The matrix composed of the values proposed by the algorithm in the step-by-

step method (without intervention of the user to round off the stoichiometric
coefficients) is provided in Table IV. It corresponds to nonsensical reactions.

By proposing at each step one reaction of the postulated stoichiometry, a good
representation of the data is obtained. The global error is Er2 ¼ 1.75� 10�3 and the
representation errors for each component over the whole experiments are:

Er1ðNaOHÞ ¼ 2:03� 10�4

Er1ðFSÞ ¼ 8:39� 10�4

Er1ðALÞ ¼ 2:22� 10�6

Er1ðAÞ ¼ 2:48� 10�4

Er1ðPÞ ¼ 4:63� 10�4

By the singular value decomposition of the data matrix, the right singular

Table III. Postulated stoichiometric matrix

NaOH FS AL A P

R1 �2 �1 2 0 0
R2 0 �1 0 0 1
R3 �3 �2 0 3 0

Table IV. Stoichiometric matrix from step-by-step method

NaOH FS AL A P

R1 �0.94 �1.21 0.38 0.56 0.65
R2 �0.42 0.21 0.55 �0.13 �0.42
R3 0.076 �0.048 0.12 �0.20 0.12



vectors associated with the three main singular vectors, called abstract factors, are
given in Table V. The target stoichiometry of Table III was then postulated. Using
the projection matrix, the stoichiometry of Table VI was obtained. As a measure of
the closeness of the targeted and the transformed stoichiometries, the absolute
norms of the vector difference between the target and the transformed stoichiome-
tries were calculated. The residual vector between the target and the transformed
stoichiometries was found to lie between 0.7 and 2% of the target stoichiometry.
The results show that the postulated stoichiometry is compatible with the abstract
factors, i.e., the former belongs to the stoichiometric space of the observed data.

In order to compare the results of the two methods, the matrix obtained with the
step-by-step method (in Table IV) was postulated as target stoichiometry. The results
are given in Table VII. It can be noted that the matrix issued from the step-by-step
method belongs to the stoichiometric space of the observed data.

The stoichiometric matrices obtained by the iterative method (nonsensical matrix)
and SVD decomposition are linearly dependent. The results observed for both methods
are in good agreement. The approximate stoichiometric model with three reactions,
based upon pseudo-constituents, results in a good fit with the experimental data.

Kinetic Model Identification

The identification of a kinetic model based upon the stoichiometry described above
requires the determination of six parameters: three preexponential factors and three
activation energies. The kinetic law is expressed as classical Arrhenius’s law and the
orders are assumed to be equal to the stoichiometric coefficients of reactants in
absolute value.

Table V. Abstract stoichiometric matrix issued from SVD

NaOH FS AL A P

R1 0.545 0.661 �0.249 �0.296 �0.339
R2 �0.394 0.238 0.174 �0.320 �0.417
R3 0.371 �0.217 0.293 �0.664 0.536

Table VI. Transformed stoichiometric matrix with target matrix of table III

�2 �1 2 0 0
0 �1 0 0 1
�3 �2 0 3 0

������
������

Target matrix

+

�1:987 �1:030 1:996 �0:0084 �0:029
0:0071 �0:98 0:0022 0:0049 1:017

�2:991 �2:022 �0:0029 2:993 �0:022

������
������

Transformed matrix



The computed kinetic parameters are given in Table VIII. Figure 7 illustrates the
comparison between the experimental and computed final concentrations. A good
agreement between experimental and computed values can be observed.

The stoichio-kinetic model has been identified using data corresponding only
to initial and final concentrations. Nevertheless, the structure of the model allows
simulating time evolution of the concentrations.

A comparison between experimental time-dependent concentrations (from Figure
4) and time-dependent concentrations simulated with the identified model is given in
Figure 8. The experimental conditions are the optimal conditions issued from the
analysis of the experimental planning ([NaOH]� ¼ 2mol �L�1, [F]� ¼ 25 g �L�1,
T ¼ 40�C). Figure 8 shows a good representation of the time-evolution of the lactic acid
concentration. The FS consumption is not always sufficient in the first instants of the
reaction. The pseudo-compound A is over produced.

Optimal Operating Conditions Determination

Problem Statement

The main aim of this work is to improve lactic acid yield. With this intention in
mind, some problems have to be taken into consideration. The maximum conversion
of sugars is important (in order to consume all the raw material), but it is observed
from the analysis of the experimental data that it is associated with an increase in the
formation of the unknown products. Nevertheless, the presence of the sugars in the
reaction mixture is not a severe problem (resulting only in the loss of yield through
the unreacted raw material) because the sugar mixtures are easy to recycle.

Table VII. Transformed stoichiometric matrix with target matrix of table IV

�0:94 �1:21 0:38 0:56 0:65
�0:42 0:21 0:55 �0:13 �0:42
0:076 �0:048 0:12 �0:20 0:12

������
������

Target matrix

+

�0:9399 �1:2100 0:3799 0:5599 0:6499
�0:4180 0:2051 0:5494 �0:1313 �0:4246
0:0766 �0:0463 0:1215 �0:1982 0:1216

������
������

Transformed matrix

Table VIII. Identified kinetic parameters

E1 ¼ 65960 J �mole�1
E2 ¼ 64698 J �mole�1 E3 ¼ 78156 J �mole�1

k�1 ¼ 2:42� 10612 �mole�2 � s�1 k�2 ¼ 2:00� 106 � s�1 k�3 ¼ 2:70� 10814 �mole�4 � s�1

Orders = absolute values of stoichiometric coefficients.



Figure 7. Comparison between the experimental final concentrations (Cexp) and final
concentrations (Cid) computed with the kinetic models given in Table VIII.



The presence of acids in the reaction mixture is a more difficult problem because
the existing acid separation methods that are readily available are not optimal:

. Traditional methods that involve the precipitation of salts (generally calcium
lactate) have several shortcomings: slow methods, numerous crystallizations
needed, thus leading to a loss in acids,

. Liquid-liquid extraction is not selective,

Figure 8. Comparison of time evolution of experimental concentrations and concentrations
computed with the kinetic models given in Table VIII.



. Distillation allows an easy elimination of the water and the formic and acetic
acids. However, the recovery of lactic acid requires lower pressures thus entailing
an eventual degradation of glycolic and glyceric acids. Distillation may be inte-
grated with an esterification reaction to obtain a volatile lactate ester. The lactate
ester could be purified further by redistillation or in some instances by crystalliza-
tion. But numerous additional steps are need (esterification, saponification,
alcohol recycling, etc.).

So it is particularly the presence of glycolic and glyceric acids that poses difficult-
ies, and the limitation of their formation is thus important. Globally, the main
objectives are the increase in lactic acid production and the minimization of
unknown by-products and acids by-products formation. The objective function used
is the following:

c ¼ CAL

CA þ CP

As mentioned before, the analysis of the results of the experimental planning
carried out by Dubois (1992) has provided the following optimal operating
conditions: [NaOH]� ¼ 2mol�L�1, [F]� ¼ 25 g�L�1, and T ¼ 40�C.

In these conditions (batch and isotherm at 40�C) the lactic acid yield and
selectivity are:

Rexp
AL ¼ 64:6% and SexpAL ¼ 65:8%

(and the value of the criterion described above is equal to 2.577).
One or more variables can be optimized using the optimization algorithm. The

temperature and the feed rate of fructose will be computed in order to improve the
previous criterion. The hydroxide sodium concentration is kept at its maximum
value in the experimental range (i.e., 2mol�L�1). The total batch time is nine hours.
The reaction volume is 1 liter. The amount of fed fructose is fixed to 25 g. The
following constraints and bounds on the variables were employed:

. Maximum temperature variations: � 2�C �min�1

. Temperature bounds: 40�C�T� 100�C

. Feed rate bounds: 0�F� 10�4 kg�s�1

The results are given in Figure 9. It can be observed that the optimal conditions
are: a fed-batch operation with feed rate of fructose and isothermal operation at the
maximum temperature 100�C.

For these conditions one can note a very important improvement in the
criterion, since it has gone from 2.577 to 5.785.

It is interesting to note that these results are in agreement with the information
issued from the experimental planning. The positive effect of a low initial fructose
concentration, predicted by the analysis of the experimental planning, suggests that
the fructose may be introduced in semi-batch mode to favor the lactic acid
production. The results of the optimization confirm this tendency.

Experimental Application

The reaction was performed in a 2 L glass-jacketed reactor. The solvent used was
water, and, thus, the experiment was run at 98�C instead of 100�C to avoid boiling.



However, since the transformation is not very temperature sensitive, the influence on
the results is negligible. The optimal feed rate profile of fructose is nearly a constant
profile. A simulation with a constant feeding of fructose over the total batch time has
shown that there is not a significant difference in comparison with the results
obtained with the optimal feed rate profile. The reaction was performed with a con-
stant feeding of fructose. The problem is to introduce 25 g of fructose during a very
long batch time (nine hours). In order to render the implementation of the fructose
feeding easier, we have introduced a syrup of 75% fructose in water. The volume of
the reaction mixture is 1.5 L. The volume increase due to the introduction of the
water in the syrup is negligible (less than 2%). The syrup is introduced drop by drop
with a pump during a batch time of 8 h 30min. Some samples were analyzed every
hour in order to obtain the concentrations of the different compounds: fructose,
glucose, mannose, sorbose, psicose, galactose, lactic acid, acetic acid, formic acid,
glycolic acid, and glyceric acid.

Figure 10 illustrates the time-dependent experimental concentrations. The theor-
etical and experimental yields and selectivities are given in Table IX. Rather better
results were observed that those predicted by the tendency model. The comparison
between the time-dependent concentrations obtained from the experiment and from
the tendency model with five compounds is given in Figure 11. A good agreement
was observed between the experimental and model representation of lactic acid.
However, the evolution of the pseudo-compounds FS and A is not as good.

The amount of acids A predicted by the model is under estimated. The modeling
problem associated with these constituents is due to the formation of the pseudo-
constituents and can explain the experimental and model discrepancies in yield
and selectivity.

Figure 9. Optimal temperature and feed rate profiles.

Table IX. Yields and selectivities in lactic acid

Rexp
AL Rsim

AL SexpAL SsimAL

Best constant operating conditions
(batch, 40�C)

64.6% 59.8% 65.8% 60.8%

Feeding of fructose (maximum isotherm) 76.3% 74.1% 83.0% 74.4%



Figure 10. Time evolution of concentrations for the optimal conditions determined with the
tendency model.



Figure 11. Comparison of time evolution of experimental concentrations and predicted con-
centrations of pseudo-compounds for the optimal conditions determined by experimental
planning.



With respect to the results issued from the experimental planning conditions, a
significant improvement in the yield (since it went up from 64.6% to 76.3%) and the
selectivity (increased from 65.8% to 83%) in lactic acid is noted. Comparing the time
evolution of the concentration in Figure 4 (with optimal experimental planning
conditions) and Figure 10 (with optimal tendency model conditions), we can make
these observations about fructose feeding:

. The production of lactic acid is slow, but at the final time the amount of lactic acid
is more important.

. The feeding of fructose allows limiting the isomerization. Only sorbose and psicose
are formed. Nevertheless, the amount of sugars remaining in the reaction mixture
is more important than that in the batch mode.

. The amount of acids is decreased. Glycolic acid is not formed and the formic
acid disappears during the reaction. These two acids are produced in more
important amounts in batch mode. In fed-batch mode, the production of glyceric
and acetic acids still remains, but in a more restricted volume than in the batch
mode.

Conclusions

In fine chemistry, the development of a classical model incorporating detailed knowl-
edge of the reaction mechanisms and kinetic processes is not readily feasible and the
use of numerical optimization procedure is impossible. In this work, the ‘‘tendency
modeling’’ approach was retained in order to solve the problem of lack of infor-
mation concerning the transformation and to satisfy the constraint of rapid
implementation required in fine chemistry. The tendency model was developed in
one step.

In order to test the ability of the tendency model to represent correctly the influ-
ence of the different operating parameters, response surface methodology was used
to compare experimental and model tendencies. In this case the initial database used
is provided by an experimental planning method. This combined approach of tend-
ency modeling and experimental planning allows the assessment of the accuracy of
the tendency model behavior and thus avoids shortcomings during the optimization
step.

In order to develop a tendency model that could be used with greater confidence,
the main factors involved are user intervention and chemist experience during all the
tendency model development steps: stoichiometry development in order to postulate
a realistic model and kinetic model development, to determine an adequate form of
the model (form of the kinetic laws, consideration of transfer limitations, mixing
phenomena).

The entire success of the global methodology relies on the practical imple-
mentation of the optimal protocol, the main difficulty being the control of the
temperature profile (the control of the feed rate does not represent a serious problem
by itself). Robust algorithms based on generalized predictive control (GPC)
have been developed in our laboratory and have demonstrated their ability to track
different types of profiles (Rafalimanana et al., 1992; Jarupintusophon et al., 1993).
Moreover, this step can be rendered easier to carry out if the heat exchange
limitations of the plant can be integrated during the optimization procedure.

The global strategy for the optimization of batch reactors has been applied
with success to improve the synthesis of lactic acid by alkaline degradation of



fructose. In spite of some crude assumptions concerning the pseudo-constituents
and the number of reactions, it was feasible to determine an apparent stoichio-
metric and kinetic model. On the basis of this model, which correctly fits only
the experimental data concerning AL, the optimal operating parameters computed
were feeding profile of fructose and maximal isotherm. The experimental
implementation of the optimal procedure has led to very positive results: the yield
in lactic acid and the selectivity increased from 64.6 to 76.3% and from 65.8 to
83% respectively.

Nomenclature

aij order of the constituent j in the reaction i
Aj jth constituent
bmin minimum variation of temperature profile
bmax maximum variation of temperature profile
c objective function
Cj concentration of species j, mol � L�1

Ei activation energy of reaction i, J �mol�1

Er1( j) error of representation of constituent j over the whole experiments
Er2 global error of representation
F feed rate, kg � s�1

Fej feed rate of constituent j, kg � s�1

H1 threshold for purity constraint
J optimization criterion
k�i preexponential factor of reaction i, Lsi�1=ðmolsi�1 � sÞ
M amount of introduced reactant, kg
n number of moles, mol
n� normalizing factor, mol
nint number of intervals of the discretization
NC number of constituents
NE number of experiments
NR number of reactions involved in the stoichiometric matrix
ri rate of reaction i, mol�L�1 � s�1

Ri ith reaction of the stoichiometric matrix
Rj overall rate of production of species j, mol�L�1 � s�1

Ril normalized reaction rate of the ith reaction for the 1th
experiment, s�1

RX mass yield of species X
si global order of the ith reaction
SX selectivity of species X
t time, s
ti subinterval, s
t0 initial batch time, s
tf final batch time, s
T reactor temperature, K
u control function
V reactor volume, L
[X] concentration of species X, mol�L�1

Xi experimental factor



Xi extent of reaction i
y dimensionless mole fraction
Y difference between dimensionless mole fractions at instant t and

initial instant
Y composition data matrix
Y studied response (in response surface technique)
zj parameter of control law relative to the jth subinterval
Zj production term relative to feeding of species j

Greek Letters

matrix of stoichiometric coefficients
m stoichiometric coefficient
/ feed rate

Superscripts

� initial
exp experimental
f final
T transposed matrix
th theoretical

Subscripts

exp measured
i ith reaction
id calculated
j jth constituent
k kth factor (response surface technique)
l lth to experiment

Abbreviations

SQP Sequential Quadratic Programming
NLP Non Linear Programming
SVD Singular Value Decomposition
TFA Target Factor Analysis

Constants

R ¼ 8.314 universal gas constant, J�mol�1�K�1

TR ¼ 274 reference temperature, K
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