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INVARIANT MEROMORPHIC FUNCTIONS ON STEIN SPACES

DANIEL GREB AND CHRISTIAN MIEBACH

ABSTRACT. In this paper we develop fundamental tools and methods to study meromorphic func-
tions in an equivariant setup. As our main result we construct quotients of Rosenlicht-type for Stein
spaces acted upon holomorphically by complex-reductive Lie groups and their algebraic subgroups.
In particular, we show that in this setup invariant meromorphic functions separate orbits in general
position. Applications to almost homogeneous spaces and principal orbit types are given. Further-
more, we use the main result to investigate the relation between holomorphic and meromorphic in-
variants for reductive group actions. As one important step in our proof we obtain a weak equivariant
analogue of Narasimhan’s embedding theorem for Stein spaces.

1. INTRODUCTION

One of the fundamental results relating invariant theory and the geometry of algebraic group
actions is Rosenlicht’s Theorem [Ros56, Thm. 2]: for any action of a linear algebraic group on
an algebraic variety there exists a finite set of invariant rational functions that separate orbits in
general position. Moreover, there exists a rational quotient, i.e., a Zariski-open invariant subset on
which the action admits a geometric quotient. It is the purpose of this paper to study meromorphic
functions invariant under holomorphic group actions and to construct quotients of Rosenlicht-type
in the analytic category.

Examples of non-algebraic holomorphic actions of C∗ on projective surfaces with nowhere Haus-
dorff orbit space show that even in the compact analytic case an analogue of Rosenlicht’s Theorem
does not hold without further assumptions. If a complex-reductive group acts meromorphically on
a compact Kähler space (and more generally a compact complex space of class C ), existence of
meromorphic quotients was shown by Lieberman [Lie78] and Fujiki [Fuj78].

As a natural starting point in the non-compact case we consider group actions on spaces with
rich function theory such as Stein spaces. Actions of reductive groups and their subgroups on
these spaces are known to possess many features of algebraic group actions. However, while the
holomorphic invariant theory in this setup is well understood, cf. [Hei91], invariant meromorphic
functions until now have been less studied.

In this paper we develop fundamental tools to study meromorphic functions in an equivariant
setup. We use these tools to prove the following result, which provides a natural generalisation of
Rosenlicht’s Theorem to Stein spaces with actions of complex-reductive groups.
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Main Theorem. Let H < G be an algebraic subgroup of a complex-reductive Lie group G and let X be a
Stein G-space. Then, there exists an H-invariant Zariski-open dense subset Ω in X and a holomorphic map
p : Ω→ Q to a Stein space Q such that

(1) the map p is a geometric quotient for the H-action on Ω,
(2) the map p is universal with respect to H-stable analytic subsets of Ω,
(3) the map p is a submersion and realises Ω as a topological fibre bundle over Q,
(4) the map p extends to a weakly meromorphic map (in the sense of Stoll) from X to Q,
(5) for every H-invariant meromorphic function f ∈ MX(X)H, there exists a unique meromorphic

function f̄ ∈MQ(Q) such that f |Ω = f̄ ◦ p, and
(6) the H-invariant meromorphic functions on X separate the H-orbits in Ω.

The idea of proof is to first establish a weak equivariant analogue of Remmert’s and Narasimhan’s
embedding theorem for Stein spaces [Nar60]. More precisely, given a G-irreducible Stein G-space
we prove the existence of a G-equivariant holomorphic map into a finite-dimensional G-represen-
tation space V that is a proper embedding when restricted to a big Zariski-open G-invariant subset,
see Proposition 5.2. Since the G-action on V is algebraic, we may then apply Rosenlicht’s Theorem
to this linear action. Subsequently, a careful comparison of algebraic and holomorphic geometric
quotients allows us to carry over the existence of a Rosenlicht-type quotient from V to X.

The geometric quotient constructed in this paper provides us with a new and effective tool to
investigate invariant meromorphic functions on Stein spaces. In the following we shortly describe
two typical applications of our main result.

Given a Stein G-space we show that every invariant meromorphic function is a quotient of two
invariant holomorphic functions precisely if the generic fibre of the natural invariant-theoretic
quotient π : X → X//G contains a dense orbit, see Theorem 3.5. An important class of examples
for this situation consists of representation spaces of semisimple groups G.

An important fundamental result of Richardson [Ric74] states that in every connected Stein G-
manifold there exists an open and dense subset on which all isotropy groups are conjugate in G.
Under further assumptions on the group action we use the Main Theorem to sharpen Richardson’s
result by showing that there exists a Zariski-open subset on which the conjugacy class of stabiliser
groups is constant, see Proposition 3.11. In particular, for every effective torus action on a Stein
manifold we find a Zariski-open subset that is a principal fibre bundle over the meromorphic
quotient, cf. Remark 3.14.

This paper is organised as follows. In Section 2 we introduce the necessary background on actions
of complex-reductive groups and on related notions of quotient spaces. Furthermore, we shortly
discuss the main technical tools used in this paper. In Sections 3 and 4 we give applications of the
Main Theorem as well as some examples which illustrate that the result does not hold for non-
algebraic subgroups of G. In Section 5 we establish the Weak Equivariant Embedding Theorem,
before we prove the Main Theorem in the final Sections 6 and 7.

2. PRELIMINARIES: DEFINITIONS AND TOOLS

In the following, all complex spaces are assumed to be reduced and to have countable topology. If
F is a sheaf on a complex space X, and U ⊂ X is an open subset, then F (U) denotes the set of
sections of F over U. By definition, analytic subsets of complex spaces are closed. Furthermore, an
algebraic group is by definition linear algebraic, i.e., a closed algebraic subgroup of some GLN(C).
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2.1. Actions of Lie groups. If L is a real Lie group, then a complex L-space Z is a complex space
with a real-analytic action α : L× Z → Z such that all the maps αg : Z → Z, z 7→ α(g, z) =: g • z are
holomorphic. If L is a complex Lie group, a holomorphic L-space Z is a complex L-space such that the
action map α : L× Z → Z is holomorphic. If X is at the same time a Stein space and a holomorphic
L-space, we shortly say that X is a Stein L-space. A complex L-space is called L-irreducible if L acts
transitively on the set of irreducible components of X. Note that in this case X is automatically
pure-dimensional. If the set X/L of L-orbits can be endowed with the structure of a complex space
such that the quotient map p : X → X/L is holomorphic, then X is L-irreducible if and only if X/L
is irreducible. In particular, under this condition MX/L(X/L) and MX(X)L are fields.

2.2. Geometric quotients. One of the main tasks in the proof of the Main Theorem is the construc-
tion of a geometric quotients for the action of complex Lie groups on complex spaces in the sense
of the following definition.

Definition 2.1. Let L be a complex Lie group and let X be a holomorphic L-space. A geometric
quotient for the action of L on X is a holomorphic map p : X → Q onto a complex space Q such that

(1) for all x ∈ X, we have p−1(p(x)
)
= L • x,

(2) Q has the quotient topology with respect to p,
(3) (π∗OX)

L = OQ.

If a geometric quotient p : X → Q for the action of L exists, we can identify Q with the set of
L-orbits in X and we will often write X/L instead of Q. The map p : X → Q has the following
universality property: for any G-invariant holomorphic map φ : X → Y into a complex space Y
there exists a uniquely defined holomorphic map φ : Q → Y such that φ = φ ◦ p. We call a
geometric quotient p : X → Q universal with respect to invariant analytic subsets if for every such set
A ⊂ X the restriction p|A : A→ p(A) is a geometric quotient for the L-action on A. Note that p(A)
is always an analytic subset of Q, see Lemma 6.1.

Remark 2.2. We also use the corresponding concepts in the algebraic category. Note that in this
case item (2) of Definition 2.1 requires the quotient to have the quotient Zariski-topology with
respect to the map p.

The following general existence result for geometric quotients in the algebraic category by Rosen-
licht is the starting point of this paper.

Theorem 2.3 (Thm. 2 of [Ros56]). Let H be a linear algebraic group and X an H-irreducible algebraic
H-variety. Then, there exists an H-invariant Zariski-open dense subset U of X that admits a geometric
quotient. Furthermore, this quotient fulfills C(U/H) = C(X)H.

2.3. Analytic Hilbert quotients and slice-type stratification. Let G be a complex-reductive Lie
group and X a holomorphic G-space. A complex space Y together with a G-invariant surjective
holomorphic map π : X → Y is called an analytic Hilbert quotient of X by the action of G if

(1) π is a locally Stein map, and
(2) (π∗OX)

G = OY holds.

An analytic Hilbert quotient of a holomorphic G-space X is unique up to biholomorphism once it
exists, and we will denote it by X//G. This is the natural analogue of the concept of good quotient
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or categorical quotient in Algebraic Geometry, cf. [BB02, Ch. 3]. Moreover, if X is an algebraic G-
variety with a good quotient π : X → X//G, then the associated map πh : Xh → (X//G)h is an
analytic Hilbert quotient, see [Lun76]. If X is a Stein G-space, then the analytic Hilbert quotient
π : X → X//G exists, see [Sno82], [Hei91]. It has the following properties, cf. [HMP98]:

(1) Given a G-invariant holomorphic map φ : X → Z to a complex space Z, there exists a
unique holomorphic map φ : X//G → Z such that φ = φ ◦ π.

(2) For every Stein subspace A of X//G the inverse image π−1(A) is a Stein subspace of X.
(3) If A1 and A2 are G-invariant analytic (in particular, closed) subsets of X, then we have

π(A1) ∩ π(A2) = π(A1 ∩ A2).
(4) For a G-invariant closed complex subspace A of X, which is defined by a G-invariant sheaf

IA of ideals, the image sheaf (π∗IA)
G endows the image π(A) in X//G with the structure

of a closed complex subspace of X//G. Moreover, the restriction of π to A is an analytic
Hilbert quotient for the action of G on A.

It follows that two points x, x′ ∈ X have the same image in X//G if and only if G • x ∩ G • x′ 6= ∅.
For each q ∈ X//G, the fibre π−1(q) contains a unique closed G-orbit G • x. The orbit G • x is affine
(see [Sno82, Prop. 2.3 and 2.5]) and hence, the stabiliser Gx of x in G is a complex-reductive Lie
group by a result of Matsushima.

Let G be a complex-reductive Lie group and let X be a holomorphic G-space with analytic Hilbert
quotient. There exist two related important stratifications of the quotient X//G. The main reference
for these stratifications in the algebraic case is [Lun73, Sect. III.2]. In the following we are going
to use the notion of orbit type and of slice type as defined in [Hei88, Sect. 4]: If X is a G-irreducible
Stein G-space and q ∈ X//G, then there exists a unique closed G-orbit G • x in the fibre π−1(q).
We define the slice type of q to be the type of the Gx-representation on the Zariski tangent space
TxX, i.e., the isomorphism class of the G-vector bundle G×Gx (TxX). Analogously, we denote by
Type(G • x) the orbit type of x, i.e., the conjugacy class (Gx) in G of the isotropy subgroup Gx of G
at x. Using the holomorphic slice theorem and the corresponding results in the algebraic category
one obtains the following result.

Proposition 2.4. Let X be a G-irreducible holomorphic G-space with analytic Hilbert quotient π : X →
X//G. The decomposition of X//G according to slice type defines a complex analytic stratification of the
quotient X//G. In particular, in X//G there exists a maximal, Zariski-open stratum Smax of the slice-type
stratification. The orbit-type of closed orbits is constant on this stratum. Furthermore, the restriction of π

to Xmax := π−1(Smax) realises Xmax as a holomorphic fibre bundle over Smax.

2.4. (Weakly) meromorphic maps and functions. Recall from [Rem57] and [Fis76, sect. 4.6] that
there is a natural correspondence between meromorphic functions on a (pure-dimensional) com-
plex space X and so-called meromorphic graphs, i.e., graphs of meromorphic maps from X to
P1 = C∪ {∞} that do not map any irreducible component of X to ∞. For a meromorphic function
f on X we denote by Pf the pole variety of f . It is a nowhere dense analytic subset of X, and the
smallest subset of X such that f is holomorphic on X \ Pf . We set dom( f ) := X \ Pf and we call it
the domain of definition of f .

Suppose now that a complex Lie group L acts on a complex space X. Then we have an induced
action of L on the algebra MX(X) of meromorphic functions as follows. Let f be a meromorphic
function on X with graph Γ f ⊂ X × P1. The group L acts on X × P1 by the L-action on the first
factor. Given g ∈ L, we define a new meromorphic graph Γg • f := g • Γ f ⊂ X × P1 and hence
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a meromorphic function g • f on X. In this way we obtain an action of L on MX(X) by algebra
homomorphisms. A meromorphic function f ∈MX(X) is L-invariant if and only if its graph Γ f is
an L-invariant analytic subset of X×P1. In this case the pole variety of f is an L-invariant analytic
subset of X.

The following definition is taken from [Sto58a] and [Sto58b]. It is useful when considering maps
into (non-compactifiable) non-compact target spaces, as we will do in the following.

Definition 2.5. Let X be a complex space and let A be a nowhere dense analytic subset of X. Let
Y be a complex space. Then, a holomorphic map φ : X \ A → Y is called weakly meromorphic, if for
any point p0 ∈ A and any one-dimensional complex submanifold C of X with C ∩ A = C ∩ A =
{p0} there exists at most one point q0 ∈ Y with the following property: there exists a sequence
(pn)n∈N ⊂ C \ A with limn→∞ pn = p0 such that q0 is the accumulation point of

(
φ(pn)

)
n∈N

.

Example 2.6. A meromorphic map is in particular weakly meromorphic, see [Sto58a, Satz 3.3].

3. APPLICATIONS

In the following sections we give applications of the Main Theorem to almost-homogeneous spaces
(Section 3.1), to the problem of realising meromorphic invariants as quotients of holomorphic
invariants (Section 3.2), to holomorphically convex spaces with actions of compact groups (Sec-
tion 3.3), to the existence of principal orbits types (Section 3.4), and to actions of unipotent groups
(Section 3.5).

3.1. Characterising almost-homogeneous spaces. Using Rosenlicht’s Theorem, we see that an al-
gebraic variety is almost-homogeneous for a group G acting on X if and only if every G-invariant
rational function on X is constant. As a corollary of our main result we obtain the corresponding
result in the complex-analytic category:

Proposition 3.1. Let X be a Stein G-space and let H be an algebraic subgroup of G. Then H has an open
orbit in X if and only if MX(X)H = C.

Remark 3.2. Note that this can also be proven without using the Main Theorem: in case MX(X)H =
C, clearly also OX(X)G = C. A result of Snow [Sno82, Cor. 5.6] implies that X naturally carries the
structure of an affine algebraic G-variety. Consequently, X is almost-homogeneous by Rosenlicht’s
Theorem, see Theorem 2.3.

3.2. The connection between holomorphic and meromorphic invariants. Let X be a G-irreduci-
ble Stein G-space with analytic Hilbert quotient π : X → X//G. Then clearly the field of invariant
meromorphic functions MX(X)G contains the field MX//G(X//G) of meromorphic functions on
X//G via the pull-back morphism

(3.1) π∗ : MX//G(X//G) ↪→MX(X)G.

Using our main result, in this section we describe the image of π∗ in MX(X)G and we characterise
those spaces for which π∗ is an isomorphism. Furthermore, we give examples why in general this
cannot be expected. It follows that in most situations the information encoded in the Rosenlich-
type quotient constructed in the Main Theorem cannot be recovered from the analytic Hilbert
quotient X//G.

The following result characterises the image of π∗ in MX(X)G.
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Proposition 3.3. Let X be a G-irreducible Stein G-space with analytic Hilbert quotient π : X → X//G. A
function f ∈ MX(X)G is contained in Im(π∗) if and only if there exist p, q ∈ OX(X)G, q 6= 0, such that
f = p/q.

Proof. If f = p/q for p, q ∈ OX(X)G, q 6≡ 0, then by the universal properties of the analytic
Hilbert quotient there exist holomorphic functions p̄ and q̄ on X//G such p = π∗ p̄ and q = π∗q̄,
respectively. Consequently, f is the pull-back of the meromorphic function p̄/q̄ ∈ MX//G(X//G).
Conversely, assume that f = π∗ f̄ for some f̄ ∈ OX//G(X//G). Since X//G is Stein, the Poincaré
problem on X//G is universally solvable, see for example [GR79, Ch. 4, §2, Thm. 4]; i.e., there exist
holomorphic functions p̄, q̄ ∈ OX//G(X//G), q 6≡ 0, such that f̄ = p̄/q̄. Then, f = π∗ p̄/π∗q̄ is a
quotient of holomorphic invariants. �

The following example shows that the inclusion (3.1) is strict in general.

Example 3.4. Consider the action of C∗ on C2 by scalar multiplication. Then, the meromorphic
function f (z, w) = z/w is C∗-invariant. However, the analytic Hilbert quotient is π : C2 →
{point}, so that f is not the pull-back of a meromorphic function via π. In order to construct
an example for a semisimple group action from this one, let T < G = SL2(C) be the maximal torus
of diagonal matrices. Consider the diagonal action of T on the product G × C2, where T ∼= C∗

acts on C2 by scalar multiplication as above. The group G acts holomorphically on the quotient
X := G×T C2 by this T-action. By construction we have X//G ∼= C2//T = {point}. Furthermore,
the G-invariant rational function on X defined by f

[
g, (z, w)

]
= z/w is not a pull-back via the

quotient map X → {point}.
The following result characterises those Stein G-spaces for which any meromorphic invariant is a
quotient of two holomorphic invariants, i.e., those spaces for which π∗ is an isomorphism.

Theorem 3.5. Let X be a G-irreducible Stein G-space with analytic Hilbert quotient π : X → X//G. Then,
the following are equivalent:

a) There exists a non-empty open subset U ⊂ X//G such that for all q ∈ U the fibre π−1(q) contains
a dense G-orbit.

b) There exists a non-empty Zariski-open subset U ⊂ X//G such that for all q ∈ U the fibre π−1(q)
contains a dense G-orbit.

c) The pull-back map π∗ establishes an isomorphism between MX//G(X//G) and MX(X)G.

Before we prove Theorem 3.5 we list a few typical situations where it can be applied.

Corollary 3.6. Let X be a G-irreducible Stein G-space with analytic Hilbert quotient π : X → X//G.
Assume that there exists a point x ∈ X such that π−1(π(x)

)
= G • x. Then, the pull-back π∗ establishes

an isomorphism between MX//G(X//G) and MX(X)G.

Proof. Under the hypotheses of the corollary, there exists a non-empty Zariski-open subset U ⊂
X//G such that for all q ∈ U the fibre π−1(q) consists of a single G-orbit. Hence, Theorem 3.5
applies. �

Corollary 3.7. Let G be a semisimple algebraic group and let X be a G-irreducible affine algebraic G-variety
with factorial coordinate ring. Then, MX//G(X//G) and MX(X)G are isomorphic via π∗.

Remark 3.8. The assumptions of Corollary 3.7 are in particular fulfilled for X = V a representation
space of a semisimple group.
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Proof of Corollary 3.7. Under the hypotheses of the corollary the generic fibre of the morphism
π : X → Spec

(
C[X]G

)
to the invariant-theoretic quotient contains a dense G-orbit, see for exam-

ple [PV94, §3.2]. Since the corresponding map πh : Xh →
(
Spec(C[X]G)

)h of complex spaces is the
analytic Hilbert quotient of the Stein space Xh, Theorem 3.5 applies. �

In the remainder of the present section we prove Theorem 3.5.

Proof of Theorem 3.5. The implication b) ⇒ a) is clear. As a second step we prove a) ⇒ b). Let
Smax ⊂ X//G be the maximal slice-type stratum, cf. Section 2.3, and let Xmax = π−1(Smax). Since
Smax is dense in X//G, there exists a point q ∈ U ∩ Smax. Recall from Proposition 2.4 that the
map π|Xmax realises Xmax as a holomorphic fibre bundle over Smax with typical fibre π−1(q). It
therefore follows from the assumption in a) that for every q′ ∈ Smax the fibre π−1(q′) contains a
dense G-orbit.

Next we prove c) ⇒ b). Suppose on the contrary that the fibre π−1(q) does not contain a dense
G-orbit for any q ∈ Smax. Let Ω be a Zariski-open subset with geometric quotient whose existence
is guaranteed by the Main Theorem. We may assume that Ω is contained in Xmax. Since Ω is
Zariski-open and dense in Xmax, for generic q ∈ Smax the intersection Ω ∩ π−1(q) is Zariski-open
and dense in π−1(q). By assumption, this intersection therefore contains two distinct G-orbits
G • x1 6= G • x2. By part (5) of the Main Theorem, there exist an f ∈ MX(X)G whose values at x1
and x2 are well-defined and distinct. Consequently, f is not contained in Im(π∗), a contradiction.

Finally, we prove implication b) ⇒ c). We first study the local geometry of the quotient map
π : X → X//G under the hypotheses of b). As in the previous paragraph, let Ω be a Zariski-
open subset with geometric quotient p : Ω → Q. Without loss of generality we may assume that
Ω ⊂ Xmax. Let x0 ∈ Ω be chosen such that p(x0) and π(x0) are smooth points of Q and X//G,
respectively, and such that G • x0 is dense in π−1(π(x0)

)
. Since π|Xmax : Xmax → Smax is a holomor-

phic fibre bundle there exists a local holomorphic section σ : U → X of π|Xmax through x0, defined
on a neighbourhood U of π(x0) in X//G. Since x0 ∈ Ω, we may assume that σ(U) ⊂ Ω. The
situation is sketched in Figure 1.

( )

( )

π

U

σ

π(x0)

σ(U)

Smax

Xmax
x0

G • σ(U)

open orbit

closed orbit

FIGURE 1. The local geometry of the quotient map

Note that Ũ := G • σ(U) ⊂ Ω is open and that π|Ũ : Ũ → U parametrises the G-orbits in Ũ
set-theoretically. Since Q carries the quotient topology with respect to p, the set p(Ũ) is an open
neighbourhood of p(x) in Q. By the choice of x0, shrinking U if necessary, we may assume that
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both U and Ũ are smooth. Since π is a G-invariant holomorphic map, its restriction to Ω induces a
uniquely defined holomorphic map π : Q→ X//G such that the diagram

X

π
��

Ω? _oo

p
��

X//G Qπoo

commutes. By construction, the induced map π|p(Ũ) : p(Ũ) → U is a holomorphic bijection be-
tween complex manifolds, hence biholomorphic.

Let now f ∈ MX(X)G be given, and let Γ f ⊂ X × P1 be its graph. It is our aim to show that f
descends to a meromorphic function on X//G. The idea of the proof is to show that the image
π(Pf ) of the pole variety Pf of f is nowhere dense in X//G in order to apply Proposition 5.2 of
[Gre10a]. To this end, we consider the restricted functions f |Ũ ∈ MX(Ũ)G as well as f |π−1(U) ∈
MX(π

−1(U))G.

Subclaim. There exists f̄ ∈MX//G(U) such that f |π−1(U) = π∗ f̄ .

Proof of the subclaim. Denote the graph of f |π−1(U) by Γ′, and set Γ̃ := Γ′ ∩ (Ũ × P1). Note that Γ̃
coincides with the graph of f |Ũ . We define Π := π|π−1(U) × idP1 : π−1(U) × P1 → U × P1 and
P := p|Ũ × idP1 : Ũ × P1 → p(Ũ) × P1. The map Π is an analytic Hilbert quotient, and P is a
geometric quotient for the respective G-actions on π−1(U) × P1 and Ũ × P1. With this notation
we summarise our setup in the following commutative diagram

Γ′ ⊂ π−1(U)×P1

Π
��

Ũ ×P1? _oo

P
��

⊃ Γ̃

U ×P1 p(Ũ)×P1.∼=
Πoo

The function f |Ũ descends to a meromorphic function on p(Ũ) ⊂ Q with graph P(Γ̃), cf. the proof
of part (1) of Proposition 7.2. Furthermore, we note that Π

(
P(Γ̃)

)
is analytic, hence closed in

U ×P1. From this and the fact that Γ̃ is Zariski-open, hence dense in the G-irreducible space Γ′ it
follows that

Π(Γ′) = Π(Γ̃) = Π
(

P(Γ̃)
)
= Π

(
P(Γ̃)

)
.

Here, · denotes the topological closure in U ×P1. Consequently, Π(Γ′) is a meromorphic graph
over U associated with a meromorphic function f̄ ∈MX//G(U) fulfilling f |π−1(U) = π∗ f̄ . �

Finally, we consider the pole variety Pf of f and its image π(Pf ) in X//G. Note that π(Pf ) ∩
U coincides with the image under π of the pole variety of f |π−1(U). The subclaim implies that
f |π−1(U) = π∗ f̄ for some f̄ ∈ MX//G(U). Consequently, π(Pf ) ∩U is nowhere dense in U. Since
π(Pf ) is analytic in the irreducible complex space X//G, we deduce that π(Pf ) is nowhere dense
in X//G. By Proposition 5.2 in [Gre10a], this implies that the image of Γ f under the map π ×
idP1 : X×P1 → X//G×P1 is a meromorphic graph over X//G and that f descends to X//G. This
completes the proof of b)⇒ c). �
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3.3. Holomorphically convex K-spaces. In this section we consider applications of the main result
to spaces without actions of complex groups, e.g. bounded domains.

Proposition 3.9. Let X be a K-irreducible complex K-space of dimension n and set

m := max
x∈X
{dimC

(
Tx(K • x) + J · Tx(K • x)

)
}.

Suppose that there exist a Stein K-space Y and an equivariant surjection ϕ : X → Y which is injective out-
side a nowhere dense K-invariant analytic set A ⊂ X. Then, there exist (n−m) analytically independent
K-invariant meromorphic functions on X.

Remark 3.10. Proposition 3.9 in particular applies to strongly pseudoconvex (also called 1-convex)
complex spaces or, more generally, to holomorphically convex spaces whose Remmert reduction
is a proper modification.

Proof of Proposition 3.9. Let G = KC be the complexification of K. According to the main result
of [Hei91] there exist a Stein G-space YC and a K-equivariant open embedding ı : Y → YC such
that YC = G • ı(Y). Then, applying our Main Theorem we obtain a G-invariant Zariski-open
subset Ω ⊂ YC such that the geometric quotient p : Ω→ Q = Ω/G exists.

Since ϕ is surjective and injective outside A, we have dim YC = n. Moreover, the maximal di-
mension of the G-orbits in YC is m; hence, dim Ω/G = n− m. By part (5) of the Main Theorem
the G-invariant meromorphic functions separate the G-orbits in Ω. This implies there exist at least
n−m analytically independent G-invariant meromorphic functions on YC. Restricting these to Y
and pulling them back to X via ϕ yields the desired K-invariant meromorphic functions on X. �

3.4. Actions with reductive generic stabiliser. For G-connected Stein G-manifolds Richardson
[Ric74] proves the existence of a principal orbit type in the following sense: in every such manifold
there exists an open and dense subset U such that the stabiliser groups of points in U are conju-
gate in G. Here, we sharpen his result in the case of reductive stabiliser groups and draw a few
consequences.

Proposition 3.11. Let G be a complex-reductive Lie group and let X be a G-connected Stein G-manifold.
Assume that the principal orbit type is reductive. Then,

(1) in the statement of the Main Theorem the set Ω can be chosen in such a way that for all x, y ∈ Ω
there exists a g ∈ G with Gy = gGxg−1. In particular, there exists a G-invariant Zariski-open
dense subset of X consisting of orbits of principal orbit type;

(2) additionally, Ω can be chosen such that p : Ω→ Q is an analytic Hilbert quotient. In particular, Ω
is Stein and p : Ω→ Q is a holomorphic fibre bundle with typical fibre G/Gx.

Remarks 3.12. (1) The assumption on the stabiliser groups is equivalent to the requirement that
the normaliser NG(Gx) be reductive, see [RV04, proof of Thm. 1.2(ii)].

(2) The assumption on the stabiliser groups is automatically fulfilled by any commutative reduc-
tive group acting on a connected Stein manifold.

As a special case of Proposition 3.11 we explicitly note the result for the case of generically free
actions.
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Corollary 3.13. Let G be a complex-reductive Lie group and let X be a G-connected Stein G-manifold.
Assume that the action is generically free. Then, in the statement of the Main Theorem the set Ω can be
chosen such that p : Ω→ Q is a G-principal fibre bundle.

Remark 3.14. The additional assumption of Corollary 3.13 is automatically fulfilled by any com-
mutative reductive group acting effectively on a connected Stein manifold, as can be seen using
the holomorphic Slice Theorem.

Proof of Proposition 3.11. (1) Let φ : X → V be a map from X to a G-representation space V of the
form guaranteed by the Weak Equivariant Embedding Theorem, Proposition 5.2. Let Y be the
algebraic Zariski-closure of φ(X) in V, cf. Section 6.3. Then, for any y ∈ Y, we let Gy = Ly nUy be
the Levi decomposition of the stabiliser Gy. By a further result of Richardson [Ric72, Thm. 9.3.1],
there exists a G-invariant smooth Zariski-open subset W of Y such that Ly′ is conjugate to Ly in G
for all y, y′ ∈ W and such that (Uy)y∈W is an algebraic family of algebraic subgroups of G in the
sense of [Ric72, Def. 6.2.1]. Owing to the definition of Y, the image φ(X) intersects W non-trivially.
By the assumption on the principal orbit type there exists a point y0 ∈ W ∩ φ(Xmax) such that
Gy0 = Ly0 and Uy0 = {e}. Since the (Uy)y∈W form an algebraic family, we may assume that the
number of connected components of Uy is constant for all y ∈W. Consequently, since y0 ∈W, the
group Uy is zero-dimensional and connected for all y ∈ W, therefore trivial. It follows that Gy is
conjugate to Gy′ in G for all y, y′ ∈ W. Consequently, the same is true for any pair of points in the
Zariski-open G-invariant subset φ−1(W) ∩ Xmax of X. Intersecting the set guaranteed by the Main
Theorem with φ−1(W) ∩ Xmax we arrive at the desired result.

(2) We have seen that in the affine algebraic variety Y there exists a Zariski-open and dense subset
W such that Gx is reductive for all x ∈ W. Hence, the existence of a Zariski-open subset Ω such
that p : Ω → Q is an analytic Hilbert quotient is a consequence of Lemma 3.15 below. The fact
that the quotient map is a holomorphic fibre bundle then follows by combining part (1) with the
holomorphic Slice Theorem, cf. Proposition 2.4 and [Lun73, Cor. 3.2.5]. �

Lemma 3.15. Let X be an algebraic G-variety. Assume that for x ∈ X in general position the stabiliser Gx
is reductive. Then, there exists a non-empty Zariski-open affine G-invariant subset U in X such that the
action of G on U admits a good geometric quotient. The associated map Uh → (U/G)h of complex spaces
is an analytic Hilbert quotient.

Proof. By a result of Reichstein and Vonessen [RV04] there exists a birational G-equivariant map
φ : X 99K Y to an affine G-variety Y with the following property: if πY : Y → Y//G denotes the
categorical good quotient, then the set Yst := {y ∈ Y | π−1

Y

(
πY(y)

)
= G • y} is non-empty. Without

loss of generality, we may assume that Yst is affine and that φ−1|Yst : Yst → X is an isomorphism
onto its image. This shows the first claim. The second claim is a consequence of [Lun76]. �

3.5. Unipotent groups. In this section we discuss consequences of our main result for actions of
unipotent groups.

Proposition 3.16. Let H < G be a unipotent algebraic subgroup of a complex-reductive Lie group and
let X be a Stein G-space. Then, every H-orbit in X is closed. Furthermore, the topological quotient X/H
is generically Hausdorff and there exists a H-invariant Zariski-open dense subset U of X such that the
restriction of the topological quotient p : X → X/H to U is a geometric quotient in the category of complex
spaces.
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Proof. Assuming that every H-orbit is closed, the remaining statements follow directly from the
Main Theorem. So, let H • x ⊂ X be any H-orbit. Then, clearly H • x ⊂ G • x. However, the fibre
π−1(π(x)

)
⊃ G • x of the analytic Hilbert quotient π : X → X//G carries a natural affine algebraic

structure with respect to which the G-action is algebraic, see [Sno82, Cor. 5.6]. Since H < G is
algebraic by assumption, by the corresponding result in the affine algebraic case (which is proven
for example in [Bir71, Appendix]) the orbit H • x is closed in π−1(π(x)

)
and hence in X. �

Example 3.17. There exists a domain of holomorphy D in C2 endowed with a free holomorphic
action of H = C such that the topological closure of every H-orbit is a real hypersurface in D,
cf. [HOV94, Sect. 7-8]. In particular, there is no open C-invariant subset Ω in D such that Ω/C

is Hausdorff. Hence, we cannot expect holomorphic actions of algebraic groups to have any of
the properties stated in the Main Theorem if they do not extend to holomorphic actions of some
complex-reductive group.

4. EXAMPLES

In the analytic setup the question of existence of a Rosenlicht quotient consists of the following
two parts:

(1) Does there exist a Zariski-open subset on which the action of G admits a geometric quo-
tient?

(2) Do the invariant meromorphic functions separate the G-orbits in general position?

In the following we are going to describe examples showing that the assumption made in the Main
Theorem are indeed necessary to obtain a positive answer to both questions.

In the Main Theorem it is assumed that the group H under discussion is an algebraic subgroup of
a reductive group acting on X. The following examples show that this algebraicity assumption is
indeed necessary in order to obtain a geometric quotient. All these examples deal with actions of
discrete groups, which we denote by Γ instead of H.

Example 4.1. Let G = C∗ ×C∗ and let Γ ∼= Z2 be the discrete subgroup generated by the elements
e and e−π. Furthermore, consider the subgroup M = diag(C∗). Then, the quotient X = G/M is
isomorphic to C∗ via the map [(z, w)] 7→ z/w, and the induced Z2-action is given by (m1, m2) • z =
em1+m2π. For this action there does not even exist an open subset of C∗ that admits a Hausdorff
topological quotient.

Note that the action of the ambient reductive group G is not effective in the above example. The
next example shows that even if the G-action is effective geometric quotients for non-algebraic
subgroups might not exist.

Example 4.2. We consider the action of the discrete subgroup Γ := SL2(Z) of G := SL2(C) on the
homogeneous Stein manifold X = G/T, where T is the maximal torus of diagonal matrices in G.
We claim that there does not exist a Γ-invariant Zariski-open subset U of X such that the quotient
U/Γ is Hausdorff. First, we consider an explicit realisation of this action. Taking a regular element
ξ ∈ t = Lie(T) we have Ad(G)ξ ∼= G/T. Note that the ring of invariants C[g]G for the adjoint
action of G on its Lie algebra g is equal to C[det]. An element ξ ∈ g is regular if and only if
det(ξ) 6= 0. Therefore, G/T can be identified with{

(x, y, z) ∈ C3 ; det
(

x y
z −x

)
= −1

}
.
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The Γ-action on X = G/T in this realization is induced by conjugation. As an auxiliary tool, we
are going to consider the induced action of C and of the discrete subgroup Z < C on X given by
the embedding of C into SL2(C) as upper triangular matrices. Explicitly, for t ∈ C we obtain

(4.1) t • (x, y, z) = (x + tz, y− 2tx− t2z, z).

Let now U be any Γ-invariant Zariski-open subset of X. Since there are no Γ-invariant analytic
hypersurfaces in G (see [Ahi82], or [HO84, §2.2, Ex.2] for an elementary proof) there are no such
hypersurfaces in X either. Consequently, the complement A := X \U has pure codimension two
in X, i.e., A is a discrete set of points. The map p : X → C, p(x, y, z) = z is C-invariant, the fibre
p−1(a) for a 6= 0 consists of a single orbit. However, the fiber p−1(0) is the union of the two C-
orbits C • (1, 0, 0) = {(1, y, 0) ; y ∈ C} and C • (−1, 0, 0) = {(−1, y, 0) ; y ∈ C}, which cannot be
separated by C-invariant open neighbourhoods. Hence, X/C is not Hausdorff.

We show by direct calculation that U/Γ is not Hausdorff, either. Since A consists of isolated points,
there exists y0 ∈ C \Q such that both (1, y0, 0) and (−1, y0, 0) are contained in U. Using that y0 is
irrational, one checks by direct computation that these two points lie in different Γ-orbits. We are
going to show that the orbits Γ • (1, y0, 0) and Γ • (−1, y0, 0) cannot be separated by invariant open
sets. To this end, let V be any open Γ-invariant neighbourhood of (1, y0, 0) in U. Since A is discrete,
for all integers m� 0 the points pm := (1, y0,−2/m) are contained in V. Using (4.1) we compute

m • pm =

(
1 + m · −2

m
, y0 − 2m−m2 · −2

m
,
−2
m

)
=

(
−1, y0,

−2
m

)
∈ V.

If W is any open neighbourhood of (−1, y0, 0) in U, then by the above computation m • pm ∈W for
m� 0. Since the Z-orbits of the pm are contained in the corresponding Γ-orbits, every Γ-invariant
neighbourhood V of (1, y0, 0) thus intersects every open neighbourhood W of (−1, y0, 0), so U/Γ
cannot be Hausdorff.

As a concluding remark, note that by removing the fibre p−1(0) from X we obtain a Zariski-open
C-invariant subset of X on which the C-action admits a Hausdorff quotient, in accordance with
Rosenlicht’s Theorem and with the main result of this paper.

In the case of non-algebraic subgroups acting on Stein manifolds the invariant meromorphic func-
tions do not necessarily separate generic orbits, even if a meromorphic quotient exists. This is
exemplified in the following.

Example 4.3. We consider the subgroup Γ := SL2(Z) of SL2(C) acting on the Stein manifold
X = SL2(C) by γ • g = gγ−1. Then, the action is proper and free, and hence the geometric quotient
X/Γ exists. Let U be any Γ-invariant analytically Zariski-open subset of X. Then U/Γ exists and is
biholomorphic to the image of U in the quotient X/Γ. Using that there are no Γ-invariant hyper-
surfaces in SL2(C) we see that the complement of U in X has no codimension-one components. It
follows that every Γ-invariant meromorphic function on U extends to a Γ-invariant meromorphic
function on the whole of X by Levi’s Theorem. However, because of the non-existence of invariant
hypersurfaces, the pole variety of every Γ-invariant meromorphic function on X is empty. Hence,
every such function is holomorphic, and therefore constant.

5. A WEAK EQUIVARIANT EMBEDDING THEOREM

In the following let X be a G-irreducible Stein G-space for a complex-reductive Lie group G. The
main technical ingredient in the proof of our main result is an equivariant version of the following
result of Remmert and Narasimhan:
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Theorem 5.1 ([Nar60]). Let X be a finite-dimensional Stein space. Then there exist a finite dimensional
complex vector space V and a proper injective holomorphic map φ : X → V that is an immersion on X \
Xsing.

In this paper a holomorphic map φ : X → Y from a Stein space X into an affine variety Y is called
a Narasimhan map if φ is proper injective and if φ|X\Xsing

is an immersion.

In the folllowing we will investigate to what extend there exists an equivariant version of this
fundamental result.

Suppose that the Stein G-space X admits an equivariant Narasimhan map φ : X → V into a finite-
dimensional G-representation space V. In this situation the stratification of X//G into orbit-types
is necessarily finite. In contrast, Heinzner [Hei88, Sect. 3] has given an example of a Stein C∗-
manifold that contains a sequence of points {xn} lying in closed C∗-orbits and having isotropy
groups C∗xn

= Zpn , where {pn} is a sequence of prime numbers such that limn→∞ pn = ∞. Hence,
the first guess for an equivariant version of Theorem 5.1 does not lead to the desired result.

The problems encountered in the above example are caused be the appearance of ”too many” dif-
ferent isotropy groups and slice-representations for our given action. However, recall from Propo-
sition 2.4 that there exists a maximal, Zariski-open stratum Smax in X//G over which the type of the
slice representation is constant. Using the methods of [Hei88] we prove the following equivariant
version of Theorem 5.1.

Proposition 5.2 (Weak Equivariant Embedding Theorem). Let X be a G-irreducible Stein G-space
with associated analytic Hilbert quotient π : X → X//G. Let Smax be the maximal stratum of the slice-type
stratification, and Xmax := π−1(Smax). Then there exists a finite-dimensional G-module V with analytic
Hilbert quotient πV : V → V//G, and a holomorphic G-equivariant map φ : X → V with the following
properties:

(1) The induced holomorphic map φ : X//G → V//G is a Narasimhan map and
(2) the induced holomorphic map

φ|Xmax : Xmax → Vmax := V \ π−1
V
(
φ(Sc

max)
)

is a closed embedding.

The main technical part in the proof of Proposition 5.2 is contained in the following lemma, the
proof of which is adapted from [Hei88, Sect.4, Lemma 1]. For the reader’s convenience we describe
the arguments here in some detail. In the following we write Amax := A ∩ Smax for any analytic
subset A ⊂ X//G.

Lemma 5.3. Let X be a G-irreducible Stein G-space and let π : X → X//G be its analytic Hilbert quotient.
For any analytic subset A of X//G that intersects the maximal slice-type stratum Smax non-trivially the
following holds:

(1) There exists an analytic subset A′ of A with dim(A′max) < dim(Amax), a complex G-module V1,
and an equivariant holomorphic map φ : X → V1 that is an immersion along π−1(Amax \ A′max).

(2) There exists an analytic subset A′′ of A with dim(A′′max) < dim(Amax), a complex G-module
V2, and an equivariant holomorphic map ψ : X → V2 whose restriction to every closed G-orbit in
π−1(Amax \ A′′max) is a proper embedding.

Proof. Let A ⊂ X//G be an analytic subset such that Amax 6= ∅. Removing the irreducible compo-
nents which are not of maximal dimension, we may assume without loss of generality that Amax
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is pure-dimensional. We denote the irreducible components of Amax by Ai, i ∈ I, and choose for
every i ∈ I a point pi ∈ Ai \

⋃
j 6=i Aj. For each i, let xi ∈ π−1(pi) be a point lying in the unique

closed G-orbit in this fibre.

The slice type of every point xi, i ∈ I, is equal to a fixed model G ×H W. This model admits
an equivariant holomorphic embedding into a G-module V1. By the holomorphic Slice Theorem
([Sno82]), for each i ∈ I we can choose a small neighbourhood Ui of pi in X such that π−1(Ui) has
a G-equivariant holomorphic embedding into a saturated open subset of the G-module V1. Ap-
plication of [Hei88, Sect. 1, Prop. 1] to the induced map

⋃̇
i∈Iπ

−1(Ui) → V1 yields a G-equivariant
holomorphic map φ : X → V1 that is an immersion along

⋃̇
i∈Iπ

−1(pi). The set

R := {x ∈ X | φ is not an immersion in x}

is a G-invariant analytic subset of X. It follows that A′ := π(R) ∩ A is an analytic subset of A.
Since the map φ is an immersion at every point in

⋃
i∈I π−1(pi), we conclude that dim(A′max) <

dim(Amax), as desired.

Let us now prove the second claim. Since by definition the slice type is constant on Smax, all
orbits G • xi have the same orbit type (H), where H is a complex-reductive subgroup of G. Since
there is a proper equivariant embedding of G/H into some G-module V2, there exists a proper
holomorphic map

⋃̇
i∈IG • xi → V2. By [Hei88, Sect. 1, Bemerkung 2] this map extends to a G-

equivariant holomorphic map ψ : X → V2 such that ψ|G • xi is a proper embedding for each i ∈ I.

Let πV2 : V2 → V2//G be the analytic Hilbert quotient. For q ∈ V2//G we set Type(q) := Type(G • q)
and define

C :=
{

q ∈ V2//G | Type(q) < H
}
⊂ V2//G.

Then Ω := V2 \ π−1
V2

(C) is an algebraically Zariski-open G-saturated subset of V2, see [Lun73,
Ch. III]. Note that we have ψ(xi) ∈ Ω for all i ∈ I. Let ψ : X//G → V2//G be the induced map and
set A′′ := ψ

−1
(C), which is an analytic subset of X//G. We want to show that for every x ∈ X such

that G • x is closed with π(x) ∈ Amax \ A′′max the restriction of ψ to G • x is a proper embedding
into V2.

For this suppose that ψ(G • x) = G • ψ(x) is not closed. Then there is a unique closed G-orbit
G • v ⊂ Ω in the closure of G • ψ(x) and for this orbit we have Type(G • v) < Type

(
G • ψ(x)

)
≤

Type(G • x) = (H), a contradiction. Consequently, G • ψ(x) must be closed in V and, since it
lies in Ω, we have Type

(
G • ψ(x)

)
= (H). Therefore, ψ : G • x → G • ψ(x) is an isomorphism,

hence ψ|G • x is a proper embedding. Finally, since all the xi are contained in Amax \ A′′max, clearly
dim(A′′max) < dim(Amax), as claimed. �

Now we are in the position to give the proof of Proposition 5.2.

Proof of Proposition 5.2. Let X be a G-irreducible Stein G-space with associated analytic Hilbert quo-
tient π : X → X//G. Let ϕ0 : X//G → V0 be a Narasimhan map and φ0 : X → V0 the lifted map
φ0 := ϕ0 ◦ π. By a repeated application of the first part of Lemma 5.3 we obtain an equivariant
holomorphic map φ1 : X → V1 to a complex G-module V1 that is an immersion at every point in
π−1(Smax). Additionally, by a repeated application of the second part of the same lemma we ob-
tain an equivariant holomorphic map ψ : X → V2 into a complex G-module whose restriction to
every closed orbit in π−1(Smax) is a closed embedding. Let V := V0 ⊕ V1 ⊕ V2 and let φ : X → V
be the product map.
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Let πV : V → V//G denote the quotient by the G-action and let φ : X//G → V//G be the in-
duced map. Since φ is proper (we started with ϕ0 which was assumed to be a Narasimhan
map), the image of Sc

max := (X//G) \ Smax under φ is an analytic subset of V//G. The restric-
tion φ|Xmax : Xmax → V \ π−1

V (φ(Sc
max)) =: Vmax is an immersion and a closed embedding when

restricted to any closed orbit in Xmax. By [Hei88, Sect. 2, Prop. 2] the restriction of φ to every fibre
of π is a closed embedding. Hence, φ is an injective immersion, since φ separates the points of
Smax. It therefore remains to check that φ|Xmax is proper, which can be done the same way as in the
last paragraph in the proof of [Gre10b, Thm. 9.6]. �

6. CONSTRUCTING GEOMETRIC QUOTIENTS

We continue to consider the action of a complex-reductive group G on a Stein space X as well as
the induced action of an algebraic subgroup H of G. In this section we prove the existence of an
H-invariant Zariski-open dense subset Ω of X that admits a geometric quotient p : Ω → Q with
the properties listed in parts (1) – (3) of the Main Theorem.

The idea of proof is to use the Weak Equivariant Embedding Theorem established above in order
to reduce to an algebraic situation. Then classical results on algebraic transformation groups and
especially Rosenlicht’s theorem will allow us to show the existence of geometric quotients for
algebraic subgroups H ⊂ G.

In order to avoid the corresponding technical difficulties we show in Section 6.1 that it is sufficient
to treat the H-irreducible case. In Section 6.2 we then discuss the universality properties of (al-
gebraic) geometric quotients before we prove the existence of geometric H-quotients in the final
subsection.

6.1. Reduction to H-irreducible Stein G-spaces. Let X be a Stein G-space, and H an algebraic
subgroup of G. Suppose that the Main Theorem is proven under the additional asumption that X
is H-irreducible.

Let X =
⋃m

i=1 Xi be the decomposition of X into its H-irreducible components. Then, we may
apply the Main Theorem to each of the components Xi and obtain H-invariant Zariski-open dense
subsets Ωi ⊂ Xi with geometric quotients Ωi → Ωi/H. Note that we can choose Ωi to be contained
in Xi \

⋃
k 6=i Xk. It follows that the disjoint union of the sets Ωi is H-invariant, Zariski-open and

dense in X. Furthermore, it admits a geometric quotient
⋃̇m

i=1Ωi →
⋃̇m

i=1(Ωi/H) by the H-action
with the properties listed in the Main Theorem.

6.2. Universality of geometric quotients. First, we discuss the universality properties of geomet-
ric quotients with respect to invariant analytic subsets.

Lemma 6.1. Let L be a complex Lie group and let X be an L-irreducible holomorphic L-space admitting
a geometric quotient p : X → X/L. If A ⊂ X is an L-invariant analytic subset of X, then p(A) is an
analytic subset of X/L.

Proof. Since the geometric quotient p : X → X/L exists, we conclude from [Hol63, §3, Satz 7] that
all L-orbits are analytic in X and have the same dimension. Hence, the corollary in Section 3.7
of [Fis76] applies to show that p(A) is locally analytic in X/L. Since the image of an L-invariant
closed set under p is again closed, the set p(A) is analytic in X/L. �
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More can be said if the quotient map p : X → X/L is assumed to be a submersion:

Lemma 6.2. Let L be a complex Lie group and let X be an L-irreducible holomorphic L-space admitting a
geometric quotient p : X → X/L. Suppose that p is a submersion. Then, p is universal with respect to
L-invariant analytic sets of X.

Proof. Given an L-invariant analytic subset A of X, we must show that the map p|A : A → p(A)
fulfills properties (1) – (3) of Definition 2.1. We already know from Lemma 6.1 that p(A) is an
analytic subset of X/L. The fibres of p|A are G-orbits, since the same is true for p. Hence, it
remains to show that p(A) carries the quotient topology with respect to p|A and that the structure
sheaf of p(A) as a reduced complex subspace of X/L is isomorphic to the sheaf of L-invariant
holomorphic functions on A.

Using that X/L carries the quotient topology with respect to p one checks directly that the same
is true for A and p|A: Let U ⊂ A be an L-invariant open subset. By definition of the subspace
topology on A, there exists an open subset Ũ in X such that Ũ ∩ A = U. Then, Û := G • Ũ is
G-invariant, open, and still fulfills Û ∩ A = U. Consequently, p(Û) is open in X/L and we have
p|A(U) = p(Û) ∩ p(A). Hence, p|A(U) is open in p(A).

It remains to consider the structure sheaves. For this let U ⊂ A be an L-invariant open subset and
let f ∈ O(U)L. Then there is a continuous function f̄ : p(U)→ C with f = p∗ f̄ and we must show
f̄ ∈ Op(A)

(
p(U)

)
. Since this assertion is local, we may apply [Fis76, Thm. in §2.18] to p and obtain,

after possibly shrinking U, a commutative diagram

Ũ
ψ

//

p ��

D× Ṽ

πṼ||
Ṽ,

where Ũ is an open subset of X such that U = Ũ ∩ A, where Ṽ is an open subset of X/L such that
p(Ũ) ⊂ Ṽ, and where D is a domain in CN for N = dim X − dim X/L. In this picture we have
ψ(A) = D × p(A) and f ◦ ψ−1(z, y) = f̄ (y) for y ∈ p(A). Hence, f̄ is indeed holomorphic on
p(U), as was to be shown. �

Remark 6.3. Lemma 6.2 can be used to prove the following observation which might be of inde-
pendent interest: Let H be an algebraic group and let X be an algebraic H-irreducible H-variety
admitting an (algebraic) geometric quotient p : X → X/H such that p is a submersion. If A ⊂ X is
an H-invariant analytic subset, then p|A : A→ p(A) is a (holomorphic) geometric H-quotient.

6.3. Existence of geometric quotients for algebraic subgroups of G. Let G be complex-reductive
and let X be an H-irreducible Stein G-space where H is an algebraic subgroup of G. Note that X is
also G-irreducible. We want to combine the results of the previous two sections in order to prove
that geometric quotients for the H-action exist on Zariski-open dense subsets of X.

We introduce some notation in order to prepare the proof of statements (1)–(3) of the Main The-
orem. Let φ : X → V be the weak equivariant embedding constructed in Proposition 5.2 and let
Smax be the maximal slice-type stratum in X//G. Since the induced map φ : X//G → V//G is in
particular proper, φ(Sc

max) is an analytic subset of V//G and the set Vmax = V \ π−1
V
(
φ(Sc

max)
)

is
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analytically Zariski-open in V. Let Y be the algebraic Zariski-closure of φ(X) in V. The preim-
age Xmax = π−1(Smax) is analytically Zariski-dense in X, hence the algebraic Zariski-closure of
φ(Xmax) coincides with Y. Note furthermore that Y is H-irreducible.

In summary, we have found a G-equivariant map φ : X → Y into an H-irreducible affine variety Y
which is a proper embedding from Xmax into Ymax := Y∩Vmax. Since the G-action on Y is algebraic
we may now apply classical results on algebraic transformation groups and transport them to X
via φ.

By Rosenlicht’s Theorem, see Theorem 2.3, there exists an algebraically Zariski-open H-irreducible
subset ΩY of Y that admits an algebraic geometric quotient pY : ΩY → ΩY/H by the H-action.
In the next step we will shrink ΩY in order to improve the properties of pY and of ΩY/H. Note
that the set where pY is a submersion is an H-invariant algebraically Zariski-open subset of ΩY;
shrinking ΩY we may assume that pY is a submersion. Repeating this procedure if necessary we
may also assume that ΩY and ΩY/H are smooth and that ΩY/H is affine. Finally, using [Ver76,
Cor. 5.1] we may furthermore suppose that pY : ΩY → ΩY/H is a topological fibre bundle with
respect to the complex topologies of ΩY and ΩY/H. Note that we still have φ(Xmax) ∩ΩY 6= ∅
since ΩY is algebraically Zariski-dense in Y.

After these preparations we are now in the position to prove the existence of a geometric H-
quotient on a dense Zariski-open subset of X:

Proposition 6.4. Let X be an H-irreducible Stein G-space where H is an algebraic subgroup of G. Then
there exist a Zariski-open dense H-invariant subset Ω of X and a holomorphic map p : Ω → Q to an
irreducible Stein space Q that is a geometric quotient for the H-action on Ω and additionally possesses the
properties listed under (2) and (3) in the Main Theorem.

Proof. We use the notation introduced above. We first define the desired set Ω. To this end, let
π : Y → Y//G denote the Hilbert quotient of the G-action on Y and note that, since Y//G is an
affine variety and thus a Stein space, we may find a non-constant function f ∈ OY//G(Y//G) which
vanishes on φ(Sc

max). Consequently, (Y//G) \ { f = 0} is an analytically Zariski-open Stein subset
of Y//G. Let U be its inverse image under π in Y and define

Ω := ϕ−1(U ∩ΩY) ⊂ X.

By construction, Ω is an H-irreducible analytically Zariski-open dense subset of X contained in
Xmax. Moreover, we define

(6.1) p := pY ◦ (φ|Ω) : Ω→ Q := pY
(
φ(Ω)

)
⊂ ΩY/H.

Since φ : Xmax → Ymax is a closed embedding, its image is an analytic subset of Ymax biholomorphic
to Xmax. Since the analytically Zariski-open subset Ω ⊂ X is contained in Xmax, the image φ(Ω)
equals the analytic subset φ(Xmax) ∩U ∩ΩY of U ∩ΩY and φ|Ω : Ω→ φ(Ω) is biholomorphic.

By construction the map pY : ΩY → ΩY/H is a submersion, hence Lemma 6.2 applies to show that
pY
(
φ(Ω)

)
= Q is an analytic subset of pY(U ∩ΩY) and that p : Ω → Q is a geometric quotient

for the H-action on Ω. Moreover, p : Ω → Q is a submersion and a topological fibre bundle; both
properties are inherited from pY. Together with another application of Lemma 6.2 this shows the
properties listed under (2) and (3) in the Main Theorem.

The proof is completed by showing that Q is a Stein space: Since Q is an analytic subset of pY(U ∩
ΩY), for this it suffices to prove that pY(U ∩ ΩY) is a Stein open subset of ΩY/H. Recall that
U = π−1({ f 6= 0}) = {π∗ f 6= 0} by definition. Since (π∗ f )|ΩY is H-invariant, there is a function
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f̄ ∈ OΩY/H(ΩY/H) such that π∗ f |ΩY = p∗Y f̄ . It follows that pY(U ∩ΩY) = { f̄ 6= 0} ⊂ ΩY/H, and
consequently pY(U ∩ΩY) is a Stein open subset of the Stein space ΩY/H. �

Thus, we have shown the existence of a geometric H-quotient with the properties listed in parts
(1) – (3) of the Main Theorem under the assumption that X is H-irreducible. Combining this with
the observation noted in Section 6.1, parts (1), (2), and (3) of the Main Theorem are proven.

7. PUSHING DOWN MEROMORPHIC FUNCTIONS

In this section we will prove that the geometric quotient p : Ω → Q constructed in the previous
section additionally has the properties stated in parts (4)–(6) of the Main Theorem, thus completing
its proof. Before we do this in Section 7.2, we give a criterion in terms of meromorphic functions
for a densely defined holomorphic map to extend to a weakly meromorphic map.

7.1. Meromorphic functions and weakly meromorphic maps. The following lemma is concerned
with the relation of Definition 2.5 to meromorphic functions. It will be used in the proof of part (4)
of the Main Theorem in the next subsection.

Lemma 7.1. Let X be a complex space, A ⊂ X a nowhere dense analytic subset, Y ⊂ U ⊂ CN an
analytic subset of an analytically Zariski-open subset U in CN , and z1, . . . , zN linear coordinates on CN . Let
φ : X \ A→ CN be a holomorphic map with φ(X \ A) ⊂ Y. Assume that φ∗(zj) extends to a meromorphic
function on X for all j = 1, . . . , N. Then, φ : X \ A→ Y is weakly meromorphic.

Proof. We consider the compactification ON = (P1)
N of CN , the so-called Osgood space. By as-

sumption, ϕj := φ∗(zj) is a meromorphic function on X for all j = 1, . . . N. Hence, by [Rem57,
Satz 33] the map φ : X 99K ON is a meromorphic map in the sense of Remmert and therefore in
particular also weakly holomorphic. Since φ(X \ A) ⊂ Y, the map ϕ is still weakly meromorphic
after restricting the range to Y, see [Sto58a, Satz 3.13]. �

7.2. Completing the proof of the Main Theorem. For the reader’s convenience we recall parts
(4)–(6) of the Main Theorem in the following

Proposition 7.2. Let H < G be an algebraic subgroup of a complex-reductive Lie group G and let X be an
H-irreducible Stein G-space. Let p : Ω → Ω/H be the geometric quotient constructed in Proposition 6.4.
Then,

(4) the quotient map p : Ω→ Ω/H extends as a weakly meromorphic map to X,
(5) for every f ∈MX(X)H there exists a unique f̄ ∈MΩ/H(Ω/H) such that f |Ω = p∗ f̄ , and
(6) the H-invariant meromorphic functions on X separate H-orbits in Ω.

Remark 7.3. Since p : Ω→ Ω/H is an open holomorphic map, the pull-back p∗ from MΩ/H(Ω/H)
to MΩ(Ω)H is well-defined and, as the proof of Proposition 7.2 will show, an isomorphism.

Proof of Proposition 7.2. In order to prove the first claim recall from Section 6.3 that by construction
Ω/H is an analytic subset of an analytically Zariski-open subset of an affine variety Q and that
pY : ΩY → Q is the algebraic geometric quotient whose existence is guaranteed by Rosenlicht’s
theorem. In particular the quotient map pY extends as a rational map to Y. Let us choose an
embedding of Q into a finite dimensional complex vector space V and let (z1, . . . , zN) be linear
coordinates in V. These induce invariant rational functions p∗Yzj, j ∈ {1, . . . , N}, on Y. Since
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φ−1(A) is a nowhere dense analytic set in X for every nowhere dense algebraic set A ⊂ Y, the
pull-back φ∗p∗Yzj = p∗zj is a meromorphic function on X for every j, see [GR84, Chapter 6.3.3].
Thus by Lemma 7.1 the map p = (p∗z1, . . . , p∗zN) extends as a weakly meromorphic map to X.

For the second claim let f ∈ MX(X)H be given. By abuse of notation we denote by f also its
restriction to Ω and thus have f ∈ MΩ(Ω)H. Recall that f is holomorphic on dom f = Ω \
Pf . Applying Lemma 6.2 we see that Pf := p(Pf ) is a nowhere dense analytic subset of Ω/H.
Since P := p× idP1 : Ω×P1 → (Ω/H)×P1 is a geometric quotient for the H-action on Ω×P1,
Lemma 6.2 implies that P(Γ f ) =: Γ f is an analytic subset of (Ω/H)×P1. We will prove that it is a
meromorphic graph.

We summarise our setup in the following diagram.

Ω×P1

P
��

Γ f?
_oo

pΩ //

P|Γ f
��

Ω

p
��

(Ω/H)×P1 Γ f?
_oo

pΩ/H // Ω/H.

First, we note that p−1
Ω/H(Pf ) = P

(
p−1

Ω (Pf )
)

is a nowhere dense analytic subset of Γ f . Moreover, the
restriction of f to dom( f ) is holomorphic, and hence there exists a uniquely defined holomorphic
function f̄ on the open subset p(dom f ) = (Ω/H) \ Pf such that p∗ f̄ = f |dom f . It follows from
the construction that over p(dom f ) the graph of f̄ coincides with Γ f . In summary we have shown
that Γ f is a meromorphic graph over Ω/H. Consequently, there exists a meromorphic function
f̄ ∈MΩ/H(Ω/H) such that Γ f̄ = Γ f . By construction this function fulfills p∗ f̄ = f ∈MΩ(Ω).

Finally, for the proof of property (6) let H • x and H • y be two orbits in Ω. Then there exists a
1 ≤ j ≤ N such that p∗zj(x) 6= p∗zj(y). By the same argument as above p∗zj yields an H-invariant
meromorphic function on X which separates H • x and H • y. �

Applying the observation from Section 6.1 in order to remove the assumption of H–irreducibility
finally completes the proof of the Main Theorem.
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