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PSEUDOCONVEX NON-STEIN DOMAINS IN PRIMARY
HOPF SURFACES

CHRISTIAN MIEBACH

ABSTRACT. We describe pseudoconvex non-Stein domains in pri-
mary Hopf surfaces using techniques developed by Hirschowitz.

1. INTRODUCTION

Let H be a primary Hopf surface. In [LY12] Levenberg and Ya-
maguchi characterize locally pseudoconvex domains D ⊂ H ha-
ving smooth real-analytic boundary that are not Stein. In this note
we generalize their result to arbitrary pseudoconvex domains using
ideas developed by Hirschowitz in [Hir74] and [Hir75]. For the rea-
ders’ convenience these ideas are reviewed in a slightly generalized
form in Section 2. In Section 3 we review the structure of primary
Hopf surfaces in order to describe a certain (singular) holomorphic
foliation F of H. This allows us to formulate the following Main
Theorem, which is proven in Sections 4 and 5.

Main Theorem. Let D ⊂ H be a pseudoconvex domain. If D is not Stein,
then D contains with every point p ∈ D the topological closure Fp of the
leaf F ∈ F passing through p.

I would like to thank Karl Oeljeklaus for helpful discussions on the
subject of this paper and Stefan Nemirovski for a suggestion on how
to prove Lemma 5.3. I am also grateful to Peter Heinzner and the
SFB/TR 12 for an invitation to the Ruhr-Universität Bochum where
a part of this paper has been written.

2. A REVIEW OF HIRSCHOWITZ’ METHODS

In this section we present the methods developed by Hirschowitz
in [Hir75] in a slightly more general setup.

Let X be a complex manifold with holomorphic tangent bundle
TX → X, and let π : PTX → X be the projectivized holomorphic
tangent bundle. A continuous function on X is called strictly pluri-
subharmonic on X if it is everywhere locally the sum of a continuous
plurisubharmonic and a smooth strictly plurisubharmonic function.

2010 Mathematics Subject Classification. 32M05 (primary); 32E40 (secondary).
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Definition 2.1. Let ϕ ∈ C(X) be plurisubharmonic. Then we define
S(ϕ) to be the set of [v] ∈ PTX such that ϕ is in a neighborhood
of π[v] the sum of a plurisubharmonic function and a smooth func-
tion that is strictly plurisubharmonic on any germ of a holomorphic
curve defining [v].

Lemma 2.2. Let ϕ ∈ C(X) be plurisubharmonic.
(1) The set S(ϕ) is open in PTX.
(2) If S(ϕ) = PTX, then ϕ is strictly plurisubharmonic on X.
(3) If ∑k ϕk converges uniformly on compact subsets of X where ϕk ∈
C(X), then we have S

(
∑k ϕk

)
⊃ ⋃k S(ϕk).

Proof. This is [Hir75, Proposition 1.3]. �

For any plurisubharmonic function ϕ ∈ C(X) we define C(ϕ) to
be

PTX \
{
[v] ∈ PTX; ϕ is smooth around π[v] and ∂ϕ(v) 6= 0

}
and then set

(2.1) C(X) :=
⋂

ϕ∈C(X)
plurisubharmonic

C(ϕ).

Every set C(ϕ) (and thus C(X)) is closed in PTX. The next lemma is
a slight generalization of [Hir75, Proposition 1.5].

Lemma 2.3. Let X be a complex manifold and let Ω := X \ π
(
C(X)

)
.

Then there exists a plurisubharmonic function ψ ∈ C(X) which is strictly
plurisubharmonic on Ω.

Proof. Since π : PTX → X is proper, the set Ω is open in X. If Ω
is empty, there is nothing to prove. Therefore let us suppose that
Ω is a non-empty open subset of X. Consequently, PTX \ C(X) is
non-empty.

For every [v] ∈ PTX \ C(X) we find a plurisubharmonic function
ϕ[v] ∈ C∞(X) with ∂ϕ[v]v 6= 0. We claim that the function ψ[v] :=
exp ◦ ϕ[v] is strictly plurisubharmonic in the direction of [v]. To see
this, we calculate

∂∂ψ[v] = eϕ[v]
(
∂ϕ[v] ∧ ∂ϕ[v] + ∂∂ϕ[v]

)
.

In other words, we obtain [v] ∈ S(ψ[v]). Since X has countable topo-
logy, we get an open covering

PTX \ C(X) ⊆
∞⋃

k=1

S(ψk).

It is possible to find λk > 0 such that ∑∞
k=1 λkψk converges uniformly

on compact subsets of X. To prove this, choose a countable exhaus-
tion X =

⋃
j Kj by compact sets with Kj ⊂ K̊j+1. For every j there are
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λk,j > 0 such that
∞

∑
k=1

λk,j‖ψk‖Kj

converges. Since ‖ψk‖Kj ≤ ‖ψk‖Kj+1 for every j, we may suppose that
λk,j′ ≤ λk,j for all j ≤ j′. Defining λk := λk,k and noting that every
compact subset K ⊂ X is contained in Kj0 for some j0, we conclude

∞

∑
k=1

λk‖ψk‖K ≤
∞

∑
k=1

λk‖ψk‖Kj0

≤
j0

∑
k=1

λk‖ψk‖Kj0
+

∞

∑
k=j0+1

λk,j0‖ψk‖Kj0
< ∞

which proves the claim. It follows that the limit function ψ := ∑k ψk
is continuous and satisfies S(ψ) ⊃ ⋃k S(ψk) ⊃ PTX \ C(X), hence it
is strictly plurisubharmonic on Ω. �

In the following we say that a complex manifold X is pseudocon-
vex if there is a continuous plurisubharmonic exhaustion function
ρ : X → R>0.

Lemma 2.4. Let X be a pseudoconvex complex manifold and let γ : U →
X be the integral curve of a holomorphic vector field on X where U is a
domain in C. If γ′(U) meets C(X), then γ′(U) is contained in C(X). If
X admits a smooth plurisubharmonic exhaustion function, then γ′(U) ⊂
C(X) implies that γ(U) is relatively compact in X. In particular, in this
case we have U = C.

Proof. Let ξ be the holomorphic vector field on X with integral curve
γ and suppose that γ′(0) = ξ(x0) ∈ C(X). It is enough to show that
0 is an inner point of the set of t ∈ U with γ′(t) ∈ C(X), for then
the closed set (γ′)−1(C(X)

)
is also open, hence equal to U. In other

words, we must prove that for every plurisubharmonic function ϕ ∈
C(X) smooth in a neighborhood of xt := γ(t) we have ξ(ϕ)(xt) = 0
whenever |t| is sufficiently small.

To do this, choose α ∈ R>0 such that x0 = γ(t0) ∈ Xα :=
{

x ∈
X; ρ(x) < α

}
where ρ is a continuous plurisubharmonic exhaustion

function of X. Let Φξ be the holomorphic local flow of ξ. For |t|
sufficiently small we have

Φξ
t (Xα+1) ⊃ Xα 3 xt := Φξ

t (x0).

Since Φξ
t : Xα → Xα+1 is holomorphic, ϕt := ϕ ◦ Φξ

t is continuous
plurisubharmonic on Xα and smooth in a neighborhood of x0 for
each plurisubharmonic function ϕ ∈ C(Xα+1) that is smooth in a
neighborhood of xt. Following the proof of [Hir75, Proposition 1.6]
we construct a continuous plurisubharmonic function ψt on X which
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coincides with ϕt in a neighborhood of x0. Choose β ∈ R such that
ϕt(x0) < β < α and note that K := ρ−1(β) ⊂ Xα is compact. Then
choose a convex increasing function χ on R fulfilling

χ
(
ρ(x0)

)
< ϕt(x0) and

χ(β) > ‖ϕt‖K.

Finally, define ψt : X → R by

ψt(x) :=

{
max

(
ϕt(x), χ ◦ ρ(x)

)
: ρ(x) ≤ β

χ ◦ ρ(x) : ρ(x) ≥ β.

One checks directly that ψt is continuous plurisubharmonic and co-
incides with ϕt in some neighborhood of x0. Consequently, we may
calculate

ξϕ(xt) =
d
ds

∣∣∣∣
t

ϕ
(
Φξ

s (x0)
)
= ξϕt(x0) = ξψt(x0) = 0

since ξx0 = γ′(0) ∈ C(X). Therefore we see that γ′(t) ∈ C(X) for
every t ∈ U sufficiently close to 0, which proves the first part of the
lemma.

If ρ is smooth, then choosing ϕ = ρ in the argument given above,
we see that γ(U) lies in a fiber of ρ, hence is relatively compact. �

3. STATEMENT OF THE MAIN THEOREM

Let us fix a1, a2 ∈ C such that 0 < |a1| ≤ |a2| < 1. The automor-
phism ϕ : C2 \ {0} → C2 \ {0}, (z1, z2) 7→ (a1z1, a2z2), generates a
free proper Z-action on C2 \ {0}. By definition, the compact com-
plex surface Ha := (C2 \ {0})/Z for a = (a1, a2) is a primary Hopf
surface. We will write [z1, z2] := π(z1, z2) where π : C2 \ {0} → Ha is
the quotient map.

The torus T = C∗ × C∗ acts holomorphically on Ha with three
orbits. More precisely, we have Ha = E1 ∪ H∗a ∪ E2 where H∗a :=
(C∗ ×C∗)/Z is the open T-orbit, and where E1 := (C∗ × {0})/Z =
T · [1, 0] and E2 := ({0} ×C∗)/Z = T · [0, 1] are elliptic curves.

Note that H∗a is a connected Abelian complex Lie group which thus
can be represented as C2/Γ3 where Γ3 is a discrete subgroup of rank
3 of C2. The map p : C2 → C2/Γ3

∼= H∗a is the universal covering
of H∗a . Let V be the real span of Γ3 and set W := V ∩ iV. There are
two possibilities. Either p(W) is dense in V/Γ3

∼= (S1)3, or p(W) is
closed, hence compact, hence an elliptic curve E. In the first case, we
have O(H∗a ) = C, i.e., H∗a is a Cousin group, while in the second case
H∗a ∼= C∗ × E.

For the following result we refer the reader to [BHPV04, Chap-
ter V.18].
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Proposition 3.1. The open orbit H∗a is not Cousin if and only if ak1
1 = ak2

2
for some relatively prime k1, k2 ∈ Z.

Remark. If there exist relatively prime integers k1, k2 with ak1
1 = ak2

2 ,
then we have the elliptic fibration Ha → P1, [z1, z2] 7→ [zk1

1 : zk2
2 ]. The

generic fiber is the elliptic curve E = C∗/(z ∼ cz) where c := ak1
1 =

ak2
2 . Note that for a generic choice of a = (a1, a2) the open subset H∗a

is a Cousin group.

Suppose that H∗a is Cousin and let ξ ∈ t be the generator of the
relatively compact one parameter subgroup p(W). Let ξHa be the
holomorphic vector field induced by the T-action on Ha. One checks
directly that ξHa has no zeros in Ha, hence defines a holomorphic
foliation of Ha. Note that the open subset H∗a is saturated with re-
spect to F and that the leaves of F|H∗a are relatively compact in H∗a .
The closure of a leaf F ⊂ H∗a in H∗a is a Levi-flat compact smooth
hypersurface. In fact, these Levi-flat hypersurfaces are the fibers of
the pluriharmonic function [z1, z2] 7→ log|z1|

log|a1|
− log|z2|

log|a2|
defined on H∗a ,

see [LY12]. If Ha is elliptic, then it is foliated by elliptic curves. Again,
H∗a is saturated with respect to this foliation and the leaves are com-
pact in H∗a . This shows that in both cases we obtain a (singular) holo-
morphic foliation F of Ha such that the leaves of F|H∗a are relatively
compact in H∗a .

We now state the main result of this note.

Theorem 3.2. Let Ha be a primary Hopf surface and let D ⊂ Ha be a
pseudoconvex domain. If D is not Stein, then D contains with every point
p ∈ D the topological closure Fp of the leaf F ∈ F passing through p.

Remark. For locally pseudoconvex domains having smooth real-ana-
lytic boundary this result has been obtained by Levenberg and Ya-
maguchi using the theory of c-Robin functions, see [LY12].

4. EXISTENCE OF PLURISUBHARMONIC EXHAUSTIONS

In this section we will show that every smoothly bounded locally
pseudoconvex domain D ⊂ Ha admits a continuous plurisubhar-
monic exhaustion function. For this we will modify Hirschowitz’
proof of [Hir74, Théorème 2.1].

Proposition 4.1. Let D ⊂ Ha be locally pseudoconvex and suppose that
neither E1 nor E2 is a component of ∂D. Then D admits a continuous
plurisubharmonic exhaustion function.

Remark. The hypothesis of Proposition 4.1 is fulfilled if D is locally
pseudoconvex and smoothly bounded. Hence, Theorem 3.2 indeed
generalizes the main result of [LY12].
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Proof. We define Ω :=
{
(x, ξ) ∈ D × t ; exp(ξ) · x ∈ D

}
. By defi-

nition, Ω is an open subset of D × t containing D × {0}. Since D is
locally pseudoconvex in Ha, it follows that Ω is locally pseudocon-
vex in D× t.

We define the boundary distance d : D → R>0 by

d(x) := sup
{

r > 0; {x} × Br(0) ⊂ Ω
}

.

It is elementary to check that d is lower semicontinuous. Since Ω is
locally pseudoconvex in D× T, every point x ∈ D has an open Stein
neighborhood U such that Ω ∩ (U × t) is pseudoconvex. Due to a
result of Lelong, see [Lel68, Theorem 2.4.2], the function − log d is
plurisubharmonic on U ∩ D and therefore everywhere on D.

Note that− log d ≡ −∞ if and only if D contains H∗a . Since neither
E1 nor E2 is a component of ∂D, this implies D = Ha so that we may
exclude this case in the following.

For every x ∈ Ha the orbit map t → T · x, ξ 7→ exp(ξ) · x, is open
into its image T · x. Thus we see that − log d(x) goes to infinity as
x approaches a point in ∂D. Since ∂D is compact, this implies that
− log d is an exhaustion.

To end this proof, one verifies directly that d is upper semicontin-
uous in any point x ∈ D such that d(x) 6= ∞. Therefore, for every
constant C > 0 the map sup(C,− log d) is a continuous plurisubhar-
monic exhaustion of D. �

Remark. The proof of Proposition 4.1 shows that the polar set given
by {− log d = −∞} is non-empty if and only of D contains E1 or E2.

Remark. In [DF82], Diederich and Fornæss give an example of a re-
latively compact pseudoconvex domain in a P1-bundle over a Hopf
surface that has smooth real-analytic boundary but does not admit
an exhaustion by pseudoconvex subdomains.

5. PROOF OF THEOREM 3.2

Let us start by noting the following simple but important observa-
tion.

Lemma 5.1. The domain H∗a admits a smooth plurisubharmonic exhaus-
tion function. Consequently, if D ⊂ Ha is pseudoconvex, then D∗ :=
D ∩ H∗a is likewise pseudoconvex.

If H∗a is Cousin, this lemma follows from [Hu10, Proposition 2.4].
If H∗a is not Cousin, then H∗a ∼= C∗× E clearly has a smooth plurisub-
harmonic exhaustion.

Let D ⊂ Ha be a pseudoconvex domain which is not Stein. If the
pseudoconvex domain D∗ ⊂ H∗a is not Stein, then D∗ is saturated
with respect to the foliation F|H∗a , see [GMO13, Theorem 3.1]. Since
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the leaves of F are relatively compact orbits of a one parameter sub-
group of T, continuity of the action map T × Ha → Ha implies that
D is saturated with respect toF in this case. Therefore, let us assume
that D 6= D∗ is Stein. We will complete the proof of Theorem 3.2 by
showing that then D is Stein as well.

We note first that D cannot contain E1 or E2 if D∗ is Stein. In-
deed, due to the continuity of the leaves of F remarked above, if E1
was contained in D, then some of the relatively compact leaves of F
would lie in D∗, contradicting the assumption that D∗ is Stein.

Let us consider the subset C(D) ⊂ PTD defined in (2.1) where
π : PTD → D is the projectivized tangent bundle. The proof of the
following lemma relies essentially on the explicit knowledge of the
structure of primary Hopf surfaces.

Lemma 5.2. Let D ⊂ Ha be a pseudoconvex domain. If D∗ = D ∩ H∗a is
Stein, then we have π

(
C(D)

)
⊂ D∗ \ D.

Proof. Suppose that π
(
C(D)

)
meets D∗. Since H∗a is an Abelian com-

plex Lie group, it has a biinvariant Haar measure. Therefore, we can
apply the usual convolution technique in order to approximate the
continuous plurisubharmonic exhaustion of D uniformly on com-
pact subsets by smooth ones. This allows us to apply Lemma 2.4 to
prove existence of a complex one parameter subgroup A of T and a
point x ∈ D∗ such that A · x is relatively compact in D. Note that
A · x is not relatively compact in D∗ since the latter is assumed to be
Stein.

We claim that that the closure of such a curve A · x in D (and hence
D itself) would have to contain E1 or E2, which then, as noted above,
will contradict our assumption that D∗ is Stein. In order to prove
this claim, consider A =

{
(etz1 , etz2); t ∈ C

}
where z = (z1, z2) ∈

C2 \ {0}. If z1 = 0 or z2 = 0, we see directly that the closure of
A · x contains E2 or E1. Hence, suppose that z1, z2 6= 0. If z1

z2
/∈ R,

already the closure of A in C2 \ {0} contains {z1 = 0} ∪ {z2 = 0},
thus the closure of A · x in D contains E1 ∪ E2 as well in this case.
Therefore, we are left to deal with the case A =

{
(et, eλt); t ∈ C

}
where λ = z2

z1
∈ R. Consider the smooth map πA : C∗ ×C∗ → R>0

defined by πA(w1, w2) := |w1|λ
|w2|

. The closure A of A in T = C∗×C∗ is

contained in the kernel of πA. Since A · x is closed and non-compact

in D∗, we conclude that πA(a1, a2) =
|a1|λ
|a2|

is closed and non-compact

in R>0; in particular we have |a1|λ 6= |a2|. Now choose tm ∈ C such
that am

1 etm = c for all m ∈ Z. It follows that∣∣∣am
2 eλtm

∣∣∣ = ( |a2|
|a1|λ

)m

|c|λ.
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Since |a2|
|a1|λ

6= 1, we see that
(
am

2 eλtm
)

converges to 0 for m → ∞ or
m → −∞. This proves again that the closure of A · x in D contains
E1 or E2. �

Combining the Lemmas 5.2 and 2.3, we see that there exists a
plurisubharmonic function ϕ on D which is strictly plurisubharmo-
nic on D∗.

Remark. Due to [Ri68] (see the formulation given in [Dem12, Chapter
I.5.E]), we may assume without loss of generality that ϕ is smooth on
D∗.

As we have noted above, D cannot contain E1 or E2, so that D ∩
E1 and D ∩ E2 are closed Stein submanifolds of D. Therefore, the
following lemma implies that D is Stein, which then completes the
proof of Theorem 3.2.

Lemma 5.3. Let X be a connected complex manifold endowed with a pluri-
subharmonic exhaustion ϕ. Suppose that there exists a closed Stein sub-
manifold A of X with at most finitely many connected components such
that ϕ is strictly plurisubharmonic on X \ A. Then X is Stein.

Proof. For α ∈ R write Xα := {ϕ < α}. In the first step we will show
that Xn is Stein for all n ≥ 1. Since A is Stein, every An := A ∩ Xn is
a closed Stein submanifold of Xn.

Due to [Siu77], we find an open Stein neighborhood Un+1 of An+1
in Xn+1. Consequently, there exists a strictly plurisubharmonic ex-
haustion function ψn+1 on Un+1. Let us choose a relatively compact
open neighborhood Vn of An in Un+1 as well as a cutoff function χn+1
which is identically 1 on Vn and which vanishes near ∂Un+1. Then
χn+1ψn+1 : X → R is strictly plurisubharmonic in a neighborhood of
An and its Levi form is uniformly bounded from below on Xn. More-
over, let ρn be a plurisubharmonic exhaustion of Xn which is strictly
plurisubharmonic and smooth on Xn \ An. Then, for k sufficiently
large the function χn+1ψn+1|Xn + keρn is a smooth strictly plurisub-
harmonic exhaustion function of Xn, proving that Xn is Stein.

Since we know now that Xn is Stein, we can apply [Nar62, Corol-
lary 1] which implies that Xn−1 is Runge in Xn for every n ≥ 2.
Therefore X =

⋃
n≥1 Xn is a Runge exhaustion of X by relatively

compact Stein open subsets, hence X is Stein, see [GuRo65, Theo-
rem VII.A.10]. �
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