

Pseudoconvex non-Stein domains in primary Hopf surfaces

Christian Miebach

► To cite this version:

Christian Miebach. Pseudoconvex non-Stein domains in primary Hopf surfaces. Izvestiya: Mathematics, 2014, 78 (5), pp.1028-1035. 10.1070/IM2014v078n05ABEH002717. hal-03600354

HAL Id: hal-03600354 https://hal.science/hal-03600354

Submitted on 7 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PSEUDOCONVEX NON-STEIN DOMAINS IN PRIMARY HOPF SURFACES

CHRISTIAN MIEBACH

ABSTRACT. We describe pseudoconvex non-Stein domains in primary Hopf surfaces using techniques developed by Hirschowitz.

1. INTRODUCTION

Let *H* be a primary Hopf surface. In [LY12] Levenberg and Yamaguchi characterize locally pseudoconvex domains $D \subset H$ having smooth real-analytic boundary that are not Stein. In this note we generalize their result to arbitrary pseudoconvex domains using ideas developed by Hirschowitz in [Hir74] and [Hir75]. For the readers' convenience these ideas are reviewed in a slightly generalized form in Section 2. In Section 3 we review the structure of primary Hopf surfaces in order to describe a certain (singular) holomorphic foliation \mathcal{F} of H. This allows us to formulate the following Main Theorem, which is proven in Sections 4 and 5.

Main Theorem. Let $D \subset H$ be a pseudoconvex domain. If D is not Stein, then D contains with every point $p \in D$ the topological closure \overline{F}_p of the leaf $F \in \mathcal{F}$ passing through p.

I would like to thank Karl Oeljeklaus for helpful discussions on the subject of this paper and Stefan Nemirovski for a suggestion on how to prove Lemma 5.3. I am also grateful to Peter Heinzner and the SFB/TR 12 for an invitation to the Ruhr-Universität Bochum where a part of this paper has been written.

2. A REVIEW OF HIRSCHOWITZ' METHODS

In this section we present the methods developed by Hirschowitz in [Hir75] in a slightly more general setup.

Let *X* be a complex manifold with holomorphic tangent bundle $TX \rightarrow X$, and let $\pi \colon \mathbb{P}TX \rightarrow X$ be the projectivized holomorphic tangent bundle. A continuous function on *X* is called *strictly* plurisubharmonic on *X* if it is everywhere locally the sum of a continuous plurisubharmonic and a smooth strictly plurisubharmonic function.

²⁰¹⁰ Mathematics Subject Classification. 32M05 (primary); 32E40 (secondary).

CHRISTIAN MIEBACH

Definition 2.1. Let $\varphi \in C(X)$ be plurisubharmonic. Then we define $S(\varphi)$ to be the set of $[v] \in \mathbb{P}TX$ such that φ is in a neighborhood of $\pi[v]$ the sum of a plurisubharmonic function and a smooth function that is strictly plurisubharmonic on any germ of a holomorphic curve defining [v].

Lemma 2.2. Let $\varphi \in C(X)$ be plurisubharmonic.

- (1) The set $S(\varphi)$ is open in $\mathbb{P}TX$.
- (2) If $S(\varphi) = \mathbb{P}TX$, then φ is strictly plurisubharmonic on X.
- (3) If $\sum_k \varphi_k$ converges uniformly on compact subsets of X where $\varphi_k \in C(X)$, then we have $S(\sum_k \varphi_k) \supset \bigcup_k S(\varphi_k)$.

Proof. This is [Hir75, Proposition 1.3].

For any plurisubharmonic function $\varphi \in C(X)$ we define $C(\varphi)$ to be

 $\mathbb{P}TX \setminus \{[v] \in \mathbb{P}TX; \varphi \text{ is smooth around } \pi[v] \text{ and } \partial \varphi(v) \neq 0\}$ and then set

(2.1) $C(X) := \bigcap_{\substack{\varphi \in \mathcal{C}(X) \\ \text{plurisubharmonic}}} C(\varphi).$

Every set $C(\varphi)$ (and thus C(X)) is closed in $\mathbb{P}TX$. The next lemma is a slight generalization of [Hir75, Proposition 1.5].

Lemma 2.3. Let X be a complex manifold and let $\Omega := X \setminus \pi(C(X))$. Then there exists a plurisubharmonic function $\psi \in C(X)$ which is strictly plurisubharmonic on Ω .

Proof. Since $\pi \colon \mathbb{P}TX \to X$ is proper, the set Ω is open in X. If Ω is empty, there is nothing to prove. Therefore let us suppose that Ω is a non-empty open subset of X. Consequently, $\mathbb{P}TX \setminus C(X)$ is non-empty.

For every $[v] \in \mathbb{P}TX \setminus C(X)$ we find a plurisubharmonic function $\varphi_{[v]} \in \mathcal{C}^{\infty}(X)$ with $\partial \varphi_{[v]}v \neq 0$. We claim that the function $\psi_{[v]} := \exp \circ \varphi_{[v]}$ is strictly plurisubharmonic in the direction of [v]. To see this, we calculate

$$\partial \overline{\partial} \psi_{[v]} = e^{ arphi_{[v]} } (\partial arphi_{[v]} \wedge \overline{\partial} arphi_{[v]} + \partial \overline{\partial} arphi_{[v]}).$$

In other words, we obtain $[v] \in S(\psi_{[v]})$. Since *X* has countable topology, we get an open covering

$$\mathbb{P}TX \setminus C(X) \subseteq \bigcup_{k=1}^{\infty} S(\psi_k).$$

It is possible to find $\lambda_k > 0$ such that $\sum_{k=1}^{\infty} \lambda_k \psi_k$ converges uniformly on compact subsets of *X*. To prove this, choose a countable exhaustion $X = \bigcup_i K_j$ by compact sets with $K_j \subset \mathring{K}_{j+1}$. For every *j* there are

2

 $\lambda_{k,j} > 0$ such that

$$\sum_{k=1}^{\infty} \lambda_{k,j} \|\psi_k\|_{K_j}$$

converges. Since $\|\psi_k\|_{K_j} \le \|\psi_k\|_{K_{j+1}}$ for every *j*, we may suppose that $\lambda_{k,j'} \le \lambda_{k,j}$ for all $j \le j'$. Defining $\lambda_k := \lambda_{k,k}$ and noting that every compact subset $K \subset X$ is contained in K_{j_0} for some j_0 , we conclude

$$\begin{split} \sum_{k=1}^{\infty} \lambda_k \|\psi_k\|_K &\leq \sum_{k=1}^{\infty} \lambda_k \|\psi_k\|_{K_{j_0}} \\ &\leq \sum_{k=1}^{j_0} \lambda_k \|\psi_k\|_{K_{j_0}} + \sum_{k=j_0+1}^{\infty} \lambda_{k,j_0} \|\psi_k\|_{K_{j_0}} < \infty \end{split}$$

which proves the claim. It follows that the limit function $\psi := \sum_k \psi_k$ is continuous and satisfies $S(\psi) \supset \bigcup_k S(\psi_k) \supset \mathbb{P}TX \setminus C(X)$, hence it is strictly plurisubharmonic on Ω .

In the following we say that a complex manifold *X* is *pseudocon*vex if there is a continuous plurisubharmonic exhaustion function $\rho: X \to \mathbb{R}^{>0}$.

Lemma 2.4. Let X be a pseudoconvex complex manifold and let $\gamma: U \rightarrow X$ be the integral curve of a holomorphic vector field on X where U is a domain in \mathbb{C} . If $\gamma'(U)$ meets C(X), then $\gamma'(U)$ is contained in C(X). If X admits a smooth plurisubharmonic exhaustion function, then $\gamma'(U) \subset C(X)$ implies that $\gamma(U)$ is relatively compact in X. In particular, in this case we have $U = \mathbb{C}$.

Proof. Let ξ be the holomorphic vector field on X with integral curve γ and suppose that $\gamma'(0) = \xi(x_0) \in C(X)$. It is enough to show that 0 is an inner point of the set of $t \in U$ with $\gamma'(t) \in C(X)$, for then the closed set $(\gamma')^{-1}(C(X))$ is also open, hence equal to U. In other words, we must prove that for every plurisubharmonic function $\varphi \in C(X)$ smooth in a neighborhood of $x_t := \gamma(t)$ we have $\xi(\varphi)(x_t) = 0$ whenever |t| is sufficiently small.

To do this, choose $\alpha \in \mathbb{R}^{>0}$ such that $x_0 = \gamma(t_0) \in X_{\alpha} := \{x \in X; \rho(x) < \alpha\}$ where ρ is a continuous plurisubharmonic exhaustion function of *X*. Let Φ^{ξ} be the holomorphic local flow of ξ . For |t| sufficiently small we have

$$\Phi_t^{\xi}(X_{\alpha+1}) \supset X_{\alpha} \ni x_t := \Phi_t^{\xi}(x_0).$$

Since $\Phi_t^{\xi} \colon X_{\alpha} \to X_{\alpha+1}$ is holomorphic, $\varphi_t := \varphi \circ \Phi_t^{\xi}$ is continuous plurisubharmonic on X_{α} and smooth in a neighborhood of x_0 for each plurisubharmonic function $\varphi \in C(X_{\alpha+1})$ that is smooth in a neighborhood of x_t . Following the proof of [Hir75, Proposition 1.6] we construct a continuous plurisubharmonic function ψ_t on X which

coincides with φ_t in a neighborhood of x_0 . Choose $\beta \in \mathbb{R}$ such that $\varphi_t(x_0) < \beta < \alpha$ and note that $K := \rho^{-1}(\beta) \subset X_{\alpha}$ is compact. Then choose a convex increasing function χ on \mathbb{R} fulfilling

$$\chi(
ho(x_0)) < arphi_t(x_0)$$
 and $\chi(eta) > \|arphi_t\|_K.$

Finally, define $\psi_t \colon X \to \mathbb{R}$ by

$$\psi_t(x) := egin{cases} \maxig(arphi_t(x), \chi \circ
ho(x) ig) & :
ho(x) \leq eta \ \chi \circ
ho(x) & :
ho(x) \geq eta. \end{cases}$$

One checks directly that ψ_t is continuous plurisubharmonic and coincides with φ_t in some neighborhood of x_0 . Consequently, we may calculate

$$\xi\varphi(x_t) = \frac{d}{ds}\Big|_t \varphi(\Phi_s^{\xi}(x_0)) = \xi\varphi_t(x_0) = \xi\psi_t(x_0) = 0$$

since $\xi_{x_0} = \gamma'(0) \in C(X)$. Therefore we see that $\gamma'(t) \in C(X)$ for every $t \in U$ sufficiently close to 0, which proves the first part of the lemma.

If ρ is smooth, then choosing $\varphi = \rho$ in the argument given above, we see that $\gamma(U)$ lies in a fiber of ρ , hence is relatively compact. \Box

3. STATEMENT OF THE MAIN THEOREM

Let us fix $a_1, a_2 \in \mathbb{C}$ such that $0 < |a_1| \le |a_2| < 1$. The automorphism $\varphi \colon \mathbb{C}^2 \setminus \{0\} \to \mathbb{C}^2 \setminus \{0\}$, $(z_1, z_2) \mapsto (a_1z_1, a_2z_2)$, generates a free proper \mathbb{Z} -action on $\mathbb{C}^2 \setminus \{0\}$. By definition, the compact complex surface $H_a := (\mathbb{C}^2 \setminus \{0\})/\mathbb{Z}$ for $a = (a_1, a_2)$ is a *primary Hopf surface*. We will write $[z_1, z_2] := \pi(z_1, z_2)$ where $\pi \colon \mathbb{C}^2 \setminus \{0\} \to H_a$ is the quotient map.

The torus $T = \mathbb{C}^* \times \mathbb{C}^*$ acts holomorphically on H_a with three orbits. More precisely, we have $H_a = E_1 \cup H_a^* \cup E_2$ where $H_a^* := (\mathbb{C}^* \times \mathbb{C}^*)/\mathbb{Z}$ is the open *T*-orbit, and where $E_1 := (\mathbb{C}^* \times \{0\})/\mathbb{Z} = T \cdot [1,0]$ and $E_2 := (\{0\} \times \mathbb{C}^*)/\mathbb{Z} = T \cdot [0,1]$ are elliptic curves.

Note that H_a^* is a connected Abelian complex Lie group which thus can be represented as \mathbb{C}^2/Γ_3 where Γ_3 is a discrete subgroup of rank 3 of \mathbb{C}^2 . The map $p: \mathbb{C}^2 \to \mathbb{C}^2/\Gamma_3 \cong H_a^*$ is the universal covering of H_a^* . Let *V* be the real span of Γ_3 and set $W := V \cap iV$. There are two possibilities. Either p(W) is dense in $V/\Gamma_3 \cong (S^1)^3$, or p(W) is closed, hence compact, hence an elliptic curve *E*. In the first case, we have $\mathcal{O}(H_a^*) = \mathbb{C}$, i.e., H_a^* is a *Cousin group*, while in the second case $H_a^* \cong \mathbb{C}^* \times E$.

For the following result we refer the reader to [BHPV04, Chapter V.18].

Proposition 3.1. The open orbit H_a^* is not Cousin if and only if $a_1^{k_1} = a_2^{k_2}$ for some relatively prime $k_1, k_2 \in \mathbb{Z}$.

Remark. If there exist relatively prime integers k_1, k_2 with $a_1^{k_1} = a_2^{k_2}$, then we have the elliptic fibration $H_a \to \mathbb{P}_1, [z_1, z_2] \mapsto [z_1^{k_1} : z_2^{k_2}]$. The generic fiber is the elliptic curve $E = \mathbb{C}^* / (z \sim cz)$ where $c := a_1^{k_1} = a_2^{k_2}$. Note that for a generic choice of $a = (a_1, a_2)$ the open subset H_a^* is a Cousin group.

Suppose that H_a^* is Cousin and let $\xi \in t$ be the generator of the relatively compact one parameter subgroup p(W). Let ξ_{H_a} be the holomorphic vector field induced by the *T*-action on H_a . One checks directly that ξ_{H_a} has no zeros in H_a , hence defines a holomorphic foliation of H_a . Note that the open subset H_a^* is saturated with respect to \mathcal{F} and that the leaves of $\mathcal{F}|_{H_a^*}$ are relatively compact in H_a^* . The closure of a leaf $F \subset H_a^*$ in H_a^* is a Levi-flat compact smooth hypersurface. In fact, these Levi-flat hypersurfaces are the fibers of the pluriharmonic function $[z_1, z_2] \mapsto \frac{\log|z_1|}{\log|a_1|} - \frac{\log|z_2|}{\log|a_2|}$ defined on H_a^* , see [LY12]. If H_a is elliptic, then it is foliated by elliptic curves. Again, H_a^* is saturated with respect to this foliation and the leaves are compact in H_a^* . This shows that in both cases we obtain a (singular) holomorphic foliation \mathcal{F} of H_a such that the leaves of $\mathcal{F}|_{H_a^*}$ are relatively compact in H_a^* .

We now state the main result of this note.

Theorem 3.2. Let H_a be a primary Hopf surface and let $D \subset H_a$ be a pseudoconvex domain. If D is not Stein, then D contains with every point $p \in D$ the topological closure \overline{F}_p of the leaf $F \in \mathcal{F}$ passing through p.

Remark. For locally pseudoconvex domains having smooth real-analytic boundary this result has been obtained by Levenberg and Yamaguchi using the theory of *c*-Robin functions, see [LY12].

4. EXISTENCE OF PLURISUBHARMONIC EXHAUSTIONS

In this section we will show that every smoothly bounded locally pseudoconvex domain $D \subset H_a$ admits a continuous plurisubharmonic exhaustion function. For this we will modify Hirschowitz' proof of [Hir74, Théorème 2.1].

Proposition 4.1. Let $D \subset H_a$ be locally pseudoconvex and suppose that neither E_1 nor E_2 is a component of ∂D . Then D admits a continuous plurisubharmonic exhaustion function.

Remark. The hypothesis of Proposition 4.1 is fulfilled if *D* is locally pseudoconvex and smoothly bounded. Hence, Theorem 3.2 indeed generalizes the main result of [LY12].

Proof. We define $\Omega := \{(x, \xi) \in D \times \mathfrak{t} ; \exp(\xi) \cdot x \in D\}$. By definition, Ω is an open subset of $D \times \mathfrak{t}$ containing $D \times \{0\}$. Since D is locally pseudoconvex in H_a , it follows that Ω is locally pseudoconvex in $D \times \mathfrak{t}$.

We define the boundary distance $d: D \to \mathbb{R}^{>0}$ by

 $d(x) := \sup\{r > 0; \{x\} \times B_r(0) \subset \Omega\}.$

It is elementary to check that *d* is lower semicontinuous. Since Ω is locally pseudoconvex in $D \times T$, every point $x \in \overline{D}$ has an open Stein neighborhood *U* such that $\Omega \cap (U \times \mathfrak{t})$ is pseudoconvex. Due to a result of Lelong, see [Lel68, Theorem 2.4.2], the function $-\log d$ is plurisubharmonic on $U \cap D$ and therefore everywhere on *D*.

Note that $-\log d \equiv -\infty$ if and only if D contains H_a^* . Since neither E_1 nor E_2 is a component of ∂D , this implies $D = H_a$ so that we may exclude this case in the following.

For every $x \in H_a$ the orbit map $t \to T \cdot x$, $\xi \mapsto \exp(\xi) \cdot x$, is open into its image $T \cdot x$. Thus we see that $-\log d(x)$ goes to infinity as x approaches a point in ∂D . Since ∂D is compact, this implies that $-\log d$ is an exhaustion.

To end this proof, one verifies directly that *d* is upper semicontinuous in any point $x \in D$ such that $d(x) \neq \infty$. Therefore, for every constant C > 0 the map sup $(C, -\log d)$ is a continuous plurisubharmonic exhaustion of *D*.

Remark. The proof of Proposition 4.1 shows that the polar set given by $\{-\log d = -\infty\}$ is non-empty if and only of *D* contains E_1 or E_2 .

Remark. In [DF82], Diederich and Fornæss give an example of a relatively compact pseudoconvex domain in a \mathbb{P}_1 -bundle over a Hopf surface that has smooth real-analytic boundary but does *not* admit an exhaustion by pseudoconvex subdomains.

5. PROOF OF THEOREM 3.2

Let us start by noting the following simple but important observation.

Lemma 5.1. The domain H_a^* admits a smooth plurisubharmonic exhaustion function. Consequently, if $D \subset H_a$ is pseudoconvex, then $D^* := D \cap H_a^*$ is likewise pseudoconvex.

If H_a^* is Cousin, this lemma follows from [Hu10, Proposition 2.4]. If H_a^* is not Cousin, then $H_a^* \cong \mathbb{C}^* \times E$ clearly has a smooth plurisubharmonic exhaustion.

Let $D \subset H_a$ be a pseudoconvex domain which is not Stein. If the pseudoconvex domain $D^* \subset H_a^*$ is not Stein, then D^* is saturated with respect to the foliation $\mathcal{F}|_{H_a^*}$, see [GMO13, Theorem 3.1]. Since

6

the leaves of \mathcal{F} are relatively compact orbits of a one parameter subgroup of T, continuity of the action map $T \times H_a \to H_a$ implies that D is saturated with respect to \mathcal{F} in this case. Therefore, let us assume that $D \neq D^*$ is Stein. We will complete the proof of Theorem 3.2 by showing that then D is Stein as well.

We note first that D cannot contain E_1 or E_2 if D^* is Stein. Indeed, due to the continuity of the leaves of \mathcal{F} remarked above, if E_1 was contained in D, then some of the relatively compact leaves of \mathcal{F} would lie in D^* , contradicting the assumption that D^* is Stein.

Let us consider the subset $C(D) \subset \mathbb{P}TD$ defined in (2.1) where $\pi: \mathbb{P}TD \to D$ is the projectivized tangent bundle. The proof of the following lemma relies essentially on the explicit knowledge of the structure of primary Hopf surfaces.

Lemma 5.2. Let $D \subset H_a$ be a pseudoconvex domain. If $D^* = D \cap H_a^*$ is Stein, then we have $\pi(C(D)) \subset D^* \setminus D$.

Proof. Suppose that $\pi(C(D))$ meets D^* . Since H_a^* is an Abelian complex Lie group, it has a biinvariant Haar measure. Therefore, we can apply the usual convolution technique in order to approximate the continuous plurisubharmonic exhaustion of D uniformly on compact subsets by smooth ones. This allows us to apply Lemma 2.4 to prove existence of a complex one parameter subgroup A of T and a point $x \in D^*$ such that $A \cdot x$ is relatively compact in D. Note that $A \cdot x$ is not relatively compact in D^* since the latter is assumed to be Stein.

We claim that that the closure of such a curve $A \cdot x$ in D (and hence D itself) would have to contain E_1 or E_2 , which then, as noted above, will contradict our assumption that D^* is Stein. In order to prove this claim, consider $A = \{(e^{tz_1}, e^{tz_2}); t \in \mathbb{C}\}$ where $z = (z_1, z_2) \in \mathbb{C}^2 \setminus \{0\}$. If $z_1 = 0$ or $z_2 = 0$, we see directly that the closure of $A \cdot x$ contains E_2 or E_1 . Hence, suppose that $z_1, z_2 \neq 0$. If $\frac{z_1}{z_2} \notin \mathbb{R}$, already the closure of A in $\mathbb{C}^2 \setminus \{0\}$ contains $\{z_1 = 0\} \cup \{z_2 = 0\}$, thus the closure of $A \cdot x$ in D contains $E_1 \cup E_2$ as well in this case. Therefore, we are left to deal with the case $A = \{(e^t, e^{\lambda t}); t \in \mathbb{C}\}$ where $\lambda = \frac{z_2}{z_1} \in \mathbb{R}$. Consider the smooth map $\pi_A \colon \mathbb{C}^* \times \mathbb{C}^* \to \mathbb{R}^{>0}$ defined by $\pi_A(w_1, w_2) := \frac{|w_1|^\lambda}{|w_2|}$. The closure \overline{A} of A in $T = \mathbb{C}^* \times \mathbb{C}^*$ is contained in the kernel of π_A . Since $\overline{A} \cdot x$ is closed and non-compact in $\mathbb{R}^{>0}$; in particular we have $|a_1|^\lambda \neq |a_2|$. Now choose $t_m \in \mathbb{C}$ such that $a_1^m e^{t_m} = c$ for all $m \in \mathbb{Z}$. It follows that

$$\left|a_{2}^{m}e^{\lambda t_{m}}\right|=\left(\frac{|a_{2}|}{|a_{1}|^{\lambda}}\right)^{m}|c|^{\lambda}.$$

Since $\frac{|a_2|}{|a_1|^{\lambda}} \neq 1$, we see that $(a_2^m e^{\lambda t_m})$ converges to 0 for $m \to \infty$ or $m \to -\infty$. This proves again that the closure of $A \cdot x$ in D contains E_1 or E_2 .

Combining the Lemmas 5.2 and 2.3, we see that there exists a plurisubharmonic function φ on *D* which is strictly plurisubharmonic on *D*^{*}.

Remark. Due to [Ri68] (see the formulation given in [Dem12, Chapter I.5.E]), we may assume without loss of generality that φ is smooth on D^* .

As we have noted above, *D* cannot contain E_1 or E_2 , so that $D \cap E_1$ and $D \cap E_2$ are closed Stein submanifolds of *D*. Therefore, the following lemma implies that *D* is Stein, which then completes the proof of Theorem 3.2.

Lemma 5.3. Let X be a connected complex manifold endowed with a plurisubharmonic exhaustion φ . Suppose that there exists a closed Stein submanifold A of X with at most finitely many connected components such that φ is strictly plurisubharmonic on $X \setminus A$. Then X is Stein.

Proof. For $\alpha \in \mathbb{R}$ write $X_{\alpha} := \{\varphi < \alpha\}$. In the first step we will show that X_n is Stein for all $n \ge 1$. Since A is Stein, every $A_n := A \cap X_n$ is a closed Stein submanifold of X_n .

Due to [Siu77], we find an open Stein neighborhood U_{n+1} of A_{n+1} in X_{n+1} . Consequently, there exists a strictly plurisubharmonic exhaustion function ψ_{n+1} on U_{n+1} . Let us choose a relatively compact open neighborhood V_n of A_n in U_{n+1} as well as a cutoff function χ_{n+1} which is identically 1 on V_n and which vanishes near ∂U_{n+1} . Then $\chi_{n+1}\psi_{n+1}: X \to \mathbb{R}$ is strictly plurisubharmonic in a neighborhood of A_n and its Levi form is uniformly bounded from below on X_n . Moreover, let ρ_n be a plurisubharmonic exhaustion of X_n which is strictly plurisubharmonic and smooth on $X_n \setminus A_n$. Then, for k sufficiently large the function $\chi_{n+1}\psi_{n+1}|_{X_n} + ke^{\rho_n}$ is a smooth strictly plurisubharmonic exhaustion function of X_n , proving that X_n is Stein.

Since we know now that X_n is Stein, we can apply [Nar62, Corollary 1] which implies that X_{n-1} is Runge in X_n for every $n \ge 2$. Therefore $X = \bigcup_{n\ge 1} X_n$ is a Runge exhaustion of X by relatively compact Stein open subsets, hence X is Stein, see [GuRo65, Theorem VII.A.10].

REFERENCES

[BHPV04] Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 4, Springer-Verlag, Berlin, 2004.

- [Dem12] Jean-Pierre Demailly, *Complex Analytic and Differential Geometry*, at www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, version of June 21, 2012.
- [DF82] Klas Diederich and John Erik Fornæss, A smooth pseudoconvex domain without pseudoconvex exhaustion, Manuscripta Math. 39 (1982), no. 1, 119–123.
- [GMO13] Bruce Gilligan, Christian Miebach, and Karl Oeljeklaus, *Pseudoconvex domains spread over complex homogeneous manifolds*, Manuscripta Math. 142 (2013), no. 1-2, 35–59.
- [GuRo65] Robert C. Gunning and Hugo Rossi, *Analytic functions of several complex variables*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.
- [Hir74] André Hirschowitz, Pseudoconvexité au-dessus d'espaces plus ou moins homogènes, Invent. Math. 26 (1974), 303–322.
- [Hir75] _____, *Le problème de Lévi pour les espaces homogènes*, Bull. Soc. Math. France **103** (1975), no. 2, 191–201.
- [Hu10] Alan T. Huckleberry, *Remarks on homogeneous complex manifolds satisfying Levi conditions*, Boll. Unione Mat. Ital. (9) **3** (2010), no. 1, 1–23.
- [Lel68] Pierre Lelong, Fonctionnelles analytiques et fonctions entières (n variables), Les Presses de l'Université de Montréal, Montreal, Que., 1968, Séminaire de Mathématiques Supérieures, No. 13 (Été, 1967).
- [LY12] Norman Levenberg and Hiroshi Yamaguchi, *Pseudoconvex domains in the Hopf surface*, arXiv:1205.3346 (2012).
- [Nar62] Raghavan Narasimhan, *The Levi problem for complex spaces. II*, Math. Ann. **146** (1962), 195–216.
- [Ri68] Rolf Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 257–286.
- [Siu77] Yum Tong Siu, *Every Stein subvariety admits a Stein neighborhood*, Invent. Math. **38** (1976/77), no. 1, 89–100.

LABORATOIRE DE MATHÉMATIQUES PURES ET APPLIQUÉES, CNRS-FR 2956, UNIVERSITÉ DU LITTORAL CÔTE D'OPALE, 50, RUE F. BUISSON, 62228 CALAIS CEDEX, FRANCE

Email address: miebach@lmpa.univ-littoral.fr