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CLASSIFICATION OF SPHERICAL ALGEBRAIC SUBALGEBRAS OF

REAL SIMPLE LIE ALGEBRAS OF RANK 1

LISA KNAUSS AND CHRISTIAN MIEBACH

Abstract. We determine all spherical algebraic subalgebras in any simple Lie algebra of
real rank 1.

1. Introduction

Let UC be a complex reductive group with maximal compact subgroup U . It has been
proved in [Bri87a] (see also [HW90]) that smooth compact complex spherical UC-varieties Z
may be characterized by the fact that a moment map µ : Z → u∗ separates the U -orbits in
Z.

In [HS07] it has been shown that the so-called gradient maps are the right analogue for
moment maps when one is interested in actions of a real reductive group G = K exp(p).
Spherical gradient manifolds have been introduced in [MS10] in order to carry over Brion’s
theorem to the real reductive case. To be more precise, we call a G-gradient manifold X ⊂ Z
with gradient map µp : X → p spherical if a minimal parabolic subgroup of G has an open
orbit in X. If G is connected complex reductive, then a minimal parabolic subgroup is the
same as a Borel subgroup of G, so that there is no ambiguity in this definition. The main
result of [MS10] states that X is spherical if and only if µp almost separates the K-orbits in
X.

Recently, real spherical manifolds have attracted attention from the representation theo-
retical view point (see [KO13] and [KS16b]) as well as from a geometric one (see [KS16a]
and [KKS15]). In [Bie93] and [KS16a] the authors have shown that, given a homogeneous
real spherical manifold X = G/H, any minimal parabolic subgroup of G has only finitely
many orbits in X. Moreover, the paper [KS16a] contains the list of all reductive spherical
subalgebras of g = so(n, 1). In [Mat79] the author has found all decompositions of so(n, 1)
as the sum of two subalgebras. In [KKPS16] the authors classify the reductive spherical
subalgebras of arbitrary simple real Lie algebras.

As the main result of this paper we describe the non-reductive spherical algebraic subal-
gebras of g where g is a simple Lie algebra of real rank 1 by methods in the spirit of [MS10].
We then apply this result to classify the reductive spherical subalgebras of g, thus obtaining
a second proof of the rank one case in [KKPS16]. Although a subalgebra h of g is spherical
whenever hC is a complex spherical subalgebra of gC, we would like to stress the fact that
the converse is not true (see the example in Section 3). In particular one cannot reduce the
question to the complex classification. In contrast to the complex case, there are continuous
families of spherical subalgebras of g. For g = su(n, 1) the geometry of such a family was
studied in detail by means of an explicit slice model in [Kna16].

Let us outline the main steps of the proof as well as the organization of this paper. In
Section 2 we show that the homogeneous manifold X = G/H admits a G-gradient map if and
only if H is an algebraic subgroup of G. This is the reason why we classify spherical algebraic
subalgebras. In Section 3 we characterize reductive and non-reductive spherical algebraic
subgroups H of G by the fact that a maximal compact subgroup of H acts transitively on
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2 LISA KNAUSS AND CHRISTIAN MIEBACH

the spheres in a certain representation related to the inclusion H ↪→ G. More precisely, our
starting point is the following, see Propositions 3.1 and 3.2.

Proposition 1.1. Let G = K exp(p) be a connected simple Lie group of real rank 1 with
Iwasawa decomposition G = KAN . Let M := NK(a).

(1) Let H = KH exp(pH) be a reductive algebraic subgroup of G. Then H is spherical if and
only if KH acts transitively on the connected components of the spheres in p⊥H .

(2) Let H = MHAHNH be a non-reductive algebraic subgroup of G. If NH = N , then H is
spherical. If dimN/NH ≥ 1, then H is spherical if and only if AH = A and MH acts
transitively on the connected components of the spheres in n⊥H .

Suppose that H = MHAHNH is a non-reductive spherical algebraic subgroup of G with
dimN/NH ≥ 1. Let us write n = gα⊕g2α where gα and g2α are the restricted root spaces with
respect to the maximal Abelian subspace a of p. Let us fix an M -invariant scalar product
on gα. Then the Lie algebra of H = MHAHNH is of the form h = mH ⊕ a ⊕W⊥ ⊕ g2α
where W ⊂ gα is an MH -stable subspace such that MH acts transitively on the connected
components of the spheres in W , see Corollary 3.3. Thus, in a second step we will determine
the subspaces W of gα such that NM (W ), which contains MH , acts irreducibly on W . It turns
out that in many cases this already implies that NM (W ) acts transitively on the connected
components of the spheres in W . In the final step, we make use of Onishchik’s classification of
transitive actions on spheres in order to find all subgroups ofNM (W ) that still act transitively
on the connected components of the spheres in W . More details of this general scheme are
given in Section 4. In the remaining Sections 5 to 8 we carry out our program case by case for
so(n, 1), su(n, 1), sp(n, 1) and f4. The tables containing all spherical algebraic subalgebras
are given in Theorems 5.2 and 5.4 for g = so(n, 1), in Theorems 6.7 and 6.8 for g = su(n, 1),
in Theorems 7.14 and 7.15 for g = sp(n, 1), and in Theorems 8.2 and 8.6 for the exceptional
Lie algebra g = f4 = f4(−20).

After this paper was finished, we learned that Kimelfeld has considered the classification
problem of algebraic spherical subgroups in real simple Lie groups G = K exp(p) of rank 1,
too. In [Kim87] he obtains Proposition 1.1 by differential geometric arguments based on
the Karpelevich compactification of the hyperbolic space G/K and then gives a general
description of all spherical algebraic subgroups of G. However, he does not provide an explicit
list of all spherical algebraic subalgebras of g. Bien obtains an explicit but not complete list
in [Bie93].

Acknowledgements. We would like to thank Peter Heinzner and Valdemar Tsanov for help-
ful discussions on the subject presented here. We are much obliged to Friedrich Knop for
informing us about Kimelfeld’s paper [Kim87] as well as about an inaccuracy in the statement
of Theorem 5.2 in an earlier version of this manuscript. The first author gratefully acknowl-
edges the financial support by SPP 1388 “Darstellungstheorie” and SFB/TR 12 “Symmetries
and Universality in Mesoscopic Systems” of the DFG.

2. (Homogeneous) gradient manifolds

Let G be a connected semisimple Lie group that embeds as a closed subgroup into its
universal complexification GC. Let U be a compact real form ofGC such that G is stable under
the corresponding Cartan involution of GC = UC. Then we obtain the Cartan decomposition
K × p→ G, (k, ξ) 7→ k exp(ξ), where K := G ∩ U is a maximal compact subgroup of G and
where p := g ∩ iu.

By a G-gradient manifold we mean the following. Let Z be a Kähler manifold endowed with
a holomorphicGC-action and U -invariant Kähler form ω such that there exists a U -equivariant
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moment map µ : Z → u∗ for the U -action on (Z, ω). We call such a Z a Hamiltonian GC-
manifold. Basic examples are given by GC-stable complex submanifolds of some projective
space P(V ) where V is a finite-dimensional complex GC-representation space. In particular,
homogeneous algebraic GC-varieties are Hamiltonian. Identifying u∗ with iu and composing
µ with the orthogonal projection to p ⊂ iu with respect to a U -invariant inner product, we
obtain the K-equivariant gradient map µp : Z → p. Any G-stable closed real submanifold X
of Z is called a G-gradient manifold with gradient map µp|X . For more details and the basic
properties of gradient maps we refer the reader to [HS07] and [HSS08].

Proposition 2.1. Let G be a connected semisimple Lie group and let H be a closed subgroup
of G. Then X = G/H is a G-gradient manifold if and only if H is algebraic, i.e., if H∩G = H
holds for the Zariski closure H of H in GC.

Proof. Suppose first that H∩G = H holds. It follows that X = G/H is a real submanifold of
the homogeneous space GC/H. Since the latter is quasi-projective, it is in particular Kähler,
and since GC is semisimple, there exists a unique U -equivariant moment map on GC/H.
Then the construction described above yields a G-gradient map on X = G/H.

If X = G/H is a gradient manifold, then by definition there exists a G-equivariant dif-
feomorphism G/H ∼= G · z ⊂ Z where Z is a Hamiltonian GC-manifold. From this we
obtain G/H ↪→ GC/(GC)z, and GC/(GC)z is again Kähler. Therefore (GC)z is an al-
gebraic subgroup of GC, see [GMO11, Corollary 4.12], hence contains H. This implies
H ∩G ⊂ (GC)z ∩G = Gz = H, as was to be shown. �

3. Characterization of spherical homogeneous gradient manifolds

As in the previous section let G = K exp(p) be a connected semisimple Lie group which
embeds into its complexification GC. Let H ⊂ G be a closed subgroup such that X = G/H
is a G-gradient manifold with gradient map µp : X → p. We say that X = G/H is spherical
if a minimal parabolic subgroup of G has an open orbit in X. In this case we call H a
spherical subgroup of G and h a spherical subalgebra of g. As shown in [MS10] sphericity of
X is equivalent to the fact that µp almost separates the K-orbits in X, i.e., that the map
X/K → p/K induced by µp : X → p has discrete fibers.

Example. Any symmetric subalgebra of g is spherical in g, see [MS10, §6.1].

It is not hard to see that, if hC is spherical in gC in the usual sense, then h is spherical in
g. However, as the following examples show, the converse does not hold, i.e., there are more
spherical subalgebras of g than just real forms of complex spherical subalgebras of gC.

Example. The unipotent radical N of a minimal parabolic subgroup of G is always spherical
in G. However, in general NC is not a spherical subgroup of GC. As a concrete example one
may take G = SO◦(5, 1).

A semisimple example is given by the spherical subgroup H = Sp(1, 1) of G = Sp(2, 1)
(see Theorem 7.15) since HC = Sp(2,C) is not spherical in GC = Sp(3,C), see [Krä79].

For the rest of this paper we assume that G is simple and has real rank 1. Then g is
isomorphic to either so(n, 1) (n ≥ 3) or su(n, 1) (n ≥ 1) or sp(n, 1) (n ≥ 2) or the exceptional
Lie algebra f4 = f4(−20), see [Kna02, Chapter VI.11].

As our main result we will describe the algebraic spherical subalgebras of g up to conju-
gation by an element of G, i.e., those subalgebras h for which there exists a closed subgroup
H ⊂ G having h as Lie algebra such that X = G/H is a spherical gradient manifold.

For the classification we distinguish the cases that H is reductive or not. If H is reductive,
then according to [Vin94, Theorem 6.3.6], after conjugation by an element of G, we have
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a Cartan decomposition H = KH exp(pH) where KH := H ∩ K is a maximal compact
subgroup of H and where pH := h ∩ p is a KH -invariant subspace of p with [pH , pH ] ⊂ kH .
We write p = pH ⊕ p⊥H with respect to the K-invariant inner product on p that comes from
the U -invariant inner product on iu. In this situation, sphericity of X = G/H has been
characterized in [MS10, Proposition 6.1]. Under the additional assumption rkRG = 1 we can
make the following more precise statement.

Proposition 3.1. Let G = K exp(p) be a connected simple Lie group of real rank 1 and let
H = KH exp(pH) ⊂ G be a closed reductive subgroup. Then X = G/H is spherical if and
only if KH has an open orbit in every sphere in p⊥H ⊂ p.

Remark. Except for codim pH = 1 Proposition 3.1 says that X = G/H is spherical if and
only if KH acts transitively on the spheres in p⊥H . In particular, X can only be spherical if

the KH -representation on p⊥H is irreducible.

Proof of Proposition 3.1. By [MS10, Theorem 1.1] the homogeneous gradient manifold X =
G/H is spherical if and only if any gradient map on it almost separates the K-orbits.
The Mostow decomposition (see [HS07] for a proof using gradient maps) exhibits X as K-
equivariantly isomorphic to the twisted product K ×KH p⊥H

1. A particular gradient map

is given by µp[k, ξ] = −Ad(k)ξ for k ∈ K and ξ ∈ p⊥H . Since the K-orbits in K ×KH p⊥H
correspond to the KH -orbits in p⊥H , this gradient map µp separates the K-orbits if and only

if the map p⊥H/KH → p/K, induced by the inclusion p⊥H ↪→ p, has discrete fibers. Since these

fibers are precisely the KH -orbits in the compact sets (K · ξ) ∩ p⊥H with ξ ∈ p⊥H , we note in
particular that the fibers have to be finite.

In the case rkRG = 1, the K-orbits in p are spheres, so their intersections with any subspace
of p are again spheres and in particular connected (unless the subspace is a line). Thus, X is
spherical if and only if KH has an open orbit in every sphere (K · ξ) ∩ p⊥H , ξ ∈ p⊥H , hence in

any sphere in p⊥H . �

In the rest of this section we give a similar criterion for non-reductive H. For this we fix a
minimal parabolic subalgebra q0 = m⊕ a⊕ n of g such that a is a maximal Abelian subspace
(i.e., a line) of p. The corresponding group is Q0 = MAN where M := ZK(a). Let h be a
non-reductive algebraic subalgebra of g and let H be a corresponding subgroup of G. As is
shown in [BT71] (compare [KS16a, Lemma 3.1]), after conjugation by an element of G we
may assume that h = lH ⊕ nH where lH ⊂ m ⊕ a is reductive in g and {0} 6= nH ⊂ n is
a nilpotent ideal of h. On the group level we have H ∼= LH n NH with a reductive group
LH = MHAH ⊂ MA and NH ⊂ N . Note that LH acts by conjugation on N and stabilizes
NH , hence acts on N/NH . On the Lie algebra level we have the decomposition n = nH ⊕ n⊥H
of n as an MH -module.

The following result is proven in [KS16a, Lemma 3.2], compare also [Bri87b, Proposi-
tion 1.1]. For the reader’s convenience we repeat the argument here.

Proposition 3.2. Let G be a connected simple Lie group of real rank 1 and let X = G/H
be a G-gradient manifold such that H = MHAHNH is non-reductive. Then X is spherical if
and only if either

(1) NH = N and LH = MHAH is arbitrary, or
(2) dimN/NH ≥ 1 and AH = A and MH ⊂ NM (nH) acts transitively on the connected

components of the spheres in n⊥H .

1If H is a subgroup of G and Y is a set on which H acts, then the twisted product G ×H Y is defined as
the quotient of G× Y with respect to the diagonal H-action h · (g, y) := (gh−1, h · y).
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Remark. Every algebraic subgroup H ⊂ G that contains N is spherical. Therefore, we will
concentrate on the case dim n⊥H ≥ 1.

Proof of Proposition 3.2. Let H be a non-reductive algebraic subgroup of G of the form
H = MHAHNH ⊂ Q0 = MAN . Since we have the G-equivariant fiber bundle X = G/H →
G/Q0, we see that X is G-equivariantly diffeomorphic to the twisted product G×Q0 (Q0/H).
By [Hel01, Corollary IX.1.8] the unique open orbit of the opposite minimal parabolic subgroup
Q−0 = MAN− in G/Q0 is Q−0 · eQ0. This implies that X = G/H is spherical if and only if
there is some xH ∈ Q0/H such that Q−0 · [e, xH] is open in G×Q0 (Q0/H). The latter is the

case if and only if L := MA = Q−0 ∩Q0 has an open orbit in Q0/H. Using the fact that NH

is normal in H, we see that Q0/H is L-equivariantly diffeomorphic to L×LH (N/NH) where
LH acts by conjugation on N/NH . This proves that X = G/H is spherical if and only if LH
has an open orbit in N/NH .

If AH 6= A then LH = MH can only have an open orbit in N/NH if the latter is compact
forcing n = nH . In particular if dimN/NH ≥ 1 then X = G/H can only be spherical if
AH = A. The LH -equivariant diffeomorphism exp : n → N induces via ξ 7→ exp(ξ)NH an
LH -equivariant map from n⊥H to N/NH . It follows from [Hel00, Lemma IV.6.8] that this map
is a diffeomorphism. Therefore, if AH = A holds, sphericity of X is equivalent to the fact
that LH has an open orbit in n⊥H .

If dim n⊥H = 1, then LH = MHA has an open orbit for any MH ⊂ NM (nH). Since every

A-orbit in n⊥H intersects any sphere in n⊥H precisely once, the claim follows. �

As we have seen, in order to classify non-reductive spherical algebraic subalgebras h ⊂ g we
may assume without loss of generality dim n⊥H ≥ 1. In particular, MH must act irreducibly

on n⊥H if X = G/H is spherical. In closing this section, we state the following corollary of
Proposition 3.2 which exploits this observation a little further.

Corollary 3.3. Let H = LHNH be a spherical non-reductive algebraic subgroup of G. Then
nH = (nH ∩ gα)⊕ g2α.

Conversely, for every subspace W ⊂ gα and for every algebraic subalgebra mH ⊂ Nm(W )
the direct sum hW := mH ⊕ aH ⊕W⊥ ⊕ g2α is an algebraic subalgebra of g. Moreover, hW is
spherical if and only if MHAH has an open orbit in W .

Proof. We have n = gα ⊕ g2α according to the restricted root space decomposition of g with
respect to a where α is a simple restricted root. If 2α is not a restricted root, we set g2α = 0.
(Note that this is only the case for g = so(n, 1).) Suppose that X = G/H is spherical with
dim n⊥H ≥ 1. Since A ⊂ LH acts with two different weights on gα and g2α, we obtain

n⊥H = (n⊥H ∩ gα)⊕ (n⊥H ∩ g2α).

Consequently, MH acts irreducibly on n⊥H only if nH contains gα or g2α. Since [gα, gα] = g2α,
see [Hel01, p. 408], and since nH is a Lie algebra, g2α ⊂ nH must hold. �

4. Strategy of the classification

Let us outline the principal steps that will lead to the classification result. Recall that
G = K exp(p) is a connected simple Lie group of real rank 1 that embeds into GC.

Let h ⊂ g be an algebraic subalgebra which we assume first to be non-reductive. Motivated
by Proposition 3.2 and Corollary 3.3 we will first determine the real subspaces W ⊂ gα such
that NM (W ) acts irreducibly on W . Then we will bring W (by an element in M) into a
suitable normal form and calculate NM (W ). This step will be carried out case-by-case for
every simple Lie algebra of real rank one. Let us therefore identify the relevant representations
in each case.
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Remark 4.1. Suppose first that G = SO◦(n, 1). The K-action on p is isomorphic to the
defining representation of K ∼= SO(n) on p ∼= Rn. Moreover, the Lie algebra n = gα is
Abelian and the action of M ∼= SO(n − 1) on n ∼= Rn−1 is again isomorphic to the defining
representation of SO(n− 1).

If G = SU(n, 1), then we can choose

K =

{(
A 0
0 a

)
; A ∈ U(n), a = det(A)−1

}
∼= S(U(n)×U(1)).

The group K ∼= S(U(n) × U(1)) acts on p ∼= Cn by (A, a) · v = Ava−1. The group M is
a 2-to-1-covering of S(U(n − 1) × U(1)). Its action on gα ∼= Cn−1 factorizes through the
covering map M → S(U(n− 1)×U(1)), and the action of S(U(n− 1)×U(1)) on gα is given
by the analogous formula.

Suppose now that G = Sp(n, 1). The group K ∼= Sp(n) × Sp(1) acts on p ∼= Hn by
(A, a) · v := Ava−1. The group M ∼= Sp(1)× Sp(n− 1) acts in the same way on gα ∼= Hn−1.

If G = F4, then the K-action on p is isomorphic to the unique irreducible representation
of Spin(9) on R16. The M -action on gα is equivalent to the unique irreducible representation
of Spin(7) on R8, see Lemma 8.3.

In the second step we single out those subgroups of NM (W ) that do indeed act transitively
on the spheres in W . In order to do so, we use results of Montgomery and Samelson as well
as of Onishchik which we recall here for the reader’s convenience.

Montgomery and Samelson considered the case of a connected compact Lie group L which
acts transitively and effectively on Sn and obtained the following result, see [MS43, Theo-
rem I].

Theorem 4.2. Let L be a connected compact Lie group acting transitively and effectively on
Sn. If n is even, then L is simple, while for n odd L is either simple or finitely covered by
L1 ×L2, where L2 is either SO(2) or Sp(1) and L1 is simple and acts already transitively on
Sn.

In the same paper Montgomery and Samelson found all simple, compact, connected groups
acting transitively on Sn for almost all n (see [MS43, Theorem II-IV]). In the case that n is
even, their result was sharpened in [Bor49]. Given any compact group G acting transitively
and effectively on some homogeneous space, Onishchik found all subgroups that also act
transitively in [Oni94, Theorem 4.1]. This enabled him to find all transitive effective actions
of connected compact Lie groups on Sn for all n. (see [Oni94, Theorem 3 in §18.3]).

We recall his result in the following theorem where we consider the defining representations
of O(n) on Rn, of U(n) on Cn and of Sp(n) on Hn.

Theorem 4.3. Let K be either O(n) or U(n) or Sp(n) and let V denote the respective defining
representation of K. The following table lists all connected proper subgroups L of K that act
transitively on the spheres in V , up to conjugation in K, where p : Sp(1)× Sp(1)→ SO(4) is
the universal covering and L2 ⊂ Sp(1) is an arbitrary connected subgroup.

K L

U(2k + 1), k ≥ 1 SU(2k + 1)

U(2k), k ≥ 2 SU(2k), Sp(k)×U(1), Sp(k)

O(2k + 1), k ≥ 0 SO(2k + 1)

O(4k + 2), k ≥ 1 SO(4k + 2), U(2k + 1), SU(2k + 1)

O(4k), k = 3, k ≥ 5 SO(4k), U(2k), SU(2k), Sp(k)× Sp(1), Sp(k)×U(1), Sp(k)
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O(16) SO(16), U(8), SU(8), Sp(4)× Sp(1), Sp(4)×U(1), Sp(4), Spin(9)

O(8) SO(8), U(4), SU(4), Sp(2)× Sp(1), Sp(2)×U(1), Sp(2), Spin(7)

O(7) SO(7), G2

O(4) SO(4), p
(
Sp(1)× L2

)
, p
(
L2 × Sp(1)

)
O(2) SO(2)

Note that K = Sp(n) does not contain such a subgroup.

Proof. Since a connected subgroup of O(n) lies in SO(n) and since SO(n) (n ≥ 3, n 6= 4) and
Sp(n) are simple, the result follows directly from [Oni94, Table 8, p. 227] for these groups.

Let us discuss the case K = O(4). Identifying R4 with H one sees that so(4) ∼= sp(1) ⊕
sp(1). The isotropy algebra so(4)e1 of e1 ∈ S3 ⊂ R4 corresponds to the diagonal ∆sp(1) in
sp(1)⊕ sp(1). Therefore we have to find all subalgebras l of sp(1)⊕ sp(1) (up to conjugation)
that verify

(4.1) l + ∆sp(1) = sp(1)⊕ sp(1).

Consider the projections

sp(1)⊕ sp(1)
π2 //

π1
��

sp(1)

sp(1).

Let l be a subalgebra of sp(1)⊕ sp(1) verifying (4.1). This implies

3 ≤ dim l = dimπ1(l) + dim ker(π1|l)

where ker(π1|l) = l ∩
(
{0} ⊕ sp(1)

)
is an ideal in l.

If dimπ1(l) = 0, then l = {0} ⊕ sp(1). If dimπ1(l) = 1, then π1(l) =: t is a maximal torus
in sp(1) and dim l ∩

(
{0} ⊕ sp(1)

)
≥ 2, hence l = t⊕ sp(1).

Finally, suppose that dimπ1(l) = 3 and note that dim l ∩
(
{0} ⊕ sp(1)

)
∈ {0, 1, 3}. If

dim l∩
(
{0} ⊕ sp(1)

)
= 3, then l = sp(1)⊕ sp(1). If dim l∩

(
{0} ⊕ sp(1)

)
= 0, then dim l = 3

and thus l is simple. Therefore l∩
(
sp(1)⊕{0}

)
is either sp(1)⊕{0} (and then l = sp(1)⊕{0})

or {0}. In the latter case π1|l and π2|l are isomorphisms onto sp(1) and l coincides with the
graph of ϕ := (π2|l) ◦ (π1|l)−1 ∈ Aut

(
sp(1)

)
. Since we can identify l∩∆sp(1) with the space of

fixed points sp(1)ϕ in this case and since dim sp(1)ϕ ≥ 1, we obtain dim l+ ∆sp(1) ≤ 5, hence

l cannot verify (4.1). Finally consider the case dim l∩
(
{0}⊕ sp(1)

)
= 1. Then dim l = 4 and

l ∩
(
{0} ⊕ sp(1)

)
is a one-dimensional ideal in l which implies l ∩

(
{0} ⊕ sp(1)

)
= z(l). Thus

l = sp(1)⊕ z(l).
In the unitary case we use [Oni94, Theorem 1.5.1] in order to reduce the classification to

SU(n). We denote the isotropy algebra u(n)e1 of e1 ∈ S2n−1 ⊂ Cn by u(n − 1). As above
we look for subalgebras l of u(n) that verify l + u(n − 1) = u(n). According to [Oni94,
Theorem 1.5.1] this holds if and only if l′ + su(n − 1) = su(n) (where l′ is the derived
algebra of l) and z

(
u(n)

)
= π

(
z(l) + z

(
u(n − 1)

))
where π is the projection of u(n) onto

its center with kernel su(n). Note that the second condition is automatically verified since
already π

(
z(u(n− 1))

)
= z
(
u(n)

)
. Consequently, the result follows from the classification of

subgroups of SU(n) that act transitively on S2n−1 ⊂ Cn given in [Oni94, Table 8]. �

Remark 4.4. The subalgebras sp(1)⊕l2 and l2⊕sp(1) of so(4) are O(4)-conjugate (see [Kna16,
Remark 8.5]) but not SO(4)-conjugate to each other, since any inner automorphism of SO(4)
leaves the ideals sp(1)⊕ {0} and {0} ⊕ sp(1) in so(4) invariant.
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Since for classical G the K-action on p and the M -action on gα are essentially the same,
we can use the results of the non-reductive case also in the reductive one. Moreover, suppose
that h = kH ⊕ pH is a reductive spherical subalgebra of g. Then we have

(4.2) [pH , pH ] ⊂ kH ⊂ Nk(pH).

Using the normal forms obtained in the first step, it is not hard to single out those kH and
pH from the lists obtained in the non-reductive case that verify (4.2).

5. G = SO◦(n, 1)

5.1. Non-reductive spherical subalgebras. In this subsection we classify the spherical
non-reductive algebraic subalgebras h of g = so(n, 1), where n ≥ 2. As we have seen we may
assume H = MHAHNH , where 1 ≤ dim n⊥H < n−1 and MH ⊂ NM (nH) (see Proposition 3.2).
The M -action on n is isomorphic to the defining representation of SO(n − 1) on Rn−1 (see
Remark 4.1). Therefore any real subspace nH of n can, and will, be identified with a real
subspace W of Rn−1.

Recall that Rn−1 comes equipped with an SO(n− 1)-invariant real inner product s. Note
that such an inner product is unique up to a positive factor. Let W be a real subspace of
Rn−1. Then s|W×W is a real inner product on W and O(W ) denotes the group of invertible
endomorphisms of W that respect s|W×W . We write O(W ) × O(W⊥) for the subgroup of
O(Rn−1) that stabilizes the decomposition Rn−1 = W ⊕W⊥s .

Lemma 5.1. Let W ⊂ Rn−1 be a real subspace. Then NSO(n−1)(W ) = S(O(W )×O(W⊥s))

and its action on W and W⊥s is induced by the standard O(W )-action on W and O(W⊥s)-
action on W⊥s respectively. In particular NSO(n−1)(W ) acts transitively on the connected

components of the spheres in W . Moreover there exists a basis (w1, . . . , wn−1) of Rn−1 such
that W = Rw1 ⊕ · · · ⊕ Rwl where l = dimRW .

Proof. Any element in NSO(n−1)(W ) respects s, W and W⊥s and has determinant 1, which

implies that it lies in S(O(W ) × O(W )⊥s). On the other hand any element in S(O(W ) ×
O(W )⊥s) leaves W invariant and lies in SO(n−1). Thus NSO(n−1)(W ) = S(O(W )×O(W⊥s))

holds. Choosing oriented s-orthonormal bases (w1, . . . , wl) of W and (wl+1, . . . , wn−1) of W⊥s

we obtain an element (w1 · · ·wn−1) ∈ SO(n− 1) that maps Wl to W . �

Combining this observation with Proposition 3.2, Theorem 4.3 and Remark 4.4, we obtain
the following theorem.

Theorem 5.2. Every spherical non-reductive algebraic subalgebra of g = so(n, 1), n ≥ 2,
is G-conjugate to exactly one in the following list where cl ⊂ so(n − l − 1) is an arbitrary
subalgebra (under the condition displayed in italic in Remark 5.3 below) and where

nl :=

{(
0 v −v
−vt 0 0
−vt 0 0

)
: v ∈ {0}l × Rn−1−l

}
∼= W⊥s .

lH ⊕ n lH ⊂ m⊕ a arbitrary

so(l)⊕ cl ⊕ a⊕ nl 1 ≤ l ≤ n− 2,

u(m)⊕ cl ⊕ a⊕ nl 1 ≤ l ≤ n− 2, l = 2m,m ≥ 3

su(m)⊕ cl ⊕ a⊕ nl 1 ≤ l ≤ n− 2, l = 2m,m ≥ 3

sp(m)⊕ sp(1)⊕ cl ⊕ a⊕ nl 1 ≤ l ≤ n− 2, l = 4m,m ≥ 2



SPHERICAL ALGEBRAIC SUBALGEBRAS 9

sp(m)⊕ u(1)⊕ cl ⊕ a⊕ nl 1 ≤ l ≤ n− 2, l = 4m,m ≥ 1

sp(m)⊕ cl ⊕ a⊕ nl 1 ≤ l ≤ n− 2, l = 4m,m ≥ 1

so(9)⊕ c16 ⊕ a⊕ n16

so(7)⊕ c8 ⊕ a⊕ n8

g2 ⊕ c7 ⊕ a⊕ n7

Note that n1 is 1-codimensional and that Nm(n1) ∼= so(n− 2).

Remark 5.3. Let us explain the notation in Theorem 5.2. Let π : so(l) ⊕ so(n − l) → so(l)
denote the projection onto the first factor. Then π is a Lie algebra homomorphism and
the kernel of its restriction to an arbitrary subalgebra k ⊂ so(l) ⊕ so(n − l) is an ideal in
k. Since k is compact the orthogonal complement to this ideal with respect to the Killing
form κ is also an ideal in k and we obtain k = (kerπ|k)⊥κ ⊕ kerπ|k. Note that (kerπ|k)⊥κ
is isomorphic to the subalgebra π(k) of so(l). Let Φ : π(k) → (kerπ|k)⊥κ be a Lie algebra
isomorphism. Then ϕ = πso(n−l) ◦Φ : π(k)→ so(n− l) is a Lie algebra homomorphism, where
πso(n−l) : so(l)⊕ so(n− l)→ so(n− l) is the projection onto the second factor. Then

k =
{(
ξ, ϕ(ξ)

)
: ξ ∈ π(k)

}
⊕ kerπ|k.

In order to simplify the notation, we write here and in the rest of this work k = π(k) ⊕ c
where c = kerπ|k = k ∩

(
{0} ⊕ so(n− l)

)
is the ineffectivity of the Nm(W )-action on W , i.e.,

we omit the representation ϕ from the notation.

In particular, π(k)⊕ c is a subalgebra of so(n, 1) if and only if c is contained
in the centralizer of ϕ

(
π(k)

)
in so(n− l).

Note that, if π(k) is simple, then ϕ is either identically zero or injective.

5.2. Reductive spherical subalgebras. Let h = kH ⊕ pH be a reductive algebraic subal-
gebra of g = so(n, 1) (where n ≥ 2) such that kH ⊂ k and pH ⊂ p. On the group level we
have H = KH exp(pH).

Since the K-representation on p is essentially the same as the M -representation on n (see
Remark 4.1), we may apply Lemma 5.1 to this situation and obtain, after conjugation in K,
that W = Rl × {0}n−l, where l = dimR(W ). In particular

pH = pH,l :=
{(

0 x
xt 0

)
: x ∈ {0}l × Rn−l

}
,

for some 0 ≤ l ≤ n. A direct calculation shows that

[pH,l, pH,l] =

{( 0 0 0

0 B
...

0 ... 0

)
∈ k : B ∈ so(n− l)

}
,

Nk(pH,l) =
{(

A 0 0
0 B 0
0 0 0

)
∈ k : A ∈ so(l), B ∈ so(n− l)

}
,

and thus [pH,l, pH,l] ⊕ pH,l ∼= so(n − l, 1) (with so(0, 1) := {0}). Therefore the condition
[pH , pH ] ⊂ kH ⊂ Nk(pH) (see (4.2)) implies that h is of the form h = b ⊕ so(n − l, 1), where
b is a subalgebra of so(l) and 0 ≤ l ≤ n. Together with Proposition 3.1 and Theorem 4.3 we
obtain the following theorem.
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Theorem 5.4. All spherical reductive algebraic subalgebras h of so(n, 1), n ≥ 2, are (up to
conjugation in G) one of the following, where so(0, 1) := {0} and l2 ⊂ sp(1) is arbitrary.

so(l)⊕ so(n− l, 1) 0 ≤ l ≤ n
u(m)⊕ so(n− l, 1) 0 ≤ l ≤ n, l = 2m,m ≥ 3

su(m)⊕ so(n− l, 1) 0 ≤ l ≤ n, l = 2m,m ≥ 3

sp(m)⊕ l2 ⊕ so(n− l, 1) 0 ≤ l ≤ n, l = 4m,m ≥ 1

so(9)⊕ so(n− 16, 1) n ≥ 16

so(7)⊕ so(n− 8, 1) n ≥ 8

g2 ⊕ so(n− 7, 1) n ≥ 7

l2 ⊕ sp(1)⊕ so(n− 4, 1) n ≥ 4

According to [Ber57, Table 2], the symmetric subalgebras are so(n)⊕so(1) and so(l)⊕so(n−
l, 1) for 0 ≤ l < n.

Remark 5.5. Contrary to the non-reductive case, see Remark 5.3, the condition [pH , pH ] ⊂
kH ⊂ Nk(pH) (see (4.2)) implies that there is no ambiguity in choosing the representation ϕ.
More precisely, we have ϕ = 0.

6. G = SU(n, 1)

6.1. Notation. Let V be a complex vector space of complex dimension n and let h be a
hermitian inner product on V . We denote the unitary and special unitary groups of V with
respect to h by U(V ) and SU(V ), respectively. Similarly, if W is a real subspace of V , we
write O(W ) (and SO(W )) for the group of R-linear transformations of W that leave the
scalar product s|W×W invariant (and have determinant 1) where s := Re(h). If W ⊂ V is a
totally real subspace, then we extend the action of O(W ) by C-linearity to WC = W ⊕ iW .
By abuse of notation, we consider O(W ) also as a group of C-linear maps of WC.

Remark 6.1. If W is a real form of V , i.e., a maximal totally real subspace, then the complex
O(W )-representation on V is irreducible. Moreover, if n ≥ 3, then the complex SO(W )-
representation on V is irreducible, too, see [Kna16, Lemma 6.3].

Suppose that V = V1 ⊕ V2 is an orthogonal direct sum of two complex subspaces. As in
Section 5 we write U(V1)×U(V2) for the subgroup of U(V ) that stabilizes this decomposition.

6.2. Preliminaries. From now on we fix a real subspace W of V such that a compact
subgroup K of NU(V )(W ) acts irreducibly on W . Since K acts complex linearly on V , the
maximal complex subspace W ∩ iW of W is K-invariant. Consequently, W is either complex
or totally real. We first treat the complex case.

Lemma 6.2. Let W be any complex subspace of V . Then NU(V )(W ) coincides with U(W )×
U(W⊥) and acts transitively on the spheres in W . Moreover, there is an orthonormal basis
(v1, . . . , vn) of V such that W = Cv1 ⊕ · · · ⊕ Cvl where l = dimCW .

Let us now suppose that W is totally real in V . Our goal is to understand how W lies in
its complexification WC = W ⊕ iW ⊂ V with respect to the symplectic form ω := Im(h).
For this we define a linear map I : W →W by the identity

s(Iw1, w2) = ω(w1, w2)

for all w1, w2 ∈W . One verifies directly that I is NU(V )(W )-equivariant and skew-symmetric

with respect to s. Moreover, the kernel of I is W ∩W⊥ω , i.e., the maximal subspace of W
on which ω is degenerate.
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Let IC ∈ End(WC) be the C-linear extension of I. For the proof of the following proposi-
tion we refer the reader to [Kna16, Proposition 6.11].

Lemma 6.3. The map IC : WC → WC is NU(V )(W )-equivariant and skew-hermitian with

respect to h. Moreover, IC commutes with the complex conjugation of WC with respect to W ,
denoted in the following by σ.

As a consequence, IC is diagonalizable having purely imaginary eigenvalues. Let

WC = ker(IC)⊕
⊕
ξ∈iR∗

WC
ξ

be the decomposition of WC into the eigenspaces of IC. This decomposition is NU(V )(W )-

invariant and h-orthogonal, and we have σ(WC
ξ ) = WC

−ξ. Hence, we obtain the NU(V )(W )-
invariant decomposition

W = ker(I)⊕
⊕

ξ∈iR>0

(WC
ξ ⊕WC

−ξ)
σ.

Since by assumption there exists a compact subgroup K of NU(V )(W ) that acts irreducibly

on W , we have either W = ker(I) or W = (WC
ξ ⊕WC

−ξ)
σ for some ξ ∈ iR>0. In the first

case W is Lagrangian in WC with respect to ω, while in the second case W is a symplectic
subspace of WC with respect to ω.

This discussion proves part of the following proposition.

Proposition 6.4. Let W be a totally real subspace of (V, h) and WC = W ⊕ iW be its
complexification. If a subgroup K ⊂ NU(V )(W ) acts irreducibly on W , then

(i) either W ⊂WC is Lagrangian with respect to ω, WC is a complex irreducible NU(V )(W )-

representation and NU(V )(W ) = O(W )×U(W⊥h),

(ii) or W ⊂ WC is symplectic with respect to ω, WC decomposes h-orthogonally as WC =
WC
ξ ⊕WC

−ξ into two complex irreducible NU(V )(W )-representations that are as real rep-

resentations isomorphic to W and NU(V )(W ) = {(g, ϕ(g)) ∈ U(WC
ξ ) × U(WC

−ξ)} ×
U(W⊥h), where ϕ : U(WC

ξ )→ U(WC
−ξ) is a Lie group isomorphism.

In both cases NU(V )(W ) acts transitively on the spheres in W .

Proof. If W ⊂ V is Lagrangian, then W and iW are orthogonal with respect to s. Any
element in NU(V )(W ) leaves W and W⊥h = (WC)⊥h as well as s|W×W invariant, and lies

therefore in O(W ) × U(W⊥h). Conversely, any element in O(W ) acts C-linearly on WC.
Again, due to the fact that W is Lagrangian in WC, the hermitian inner product h|WC×WC

is O(W )-invariant, which implies O(W ) × U(W⊥h) ⊂ NU(V )(W ). This shows NU(V )(W ) =

O(W )×U(W⊥q). Consequently, Remark 6.1 implies that NU(V )(W ) acts transitively on the

spheres in W and complex irreducibly on WC.
Let us now consider the case that WC = WC

ξ ⊕WC
−ξ is the decomposition of WC into IC-

eigenspaces corresponding to the eigenvalues ±ξ ∈ iR\{0}. Recall that this decomposition is
h-orthogonal and that the C-anti-linear involution σ on WC yields an R-linear isomorphism
between WC

ξ and WC
−ξ. Hence, we obtain R-linear, NU(V )(W )-equivariant isomorphisms f±

between WC
±ξ and W given by f±(w) = 1

2

(
w + σ(w)

)
. In particular, the complex subspaces

WC
±ξ are real irreducible, hence complex irreducible, NU(V )(W )-representations (isomorphic

to W ). We define another hermitian inner product on WC
−ξ by hσ(v, u) = h(σ(v), σ(u)) for



12 LISA KNAUSS AND CHRISTIAN MIEBACH

all v, u ∈ WC
−ξ. One verifies directly that hσ and h|WC

−ξ×W
C
−ξ

are both NU(V )(W )-invariant.

Thus there exists an r ∈ R>0 such that hσ = r2h|WC
−ξ×W

C
−ξ

.

Suppose for a moment that r = 1, i.e., that σ is an isometry of s. Consequently, W is
orthogonal to iW with respect to s, hence a Lagrangian subspace of WC with respect to ω,
contradicting our assumption. Thus we conclude r 6= 1.

We define the map ϕ : U(WC
ξ ) → GL(WC

−ξ) by ϕ(g)v = σ(g · σ−1(v)) for all v ∈ WC
−ξ. A

direct calculation shows that ϕ is a Lie group isomorphism from U(WC
ξ ) to U(WC

−ξ). This
observation allows us to show that

NU(V )(W ) = {(g, ϕ(g)) ∈ U(WC
ξ )×U(WC

−ξ)} ×U(W⊥h).

Indeed, any element in NU(V )(W ) respects the decomposition WC
ξ ⊕WC

−ξ and therefore lies

in U(WC
ξ ) × U(WC

−ξ). Using the fact that any element in NU(V )(W ) stabilizes W = (WC)σ

we obtain (k1, k2) · (v + σ(v)) = k1v + k2σ(v) = k1v + σ(ϕ(k2)v) has to lie in W for all
(k1, k2) ∈ U(WC

ξ ) × U(WC
−ξ) and for all v ∈ WC

ξ . This implies k1v = ϕ(k2)v for all v ∈ WC
ξ

forcing k2 = ϕ(k1) and thus

NU(V )(W ) ⊂ {(g, ϕ(g)) ∈ U(WC
ξ )×U(WC

−ξ)} ×U(W⊥h).

The converse inclusion is elementary to check. �

Introducing coordinates we obtain the following normal form of real subspaces W of Cn
equipped with the standard hermitian inner product, up to the action of SU(n).

Corollary 6.5. Let W be a real subspace of Cn. If some compact subgroup of NU(n)(W ) acts
irreducibly on W , then W lies in the same SU(n)-orbit as one of the following

WC,l := Cl × {0}n−1−l, 0 ≤ l ≤ n− 1 (1)

WR,l := Rl × {0}n−1−l, 0 ≤ l ≤ n− 1 (2)

WR,2l,r :=
{(

z
rz
0

)
: z ∈ Cl

}
, 0 ≤ l ≤ bn−12 c (3)

for some r ∈ R>0\{1}. The corresponding normalizers (with respect to the action given in
Remark 4.1) are given by

NS(U(n)×U(1))(WC,l) = S(U(l)×U(n− 1− l)×U(1)),

NS(U(n)×U(1))(WR,l) ∼= S(O(l)×U(n− 1− l)×U(1)),

NS(U(n)×U(1))(WR,2l,r) ∼= S(U(l)×U(n− 1− 2l)×U(1)).

In all three cases NS(U(n)×U(1))(W ) acts transitively on the connected components of the
spheres in W .

Proof. If W is Lagrangian in WC with respect to ω, then W is orthogonal to iW with respect
to s. Therefore any s-orthonormal basis over R of W is an h-orthonormal basis over C of WC.
In particular, if we choose an oriented s-orthonormal basis (w1, . . . , wl) of W and complete it
to an h-orthonormal basis (w1, . . . , wn) of Cn we obtain an element (w1 · · ·wn) ∈ SU(n) that
maps WR,l to W .

If W is symplectic in WC with respect to ω, then we saw in the proof of Proposition 6.4
that there exists an r ∈ R>0\{1} such that h(σ(v), σ(u)) = r2h(v, u) holds for all v, u ∈ V−ξ.
If we choose an h-orthonormal basis (v1, . . . , vl/2) over C of Vξ and set vl/2+j := 1

rσ(vj) for
all 1 ≤ j ≤ l/2 we obtain the h-orthonormal basis (vl/2+1, . . . , vl) of V−ξ. Completing it
to an oriented h-orthonormal basis (v1, . . . , vn) of Cn the element (v1 · · · vn) ∈ SU(n) maps

WR,l,r :=
{(

z
rz
0

)
: z ∈ Cl/2

}
to W . Therefore W lies in the same SU(n)-orbit as WR,l,r for
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some r ∈ R>0\{1} in this case. Moreover r can be chosen between 0 and 1, because the

element
(

0 id 0
id 0 0
0 0 id

)
∈ U(n) maps WR,l,r to WR,l,1/r. �

Remark 6.6. In [Kna16, pp. 29–31] the following geometric strengthening of Corollary 6.5 is
proven. Let us consider the set

Mm :=
{
W ⊂ Cn; dimRW = m, NU(n)(W ) acts irreducibly on W

}
.

If m is odd, then Mm = U(n) · WR,m. If m is even with bn2 c ≤
m
2 ≤ n, then Mm =

U(n) ·WC,m/2. If m is even with 0 ≤ m
2 ≤ b

n
2 c, then the set S :=

{
WR,m,r; r ∈ [0, 1]

}
is

a geometric slice for the U(n)-action on Mm in the following sense. The closed subset S is
a real submanifold with boundary which meets each U(n)-orbit in Mm exactly once, and{
WR,m,r; r ∈ (0, 1)

}
intersects each U(n)-orbit transversally.

6.3. Non-reductive spherical subalgebras. In this subsection we describe all non-reduc-
tive spherical algebraic subalgebras of su(n, 1), up to the action ofM . Their unipotent radicals
are of the form W⊥ ⊕ g2α where W ⊂ gα is one of the subspaces described in Corollary 6.5.
In order to find all possibilities for their maximal compact subalgebras we apply Onishchik’s
theorem to their normalizers and thus obtain the following.

Theorem 6.7. Every spherical non-reductive algebraic subalgebra of g = su(n, 1), n ≥ 2, is
G-conjugate to one in the following list where bj ⊂ u(n − 1 − j) and c ⊂ u(1) are arbitrary
(under the condition displayed in italic in Remark 5.3 adapted to this situation).

lH ⊕ n lH ⊂ m⊕ a arbitrary

s(u(l)⊕ bl ⊕ c)⊕ a⊕ nC,l 1 ≤ l ≤ n− 1,

s(su(l)⊕ bl ⊕ c)⊕ a⊕ nC,l 2 ≤ l ≤ n− 1

s(sp(m)⊕ bl ⊕ c)⊕ a⊕ nC,l 1 ≤ l ≤ n− 1, l = 2m,m ≥ 2

s(sp(m)⊕ u(1)⊕ bl ⊕ c)⊕ a⊕ nC,l 1 ≤ l ≤ n− 1, l = 2m,m ≥ 2

s(c⊕ b1 ⊕ u(1))⊕ a⊕ nC,1

s(so(l)⊕ bl ⊕ c)⊕ a⊕ nR,l 1 ≤ l ≤ n− 1,

s(u(m)⊕ bl ⊕ c)⊕ a⊕ nR,l 1 ≤ l ≤ n− 1, l = 2m,m ≥ 3

s(su(m)⊕ bl ⊕ c)⊕ a⊕ nR,l 1 ≤ l ≤ n− 1, l = 2m,m ≥ 3

s(sp(m)⊕ sp(1)⊕ bl ⊕ c)⊕ a⊕ nR,l 1 ≤ l ≤ n− 1, l = 4m,m ≥ 2

s(sp(m)⊕ u(1)⊕ bl ⊕ c)⊕ a⊕ nR,l 1 ≤ l ≤ n− 1, l = 4m,m ≥ 1

s(sp(m)⊕ bl ⊕ c)⊕ a⊕ nR,l 1 ≤ l ≤ n− 1, l = 4m,m ≥ 1

s(so(9)⊕ b16 ⊕ c)⊕ a⊕ nR,16

s(so(7)⊕ b8 ⊕ c)⊕ a⊕ nR,8

s(g2 ⊕ b7 ⊕ c)⊕ a⊕ nR,7

s(u(l)⊕ b2l ⊕ c)⊕ a⊕ nR,2l,r 1 ≤ 2l ≤ n− 1, 0 < r 6= 1

s(su(l)⊕ b2l ⊕ c)⊕ a⊕ nR,2l,r 2 ≤ 2l ≤ n− 1, 0 < r 6= 1

s(sp(m)⊕ u(1)⊕ b2l ⊕ c)⊕ a⊕ nR,2l,r 1 ≤ 2l ≤ n− 1, l = 2m,m ≥ 2, 0 < r 6= 1

s(sp(m)⊕ b2l ⊕ c)⊕ a⊕ nR,2l,r 2 ≤ 2l ≤ n− 1, l = 2m,m ≥ 2, 0 < r 6= 1

Here we have written nC,l to denote W⊥C,l⊕ g2α and so on. Note that nR,1 is 1-codimensional

and that Nm(nR,1) = s(u(n− 2)⊕ u(1)).
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6.4. Reductive spherical subalgebras. In this subsection we classify the reductive spher-
ical subalgebras h = kH ⊕ pH of su(n, 1). Since the K-action on p is essentially the same
as the M -action on gα, we may apply again Corollary 6.5 in order to obtain all the candi-
dates for the subspace pH ⊂ p. In the reductive case we have the additional restriction that
[pH , pH ] ⊂ kH ⊂ Nk(pH) must hold.

To be precise, let p⊥H = W ⊂ Cn be a real subspace. If NK(W ) acts irreducibly on W
then pH fulfills [pH , pH ] ⊂ Nk(pH) only if W lies in the same SU(n)-orbit as WC,l (in which
case [pH , pH ]⊕ pH ∼= su(n− l, 1)) for some 0 ≤ l ≤ n or WR,n (in which case [pH , pH ]⊕ pH ∼=
so(n, 1)), see [Kna16, Lemma 6.21].

Consequently, we obtain the following list of reductive spherical subalgebras of su(n, 1).

Theorem 6.8. All spherical, reductive subalgebras h of su(n, 1), where n > 1 are (up to
conjugation in G) one of the following

u(n)

su(n) n > 1

sp(m) n = 2m and m ≥ 2

sp(m)⊕ u(1) n = 2m and m ≥ 2

s(u(l)⊕ u(n− l, 1)) 0 ≤ l < n

su(l)⊕ su(n− l, 1) 0 < l < n

s(sp(m)⊕ u(n− l, 1)) 0 ≤ l < n, l = 2m,m ≥ 2

s(sp(m)⊕ u(1)⊕ u(n− l, 1)) 0 ≤ l < n, l = 2m,m ≥ 2

so(n, 1)

According to [Ber57, Table 2], the symmetric subalgebras are s(u(l)⊕u(n−l, 1)) for 0 ≤ l < n,
s(u(n)⊕ u(1)) and so(n, 1).

Proof. Due to [Kna16, Lemma 6.21] we may assume that pH ∼= W⊥C,l for some 0 ≤ l ≤ n or

pH ∼= W⊥R,n. Note that W⊥C,n = {0}. Therefore h is compact in that case. If pH ∼= W⊥C,l for

some 0 ≤ l < n then [pH , pH ] ⊂ kH ⊂ Nk(pH) together with [pH , pH ] ⊕ pH ∼= su(n − l, 1)
implies that h = s(b ⊕ u(n − l, 1)) where b is some subalgebra of u(l) that acts transitively
on the spheres in Cl. If pH ∼= W⊥R,n then so(n) = [pH , pH ] ⊂ kH ⊂ Nk(pH) = so(n) implies

that h = so(n, 1). �

7. G = Sp(n, 1)

7.1. Notation. Let U be a quaternionic vector space (with scalar multiplication from the
right) and let q : U × U → H be a quaternionic inner product on U (i.e., q is conjugate
symmetric, H-linear in the second argument and positive definite). We denote the group of
invertible, H-linear transformations on U by GLH(U) and define

Sp(U) := Sp(U, q) = {A ∈ GLH(U) : ∀ v, w ∈ U, q(Av,Aw) = q(v, w)}.

For Hn equipped with the standard quaternionic inner product (given by q(v, w) = vtw for
all v, w ∈ Hn) we set Sp(n) := Sp(Hn). The standard quaternionic inner product on H is
denoted by qH.

Let λ ∈ Sp(1) ∩ Im(H). Then λ2 = −1 and Fλ := R⊕ Rλ is a subfield of H isomorphic to
C. If µ ∈ Sp(1) ∩ Im(H) has the property Re(qH(λ, µ)) = 0, then λµ lies in Sp(1) ∩ Im(H)
and is Re qH-orthogonal to λ and µ.

For the proof of the following result we refer the reader to [Kna16, Lemma 7.6].
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Lemma 7.1. Let (1, λ, µ, λµ) be a Re(qH)-orthonormal basis over R of H and let U be a
quaternionic vector space with quaternionic inner product q. The projection hλ := πFλ ◦ q
of q onto Fλ is an Hermitian form on U and q = hλ + µηλ, where ηλ : U × U → Fλ is a
symplectic form on U . We define the 2-forms s, ωλ, ωµ, ωµλ : U × U → R by s := Rehλ,
ωλ := Re(−λhλ), ωµ := Re ηλ and ωµλ := Re(−ληλ) and obtain that all of them are Sp(U, q)-
invariant and fulfill :

q = s+ λωλ + µ(ωµ + λωµλ) : U × U → H is a quaternionic inner product,

hλ = s+ λωλ : U × U → Fλ is Hermitian,

ηλ = ωµ + λωµλ : U × U → Fλ is symplectic,

ωλ, ωµ, ωµλ : U × U → R is symplectic,

s : U × U → R is a real inner product.

Since we choose q to be H-linear in the second and H-anti-linear in the first entry we have

s(vα,wβ) + λωλ(vα,wβ) + µωµ(vα,wβ) + µλωµλ(vα,wβ) = q(vα,wβ)

= αq(v, w)β = αs(v, w)β + αλωλ(v, w)β + αµωµ(v, w)β + αµλωµλ(v, w)β
(7.1)

for all v, w ∈ U , α, β ∈ H. The same is true if one interchanges λ and µ.

Remark 7.2. If V is an Fλ-vector space whose quaternionification is U = V ⊕ V µ, then the
quaternionic U(V )-representation on U is irreducible. Furthermore, if W is a real form of U ,
i.e., if U = W ⊕Wλ⊕Wµ⊕Wλµ holds, then the O(W )-representation on U is irreducible,
too, see [Kna16, Lemma 7.11].

Suppose that U = U1⊕U2 is a q-orthogonal direct sum of two quaternionic subspaces. As
in Sections 5 and 6 we write Sp(U1)× Sp(U2) for the subgroup of Sp(U) that stabilizes this
decomposition.

7.2. Strategy of classification. We consider the Sp(n) × Sp(1)-action on Hn given by
(A, a) · v = Ava−1 for all (A, a) ∈ Sp(n) × Sp(1) and v ∈ Hn. Recall that we want to find
all real subspaces W of Hn and all connected subgroups K of NSp(n)×Sp(1)(W ) which act
transitively on the connected components of the spheres in W .

Given such a W , the group NSp(n)×Sp(1)(W ) acts necessarily irreducibly on W . Since
the Sp(n) × Sp(1)-action on Hn maps quaternionic subspaces to quaternionic subspaces,
the maximal quaternionic subspace WH = W ∩Wi ∩Wj ∩Wk of W is NSp(n)×Sp(1)(W )-
invariant. Consequently, W is either quaternionic or its maximal quaternionic subspace WH
is zero. Lemma 7.3 gives a normal form for quaternionic W which allows to complete the
classification in this case.

Therefore we are left to deal with subspaces W with WH = 0 on which NSp(n)×Sp(1)(W )
acts irreducibly. This case splits into two subcases: Either there exists a λ ∈ Sp(1) ∩ Im(H)
such that the subfield Fλ ∼= C acts by right multiplication on W or W is totally real in the
sense that there exists no λ ∈ Sp(1)\{±1} with W = Wλ. It turns out that the first of these
subcases can be treated by the same arguments as the ones developed in Section 6, while the
totally real case requires most of the work.

In closing we describe how these three cases influence the structure of NSp(n)×Sp(1)(W ).
The normalizer NSp(n)×Sp(1)(W ) is the direct product of NSp(n)(W ) := NSp(n)×{e}(W ) and a
normal subgroup L of NSp(n)×Sp(1)(W ) that is isomorphic to the image of NSp(n)×Sp(1)(W )
under the projection π2 : Sp(n) × Sp(1) → Sp(1) given by (g, h) 7→ h, see [Kna16, Lemma
7.13]. Note that L contains NSp(1)(W ) := N{e}×Sp(1)(W ). Moreover, if l ∼= sp(1), then
NSp(1)(W ) is either trivial or coincides with L, see [Kna16, Lemma 7.13].
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The group NSp(1)(W ) is of real dimension 3 if and only if W is quaternionic. It has real
dimension 1 if and only if W is not quaternionic but invariant under the subfield Fλ = R⊕Rλ
of H for some λ ∈ Sp(1)∩ Im(H). The group NSp(1)(W ) is zero-dimensional if and only if W
is totally real, see [Kna16, Lemma 7.16].

7.3. The quaternionic case. The following lemma gives a normal form for a quaternionic
subspace W ⊂ Hn and its normalizer. For a proof see [Kna16, Lemma 7.17].

Lemma 7.3. Let W be any quaternionic subspace of Hn. Then NSp(n)×Sp(1)(W ) coincides

with (Sp(W )×Sp(W⊥))×Sp(1) and acts transitively on the spheres in W . Moreover, there is
an orthonormal basis (v1, . . . , vn) of Hn such that W = v1 ·H⊕· · ·⊕vl ·H where l = dimHW .

7.4. The Fλ-complex case. Let us now suppose that W is not quaternionic but that there
exists a λ ∈ Sp(1) ∩ Im(H) such that W is invariant under the subfield Fλ. In that case the
assumption that

NSp(n)×Sp(1) = NSp(n)(W )× (Sp(1) ∩ Fλ)︸ ︷︷ ︸
=L∼=S1

acts transitively on the spheres in W implies that W is an Fλ-irreducible representation
of NSp(n)(W ), see [Kna16, Lemma 7.18]. We complete (1, λ) to a Re qH-orthonormal basis
(1, λ, µ, λµ) over R of H. Then V := W ⊕Wµ ⊂ Hn is the quaternionification of W on which
NSp(n)(W ) ⊂ Sp(n) acts H-linearly. The idea is to forget the Fλ-structure on W and Hn,
i.e., to consider W as maximal totally real subspace of the complex space V (with respect to
Fµ), and then to use the same ideas as in Section 6.

In particular we consider the Hermitian form hµ given by projecting q to Fµ, i.e., hµ =
s + µωµ, where s = Re q is a real inner product on Hn and ωµ = Re(−µ · q) is a symplectic
form on Hn (see Lemma 7.1). We then define the R-linear map Iµ : W →W by the identity

s(Iµw1, w2) := ωµ(w1, w2) ∀ w1, w2 ∈W,(7.2)

and extend it Fµ-linearly to V = W ⊕Wµ.
Since NSp(n)(W ) is a subgroup of NU(Fnµ ,hµ)

(W ) we obtain as in Section 6 that V decom-
poses as

V = ker Iµ ⊕
⊕
ξ∈µR∗

Vξ

into NSp(n)(W )-invariant and hµ-orthogonal eigenspaces of Iµ to eigenvalues in µR such
that σµ(Vξ) = V−ξ holds where σµ denotes complex conjugation of V with respect to W .
Furthermore, the eigenspaces are quaternionic subspaces that are q-orthogonal (see [Kna16,
Lemma 7.25]). Thus we obtain the NSp(n)(W )-invariant decomposition

W = ker Iµ ⊕
⊕

ξ∈µR>0

(Vξ ⊕ σµ(Vξ))
σµ .

Since the group NSp(n)(W ) acts irreducibly on W by assumption, we have either W = ker(Iµ)

or W = (Vξ ⊕ σµ(Vξ))
σµ for some ξ ∈ µR>0. This discussion proves part of the following

proposition.

Proposition 7.4. Let W be an Fλ-invariant subspace of Hn with quaternionification V =
W ⊕Wµ. If K ⊂ NSp(n)(W ) acts irreducibly on W , then

(i) either W ⊂ V is Lagrangian with respect to ηλ, V is a quaternionic irreducible
NSp(n)(W )-representation and NSp(n)(W ) = Uhλ(W )× Sp(W⊥q).
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(ii) or W ⊂ V is symplectic with respect to ηλ, V decomposes as V = Vξ ⊕ V−ξ into
two, q-orthogonal, quaternionic irreducible NSp(n)(W )-representations which are as
Fλ-representations isomorphic to W and

NSp(n)(W ) =
{

(g, ψ(g)) ∈ Sp(Vξ)× Sp(V−ξ)
}
× Sp(W⊥q),

where ψ : Sp(Vξ)→ Sp(V−ξ) is a Lie group isomorphism.

In both cases NSp(n)(W ) acts transitively on the spheres in W .

Proof. If W ⊂ V is Lagrangian with respect to ηλ, then W and Wµ are orthogonal with
respect to hλ. We now want to show that NSp(n)(W ) = Uhλ(W ) × Sp(W⊥q) holds, where
Uhλ(W ) := {g ∈ GLFλ(W ) : hλ(gv, gw) = hλ(v, w) ∀ v, w ∈W} . Any element in NSp(n)(W )

leaves W , W⊥q and hλ|W×W invariant and lies therefore in Uhλ(W )× Sp(W⊥q). Conversely
any element in Uhλ(W ) acts H-linearly on V . Again, due to the fact that W is Lagrangian

in V , the quaternionic inner product q is Uhλ(W )-invariant. Hence Uhλ(W ) × Sp(W⊥q) ⊂
NSp(n)(W ) and therefore NSp(n)(W ) = Uhλ(W ) × Sp(W⊥q) holds. The group NSp(n)(W ) =

Uhλ(W )× Sp(W⊥q) acts transitively on the spheres in W and quaternionic irreducibly on V
(see Remark 7.2).

Let us now consider the case that V = Vξ ⊕ V−ξ is the decomposition of V into Iµ-
eigenspaces corresponding to the eigenvalues ±ξ ∈ µR\{0}. Recall that this decomposition is
q-orthogonal and that the Fµ-anti-linear involution σµ on V yields an isomorphism between
Vξ and V−ξ. Hence, we obtain Fλ-linear, NSp(n)(W )-equivariant isomorphisms g± between

V±ξ and W given by g±(v) = 1
2

(
v + σµ(v)

)
. In particular, the quaternionic spaces V±ξ are

Fλ-irreducible NSp(n)(W )-representations isomorphic to W . We define another quaternionic
inner product qσµ on V−ξ by

qσµ(v, u) = σH,µ
(
q(σµ(v), σµ(u))

)
∀ v, u ∈ V−ξ = σµ(Vξ).

One verifies directly that qσµ and q|V−ξ×V−ξ are both NSp(n)(W )-invariant. Thus there exists

a t ∈ R>0 such that qσµ = t2q|V−ξ×V−ξ . Suppose for a moment that t = 1, i.e., that σµ is an
isometry of hλ. Consequently, W is orthogonal to Wµ with respect to hλ, hence a Lagrangian
subspace of V with respect to ηλ, contradicting our assumption. Thus we conclude t 6= 1.

We define the map ψ : Sp(Vξ) → GL(V−ξ) by ψ(g)v = σµ
(
g · σ−1µ (v)

)
for all v ∈ V−ξ. A

direct calculation shows that ψ is a Lie group isomorphism from Sp(Vξ) to Sp(V−ξ). This
observation allows us to show that

NSp(n)(W ) =
{

(g, ψ(g)) ∈ Sp(Vξ)× Sp(V−ξ)
}
× Sp(W⊥q).

Indeed any element in NSp(n)(W ) acts as element of Sp(Vξ) × Sp(V−ξ) on Vξ × V−ξ. Using
the fact that any element in NSp(n)(W ) stabilizes W = V σµ we obtain

(k1, k2) ·
(
v + σµ(v)

)
= k1v + k2σµ(v) = k1v + σµ

(
ψ(k2)v

)
has to lie in W for all (k1, k2) ∈ Sp(Vξ)×Sp(V−ξ) and for all v ∈ Vξ. This implies k1v = ψ(k2)v
for all v ∈ Vξ forcing k2 = ψ(k1) and thus

NSp(n)(W ) ⊂
{

(g, ψ(g)) ∈ Sp(Vξ)× Sp(V−ξ)
}
× Sp(W⊥q).

The converse conclusion is elementary to check. �

Introducing coordinates we obtain the following normal form of these real subspaces W of
(Hn, q), up to the action of Sp(n).
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Corollary 7.5. Let W be a real subspace of Hn, that has no quaternionic subspace but is
invariant under Fλ for some λ ∈ Sp(1) ∩ Im(H). If some compact subgroup of NSp(n)(W )
acts irreducibly on W , then W lies in the same Sp(n)-orbit as one of the following

WFλ,l := F lλ × {0}n−l, 0 ≤ l ≤ n

WFλ,l,t :=

{(
z+µw
t(z−µw)

0

)
: z, w ∈ F lλ

}
, 0 ≤ l ≤ bn2 c

for some t ∈ (0, 1). The corresponding normalizers are given by

NSp(n)×Sp(1)(WFλ,l) :=
(
Uhλ(l)× Sp(n− l)

)
× (Sp(1) ∩ Fλ),

NSp(n)×Sp(1)(WFλ,l,t) :=

{((
A
ψ(A)

B

)
, a

)
∈ Sp(n)× Sp(1) : A ∈ Sp(l), B ∈ Sp(n− 2l), a ∈ Fλ

}
∼= (Sp(l)× Sp(n− 2l))× S1.

In both cases NSp(n)(W ) acts transitively on the connected components of the spheres in W .

Proof. If W is Fλ-invariant and Lagrangian in V = W ⊕Wµ with respect to ηλ, then W
is orthogonal to Wµ with respect to hλ. Therefore any hλ-orthonormal basis over Fλ of W
is a q-orthonormal basis over H of V . In particular, if we choose an hλ-orthonormal basis
(w1, . . . , wl) of W and complete it to a q-orthonormal basis (w1, . . . , wn) of Hn, we obtain an
element (w1 · · ·wn) ∈ Sp(n) that maps WFλ,l to W .

If W is symplectic with respect to ηλ, then we saw in the proof of Proposition 7.4 that
there exists a t ∈ R>0\{1} such that σH,µ

(
q(σµ(v), σµ(u))

)
= t2q(v, u) for all v, u ∈ V−ξ. If

we choose a q-orthonormal basis (v1, . . . , vl/2) over H of Vξ and set vl/2+j := 1
tσµ(vj) for all

1 ≤ j ≤ l/2 we obtain the q-orthonormal basis (v1, . . . , vl) of V = Vξ ⊕V−ξ. Completing it to
a q-orthonormal basis (v1, . . . , vn) of Hn the element (v1 · · · vn) ∈ Sp(n) maps WFλ,l,t to W .

Note that t may be chosen between 0 and 1, because the element
(

0 id 0
id 0 0
0 0 id

)
∈ Sp(n) maps

WFλ,l,t to WFλ,l,1/t. �

7.5. The totally real case. Let us now consider the case that W is a totally real subspace
of Hn, i.e., that there exists no λ ∈ Sp(1)\{±1} such that W = Wλ.

Again we want to determine those real subspaces W ⊂ (Hn, q) such that NSp(n)×Sp(1)(W )
acts transitively on the spheres in W . Recall that NSp(n)×Sp(1)(W ) = NSp(n)(W )× L.

Theorem 4.2 implies that if dimR(W ) > 4 then already NSp(n)(W ) has to act transitively
on the spheres in W . We therefore consider first totally real subspaces W of arbitrary
dimension which satisfy the condition that NSp(n)(W ) acts irreducibly on W . The only
spherical subalgebras that we are possibly missing are those for wich dimR(W ) ≤ 4. We will
consider these cases at the end of this subsection.

We first give a normal form of totally real W up to the action of GL(Hn).

Lemma 7.6. Let W be a real subspace of Hn such that 〈W 〉H = W ⊕Wi⊕Wj⊕Wk. Then
W lies in the same GL(Hn)-orbit as WR,l := Rl × {0}n−l, where l = dimR(W ) and l acts
trivially on W .

Proof. Let (v1, . . . , vl) be an s-orthonormal real basis of W . Then 〈W 〉H = 〈v1, . . . , vl〉H. In
particular (v1, . . . , vl) is a quaternionic basis of 〈W 〉H that we complete to a quaternionic
basis (v1, . . . , vn) of Hn. Now g = (v1 · · · vn) is an element in GL(Hn) that maps WR,l to W .
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This implies that

Nsp(n)⊕sp(1)(W ) ⊂ Ad(g)(Nsp(n)⊕sp(1)(WR,l))

Nsp(n)⊕sp(1)(WR,l) = {(A, ξ) ∈ sp(n)⊕ sp(1) : Aw − wξ ∈W0 ∀ w ∈W0}

=
{

(A, ξ) ∈ sp(n)⊕ sp(1) : A =
(
A1 0
0 ∗
)
, A1 − ξ id ∈ Rl×l

}
=
{

(A, 0) ∈ sp(n)⊕ sp(1) : A =
(
A1 0
0 ∗
)
, A1 ∈ Rl×l

}
︸ ︷︷ ︸

Nsp(n)(WR,l)

⊕
{

(A, ξ) ∈ sp(n)⊕ sp(1) : A =
(
ξ id 0
0 0

)}︸ ︷︷ ︸
l̃

.

Therefore, the action of l̃ on WR,l and thus on W is trivial. �

In order to give a normal form of W up to the action of Sp(n), we will analyze the position
of W in Hn with respect to the various symplectic forms listed in Lemma 7.1 which are in-
variant under Sp(n). We will see that under the condition that NSp(n)(W ) acts irreducibly on
W , these symplectic forms contain information about the division algebra EndNSp(n)(W )(W ).

Hence, we will now divide such totally real W into three subcases, corresponding to the three
possibilities R, C or H for EndNSp(n)(W )(W ).

We define the R-linear maps Ii, Ij , Ik : W →W by the identity

s(Imw1, w2) = ωm(w1, w2) ∀ w1, w2 ∈W, ∀ m ∈ {i, j, k}.(7.3)

Let us consider the map

χ : H→ EndNSp(n)(W )(W )

a+ bi+ cj + dk 7→ a id +bIi + cIj + dIk.
Note that the kernel of χ lies in Im(H), i.e., that χ|R is injective and that

s(χ(z)w1, w2) = s(w1z, w2)

holds for all z ∈ H and w1, w2 ∈W . In particular, if λ ∈ Im(H)∩Sp(1), then s(χ(λ)w1, w2) =
s(w1λ,w2) = ωλ(w1, w2) (see Lemma 7.1), i.e., χ(λ) = Iλ, where Iλ is defined by the equation

(7.4) s(Iλw1, w2) = ωλ(w1, w2)

for all w1, w2 ∈W . The NSp(n)(W )-equivariant R-linear endomorphisms of W form a division
algebra over R that is isomorphic to R, C or H. We are going to successively consider the
cases that dimR(χ(H)) equals 1 (see Lemma 7.7), 2 (see Lemma 7.8) or is bigger than or equal
to 3 (see Lemma 7.9). We will see in Remark 7.10 that these cases do indeed correspond to
the cases that EndNSp(n)(W )(W ) is isomorphic to R, C or H respectively.

Let us start with the case that dimR(χ(H)) = 1. Since we already noted that the kernel of
χ lies in Im(H), we obtain that ωi|W×W = ωj |W×W = ωk|W×W = 0 in this case.

Lemma 7.7. Let W be a totally real subspace of Hn of real dimension l with quaternion-
ification U := W ⊕ Wi ⊕ Wj ⊕ Wk. If W ⊂ U is isotropic with respect to ωi, ωj and
ωk and NSp(n)(W ) acts irreducibly on W , then U is a quaternionic irreducible NSp(n)(W )-

representation, NSp(n)(W ) = O(W ) × Sp(W⊥q) acts transitively on the spheres in W , l ∼=
sp(1) acts trivially on W , and W lies in the same Sp(n)-orbit as WR,l := Rl × {0}n−l.

Proof. Since W ⊂ U is isotropic with respect to ωi the spaces W and W · i are s-orthogonal.
Any element in NSp(n)(W ) respects W , W⊥q and leaves s|W×W invariant and lies therefore in

O(W )×Sp(W⊥q). Conversely, any element in O(W ) acts H-linearly on U . Again, due to the
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fact that W is isotropic with respect to ωi, ωj and ωk, the quaternionic inner product q|U×U
is O(W )-invariant, which implies O(W )× Sp(W⊥q) ⊂ NSp(n)(W ). This shows NSp(n)(W ) =

O(W ) × Sp(W⊥q). Consequently, Remark 7.2 implies that NSp(n)(W ) acts transitively on
the spheres in W and quaternionic irreducibly on U .

If we choose an s-orthonormal basis (w1, . . . , wl) over R of W then (w1, . . . , wl) is a q-
orthonormal basis over H of U . Completing it to a q-orthonormal basis (w1, . . . , wn) of Hn

we obtain the element (w1 · · ·wn) ∈ Sp(n) that maps WR,l to W . A direct calculation yields

Nsp(n)⊕sp(1)(WR,l) = {(A, ξ) ∈ sp(n)⊕ sp(1) : Aw − wξ ∈WR,l ∀ w ∈WR,l}

=
{

(A, ξ) ∈ sp(n)⊕ sp(1) : A =
(
A1 0
0 ∗
)
, A1 − ξ id ∈ Rl×l

}
=
{

(A, 0) ∈ sp(n)⊕ sp(1) : A =
(
A1 0
0 ∗
)
, A1 ∈ Rl×l

}
︸ ︷︷ ︸

=so(l)⊕sp(n−l)

⊕
{

(A, ξ) ∈ sp(n)⊕ sp(1) : A =
(
ξ id 0
0 ∗

)}︸ ︷︷ ︸
∼=sp(1)

,

i.e., l ∼= sp(1) in this case and l acts trivially on WR,l (see Lemma 7.6). �

Let us now assume that dimR(χ(H)) = 2, i.e., the kernel of χ is a 2-dimensional subspace of
Im(H). Its orthogonal complement in H is also 2-dimensional and contains R. Let us assume
that it is equal to Fλ = R ⊕ Rλ for some λ ∈ Im(H) ∩ Sp(1), i.e., χ|Fλ : Fλ → R id⊕RIλ is
an isomorphism. We choose the Re qH-orthonormal basis (1, λ, µ, λµ) of H. Then the kernel
of χ is equal to Rµ ⊕ Rλµ = Fλµ. We set U = W ⊕ Wλ ⊕ Wµ ⊕ Wλµ and denote by
σλ : U → U the Fλ-anti-linear and Fµ-linear involution that fixes W pointwise. Analogously
we let σµ : U → U denote the Fµ-anti-linear and Fλ-linear involution that fixes W pointwise.
The two involutions σλ and σµ are NSp(n)(W )-equivariant and commute. Furthermore W
is the joint set of fixed points of σλ and σµ in U , i.e., W = (Uσλ)σµ = (Uσµ)σλ . The map
fσµ : U → Uσµ defined by u 7→ 1

2(u + σµ(u)) is Fλ-linear, NSp(n)(W )-equivariant, surjective
and has kernel Wµ⊕Wλµ.

Lemma 7.8. Let W be a totally real subspace of Hn of real dimension l with quaternion-
ification U := W ⊕ Wλ ⊕ Wµ ⊕ Wλµ such that NSp(n)(W ) acts irreducibly on W . We
assume furthermore that Iλ 6= 0 on W and ωµ|W×W = ωµλ|W×W = 0, where Iλ is defined
by (7.4). Then U decomposes q-orthogonally as U = UIλ,ξ ⊕ UIλ,−ξ, where UIλ,ξ and UIλ,−ξ
are quaternionic irreducible NSp(n)(W )-representations while fσµ(UIλ,ξ) and fσµ(UIλ,−ξ) are
Fλ-irreducible NSp(n)(W )-representations that are as real representations isomorphic to W .
Furthermore

NSp(n)(W ) = {(g, ϕ(g)) ∈ U(fσµ(UIλ,ξ), hλ)×U(fσµ(UIλ,−ξ), hλ)} × Sp(W⊥q),

l ∼= u(1),

where ϕ : U(fσµ(UIλ,ξ), hλ) → U(fσµ(UIλ,−ξ), hλ) defined by ϕ(g)(v) = σλ(g · σλ(v)) for
all v ∈ fσµ(UIλ,−ξ) is a Lie group isomorphism and W lies in the same Sp(n)-orbit as

WR,l,r,Fλ :=

{(
x+λy
r(x−λy)

0

)
: x, y ∈ Rl/2

}
for some r ∈ (0, 1). Furthermore NSp(n)(W ) acts

transitively on the spheres in W while l acts trivially on W .

Proof. We denote by Vλ the complexification W ⊕Wλ of W . Note that Vλ = Uσµ . The
assumption ωµ|W×W = ωµλ|W×W = 0 implies ωµ|Vλ×Vλ = ωµλ|Vλ×Vλ = 0. This gives in
turn that Vλ is hλ-orthogonal to Vλ · µ. Therefore any hλ-orthonormal basis over Fλ of Vλ
is a q-orthonormal basis over H of U . In particular, if we choose an hλ-orthonormal basis
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of Vλ and complete it to a q-orthonormal basis of Hn, we obtain an element in Sp(n) that
maps VFλ,l := F lλ × {0}n−l to Vλ. This implies that NSp(n)(Vλ) = U(Vλ, hλ) × Sp(U⊥q) acts
Fλ-irreducibly on Vλ and quaternionic irreducibly on U (see Remark 7.2). Since Sp(n) acts
H-linear on Hn any element in NSp(n)(W ) leaves Vλ invariant. As a result we obtain

NSp(n)(W ) ⊂ NSp(n)(Vλ) = U(Vλ, hλ)× Sp(U⊥q)

and the action of NSp(n)(W ) on W is orbit equivalent to the action of the first factor, i.e.,
the action of NU(Vλ,hλ)(W ). Therefore NU(Vλ,hλ)(W ) acts irreducibly on W .

Since Iλ is defined as in Section 6 we obtain that the kernel of Iλ : W → W is equal
to the maximal subspace of W on which ωλ is degenerate. Since W is a maximal totally
real subspace of the Hermitian vector space (Vλ, hλ) and Sp(n) is a subgroup of U(F 2n

λ , hλ),
the requirements of Proposition 6.4 are met and we conclude (since Iλ 6= 0) that W ⊂ Vλ
is symplectic with respect to ωλ, Vλ decomposes hλ-orthogonally as Vλ = Vλ,ξ ⊕ Vλ,−ξ into
two Fλ-irreducible NU(F 2n

λ ,hλ)
(W )-representations that are as real representations isomorphic

to W and which are eigenspaces of the Fλ-linear continuation of Iλ : W → W to Vλ for
the eigenvalues ±ξ ∈ λR\{0}. The involution σλ induces an NSp(n)(W )-equivariant and
Fλ-anti-linear isomorphism between Vλ,ξ and Vλ,−ξ and

NU(Vλ,hλ)(W ) = {(g, ϕ(g)) ∈ U(Vλ,ξ)×U(Vλ,−ξ)},

where the Lie group isomorphism ϕ : U(Vλ,ξ) → U(Vλ,−ξ) is given by ϕ(g)(v) = σλ(gσλ(v))
for all g ∈ U(Vλ,ξ) and v ∈ Vλ,−ξ.

We already stated that the action of NSp(n)(W ) on W and Vλ is orbit equivalent to the
action of NU(Vλ,hλ)(W ) on W and Vλ. As a result the subspaces Vλ,±ξ are two Fλ-irreducible
NSp(n)(W )-representations that are as real representations isomorphic to W and

NSp(n)(W ) = {(g, ϕ(g)) ∈ U(Vλ,ξ, hλ)×U(Vλ,−ξ, hλ)} × Sp(U⊥q).

Note that due to Remark 7.2 the induced representations of NSp(n)(W ) on UIλ,±ξ :=
〈Vλ,±ξ〉H are as quaternionic representations irreducible. We conclude that NSp(n)(W ) acts
transitively on the spheres in W , Fλ-irreducible on Vλ,±ξ and quaternionic irreducibly on
UIλ,±ξ.

If we map Vλ to VFλ,l by an element in Sp(n) as described above, Corollary 6.5 yields that
W lies in the same U(Vλ, hλ)-orbit as WR,l,r,Fλ for some r ∈ (0, 1). A direct calculation shows
l ∼= u(1). The action of l on W is trivial (see Lemma 7.6). �

Let us now assume dimR(χ(H)) ≥ 3. In particular EndNSp(n)(W )(W ) ∼= H. In order to

simplify this case we are not only going to assume that NSp(n)(W ) acts irreducibly on W but
we are going to use the stronger condition that NSp(n)(W ) acts transitively on the spheres in
W . As we noted at the begin of this section this is always the case if NM (W ) acts transitively
on the spheres in W and dimR(W ) > 4. The case dimR(W ) ≤ 4 will be considered later.

Lemma 7.9. Let W be a totally real subspace of Hn of real dimension l with quaternionifica-
tion U := W ⊕Wλ⊕Wµ⊕Wλµ such that NSp(n)(W ) acts transitively on the spheres in W .
We assume EndNSp(n)(W )(W ) ∼= H. Then U = 〈W 〉H decomposes into four isomorphic quater-

nionic irreducible NSp(n)(W )-representations that are as real NSp(n)(W )-representations iso-

morphic to W , NSp(n)(W ) is isomorphic to Sp(W )× Sp(W⊥q) and its action on W is given
by the standard action of Sp(W ) on W . In this case W lies in the same Sp(n)-orbit as

WR,l,z :=

{(
u
uz2
uz3
uz4
0

)
: u ∈ Hl/4

}



22 LISA KNAUSS AND CHRISTIAN MIEBACH

for some z ∈ P, where

P =
{

(z2, z3, z4)
t ∈ (H∗)3 : 〈1, z2, z3, z4〉R = H,

dimR(Im(〈ξ + z2ξz2 + z3ξz3 + z4ξz4 : ξ ∈ H〉R)) ≥ 2} .

Furthermore NSp(n)×Sp(1)(WR,l,z) = NSp(n)(WR,l,z) for all z ∈ P.

Proof. Since EndNSp(n)(W )(W ) is assumed to be isomorphic to H, Theorem [BtD85, Theorem

II.6.7] implies that W ∈ Irr(NSp(n)(W ),R)H. This in turn implies that the complexification
V := C ⊗R W decomposes as C ⊗R W = V1 ⊕ V2 into two complex irreducible NSp(n)(W )-
representations V1, V2, which are as complex NSp(n)(W )-representations isomorphic and as
real NSp(n)(W )-representations isomorphic to W (see Proposition [BtD85, Proposition II.6.6
(iii)]). Moreover, for m ∈ {1, 2}, the quaternionification H ⊗C Vm of Vm decomposes as
H⊗CVm = Um,1⊕Um,2 into two quaternionic irreducibleNSp(n)(W )-representations, which are
as quaternionic NSp(n)(W )-representations isomorphic and as real NSp(n)(W )-representations
isomorphic to W (see Proposition [BtD85, Proposition II.6.6 (ix)]). Overall this shows that
the quaternionification U := H⊗RW = H⊗CV decomposes as U1,1⊕U1,2⊕U2,1⊕U2,2 into four
quaternionic irreducible NSp(n)(W )-representations, which are as quaternionic NSp(n)(W )-
representations isomorphic and as real NSp(n)(W )-representations isomorphic to W .

Let g : W → U1,1 be an NSp(n)(W )-equivariant R-linear isomorphism. Since we assumed
that NSp(n)(W ) acts transitively on the spheres in W , it also acts transitively on the spheres
in U1,1. Furthermore NSp(n)(W ) respect the restriction q|U1,1×U1,1 and therefore acts as a
subgroup of Sp(U1,1) on U1,1. Due to Onishchik’s classification (see Theorem 4.3) there exists
no proper subgroup of Sp(U1,1) that acts transitively on the spheres in U1,1. Therefore the
action of NSp(n)(W ) on U1,1 is the action of Sp(U1,1) on U1,1. If we pull back the quaternionic
structure on U1,1 via g : W → U1,1 to W we obtain a quaternionic structure on W that is
respected by NSp(n)(W ). Moreover the action of NSp(n)(W ) on W is the action of Sp(W ) on

W . Since NSp(n)(W ) leaves W⊥q invariant we conclude NSp(n)(W ) = Sp(W )× Sp(W⊥q).
Since the four quaternionic irreducible NSp(n)(W )-representations U1,1, U1,2, U2,1, U2,2 are

isomorphic, we may assume them to be q-orthogonal and thus W lies in the same Sp(n)-orbit

as Wψ =


 u

ψ2(u)
ψ3(u)
ψ4(u)

0

 : u ∈ Hl/4

, for some ψ2, ψ3, ψ4 ∈ EndSp(l/4)(Hl/4)\{0} ∼= H∗. A direct

calculation then shows that the isomorphisms have to fulfill the constraints given by the set
P in order for Wψ to have the assumed properties. For the technical details of the proof of
the normal form we refer the reader to [Kna16, Proposition 7.42]. �

Remark 7.10. Proposition 6.6 and Theorem 6.7 in [BtD85] imply that Lemmas 7.7, 7.8 and
7.9 cover the cases that the division algebra EndNSp(n)(W )(W ) is isomorphic to R, C or H
respectively.

The following well-known Lemma 7.11 implies that the element λ ∈ Im(H) ∩ Sp(1) in
Proposition 7.4, Lemmas 7.5, 7.8 and 7.9 may be chosen to be i (while µ may be chosen as
j).

For the proof of the following result we refer the reader to [Kna16, Lemma 7.45].

Lemma 7.11. Any ring automorphism ψ of H is inner, i.e., for any ψ there exists a qψ ∈
H\{0} such that ψ(z) = qψzq

−1
ψ . Furthermore qψ can be chosen in Sp(1).

Furthermore the action of any p ∈ Sp(1) on Im(H) ∼= R3 given by pvp−1 is a special
orthogonal transformation, i.e., the map Sp(1)→ SO(3), p 7→ (v 7→ pvp−1) for all v ∈ Im(H)
is a group homomorphism with kernel {±1}.
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At this point we have found all quaternionic and complex subspaces W such that the
normalizer NSp(n)×Sp(1)(W ) acts irreducibly on W and all real subspaces W of Hn such that
NSp(n)(W ) acts transitively on the spheres in W . Furthermore we have shown that for all
such W the normalizer NSp(n)(W ) (and therefore also NSp(n)×Sp(1)(W )) acts transitively on
the connected components of the spheres in W .

The goal of this section is to find all real subspaces W of Hn such that NSp(n)×Sp(1)(W )
acts transitively on the connected components of the spheres in W . If NSp(n)(W ) does not
act irreducibly on W (in particular if dimR(W ) > 1) then L has to act transitively on the
spheres in W forcing dimR(W ) ≤ 4. This is the reason why we will consider the cases
2 ≤ dimR(W ) ≤ 4 from now on. Even though we could assume that L acts transitively on
the spheres in W we rather just assume dimR(W ) ≤ 4 and see what this implies for the L-
action on W . Note that we still assume that W ⊂ Hn is a real subspace such that W 6= Wλ
for all λ ∈ H\R and that

l = {(φ(α), α) ∈ sp(n)× sp(1) : α ∈ π2(Nsp(n)⊕sp(1)(W ))}

for a Lie algebra homomorphism φ : π2(Nsp(n)⊕sp(1)(W )) → sp(n), which is injective by the
assumption N{0}⊕sp(1)(W ) = {0}. If π2(Nsp(n)⊕sp(1)(W )) = sp(1) then the simply connected-
ness of Sp(1) implies that φ lifts to a Lie group homomorphism.

Note that dimR(〈W 〉H) ≤ 4 dimR(W ) and that dimR(〈W 〉H) is divisible by four. Therefore
we have the following cases

dimR(W ) dimH(〈W 〉H)

4 1, 2F, 3F, 4∗

3 1, 2F, 3∗

2 1, 2∗,

where the case dimR(W ) = 4, dimH(〈W 〉H) = 1 and the case dimR(W ) = 2, dimH(〈W 〉H) = 1
are excluded by the assumption W 6= Wλ for all λ ∈ H\R.

The cases ∗ are excluded by Lemma 7.6, while the cases with F are excluded by [Kna16,
Lemma 7.48, Lemma 7.49]).

Hence we only need to consider the case where dimR(W ) = 3 and dimH(〈W 〉H) = 1.

Lemma 7.12. Let dimR(W ) = 3 and dimH(〈W 〉H) = 1. Then W lies in the same Sp(n)-orbit
as WR,3,1 := Im(H)×{0}n−1 and the action of L ∼= Sp(1) on W is isomorphic to the defining

representation of SO(3) on R3 and Nsp(n)(W ) = {0} × sp(W⊥q) acts trivially on W .

Proof. Since L respects the real inner product s, the real 1-dimensional subspace W⊥s∩〈W 〉H
is invariant under the action of L. Let us choose an element v1 ∈W⊥s∩〈W 〉H with q(v1, v1) =
1. Then we can complete v1 to a quaternionic basis of Hn and obtain an element in Sp(n)
that maps WR,3,1 to W . Then

Nsp(n)⊕sp(1)(WR,3,1) =

(A, ξ) ∈ sp(n)⊕ sp(1) : A =

 ξ 0 ... 0
0
... ∗
0


Nsp(n)(WR,3,1) =

{
A ∈ sp(n) : A =

( 0 ... 0
... ∗
0

)}

l =

(A, ξ) ∈ sp(n)⊕ sp(1) : A =

 ξ 0 ... 0
0
... 0
0

 ∼= sp(1).

Now the proof follows from Lemma 7.11. �
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We summarize the work of this section in the following theorem.

Theorem 7.13. Let W be a real subspace of Hn. If NSp(n)×Sp(1)(W ) acts irreducibly on W
then W lies in the same Sp(n)× Sp(1)-orbit as one of the following

WH,l = Hl × {0}n−l, 0 ≤ l ≤ n

WC,l = Cl × {0}n−l, 0 < l ≤ n

WC,2l,t =

{(
z+jw
t(z−jw)

0

)
: z, w ∈ Cl

}
, 0 < l ≤ bn2 c

WR,l = Rl × {0}n−l, 0 < l ≤ n

WR,2l,t,C =
{(

z
tz
0

)
: z ∈ Cl

}
, 0 < l ≤ bn2 c

WR,4l,z =

{(
v
vz2
vz3
vz4
0

)
: v ∈ Hl

}
, 0 < l ≤ bn4 c

WR,3,1 = Im(H)× {0}n−1,

for some t ∈ R>0\{1}, z ∈ P. Furthermore

Nsp(n)⊕sp(1)(WH,l) = (sp(l)⊕ sp(n− l))⊕ sp(1),

Nsp(n)⊕sp(1)(WC,l) = (u(l)⊕ sp(n− l))⊕ u(1),

Nsp(n)⊕sp(1)(WC,2l,t) ∼= (sp(l)⊕ sp(n− 2l))⊕ u(1),

Nsp(n)⊕sp(1)(WR,l) ∼= (so(l)⊕ sp(n− l))⊕ sp(1),

Nsp(n)⊕sp(1)(WR,2l,t,C) ∼= (u(l)⊕ sp(n− 2l))⊕ u(1),

Nsp(n)⊕sp(1)(WR,4l,z) ∼= (sp(l)⊕ sp(n− 4l))⊕ {0},
Nsp(n)⊕sp(1)(WR,3,1) ∼= sp(n− 1)⊕ sp(1).

Proof. The proof for WH,l follows directly from Lemma 7.3. Using Lemma 7.11 the proof for
WC,l and WC,2l,t follows from Corollary 7.5, while the proof for WR,l, WR,2l,t,C and WR,4l,z
follow from Lemmas 7.7, 7.8 and 7.9 respectively. The proof for WR,3,1 follows from Lemma
7.12. �

7.6. Non-reductive spherical subalgebras. In this subsection we describe all non-reduc-
tive spherical algebraic subalgebras of sp(n, 1), up to the action of M . Their unipotent
radicals are of the form W⊥ ⊕ g2α, where W ⊂ gα is one of the subspaces described in
Theorem 7.13. In order to find all possibilities for their maximal compact subalgebras we
apply Onishchik’s Theorem 4.3 to their normalizers and thus obtain (with Remark 4.4) the
following.

Theorem 7.14. Every spherical non-reductive algebraic subalgebra of g = sp(n, 1), n ≥ 2, is
G-conjugate to one in the following list, where bj ⊂ sp(n− 1− j), c ⊂ sp(1) and d ⊂ u(1) are
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arbitrary (under the condition displayed in italic in Remark 5.3 adapted to this situation).

lH ⊕ n lH ⊂ m⊕ a arbitrary

sp(k)⊕ bl ⊕ c⊕ a⊕ nH,l 1 ≤ l ≤ n− 1,

c⊕ b1 ⊕ sp(1)⊕ a⊕ nH,1

u(l)⊕ bl ⊕ d⊕ a⊕ nC,l 1 ≤ l ≤ n− 1

su(l)⊕ bl ⊕ d⊕ a⊕ nC,l 2 ≤ l ≤ n− 1

sp(m)⊕ u(1)⊕ bl ⊕ d⊕ a⊕ nC,l 1 ≤ l ≤ n− 1, l = 2m,m ≥ 2

sp(m)⊕ bl ⊕ d⊕ a⊕ nC,l 1 ≤ l ≤ n− 1, l = 2m,m ≥ 2

sp(l)⊕ b2l ⊕ d⊕ a⊕ nC,2l,t 1 ≤ 2l ≤ n− 1, l = 2m, t ∈ R>0\{1}
so(l)⊕ bl ⊕ c⊕ a⊕ nR,l 1 ≤ l ≤ n− 1

u(m)⊕ bl ⊕ c⊕ a⊕ nR,l 1 ≤ l ≤ n− 1, l = 2m,m ≥ 3

su(m)⊕ bl ⊕ c⊕ a⊕ nR,l 1 ≤ l ≤ n− 1, l = 2m,m ≥ 3

sp(m)⊕ sp(1)⊕ bl ⊕ c⊕ a⊕ nR,l 1 ≤ l ≤ n− 1, l = 4m,m ≥ 2

sp(m)⊕ u(1)⊕ bl ⊕ c⊕ a⊕ nR,l 1 ≤ l ≤ n− 1, l = 4m,m ≥ 1

sp(m)⊕ bl ⊕ c⊕ a⊕ nR,l 1 ≤ l ≤ n− 1, l = 4m,m ≥ 1

so(9)⊕ b16 ⊕ c⊕ a⊕ nR,16

so(7)⊕ b8 ⊕ c⊕ a⊕ nR,8

g2 ⊕ b7 ⊕ c⊕ a⊕ nR,7

u(l)⊕ b2l ⊕ d⊕ a⊕ nR,2l,t,C 2 ≤ 2l ≤ n− 1, t ∈ R>0\{1}
su(l)⊕ b2l ⊕ d⊕ a⊕ nR,2l,t,C 4 ≤ 2l ≤ n− 1, t ∈ R>0\{1}

sp(m)⊕ u(1)⊕ b2l ⊕ d⊕ a⊕ nR,2l,t,C 2 ≤ 2l ≤ n− 1, l = 2m,m ≥ 2, t ∈ R>0\{1}
sp(m)⊕ b2l ⊕ d⊕ a⊕ nR,2l,t,C 2 ≤ 2l ≤ n− 1, l = 2m,m ≥ 2, t ∈ R>0\{1}

sp(l)⊕ b4l ⊕ a⊕ nR,4l,z 2 ≤ 4l ≤ n− 1, z ∈ P
sp(1)⊕ b1 ⊕ a⊕ nR,3,1

Proof. Here we have written nH,l to denote W⊥H,l ⊕ g2α and so on. Note that nR,1 is 1-codi-

mensional and that Nm(nR,1) ∼= sp(n− 2)⊕ sp(1). �

7.7. Reductive spherical subalgebras. In this subsection we classify the reductive spher-
ical subalgebras h = kH ⊕ pH of sp(n, 1) (for n > 1, since sp(1, 1) ∼= so(4, 1)). Since the
K-action on p is essentially the same as the M -action on gα, we may apply again Theo-
rem 7.13 in order to obtain all the candidates for the subspace p⊥H ⊂ p. We use the fact, that
the Lie bracket on p is given by[[(

0 z
zt 0

)
,
(

0 w
wt 0

)]
,
(

0 v
vt 0

)]
=
(

0 (zwt−wzt)v−v(ztw−wtz)
(ztw−wtz)vt−vt(zwt−wzt) 0

)
in order to single out those Lie algebras that fulfill the additional restriction that [pH , pH ] ⊂
kH ⊂ Nk(pH) (see (4.2)) has to hold.

If p⊥H is equal to WC,2l,t or WR,2l,t,C (for some 1 ≤ l ≤ bn2 c and some t ∈ R>0\{1}) or
WR,4l,z (for some 1 ≤ l ≤ bn4 c, z ∈ P) or WR,l for some 0 < l ≤ n or WR,3,1 then h = kH ⊕ pH
cannot be spherical in sp(n, 1) if n > 1, see [Kna16, Lemma 7.55-7.57].

If p⊥H = WC,l for some 0 < l ≤ n, then h = kH ⊕ pH can only be spherical in sp(n, 1) for
n > 1 if l = n. In that case h is K-conjugate to su(n, 1) or u(n, 1), see [Kna16, Lemma 7.54].
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If p⊥H = WH,l for some 0 ≤ l ≤ n, then it is shown in [Kna16, Lemma 7.53] that the only
reductive spherical Lie algebras h = kH ⊕ pH of sp(n, 1) for n > 1 are the following

sp(n)⊕ sp(1), sp(n)⊕ u(1), sp(n)⊕ {0}, l = n

sp(l)⊕ sp(n− l, 1), 0 ≤ l < n

u(1)⊕ sp(n− 1, 1), sp(n− 1, 1).

Hence, combining these results with Proposition 3.1 and Theorem 4.3 we obtain the fol-
lowing list of all spherical reductive algebraic subalgebras of sp(n, 1) up to conjugacy in G.

Theorem 7.15. All spherical, reductive subalgebras h of sp(n, 1) where n > 1 are (up to
conjugation in G) one of the following

sp(n)⊕ sp(1)

sp(n)⊕ u(1)

sp(n)⊕ {0}
sp(l)⊕ sp(n− l, 1) 0 ≤ l < n

u(1)⊕ sp(n− 1, 1)

sp(n− 1, 1)

su(n, 1)

u(n, 1)

According to [Ber57, Table 2], the symmetric subalgebras are sp(l)⊕sp(n−l, 1) for 0 ≤ l < n,
sp(n)⊕ sp(1) and u(n, 1).

8. The exceptional group G = F4

8.1. Reductive spherical subalgebras. We want to classify the spherical reductive al-
gebraic subalgebras h = kH ⊕ pH of g = f4. Using the classification of maximal reductive
subalgebras of g, Krötz and Schlichtkrull have shown that a spherical reductive subalgebra
of g must be contained in a symmetric one, see [KS16a, Lemma 6.2]. According to [Ber57,
Table 2], the symmetric proper subalgebras of f4 are so(9), so(8, 1) and sp(2, 1)⊕ sp(1).

We first determine pH .

Lemma 8.1. Let Gσ = Kσ exp(pσ) be a symmetric subgroup of G (defined as the fixed point
set of an involution σ that commutes with the Cartan involution) and H = KH exp(pH) a
subgroup of Gσ. The adjoint KH-action on p can only be transitive on the spheres in p⊥H ⊂ p
if pH = pσ.

Proof. Since h is a subalgebra of gσ, pH lies in pσ which implies that p⊥H ⊂ p = pσ ⊕ p−σ is

the direct sum of p−σ and p⊥H ∩ pσ. Since the adjoint kσ action on p stabilizes pσ and p−σ,

KH can only act irreducibly on p⊥H ⊂ p if pH = pσ. �

If gσ is simple and non-compact, then we have kσ = [pσ, pσ]. We are now in the position
to prove the main statement of this section.
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Theorem 8.2. Up to conjugation by an element of G, the following table exhausts the spher-
ical, reductive subalgebras h = kH ⊕ pH of f4.

f4

so(9)

so(8, 1)

sp(2, 1)

sp(2, 1)⊕ u(1)

sp(2, 1)⊕ sp(1)

According to [Ber57, Table 2], the symmetric ones are f4, so(9), so(8, 1) and sp(2, 1)⊕ sp(1).

Proof. Let us first consider the case that gσ equals f4 or so(8, 1). Since pH = pσ by Lemma 8.1
and gσ is simple non-compact, we conclude that h has to contain kσ = [pσ, pσ]. Hence h = gσ

is the only spherical subalgebra of g that lies in gσ in these two cases.
Let us now consider the case that h ⊂ so(9). In this case h = kH and p⊥H = p ∼= R16. We

are therefore looking for connected subgroups of Spin(9) that act transitively on the spheres
in R16 ∼= p with respect to the adjoint action. Due to Theorem 4.3 there are none except for
Spin(9) itself. This gives h = so(9).

If gσ = sp(2, 1)⊕ sp(1) then kσ = sp(2)⊕ sp(1)⊕ sp(1) and dimR(pσ) = 8. Since pH = pσ

by Lemma 8.1 and sp(2, 1) is simple non-compact, h ⊂ gσ has to contain sp(2, 1). Hence
h = sp(2, 1)⊕ b, where b is a subalgebra of sp(1). Note that we have

sp(2)⊕ sp(1) ⊂ kH ⊂ sp(2)⊕ sp(1)⊕ sp(1) = kσ.

The condition for H to be spherical in G is that KH acts transitively on the spheres in
p⊥H
∼= p−σ ∼= R8.

Let θ denote a Cartan involution on g that commutes with σ. Then θσ is another involution
on g defining the Lie algebra gθσ = kσ ⊕ p−σ as fixed point set. Note that gθσ has real rank
1 since g has real rank 1. Therefore (Kσ)◦ = Sp(2) × Sp(1) × Sp(1) acts transitively on
the spheres in p−σ. In particular the adjoint Kσ-representation on p−σ is irreducible. It is
well known that then p−σ decomposes into a tensor product of three D-vector spaces that
are irreducible representations for Sp(2), Sp(1) and Sp(1) respectively, where D ∈ {R,C,H}.
Since the adjoint Kσ-representation on p−σ is not only irreducible but transitive on the
spheres this tensor product has two factors that are equal to D. Using again the fact that
Kσ acts transitively on the sphere S7 ∈ R8 ∼= p−σ, and the fact that dimR Sp(1) = 3 < 7 =
dimR S

7 we obtain the following three possibilities to decompose p−σ

p−σ ∼=


R8 ⊗ R⊗ R,
C4 ⊗ C⊗ C,
H2 ⊗H⊗H.

Note that in each case Sp(2) acts by the standard action on p−σ ∼= R8 ∼= C4 ∼= H2. Hence,
already Sp(2)×{e}× {e} acts transitively on the spheres in p⊥H . This implies that b ⊂ sp(1)
is arbitrary. �

8.2. Non-reductive spherical subalgebras. We start by analyzing the structure of a min-
imal parabolic subgroup Q0 = MAN of G = F4. According to [Ara62, p. 32-33] we have that
n = gα ⊕ g2α is the restricted root space decomposition, where dim gα = 8 and dim g2α = 7.
Due to Corollary 3.3 we have nH = W⊥ ⊕ g2α where W ⊂ gα is a real subspace such that
MH acts transitively on the spheres in W .
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First we are going to identify the M -representation on gα. Note that it has to be irreducible
due to [Wol84, Chapter 8.13].

Lemma 8.3. The M -representation on gα is induced by the embedding ϕ : so(7) ↪→ so(8)
given by

0 −a −b −c −d −e −f
a 0 −g −h −i −j −k
b g 0 −l −m −n −p
c h l 0 −q −r −s
d i m q 0 −t −u
e j n r t 0 −v
f k p s u v 0

 7→


0 −a+s−t −b−r−u −c−k+n −d+j+p −e−i−l −f+h−m g+q−v
a−s+t 0 −g+q−v f−h−m −e−i+l d−j+p −c−k−n −b+r+u
b+r+u g−q+v 0 −e+i−l −f−h−m c−k−n d+j−p a+s−t
c+k−n −f+h+m e−i+l 0 g−q−v −b−r+u a−s−t −d−j−p
d−j−p e+i−l f+h+m −g+q+v 0 −a−s−t −b+r−u c−k+n
e+i+l −d+j−p −c+k+n b+r−u a+s+t 0 −g−q−v f+h−m
f−h+m c+k+n −d−j+p −a+s+t b−r+u g+q+v 0 −e+i+l
−g−q+v b−r−u −a−s+t d+j+p −c+k−n −f−h+m e−i−l 0

 .

Proof. The embedding from Spin(7) into SO(8) is described in [Oni94, Chapter 1.5.3] as
follows. If 1 ≤ i < j ≤ 7, then (−Eij + Eji) forms a basis of so(7), where Eij is the matrix
with a 1 in line i and column j and zeros everywhere else.

We take the standard orthogonal basis {e0, e1, . . . , e7} of octonions over R with the follow-
ing multiplication table.

× e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

Note that the space of pure imaginary octonions is spanned by {e1, . . . , e7}. The Lie algebra
spin(7) is spanned by elements eiej with 1 ≤ i < j ≤ 7. The map 2(−Eij + Eji) 7→ eiej for
all 1 ≤ i < j ≤ 7 is an isomorphism from so(7) to spin(7). The map λ : eiej 7→ (x 7→ ei(ejx))
is an embedding of spin(7) into so(8), where we choose the basis {e1, . . . , e7, e0} of R8. Direct
calculation with the multiplication table shows that the map λ : spin(7) = so(7) → so(8) is
equal to the map ϕ from the statement of this proposition.

Note that the induced action of Spin(7) on R8 is transitive on the spheres. This follows
since λ(spin(7))(e0) = Te0(Spin(7) ·e0) coincides (by the multiplication table) with the purely
imaginary octonions, which equals Te0(S7). Therefore the orbit of Spin(7) is open in S7.
Since Spin(7) and hence also its orbits are compact, it coincides with S7. In particular, this
representation is irreducible.

In order to finish the proof we note that a direct application of the Weyl Dimension formula
(see e.g. [Kna02, Chapter V.6]) shows that the irreducible so(7)-representation in dimension
8 is unique up to isomorphism. For the complete argument we refer the reader to [Kna16,
p. 78]. �

Now that we identified the M -representation on gα (see Lemma 8.3) we want to give a
normal form for the subspace nH ⊂ n. Before doing so we state the following remark.
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Remark 8.4. Recall that so(4) = so(3) ⊕ so(3). Moreover, both so(3) factors are conjugate
under an element in O(4). The maps(

0 −a −b c
a 0 −c −b
b c 0 a
−c b −a 0

)
7→
(

ia −b−ic
b−ic −ia

)
7→ ia+ j(b− ic).

define the Lie algebra isomorphisms from the ideal so(3) in so(4) to su(2) and sp(1).

Lemma 8.5. Let Spin(7) act irreducibly on R8 and W be an l-dimensional subspace. Then
W lies in the same Spin(7)-orbit as Rl × {0}8−l or as the real span of e1, e2, e3, xe4 + e8 for
some x ∈ R, where (e1, . . . , e8) is the standard basis of R8. The latter case can only occur if
l = 4.

Proof. The proof of Lemma 8.3 shows that Spin(7) acts transitively on the spheres in R8. In
particular all its stabilizers are conjugate to each other. The stabilizer of Spin(7) in e8 := e0
is equal to G2 ([Oni94, Chapter 1 §5]). Due to Onishchik’s classification ([Oni94, Table 8])
the group G2 acts transitively on the spheres in R7 and has stabilizer equal to SU(3). The
group SU(3) acts transitively on the sphere S5 ⊂ R6 ∼= C3 but its isotropy in one point (being
isomorphic to SU(2)) acts reducibly on R5 ∼= (iR)× C2.

Now let (v1, . . . , vl) be an orthonormal basis of W . If l ≤ 3 we can map v1 to e1 with
Spin(7), v2 to e2 with G2 and v3 to e3 with SU(3).

If l > 4 the orthogonal complement of W has dimension less or equal to 3. By the previous
argument we can map the orthogonal complement of W to {0}l × R8−l, thus mapping W to
the span of e1, . . . , el.

Now let l = 4. As before we use Spin(7), G2 and SU(3) to map v1 to e1, v2 to e2 and v3
to e3. Recall that the action of Spin(7) on R8 is induced by the map ϕ : so(7) → so(8). A
direct calculation shows that

(
(ϕ(so(7))e1)e2

)
e3

=




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −v u −t 0
0 0 0 v 0 −t −u 0
0 0 0 −u t 0 −v 0
0 0 0 t u v 0 0
0 0 0 0 0 0 0 0

 : t, u, v ∈ R


R.8.4∼= so(3).

Therefore
(
(ϕ(so(7))e1)e2

)
e3
∼= so(3) ∼= su(2) acts trivially on Re8 and transitively on the

spheres in {0}3 × R4 × {0}.
If v4 is an element of {0}3×R4×{0} then W lies in the same Spin(7)-orbit as the span of

e1, . . . , e4.
If v4 is in {0}3 × R5\({0}3 × R4 × {0}) we can use the described SU(2)-action to map it

to ae4 + be8, where a ∈ R and b ∈ R\{0}. The assumption follows since 1
b (ae4 + be8) =

a
b e4 + e8 =: xe4 + e8 holds for some x ∈ R. �

Now we arrive at the main result of this section. We assume nH = W ⊕ g2α, where
W is a real subspace of gα. Due to Lemma 8.5 we may assume (after conjugation in M)
that nH = nl := (Rl × {0}8−l) ⊕ g2α or nH = n4,x := 〈e1, e2, e3, xe4 + e8〉R ⊕ g2α for some
x ∈ R, where the latter case can only occur if dimR(W ) = 4. We consider the map ϕ :
so(7) ↪→ so(8) defined in Lemma 8.3. Its restriction to Nm(W ) ⊂ m = so(7) yields a map
ϕ|Nm(W ) : Nm(W )→ Nso(8)(W ) and the action of NM (W ) on W⊥ is induced by the standard

action of ϕ(Nm(W )) ⊂ Nso(8)(W ) on W⊥.

Theorem 8.6. Every non-reductive spherical algebraic subalgebra of f4 is G-conjugate to one
in the following table where l1 ⊂ sp(1) and l2 ( sp(1) are arbitrary (under the condition that
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the maximal compact subalgebra is a Lie algebra, see Remark 5.3).

lH ⊕ n lH ⊂ m⊕ a arbitrary

so(7)⊕ a⊕ n0

g2 ⊕ a⊕ n1

u(3)⊕ a⊕ n2

su(3)⊕ a⊕ n2

so(4)⊕ a⊕ nl l = 4, 5

sp(1)⊕ l2 ⊕ a⊕ nl l = 4, 5

l2 ⊕ sp(1)⊕ a⊕ nl l = 4

l1 ⊕ so(4)⊕ a⊕ n4,0

l1 ⊕ sp(1)⊕ l2 ⊕ a⊕ n4,0

l1 ⊕ l2 ⊕ sp(1)⊕ a⊕ n4,0

so(4)⊕ a⊕ n4,x x 6= 0

sp(1)⊕ l2 ⊕ a⊕ n4,x x 6= 0

l2 ⊕ sp(1)⊕ a⊕ n4,x x 6= 0

u(1)⊕ k2 ⊕ a⊕ n6

m′ ⊕ a⊕ n7 m′ ⊂ g2 = Nm(n7) arbitrary

where k2 is isomorphic to {0}, u(1)k for some 1 ≤ k ≤ 2, su(2)⊕ l1 or su(3).

Proof. We assume nH = W ⊕ g2α. Lemma 8.5 shows that W may (after conjugation in M)
be chosen as Rl × {0}8−l or as the real span of e1, e2, e3, xe4 + e8 if dimR(W ) = 4, where
x ∈ R. The case that W is the real span of e1, e2, e3, xe4 + e8 will be considered at the end
of this proof. Due to Proposition 3.2 it suffices to consider the case dimW = l < 8.

If W = Rl × {0}8−l we have

nH = nl := (Rl × {0}8−l)⊕ g2α,

where 0 ≤ l ≤ 7 is the dimension of nH ∩ gα. A direct calculation yields

NM (nl) =
{
A ∈ Spin(7) : ϕ(A) =

(
A1 0
0 A2

)
, A1 ∈ Rl×l, A2 ∈ R(8−l)×(8−l)

}
and the action of NM (nl) on n⊥l = {0}l × R8−l is given by

ϕ(A) · ( 0
v ) =

(
A1 0
0 A2

)
· ( 0

v ) =
(

0
A2v

)
.

Onishchik’s classification Theorem 4.3 shows that the subgroup MH of NM (nl) can only act
transitively on the spheres in n⊥l if the projection of ϕ(mH) ⊂ so(l)⊕ so(8− l) onto so(8− l)
is one of the following Lie algebras, where l2 ( sp(1) is arbitrary.

l
0 so(8), so(7), u(4), su(4), sp(2)⊕ u(1), sp(2)
1 so(7), g2
2 so(6), u(3), su(3)
3 so(5)
4 so(4), sp(1)⊕ l2, l2 ⊕ sp(1)
5 so(3)
6 so(2)
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Since ϕ(mH) ⊂ ϕ(Nm(nl)) holds, our next step is to take each of the Lie algebras in the table
above and check if it is contained in the projection onto so(8− l) of

ϕ(Nm(nl)) =
{(

A1 0
0 A2

)
∈ ϕ(so(7)) : A1 ∈ Rl×l, A2 ∈ R(8−l)×(8−l)

}
.

We start with l = 0. Note that this implies nH = g2α and Nm(n0) = m = so(7). It is clear that
so(8) is not contained in ϕ(so(7)) ∼= so(7), since the dimension of so(7) is smaller than the
dimension of so(8). Due to Onishchik’s classification Theorem 4.3 there exists no subgroup of
Spin(7) that acts transitively on the spheres in R8. In particular Spin(7) is the only subgroup
of ϕ(NM (n0)) ∼= Spin(7) that acts transitively on the spheres in n (with respect to the action
defined by ϕ).

Now let l = 1. Since G2 = (Spin(7))e0 (with respect to the action defined by ϕ, i.e.
e0 = e8) it is clear that g2 is contained in ϕ(Nm(n1)) ∼= g2. The dimension dim(ϕ(Nm(n1))) =
dim(g2) = 14 is smaller than the dimension of so(7). Therefore the projection of ϕ(Nm(n1))
onto so(7) can not contain so(7).

If l = 2 then

ϕ(Nm(n2)) =




0 a−s+t 0 0 0 0 0 0
−a+s−t 0 0 0 0 0 0 0

0 0 0 i −h −k j a
0 0 −i 0 −v u s −j
0 0 h v 0 t −u −k
0 0 k −u −t 0 −v h
0 0 −j −s u v 0 i
0 0 −a j k −h −i 0

 : a, h, i, j, k, s, t, u, v ∈ R

 .

In particular its projection onto so(6) cannot contain so(6) for dimensional reasons. If we

conjugate its projection onto so(6) with the matrix

 1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0

 in O(6) we obtain




0 a k −h j i
−a 0 h k −i j
−k −h 0 t v u
h −k −t 0 −u v
−j i −v u 0 −s
−i −j −u −v s 0

 : a, h, i, j, k, s, t, u, v ∈ R

 ,

which is the natural embedding of u(3) into so(6). Note that this implies Nm(n2) ∼= u(3).
Since su(3) is a subalgebra of u(3) this shows that the projection of ϕ(Nm(n2)) onto so(6)
contains u(3) and su(3).

If l = 3 the projection of

ϕ(Nm(n3)) =




0 s−t −r−u 0 0 0 0 0
−s+t 0 q−v 0 0 0 0 0
r+u −q+v 0 0 0 0 0 0
0 0 0 0 −q −r −s 0
0 0 0 q 0 −t −u 0
0 0 0 r t 0 −v 0
0 0 0 s u v 0 0
0 0 0 0 0 0 0 0

 : q, r, s, t, u, v ∈ R

 .

onto so(5) does not contain so(5).
If l = 4 the projection of

ϕ(Nm(n4)) =




0 −t −u n 0 0 0 0
t 0 −v −m 0 0 0 0
u v 0 i 0 0 0 0
−n m −i 0 0 0 0 0
0 0 0 0 0 −t −u n
0 0 0 0 t 0 −v −m
0 0 0 0 u v 0 i
0 0 0 0 −n m −i 0

 : i,m, n, t, u, v ∈ R

 ∼= so(4)

onto so(4) is a Lie algebra isomorphism. This shows furthermore that the projection of
ϕ(Nm(n4)) onto so(4) also contains sp(1)⊕ l2 and l2 ⊕ sp(1), where l2 ( sp(1) is arbitrary.
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If l = 5 the projection of

ϕ(Nm(n5)) =




0 0 0 0 0 0 0 0
0 0 −g −m l 0 0 0
0 g 0 i −h 0 0 0
0 m −i 0 −q 0 0 0
0 −l h q 0 0 0 0
0 0 0 0 0 0 −g−q h−m
0 0 0 0 0 g+q 0 i+l
0 0 0 0 0 −h+m −i−l 0

 : g, h, i, l,m, q ∈ R


∼= so(4)

onto so(3) is surjective. The projection of f1(so(3)) ⊂ so(4) ∼= ϕ(Nm(n5)) (i.e., m = −h, i = l,
g = q) onto so(3) is still surjective, while the projection of f2(so(3)) ⊂ so(4) ∼= ϕ(Nm(n5))
(i.e., m = h, i = −l, g = −q) onto so(3) equals {0}. Therefore mH is isomorphic to so(4) or
sp(1)⊕ l2 for arbitrary l2 ( sp(1) in this case.

If l = 6 the projection of

ϕ(Nm(n6)) =




0 −a −b −c −d −e 0 0
a 0 −g −h −w d 0 0
b g 0 −l −h c 0 0
c h l 0 g −b 0 0
d w h −g 0 −a 0 0
e −d −c b a 0 0 0
0 0 0 0 0 0 0 e−w−l
0 0 0 0 0 0 −e+w+l 0

 : a, b, c, d, e, g, h, l, w ∈ R


onto so(2) is surjective. A direct calculation shows furthermore that

Ad


1

1
−1

−1
1

1
1
1

 (ϕ(Nm(n6))) =




0 −e c b −d −a 0 0
e 0 −b c a −d 0 0
−c b 0 l −g −h 0 0
−b −c −l 0 h −g 0 0
d −a g −h 0 w 0 0
a d h g −w 0 0 0
0 0 0 0 0 0 0 e−w−l
0 0 0 0 0 0 −e+w+l 0

 ∈ so(8)


∼=

{(
ie c−ib −d+ia 0
−c−ib −il −g+ih 0
d+ia g+ih −iw 0
0 0 0 −ie+il+iw

)
∈ u(4)

}
=
{(

A 0
0 −Tr(A)

)
∈ u(4) : A ∈ u(3)

}
∼= u(3)

holds. Therefore mH is any subalgebra of u(3) that does not lie in su(3). If we denote
the projection u(3) → Z(u(3)) = u(1) by π then its restriction to mH is surjective. The
kernel kerπ|mH =: k2 is an ideal in mH and equals mH ∩ su(3). We obtain that the reductive
subalgebra mH of u(3) decomposes as mH = k1 ⊕ k2, where k1 ∼= u(1). Any subalgebra of
su(3) has at most dimension 8 and is at most of rank 2. The simple algebras of rank 1 and
2 are su(2) ∼= so(3) = sp(1), su(3), so(5) and g2. Since dimR(so(5)) = 10 and dimR(g2) = 14
they can not be subalgebras of k2. We therefore obtain the following list of possibilities for
mH = k1 ⊕ k2 up to isomorphism:

u(1), u(1)⊕ u(1), u(1)⊕ u(1)⊕ u(1)

u(1)⊕ su(2), u(1)⊕ u(1)⊕ su(2), u(1)⊕ su(2)⊕ su(2),

u(1)⊕ su(3),

i.e., mH is isomorphic to u(1)k, u(2)⊕ l1 or u(3), where 1 ≤ k ≤ 3 and l1 ⊂ su(2) ∼= sp(1) is
arbitrary.

If l = 7 then n7 has codimension 1 in n. Since Nm(n7) = Nm(n⊥7 ) and n⊥7 = Re8 we obtain
Nm(n7) = Nm(Re8) = g2. Due to Proposition 3.2 the subalgebra mH ⊂ Nm(n7) = g2 is
arbitrary in this case.
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To summarize, we have seen that if h is a spherical algebraic subalgebra of g then mH has
to be conjugate to one of the following, where l1 ⊂ sp(1) and l2 ( sp(1) are arbitrary.

l mH

0 so(7)
1 g2,
2 u(3), su(3)
4 so(4), sp(1)⊕ l2, l2 ⊂ sp(1)
5 so(4), sp(1)⊕ l2
6 u(1)⊕ k2
7 any subalgebra of g2

and k2 is isomorphic to {0}, u(1)k where 1 ≤ k ≤ 2, su(2)⊕l1 or su(3). Now let us consider the
case that nH = n4,x, i.e., nH = W⊕g2α and W ⊂ gα = R8 is the real span of e1, e2, e3, xe4+e8
for some x ∈ R. Then n⊥4,x ⊂ gα is the real span of e5, e6, e7, e4 − xe8 and

Nso(8)(W ) =




0 ∗ ∗ −v1 0 0 0 −w1
∗ 0 ∗ −v2 0 0 0 −w2
∗ ∗ 0 −v3 0 0 0 −w3
v1 v2 v3 0 z1 z2 z3 0
0 0 0 −z1 0 ∗ ∗ −y1
0 0 0 −z2 ∗ 0 ∗ −y2
0 0 0 −z3 ∗ ∗ 0 −y3
w1 w2 w3 0 y1 y2 y3 0

 ∈ so(8), vi = xwi,−xzi = yi ∀ 1 ≤ i ≤ 3


holds. A direct calculation shows

Nm(n4,0) =




0 −a −b 0 0 0 0
a 0 −g 0 0 0 0
b g 0 0 0 0 0
0 0 0 0 −q −r −s
0 0 0 q 0 −t −u
0 0 0 r t 0 −v
0 0 0 s u v 0

 : a, b, g, q, r, s, t, u, v ∈ R

 ∼= so(3)⊕ so(4)

and

Nm(n4,x 6=0) =





0 −a −b 0 0
x
2 (a−t)

x
2 (b−u)

a 0 −g 0 −x2 (a−t) 0
x
2 (g−v)

b g 0 0 −x2 (b−u) −
x
2 (g−v) 0

0 0 0 0 0 0 0
0

x
2 (a−t)

x
2 (b−u) 0 0 −t −u

−x2 (a−t) 0
x
2 (g−v) 0 t 0 −v

−x2 (b−u)
x
2 (g−v) 0 0 u v 0


: a, b, g, t, u, v ∈ R


in the case that x 6= 0. In order to understand the Lie algebra structure of Nm(n4,x 6=0) and

the action of Nm(n4,x) on n⊥4,x = W⊥ ⊂ R8 for arbitrary x we calculate the image of Nm(n4,x)
under ϕ.

ϕ(Nm(n4,x)) =






0 a b 0 0 0 0 c+d−i
−a 0 c 0 0 0 0 −b+e+h
−b −c 0 0 0 0 0 a+f−g
0 0 0 0 d e f 0
0 0 0 −d 0 g h 0
0 0 0 −e −g 0 i 0
0 0 0 −f −h −i 0 0

−c−d+i b−e−h −a−f+g 0 0 0 0 0

 ∈ so(8)

 , x = 0,




0 d e xa 0 0 0 a
−d 0 f xb 0 0 0 b
−e −f 0 xc 0 0 0 c
−xa −xb −xc 0 a b c 0
0 0 0 −a 0 d e xa
0 0 0 −b −d 0 f xb
0 0 0 −c −e −f 0 xc
−a −b −c 0 −xa −xb −xc 0

 : a, b, c, d, e, f ∈ R

 , x 6= 0.
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Let π denote the projection of Nso(8)(W ) to so(W⊥) ∼= so(4) given by
0 ∗ ∗ −xg 0 0 0 −g
∗ 0 ∗ −xh 0 0 0 −h
∗ ∗ 0 −xj 0 0 0 −j
xg xh xj 0 a b c 0
0 0 0 −a 0 d e ax
0 0 0 −b −d 0 f bx
0 0 0 −c −e −f 0 cx
g h j 0 −ax −bx −cx 0

 7→


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 a b c 0
0 0 0 −a 0 d e ax
0 0 0 −b −d 0 f bx
0 0 0 −c −e −f 0 cx
0 0 0 0 −ax −bx −cx 0

 .

Then its restriction π|ϕ(Nm(n4,x)) : ϕ(Nm(n4,x))→ so(W⊥) ∼= so(4) is a surjective Lie algebra

homomorphism which is an isomorphism if x 6= 0. This implies that the action of Nm(n4,x)

on W⊥ ∼= R4 is the standard action of so(4) on R4. Hence NM (n4,x) acts transitively on

the spheres in W⊥ and the only proper subgroups of NM (n4,x) that act transitively on the

spheres in W⊥ have Lie algebras that lie in the preimage(
π|ϕ(Nm(n4,x))

)−1
(sp(1)⊕ l2︸ ︷︷ ︸
⊂so(4)

) or
(
π|ϕ(Nm(n4,x))

)−1
(l2 ⊕ sp(1)︸ ︷︷ ︸
⊂so(4)

),

where l2 ⊂ sp(1) is arbitrary. �
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[KS16a] Bernhard Krötz and Henrik Schlichtkrull, Finite orbit decomposition of real flag manifolds, J. Eur.
Math. Soc. (JEMS) 18 (2016), no. 6, 1391–1403.

[KS16b] , Multiplicity bounds and the subrepresentation theorem for real spherical spaces, Trans.
Amer. Math. Soc. 368 (2016), no. 4, 2749–2762.

[Mat79] Toshihiko Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic
subgroups, J. Math. Soc. Japan 31 (1979), no. 2, 331–357.

[MS43] Deane Montgomery and Hans Samelson, Transformation groups of spheres, Ann. of Math. (2) 44
(1943), 454–470.
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