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Singular Random Signals
Bernard Picinbono, Fellow, IEEE, and Jean-Yves Tourneret

Abstract—Singular random signals are characterized by the fact
that their values at each time are singular random variables, which
means that their distribution functions are continuous but with a
derivative almost everywhere equal to zero. Such random variables
are usually considered as without interest in engineering or signal
processing problems. The purpose of this paper is to show that very
simple signals can be singular. This is especially the case for autore-
gressive moving average (ARMA) signals defined by white noise
taking only discrete values and filters with poles located in a circle
of singularity introduced in this paper. After giving the origin of
singularity and analyzing its relationships with fractal properties,
various simulations highlighting this structure will be presented.

Index Terms—ARMA models, fractals, stochastic signals.

I. INTRODUCTION

A random variable (RV) is said to be singular if its dis-
tribution function (DF) is continuous but with a

derivative almost everywhere equal to zero. Thus, there is nei-
ther a probability density function (PDF) nor a probability mass
at some points. Similarly, a discrete-time random signal ,
integer is singular if, for each , the RV is singular.

The existence of singular RVs is noted in more mathemati-
cally oriented books [1, p. 9] [2]. In the signal processing com-
munity, singular RVs are often considered as mathematical cu-
riosities either ignored, as in [3] and [4], or presented with the
comment that they are not of any practical interest [5].

However, it is shown in [2] that if is a symmetric Bernoulli
white noise (SBWN), which means a sequence of independent
and identically distributed (IID) RVs taking only the values
with the same probabilities, then the RV is
singular for . It is the simplest example of a singular RV
and appears often in signal theory. Indeed, it describes the values
of an autoregressive signal of order one [AR(1)] generated by
one of the simplest white noises. This shows that singular RVs
are not at all exceptional. This point has already been noted in
[6] and [7].

The use of discrete-valued signals is very common in com-
munication problems. For example, in binary communications,
the input takes only two values, and if some conditions on the
channel are fulfilled, the transmitted signal can be singular. In
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this case, the calculation of the probability of error requires spe-
cific attention [7].

In this paper, we will show that singularity of autoregressive
moving average (ARMA) signals is the result of a combination
of two points: discrete-valued inputs and some properties of the
poles of the system. More precisely, we will show that singu-
larity results from the pole location inside a circle called the
circle of singularity. It is the cornerstone of the discussion of
singularity, as is the unit circle for stability. After introducing
the basic theory of the problem, we will present various com-
puter simulations in order to highlight a phenomenon widely
ignored up to now.

II. THEORETICAL APPROACHES

A. Singularity

Let be a discrete-valued WN or a sequence of IID RVs
taking distinct possible values. The simplest example is

the BWN, where . Applying this noise at the input of a
causal filter of impulse response (IR) , we obtain the output

(1)

In the case of an infinite IR filter, we assume that

(2)

which means that the filter defined by is stable.
The point that the input WN is discrete implies the so-called

purity theorem [2, p. 64]. It states that the RV defined by (1)
is either continuous, which means that its DF is absolutely con-
tinuous, or discrete, which means that its DF is a step function,
or singular, as defined at the beginning.

Consider the exponential causal filter for which . It
is related to the recursion defining an AR(1)
signal. If is an SBWN, we have the following results [2],
[8]: If , is singular, if , is uniformly
distributed in the interval , and for almost all values of

satisfying , is continuous. Note that there exist
some values of , such that is singular [8].

Our aim is to extend this kind of result to more general dis-
crete-valued WNs or filters and, especially, to dynamical
filters defined by their poles and zeros and introducing ARMA
signals.

For this purpose, let us first recall some notations introduced
in [2]. The spectrum of the DF of the RV is the set
of all the points of variation of this function, and its the
Lebesgue measure. If , the RV cannot be contin-
uous and is thus either discrete or singular. However, it can be
shown by a reasoning beyond the scope of this paper [2, p. 66]



that it cannot be discrete. Thus, the singularity is characterized
by the relation .

In order to study this measure, it is appropriate to introduce
the quantity

(3)

The most common result to characterize a singularity is the fol-
lowing one.

Theorem 1: If the input is an SBWN and if
for all , then

(4)

It is given without proof in [2, p. 66]. Let us present some con-
sequences of this theorem.

1) As , the condition can also
be written as .

2) As and , this implies that
or . For the IR , we

have and . Thus, the condition
yields . It is easy to verify that this

implies , . Therefore, (4) can be
applied and, because , this yields
and the singularity of .

However, this theorem is often insufficient to ensure singu-
larity. First , it is valid only for SBWN, which is a strong limi-
tation. Second, it introduces in many cases a domain of singu-
larity that is too small. Third, for ARMA signals discussed in
this paper, it is often impossible to calculate explicitly of (3).
Therefore, a more general condition is required, and for this,
instead of having the exact value of , it is sufficient to
calculate an upper bound of this measure. This is the purpose of
the following proposition.

Theorem 2: Let be the number of distinct possible values of
the discrete IID random variables . If the filter with impulse
response is stable, which means that

, then the random variable is singular.
Proof: Let be the greatest possible value of .

The random partial sum takes at the maximum
distinct values . The possible values of the RV are

, where is one of the possible values of .
They belong to an interval of measure smaller than .
As there are intervals at the maximum, the possible
values of belong to an interval of measure smaller than

. Outside this interval, the DF of cannot vary.
Thus, . As this is valid for any ,
satisfies . However, as ,

, where is the rest of the series of the general
term . This series is convergent because of the stability
assumption. Thus, the rest of it tends to 0, ,
and , which yields the singularity of . Let us
present some comments and consequences of this theorem.

1) Consider again the case of the IR . The condition
of Theorem 2 is satisfied if . For , we obtain,
as with Theorem 1, , but this is even valid for a
nonsymmetric BWN.

2) In our simulations, we will consider the filter with the IR
. Simple algebra yields ,

where and are constants. Therefore,
as soon as or for . Note that
Theorem 1 would require the more restrictive condition

.
3) Consider now the case of real filters with complex poles,

which is especially important in signal processing, as, for
example, the filter defined by with the
two poles . The sufficient condition for singu-
larity given by Theorem 2 is . It is the same as
for the exponential filter . On the other hand, it is
difficult to calculate given by (3).

4) It is obvious that Theorem 2, which requires only the
knowledge of the poles of the filter, is much more adapted
to ARMA signals than Theorem 1. Indeed, the latter re-
quires the calculation of the sums from the poles of
the IR, which is often a very complicated task. However,
there is no hierarchy between the two theorems. There are
a few examples where the conditions of validity of The-
orem 1 are less restrictive than those of Theorem 2.

5) Circle of singularity: Consider an ARMA signal gen-
erated by a -valued white noise filtered by a stable dy-
namical filter, which means that all the poles of its transfer
function (TF) are located inside the unit circle called
the circle of stability. Consider now the filter with IR

. Its TF is obviously . Thus,
with any pole of , one can associate the pole
of . The stability condition of Theorem 2 is ensured
if or if all the poles of are inside the circle
with center 0 and radius . By analogy, this circle is
called the circle of singularity.

However, note that while the location of the poles inside the
unit circle is a necessary and sufficient condition of stability,
the location of these poles inside the circle of singularity is only
a sufficient condition ensuring singularity. Note also that The-
orem 2 is an intrinsic theorem. This means that it is independent
of the possible values of the IID RVs and of their probabili-
ties but depends only on the number of their possible values.

B. Fractal Properties

Consider the random partial sum , where
is an SBWN. This sum takes values defined by

, where . Furthermore, is symmetric
because to each value , it is possible to associate the value

by simply changing the signs of each . Finally, we can
assume in all this section that . Indeed, as , the
possible values are the same if we replace by .

To each value , it is possible to associate two values
defined by . By repeating this procedure, we can con-
struct a tree where its nodes are the positive values of the RV

, as represented in Fig. 1. In this figure, we have only pre-
sented the nodes generated by . There is, of course, a sym-
metric tree starting from . Let us present the consequences
on this tree of the conditions of Theorem 1. The fundamental
point is that the relation implies that there is no
crossing of the branches of the tree.



Fig. 1. Tree of successive possible values v .

Consider first the branches starting from . There is no
crossing if the nodes generated by are all positive, which
implies by symmetry that the nodes generated by are all
negative. This is realized if , which is the condition
of Theorem 1 for . The same procedure can be applied
starting from any node of the tree. There is no crossing of
branches of the tree coming from an arbitrary node if

, which yields the condition
of Theorem 1.

However, singularity does not require a noncrossing property.
To verify this point, consider again the IR , and
suppose that is chosen in such a way that there no such that

. In the tree of Fig. 1, consider an arbitrary node
and the branches starting from this node. There is crossing of
these branches at the step if or

(5)

In order to avoid any crossing of this type in the tree, we must
have for any . This condition can for some values of

introduce a value of much smaller than , ensuring
the singularity. For example, for , the noncrossing
property requires . This means that for all the values
satisfying , there is simultaneously singularity
and crossing. As the conditions of Theorem 1 imply noncrossing
property, we deduce that Theorem 1 cannot be used for these
values of . This clearly shows that the noncrossing property is
not a necessary condition of singularity.

Note, finally, that the noncrossing property is directly con-
nected with the construction of Cantor sets, and this means that
Cantor-types distributions [7] are not at all the only distributions
introducing singularity.

It results from the structure of the tree that each node gen-
erates a local symmetry. Similarly, there are holes, or domains,
where the DF remains constant. One can show that there
are an infinite number of such disjoint domains and that their
union is equal to the measure of the interval, where cannot
vary. This is the opposite part of the fact that the points of vari-
ation of are a set of zero measure, which is the origin of
the singularity.

Note, finally, that the noncrossing property can be valid only
for sufficiently large or if . The properties of symme-
tries and holes are also valid with this condition. However, it is
no longer possible to apply Theorem 1, which requires .

C. Hausdorff Dimension

The Hausdorff dimension (HD) is an appropriate tool in the
problems of fractal geometry [10]. Let us show that the previous
results on the circle of singularity can be retrieved by using HD.
Let us note as the HD of the set . The HD is con-
nected to the singularity of by the following results.

• When , the set is totally disconnected
[10, p. 30]. Consequently, since cannot be a purely dis-
crete RV, it is a purely singular RV.

• When , we cannot in general conclude since
there are singular RVs such that .

These remarks show that is an imperfect measure of
the singularity of . There are some cases where can
be calculated. This appears especially for the exponential filter
with driven by an SBWN. In this case, we have

, which shows the singularity
of for . The computation of is often
difficult. For instance, the computation of for any

in the case of the exponential filter driven by an SBWN
is still an open problem. However, it is sometimes easy to find
an upper bound of , as shown by the following theorem
[10, p. 42].

Theorem 3: If, for any , can be covered by a finite
number of intervals with diameters satisfying

, then , where the upper bound is

(6)

This bound is sometimes called the box-counting dimension
of [10, p. 38]. Let us apply this result when the conditions of
Theorem 2 are satisfied. In this case, can be covered by
intervals of diameters satisfying , where
the same notations as in the proof of Theorem 2 are used. As a
consequence, , with

(7)

This yields . Let be the max-
imum value of , where denotes all the poles of the
ARMA filter. It is easy to verify that ,
which leads to

(8)

where . The assumptions of Theorem 2 imply that
, i.e., . Thus, the RV is singular. To summarize, the

Hausdorff dimension gives, in another way, a proof of the sin-
gularity of when the assumptions of Theorem 2 are satisfied.

III. SIMULATIONS WITH AR(1) SIGNALS

Consider an AR(1) signal generated by a SBWN, and let
us study its DF. The appropriate tool for this purpose is the his-
togram. When the DF has a derivative, the normalized histogram
yields an evaluation of the PDF. However, as we are dealing with



Fig. 2. Histograms of x for various a. 1) a = 0:2. 2) a = 1=3. 3) a = 0:4.
4) a = 0:5.

a DF that can be without a PDF, we are obliged to calculate his-
tograms at different scales according to a procedure described
below.

To obtain a first picture of the influence of the regression coef-
ficient , various histograms calculated with 2.5 samples

are presented in Fig. 2. The values of are classified in 400
adjacent cells of the same length covering an interval ,
where , where is the sum defined by (2).

Histogram 2.1 shows only a small number of apparent
symmetries, while they appear more clearly in the other his-
tograms. Finally, the last histogram corresponds to the theory
that predicts, for , a uniform distribution in the interval

. Note that the sums defined by (2) appear clearly
as the maximum extension of the histograms. Indeed, the
maximum value of is , and the exact values of are 1.25,
1.5, 1.667, and 2, in complete agreement with Fig. 2.

In order to obtain a better understanding of the singularity,
we will analyze, at different scales, histogram 2 of Fig. 2 cor-
responding to . This value appears in the definition to
the ternary Cantor set [2, p. 8]. For highlighting the symmetries
described in the previous section, the center of each histogram
of Fig. 3 is chosen at one of the symmetry centers already in-
troduced. Furthermore, for illustrating the fractal autosimilarity,
the intervals of analysis of each histogram correspond to the
domain of symmetry previously introduced. Finally, each his-
togram contains 400 cells.

The results are presented in Fig. 3, which follows 2) of Fig. 2.
The center of symmetries calculated for are 0, 1, 1.333,
1.444, 1.4815, 1.4938, and 1.4979. The six histograms of Fig. 3
correspond to the analysis of 2.6 successive samples of
the signal . The phenomenon of autosimilarity is remarkable.
In order to appreciate the precision of the result, note that his-
togram 6 of Fig. 3 corresponds to the interval of
histogram 2 of Fig. 2. Thus, in spite of a scaling of the order of

, the structure of the histograms remains almost the
same. This corresponds perfectly to the process of generation
by the tree of Fig. 1 and explains the origin of the singularity of
the signal. Indeed, this figure can be realized for any node of
the tree and passing to the limit , where we see that any

Fig. 3. Histograms of x at different scales, a = 1=3.

interval does not contain points of variation of the DF ,
which means that the derivative is almost everywhere equal to
zero or that is singular.

IV. AR SIGNALS WITH MULTIPLE POLES

The AR(1) signals analyzed in the previous section are gener-
ated from by the filter (1) with the transfer function

. In order to better understand the phenomenon of sin-
gularity of signals, we will now study AR signals generated by
filters with transfer functions , introducing
a pole of order in . For the sake of simplicity, we restrict
our analysis to the case where . The IR of this filter is

, and the sum defined by (2) is .
Various histograms at different scales are given in Figs. 4 and
5. These figures are calculated with and . The
correponding values of previously calculated are indicated.

For , the fractal structure with a hole in the center of
the histogram begins to appear with histogram 5, which corrre-
sponds to a reduction of approximately 80 times of the interval
of histogram 1. Note that the interval of analysis of the last his-
togram is 1450 times smaller than the first of the same figure.
This shows that with a signal and a triple pole and for this value
of , the singularity requires analysis at a very large scale of re-
duction of the interval of variations of the DF.

The behavior of AR signals with multiple poles requires some
additional comments. It was noted in the comments of Theorem
2 that the application of the conditions of Theorem 1 requires

. This yields , which is not
satisfied for used in Fig. 4. In order to appreciate the
difference appearing when this is satisfied, the same histograms
calculated for are presented in Fig. 5. The condition
of noncrossing of the branches of the tree is satisfied, and this
appears clearly on the histograms. The difference is that there is
no regular repetition of the same structure, as in the case of the
pure exponential impulse response of AR(1) signals analyzed in
Fig. 3. However, this regularity tends to appear for large values
of because in this case, the term is dominant in the IR.
Note also that the hole centered at zero is very small in Fig. 5
because its existence requires , which is the limit



Fig. 4. Histograms for triple pole at different scales a = 0:4, S = 4:6296.

Fig. 5. Histograms for triple pole at different scales a = 0:2, S = 1:9531.

of the validity of Theorem 1, and this limit is very close to 0.2,
which is the value of used in the simulation.

V. ARMA SIGNALS

Up to now, we have only considered AR signals. In order to
verify that the same situation occurs with ARMA models, we
present a simulation corresponding to an ARMA (2, 2) signal
in the particular case of a double pole and zero. Thus, the TF of
the filter is

(9)

which yields the impulse response

(10)

The use of this IR to analyze the singularity from the condi-
tions of Theorem 1 is complicated. On the other hand, according
to Theorem 2, singularity is ensured as soon as .

Fig. 6. Histograms for ARMA signal at different scales a = 0:4, b = 0:2,
S = 4.

The results calculated with 1.2 samples and corre-
sponding to the values and of the param-
eters of the model are presented in Fig. 6. For these values,

, which appears clearly in the figure.
The scaling between the first and the last histograms is of the
order of 950. The first three histograms show a strong crossing
phenomenon, which means that the conditions of Theorem 1
are not satisfied. However, the fractal structure leading to the
singularity begins to appear in the last histograms of this figure.

VI. CONCLUSION

This paper has introduced a new class of signals called sin-
gular random signals. They are characterized by the fact that
the distribution functions of their values at each time instant are
singular or continuous but without derivative. This implies that
there is neither probability density function nor discrete mass
of probability. Usually considered to be only of mathematical
interest without impact on practical problems, we have shown
that singular distributions appear, to the contrary, to describe
a large class of simple signals. They are ARMA signals gen-
erated from discrete-valued white noise and filters with poles
located inside the circle of singularity defined in the analysis.
Therefore, singularity can appear as soon as the input generating
an ARMA signal is discrete-valued, as in many communication
systems. The origin of singularity and its relation with fractal
structures have been analyzed. Various simulations concerning
AR or ARMA signals have been presented. The results are in
good accordance with theoretical analysis and show that singu-
larity is not at totally a mathematical curiosity but can appear in
very simple situations.

Many open questions remain for future work. Among the
points to be clarified, we can indicate, for example, the role of
correlated inputs on the singularity of the output. Another point
to clarify is the consequences of the absence of a probability
density function in all the statistical signal processing methods
where this density is used, as, for example, those using likeli-
hood functions.
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