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Abstract: Industrial chicory has been the subject of numerous studies, most of which provide clinical
observations on its health effects. Whether it is the roasted root, the flour obtained from the roots
or the different classes of molecules that enter into the composition of this plant, understanding the
molecular mechanisms of action on the human organism remains incomplete. In this study, we were
interested in three molecules or classes of molecules present in chicory root: fructose, chlorogenic
acids, and sesquiterpene lactones. We conducted experiments on the murine model and performed a
nutrigenomic analysis, a metabolic hormone assay and a gut microbiota analysis, associated with
in vitro observations for different responses. We have highlighted a large number of effects of all
these classes of molecules that suggest a pro-apoptotic activity, an anti-inflammatory, antimicrobial,
antioxidant, hypolipidemic and hypoglycemic effect and also an important role in appetite regulation.
A significant prebiotic activity was also identified. Fructose seems to be the most involved in these
activities, contributing to approximately 83% of recorded responses, but the other classes of tested
molecules have shown a specific role for these different effects, with an estimated contribution
of 23–24%.

Keywords: chicory; transcriptomics; hormone assay; gut microbiota; in vitro apoptosis; in vitro
pro-inflammatory cytokines

1. Introduction

Industrial chicory (Cichorium intybus var. sativum) has been analyzed for its various
dietary and medicinal effects. A substantial amount of clinical evidence depicts chicory to
be anti-diabetic, immunomodulatory, anti-tumor, antioxidant, anthelmintic, and prebiotic.
In addition, chicory has been shown to promote good digestion, to regulate appetite, and
to decrease the risk of gastrointestinal diseases [1].

The chicory root, processed into flour and used as an ingredient for pastries, has
been proposed as a functional food; potential mechanisms by which the chicory acts on
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cancer prevention, antibacterial and antiviral defense, hypoglycemic, hypolipidemic and
antioxidant effects have been identified [2]. Among the major compounds of chicory root,
inulin has been the subject of multiple studies concerning its prebiotic effect [2,3], but less
is known about the specific mechanisms of other molecules that enter the composition of
roots. The hydrolysis products of inulin, fructose and oligofructose, have been described
to have multiple beneficial effects on bowel functions [4]. Chlorogenic acids (CGA) have
been described to improve the insulin sensitivity in diabetic rats [5] and were also associ-
ated with major in vivo antioxidant properties [6] and an in vitro antibacterial activity [7].
Sesquiterpene lactones (STL), from the chicory leaves and roots, are known for their strong
inhibitory effect on some nematodes infecting livestock [8–10], and more generally, STL are
known for their antitumor, antimicrobial, antioxidant, hepatoprotective, antiprotozoal, and
antiaging properties [11]. Both CGA and STL were also studied for their anti-inflammatory
effect in vitro as well as in vivo [6,12]. Some other molecules present in chicory roots and
leaves, such as flavonoids or tannins, were studied for their specific health effects and their
contents correlated with antioxidant [13] and anti-nematode [14] properties.

In this work, we looked at three classes of molecules that are part of the composition
of the chicory flour: fructose, CGA and STL. We experimented on the murine model and
performed a nutrigenomic analysis, a metabolic hormone assay and a metagenomic anal-
ysis of the gut microbiota, to target the major health effects and molecular mechanisms
of action in these compounds. Results were supported by in vitro apoptosis detection on
human hepatocellular carcinoma HepG2 cells, using flow cytometry, by in vitro inflamma-
tory cytokines secretion assay on promonocytic human cell line U937, differentiated into
macrophages, and by a cell-free system antioxidant assay.

2. Materials and Methods

Chicory product obtaining and chemical analysis of their composition

Roots from industrial chicory (Cichorium intybus var. sativum) provided by Florimond-
Desprez Veuve et Fils SAS (Cappelle-en-Pévèle, France) were processed by Leroux SAS
(Orchies, France) and the corresponding flour was delivered by Waast Mill (Mons-en-Pévèle,
France). This flour is a trade product that comes from a mixture of several genotypes with
a significantly different chemical composition. An aqueous decoction of this flour was
produced to feed the mice as described by Pouille et al. [2]. A mixture of water/methanol
(1:1) was added to either 100 mg of a randomized sample of chicory flour or 100 mg of
dry residue obtained after lyophilisation of chicory decoction. The samples were mixed
for 10 min at 80 ◦C, using a ThermoMixer® (Eppendorf AG, Hamburg, Germany) at
2000 rpm, followed by 10 min of sonication at 80 ◦C using an ultrasonic bath at 35 kHz. The
samples were centrifuged at 4 ◦C for 10 min at 12,000 rpm. The supernatant was diluted
20 times with methanol/water (50/50). All samples were filtered through 0.22 µm PTFE
membrane filters before analysis by ultra-performance liquid chromatography coupled to
high-resolution mass spectrometry (UPLC-HRMS) and nuclear magnetic resonance (NMR).
UPLC-HRMS analysis was performed on an ACQUITY UPLC I-class chain coupled with
the Vion IMS Q-TOF high resolution mass spectrometer, equipped with an electrospray
(ESI) (Waters, Manchester, UK) ionization source (Z-spray) and an additional spray for the
reference compound (Lock Spray). A double detection in the positive and negative mode
was performed by ESI mass spectrometry (range 50–2000 Da) and by a PDA diode array
detector (UV detection between 190–500 nm). Separation was performed using a KINETEX
Biphenyl (100 × 2.1 mm, 1.7 µm) column (Phenomenex) heated at 55 ◦C with a mobile
phase (solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in methanol))
flow (0.55 mL·min−1) and the same gradient elution as our previous study [15]. The spectra
obtained were acquired and processed with UNIFI software (version 1.9.4, Waters) and
enabled us to generate the data matrix for untargeted metabolomics analyses with classical
parameters. Calibration mixture solution of target metabolites at concentrations of 0.5, 1,
1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5 µM were prepared by dilution in three replicates. Area values
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of the extracted ion chromatograms were transferred to Excel (Microsoft Excel 2011 v. 14.7.2,
Microsoft, Redmond, WA, USA).

The NMR untargeted metabolomics protocol was adapted from our previous study [16].
Briefly, the supernatant (500 µL) was dried under vacuum and then dissolved in 800 µL of
deuterated solvent prepared in a mixture of (1:1) Methanol-d4: KH2PO4 buffer (0.1 M) in
D2O at pH 6.0 with TMSP (0.0125%), NaN3 (0.6 mg·mL−1), and maleic acid (1 mM). Then,
the samples were briefly vortexed, sonicated, and centrifuged. The supernatant was placed
in 5-mm NMR tubes and then used for NMR analysis. All NMR spectra were acquired
at 300 K with a Bruker Avance III 600 MHz spectrometer operating at 600.13 MHz for 1H,
and 150.91 MHz for 13C, using a 5-mm double resonance broadband probe, equipped with
z-gradient (BBFO 5 mm tube). For quantitative analysis, classical 1D 1H-NMR spectra
were collected using 128 scans of 131 K data points and a spectral width of 8417 Hz with
a relaxation delay of 25 s. For metabolomics profiling, a NOESY-1D water suppression
pulse sequence was used and generated spectra were collected using 256 scans of 131 K
data points and a spectral width of 8417 Hz with a relaxation delay of 25 s. NMRProcFlow
web application [17] was used to generate the untargeted metabolomics data matrix and
the quantitative 1H-NMR data. Bins with the lowest overlapping signals were kept (0.9 to
3.25 ppm and 4.5 to 8.5 ppm). Signals of maleic acid were used to calculate the absolute
concentration of targeted metabolites. A combined data matrix with NMR (161 bins) and
UPLC-HRMS (positive (77 ions) and negative (71 ions) data) untargeted analyses were
generated. The percentage of the relative standard deviation (% RSD) was calculated for
all metabolic features in each condition and the features with % RSD greater than 25%
were removed due to variability. Metabolite pick areas were expressed in percentage (100%
corresponds to the mean for chicory flour). Heatmap data was clustered (Ward’s method
was used to form hierarchical clustering) and visualized (using the pheatmap-package,
version 1.0.12).

Animal experiments and ethical statements

Male BALB/cOlaHsd 8-week-old mice were used for experiments in agreement with
Directive 2010/63/EEC for the protection of animals used for scientists and in accordance
with Law 2012-10 (2012) and 2013-118 (2013). The protocol was approved by the Ethics
Committee in charge of animal experiments. The mice were randomly divided into six
groups (n = 5/group) and housed in a controlled environment (with a temperature of
22 ◦C, a 12 h/12 h light/dark cycle and ad libitum access to standardized food and
water). Mice were fed with an aqueous decoction of root flour (Chic) and with three
other molecules or classes of molecules: fructose (Fru), CGA and STL water solution as
indicated in Table 1. The mice gavages consisted in a daily force-feeding of 500 µL of Chic,
Fru, CGA or STL besides the standard chow (Diet A04C-10, Scientific Animal Food and
Engineering, Augy, France). For the chicory flour, the decoction corresponded to 30 mg
root powder/mouse/day that was considered close to human equivalent weight/body
mass for a moderated alimentary dose [18]. The administered dose of Fru, CGA and STL
was calculated to correspond to the concentration of these compounds in the aqueous
extract of chicory flour for daily consumption. This estimation was performed taking
into account the variability of these compounds in 5 different chicory genotypes [19] as
indicated in Table 1. Controls underwent an equivalent force-feeding with water (Ctr1),
the solvent used for chicory decoction and fructose solution, and with 0.83% DMSO (Ctr2)
as CGA and STL solutions were prepared with this diluent [20,21]. Six groups of mice
were used (Ctr1, Ctr2, Chic, Fru, CGA and STL), nourished for 30 days and individual
body weight was regularly registered (File S1). At the end of this period, mice for each
condition were sacrificed, the central core of the liver left lobe was cut into cubes, a short
segment (1 cm) of the colon was also cut and enterocytes were harvested from upper ileal
segments by mucosa scraping method. These tissues were immediately frozen in liquid
nitrogen and stored as individual samples at −80 ◦C for transcriptomics. The feces were
individually harvested before the treatment (D0) and after 30 days (D30), and were stored
at −80 ◦C for microbiota analyses. For hormonal assays, 100 µL of blood from the caudal
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vein was sampled from each animal 30 min after gavage at D30. The blood from each
mouse was collected in tubes containing 20 µL 10% EDTA anticoagulant solution and 1 µL
dipeptidyl peptidase-4 inhibitor (DPP4-010, Marck, Milipore, Darmstadt, Germany), then
centrifuged at 14,000 rpm for 10 min, the plasma containing supernatants collected and
stored at −80 ◦C.

Table 1. Composition of Fru, CGA and STL solutions used for feeding mice.

Treatment Fru CGA STL

Compound Fructose 3-CGA 3,5-CGA DHLc Lc DHLp Lp

µg/day of each compound 166.35 2.52 3.44 1.83 3.88 0.29 2.22

µg/day of total mix 166.35 5.90 8.20
3-CGA: 3-mono-O-caffeoylquinic acid; 3,5-CGA: 3,5-di-O-caffeoylquinic acid; DHLc: 11β,13-Dihydrolactucin;
Lc: Lactucin; DHLp: 11β,13-Dihydrolactucopicrin; Lp: Lactucopicrin. The administered doses are based on results
obtained for the content of chicory roots and reported to 30 mg/day of chicory flour.

2.1. RNA Extraction and Microarray Analysis

Total RNAs were extracted from hepatic and colon tissues using RNAspin columns
(Macherey-Nagel, Düren, Germany). For ileum cells, the NucleoZOL (Macherey-Nagel)
kit was used. RNA quality was checked with Nanodrop and absorbance ratios A260/280
and A260/230 were found between 2.0 and 2.2. RNA quality was also examined by RNA
ScreenTape Analysis (Agilent) and a minimal RNA integrity number (RIN) of 0.8 was
required for all samples.

For the microarray analysis, groups of mice (n = 3) were used for each treatment: (1) a
group that received a decoction of chicory flour for 30 days as previously described, (2) a
group that received a solution of fructose (Fru) for 30 days, (3) a group that received a
solution of CGA for 30 days, (4) a group that received a solution of STL for 30 days, (5) two
control groups with standard drinking water (Ctr1 and Ctr2) as mentioned before. Three
tissues were analyzed: liver, ileum enterocytes and caecum.

Agilent Whole Mouse Genome Microarray Sure Print GE 4 × 44 v2 with oligonu-
cleotide 45,220 probes was used to study the gene expression profile. RNA amplification,
staining, hybridization and washing were conducted according to the manufacturer’s spec-
ifications. Slides were scanned at 5 µm/pixel resolution using the GenePix 4000B scanner
(Molecular Devices Corporation, Sunnyvale, CA, USA). Images were used for grid align-
ment and expression data digitization with GenePix Pro 6.0 software. Expression data were
normalized by Quantile algorithm. The 3 control samples were filtered for p value < 0.05
and the average was calculated for each gene. A fold change (FC) value was calculated
between individual treated samples and the mean of corresponding controls. Differentially
expressed genes (DEGs) were selected for a threshold >2.0 or <0.5. Functional annotation
of DEGs was based on NCBI GenBank and related genes’ physiological processes were
assigned with NCBI, AmiGO 2 Gene Ontology and UniProt. KEGG pathway analysis
was also used to identify relevant biological pathways of selected genes. All microarray
data have been submitted to the NCBI GEO archive for functional genomics data with the
accession number GSE190056.

2.2. In Vivo Hormone Detection

Plasma concentrations of leptin and GIP (glucose-dependent insulinotropic polypep-
tide) were assessed using antibody-immobilized beads specific to each hormone in a
Milliplex® Map Kit (Millipore Corporation, Billerica, MA, USA) according to the manufac-
turer’s instructions. Kit sensitivity was 19 pg·mL−1 for leptin and 1 pg·mL−1 for GIP. The
quantification was carried out using the Luminex® 100/200 (Luminex Corporation, Austin,
TX, USA) system and the Luminex xPONENT® for LX100/200 software.
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2.3. Microbiota Analysis

Total DNA content from mice feces was extracted according to NucleoSpin DNA
Stool Kit (Macherey-Nagel, Düren, Germany). The sequencing was done by the GIGA
genoproteomic platform of Liège University (Belgium). For sequencing the amplification
of the V1-V3 region of the 16S rDNA and the library preparation were performed with
the following primers: direct (5′-GAGAGTTTGATYMTGGCTCAG-3′) and inverse (5′-
GAGAGTTTGGCTCAG-3′). Each PCR product was purified with the Agencourt AMPure
XP Ball Kit (Beckman Coulter, Pasadena, CA, USA), and subjected to a second round of PCR
for indexing, using Nextera XT index 1 and 2 primers. After purification, the PCR products
were quantitated using the Quant-IT PicoGreen (Thermo-Fisher Scientific, Waltham, MA,
USA) and diluted to 10 ng·µL−1. A final qPCR quantification of each library sample was
performed using the KAPA SYBR FAST qPCR Kit (KapaBiosystems, Wilmington, NC, USA)
before standardization, pooling, and sequencing on a MiSeq sequencer using v3 reagents
(ILLUMINA, San Diego, CA, USA).

Data processing was performed using, respectively, the MOTHUR v1.44 package and
the VSearch algorithm [22] for alignment, clustering and chimer detection as previously
described by Gérard et al. [23]. After cleaning process, sequences were clustered into opera-
tional taxonomic units (OTUs) at 97% of identity. Alignment and taxonomical identification
were performed with MOTHUR using SILVA v1.32 database of full-length 16S rDNA gene
sequences. A rarefied table of 10,000 reads by sample was used for further analysis. Reads
were finally aggregated into phylotypes at the phylum and genus taxonomic level.

All analyses were performed by comparing experimental groups to their respective
controls. Normality was controlled with the Shapiro–Wilk test and homogeneity of vari-
ances with Bartlett’s test. Statistical paired differences were assessed by ANOVA and
Tukey’s test.

PRISM 7 (GraphPad Prism 6.0, Windows Inc., San Diego, CA, USA) was used and
differences were considered significant for a p value < 0.05. All the biosample raw reads
have been deposited at the National Center for Biotechnology Information (NCBI) and are
available under BioProject accession number PRJNA799887. Data obtained from NGS analy-
sis were analyzed for the alpha diversity with Shannon index and graphical representations
were performed using GraphPad Prism version 8.00 for windows, GraphPad Software,
and beta-diversity with the principal component analysis (PCoA) using the FactoMineR
package in R version 3.5.2 (r-project.org).

2.4. In Vitro Cytotoxicity Studies

The cytotoxic effect of samples was analyzed to determine the maximum concen-
trations that could be used for the other tests. The cytotoxic effect was performed using
the cell counting assay-8 (CCK-8) (CK04, Tebu-Bio). The kit was used according to the
manufacturer’s instructions. HepG2 and U937 cells were seeded in 96-well culture plates
at 8 × 104 cells·cm−2 and 3 × 105 cells·cm−2 respectively. After reaching confluency, the
growing medium was replaced by samples diluted at increasing concentrations in Dul-
becco’s modified Eagle’s medium (DMEM, 4.5 g·L−1 glucose) or in Roswell Park Memorial
Institute medium (RPMI-1640). Culture medium was used as a negative control of cyto-
toxicity. The cells were incubated at 37 ◦C for 24 h and the cytotoxic effect of samples was
immediately determined.

2.5. In Vitro Apoptosis Assay

The human hepatocellular carcinoma HepG2 cells were grown at 37 ◦C, 5% CO2
atmosphere, in DMEM supplemented with 10% fetal bovine serum (FBS), 100 U·mL−1

penicillin, 100 µg·mL−1 streptomycin, and 2 mM glutamine. After reaching 80–90% conflu-
ency, HepG2 cells were seeded into 24-well culture plates at 8 × 104 cells·cm−2 six days
before experiment. The culture medium was discarded and cells were washed with PBS.
Apoptosis was induced by adding different amounts of lyophilized chicory decoction or
D-fructose powder (0.2%, 0.5%, 1%, 2% and 3%, m/v), and different concentrations of CQA
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or STL (5, 10, 20, 50, 75 and 100 µM). Resveratrol at a concentration of 200 µM [24] was used
as a positive control and DMEM medium as a negative one. The cells were then incubated
at 37 ◦C for 24 h. Early and late apoptotic events were analyzed by flow cytometry (Invit-
rogen™ Attune™ NxT Flow Cytometer) with the Alexa Fluor 488 annexin V/Dead Cell
Apoptosis Kit (Invitrogen, Waltham, MA, USA) according to the manufacturer’s kit manual.

2.6. In Vitro Inflammatory Cytokines Secretion Assay

The promonocytic human cell line U937 was cultured in RPMI 1640 medium sup-
plemented with 10% FBS, 100 U·mL−1 penicillin, 100 µg·mL−1 streptomycin, and 2 mM
glutamine in a humidified 5% CO2 atmosphere at 37 ◦C. For macrophage differentia-
tion, U937 cells were seeded at approximately 3 × 105 cells·cm−2 in 24-well plates with
60 ng·mL−1 phorbol-12-myristate-13-acetate (PMA) for 48 h. Adherent cells were washed
with PBS before a 2 h incubation with LPS (10 µg·mL−1; LPS from E. coli O26:B6, Milli-
pore Corporation) and samples. Cell supernatants were collected on ice and centrifuged
(1500 rpm 5 min) to eliminate cell debris. The supernatants were aliquoted and stored at
−80 ◦C until further analysis. Secreted Il-1β and TNF-α were quantified using Millipore
Human High Sensitivity T Cell kit (EMD Millipore, Darmstadt, Germany) according to
the manufacturer’s instructions. The quantification was carried out using the Luminex®

100/200 (Luminex Corporation, Austin, TX, USA) system and the Luminex xPONENT®

for LX100/200 software. The cytokine IL-8 was quantified using a human IL-8/CXCL8
Quantikine® ELISA kit (R&D Systems, Inc., Minneapolis, MN, USA). Medium samples
were diluted 100-fold according to the kit recommendations.

2.7. Cell-Free Systems Evaluating Antioxidative Sample Effects

All reagents were purchased from Sigma (Saint-Quentin Fallavier, France). The con-
centration of the starting samples to be diluted was standardized at 10 mg of dry matter
per mL. After all assays, the maximal percentage of inhibition obtained for each reactive
oxygen species (ROS) at the highest concentration for each sample was also calculated and
half-maximal inhibitory concentration (IC50) was determined when practicable.

The superoxide anion inhibition was estimated in a cell-free model adapted from that
previously described by Aruoma et al. [25]. Briefly, O2

− was produced by the xanthine
(0.1 mM)/xanthine oxidase (50 mU·mL−1) system in a Hank’s HEPES buffer (HH) (pH 7.42)
and then incubated at 25 ◦C for 15 min with increasing sample concentrations ranging from
0 to 100 µL·mL−1 of reaction mixture (equivalent to 0 to 1 mg of dry matter per final mL)
and with 0.017 mM equine ferricytochrome c (FerC). The appearance of pink coloration
corresponds to the FerC reduction (into ferrocytochome C) by the remaining superoxide
anions non-inhibited by the samples. An inhibition control cuvette also contained 300 µM
cysteine. Spectrophotometry method was used to measure the absorbance at the wave-
length of 550 nm. Then, O2

− concentrations were calculated thanks the Beer–Lambert
law using the ferrocytochrome C extinction coefficient (21.1 × 103 L·mol−1·cm−1). All
measurements were performed against a blank cuvette, containing all reagents and samples
except xanthine oxidase to avoid any interference. Results were converted into nmol·mL−1

and expressed in bar diagrams ± SD according to the sample volumes involved per mL
of reaction mixture. The hydroxyl radical inhibition by the control solutions or sample
studied was assayed using a method adapted from that described by Halliwell, Gutteridge
and Aruoma [26]. HO. was produced in each tube in 20 mM KH2PO4 buffer at pH 7.4
with 10−11 nmol of hydrogen peroxide per mL. For that, Fenton’s reaction was initiated by
adding EDTA-Fe2+ (100 µM FeCl3, 104 µM ethylene diamine tetraacetic acid and 100 µM
ascorbic acid). The solutions/sample concentrations (the same as above described for
H2O2) were added for HO. to be then inhibited at least partially. Deoxyribose (3 mM)
was added to be degraded by the remaining hydroxyl radicals. After boiling for 20 min,
malondialdehyde (MDA) was generated as a result of 14 mM thiobarbituric acid and
147 mM trichloroacetic acid. The resulting pink chromogen was measured by spectropho-
tometry (532 nm). HO. inhibition control tubes were also made with 300 µM cysteine.
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HO. was expressed in nmol·mL−1, using a standard curve obtained from increasing H2O2
concentrations. The data was presented as bar diagrams ± SD according to the sample
volumes involved per mL of reaction mixture. Statistical analysis was conducted using
6 independent assays (GraphPad Prism 7 software for Windows, Inc., San Diego, CA,
USA). Provided the population was normal (Shapiro–Wilk’s test at the 5% level) as well as
variance homogeneity obtained (non-significative Bartlett’s test at the 5% level), ANOVA
was performed (overall Fisher’s test, p < 0.05, followed by the ad-hoc Tukey’s test, p < 0.05).
When ANOVA was not applicable, the non-parametric test of Kruskal–Wallis (p < 0.05)
followed by Dunn’s test (p < 0.05) were performed.

3. Results

Whole chicory flour (Chic) and three compounds of chicory roots (Fru, CGA and
STL) were separately analyzed for their health effects in mice. A whole transcriptomic
analysis was conducted using Agilent DNA microarrays to investigate their nutrigenomic
effects, the plasmatic hormonal levels were assayed using Luminex technology, and a
fecal microbiota metabarcoding analysis was realized by Illumina 16S rDNA sequencing.
We carried out parallel in vitro analyses to investigate apoptotic, anti-inflammatory and
antioxidant effects of these different compounds.

3.1. Composition of Chicory Products

An untargeted metabolomic approach was conducted using UPLC-HRMS and 1H-NMR
data, obtained from the analysis of two types of preparation i.e., chicory flour and its decoction.
Similar metabolite profiles were observed when comparing both preparations. However,
metabolomic fingerprinting revealed that the extraction of the metabolites during the prepa-
ration of the decoction from the chicory flour was slightly less effective. We estimated that
during the decoction preparation, several metabolites were extracted in proportion to 70–80%
compared to their content in the flour (considered to be 100%) (File S2). A possible explanation
may be that in the decoction, the extraction of metabolites in hot water could be incomplete,
in particular for hydrophobic compounds; the stirring could also play an important role in the
observed results. Metabolites that were used in this work for animal feed were subsequently
targeted by quantitative 1H-NMR and also by UPLC-HRMS and results are presented in
Table 2. The content of CGA and STL in the decoction seems, generally, similar to that of
flour. We found that only lactucin content was higher in the decoction, while the content of
fructose was slightly lower in the latter. Despite these minor quantitative differences, the
quality composition of the chicory decoction remains identical to that of the chicory flour and,
therefore, its use for a mouse diet could be relevant for evaluating the chicory roots effects.

Table 2. Major metabolites analysed by quantitative 1H-NMR and UPLC/ESI-HRMS in chicory root
flour and decoction.

Compounds
(mg/g Dry Matter) Flour Decoction

Mean SD Mean SD

Fructose a 3.43 0.12 2.60 0.26

3-CGA b 0.55 0.02 0.66 0.01

3,5-diCGA b 0.43 0.01 0.43 0.01

Lc c 0.05 0.01 0.11 0.01

Lp c 0.23 0.02 0.21 0.01

DHLc c 0.14 0.01 0.17 0.01

DHLp c 0.05 0.01 0.03 0.01
a quantitative 1H-NMR, bin (3.54) corresponding to 1H linked to C1, b UPLC/ESI-HRMS in negative ionization
mode and c in positive ionization mode. 3-CGA: 3-mono-O-caffeoylquinic acid, m/z 353.0878 at RT 1.08 min;
3,5-diCGA: 3,5-di-O-caffeoylquinic acid, m/z 515.1195 at RT 4.27 min; Lc: Lactucin, m/z 299.0889 at RT 3.02 min;
Lp: Lactucopicrin, m/z 433.1257 at RT 5.77 min; DHLc: 11β,13-Dihydrolactucin, m/z 279.1227 at RT 2.59 min;
DHLp: 11β,13-Dihydrolactucopicrin, m/z 435.1414 at RT 5.72 min.
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3.2. Nutrigenomic Analyses

Diet-induced gene expression profiles were analyzed in the liver, ileum enterocytes and
caecum of mice after 30 days of daily ingestion of aqueous extracts of Chic, Fru, CGA or STL
solutions. A total of 57 profiles were found differentially expressed during the chicory diet in
these different tissues (Figure 1, File S3). A first group of nine DEGs, modified by the chicory
diet, is involved in cell proliferation and apoptosis, and their deregulation suggests a cell
growth arrest and a putative anti-cancer effect. A second group of 12 DEGs is involved in
immune response, and this gene deregulation suggests a putative anti-inflammatory effect
and a strong response to bacteria and viruses. An important group of 14 DEGs (group 3)
is involved in digestion and metabolism, pointing to bile acid biosynthesis, hypolipidemic
and hypoglycemic effects, appetite regulation and intestinal absorption increase. In the 4th
group, we noticed a stimulation of the neural and sensory development, suggested by the
up-regulation of 13 genes involved in neuron differentiation and development, memory, smell
and visual perception, and also in circadian rhythm regulation. The anti-xenobiotic and
putative antioxidant effects were indicated by six DEGs (group 5), and finally, we found three
genes involved in energy metabolism and calcium transport that were also deregulated, but
their putative health effect could be less discernible (group 6). When following these profiles
in the other diet conditions (Fru, CGA and STL), we observed that in the vast majority of
cases, the fructose offers similar deregulation as the chicory (48 DEGs with similar profile),
reflecting the importance of fructose for the functional effect of the chicory flour. CGA and
STL are also involved in these deregulations, as CGA induces a similar profile as the chicory
flour for 18 genes and STL also for 18 genes. We noticed only four opposite profiles between
chicory flour and CGA or STL diets, probably due to the administration of these compounds
apart from the food matrix. We observed that the same functions appear to be deregulated in
the three analyzed tissues, even if different genes respond specifically in each of them; only
two genes (Rwdd3 and Pex11a) were found similarly expressed in the liver and ileum and
were separately recorded.
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Figure 1. Gene expression profiles in hepatic tissue, ileum cells and caecum of mice after different
diets. Log2 fold change of gene expression was represented individually for mice (1–3) and gene-
related physiological processes and putative health effect are represented on the right part of the graph.
Chic—chicory flour diet; Fru—fructose diet; CGA—chlorogenic acids treatment; STL—sesquiterpene
lactones treatment.



Nutrients 2022, 14, 957 9 of 25

3.3. In Vivo Hormonal Assays

Slight differences were observed in plasmatic hormone levels following chicory flour
intake. These differences were not significant in the Chic condition, but other compounds
have proven to be significantly involved in these modifications. Thus, CGA decreased
circulating leptin level and STL increased GIP level (Figure 2, File S4). The decrease in
leptin level could be associated with a hypolipidemic effect, and GIP increase, with a
hypoglycemic effect. These effects were equated with the mice body weight evolution and
standard food consumption during the diets (File S1).
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Figure 2. Leptin (A) and GIP (B) level in mice plasma after 30 days of chicory, fructose, CGA and
STL supplemented diet. Control values were pooled together (Ctr). Plasmatic hormone levels were
expressed as a ratio of the control level. Statistical analysis was performed using one-way ANOVA
and Dunnett’s multiple comparisons test (* p < 0.05; ** p < 0.01 against control).

3.4. Metagenetic Analysis of Mice Microbiota

16S-rRNA gene-targeted metagenomic analysis was performed in the individual
fecal samples of mice (n = 5) for each diet and the bacterial richness and phylogenetic
composition of the microbiota were then estimated. After sequence processing, a total
of 68 different operational taxonomic units (OTUs) were identified with an abundance >
0.1% and the average number of OTUs per individual was 703 ± 60 (File S5). The alpha
diversity Shannon index indicated a stabilized diversity to the average of 2.8–3.5 for all
sample groups, and no significant modifications were found during the Chic, Fru, CGA or
STL diets (Figure 3A). Beta diversity among different conditions, as a comparison of taxa
abundance, was considered by Principal Coordinate Analysis, which revealed a common
but also specific effect of the chicory flour compounds (Figure 3B). Fructose impacted a
larger number of taxa but CGA and STL also share an important role in these changes and
present several particular effects.

The bacterial composition representing the phylum and genus relative abundance for
major OTU is shown in Figures 4 and 5, respectively. The most abundant phyla across all
young subjects were Firmicutes, Bacteroidetes, Patescibacteria, Proteobacteria, Actinobacteria,
Cyanobacteria and Desulfobacteria (Figure 4A). The most present were Firmicutes and Bac-
teroidetes and the ratio Firmicutes/Bacteroidetes (F/B) was found to be slightly diminished
after 30 days of the chicory diet, probably due to the STL activity, as the only STL diet was
found to induce a significant decrease (Figure 4B and File S6).
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Figure 3. Microbial diversity in fecal microbiota of mice after chicory (Chic), fructose (Fru), chloro-
genic acids (CGA) or sesquiterpene lactones (STL) supplemented diet. (A) Alpha diversity was
illustrated by the Shannon index (IS) that indicates a stabilized diversity for all subject groups
(p > 0.05). (B) Principal Coordinates Analysis (PCoA) plots (beta-diversity) of affected taxa during
different diets. Relative abundance obtained from sequencing the 16s rRNA gene in fecal samples
was represented for taxa providing differences during chicory flour diet. Red circle mainly delimits
the fructose effect, blue circle delimits the STL effect and green circle the CGA effect.
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Figure 4. Changes in bacterial phyla abundance. (A) Relative abundance (%) of phyla in mice
microbiota before (D0) and after 30 days (D30) of chicory (Chic), fructose (Fru), chlorogenic acids
(CGA) or sesquiterpene lactones (STL) supplemented diet. Relative abundances detected by NGS
are expressed as means. Phyla with abundance under 0.1% are grouped in “Others”. (B) Standard-
ized abundance ratio relative to D0 of Firmicutes and Bacteroidetes (Tukey’s test, n = 5/group, * for
p < 0.1). Chic—chicory flour; Fru–fructose; CGA—chlorogenic acids; STL—sesquiterpene lactones;
Ctr1—control related to Chic and Fru diet; Ctr2—control related to CGA and STL diet.
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At the genus level, all changes observed in the relative abundance after 30 days of
different treatments are represented in Figure 5. Quantitative modifications were observed
in the abundance of several taxa after the different diets (Figure 5A). These modifications
were closely followed as fold change of standardized abundance ratio (condition vs. control)
(Figure 5B). Of the taxa, 13 were filtered for their relative abundance (>0.1%) consistently, in
all samples, and presented modifications during the different diets. Six of them increased
in abundance during the chicory diet, and seven of them decreased. The three analyzed
compounds of the chicory flour (Fru, CGA and STL) triggered a similar increase in the
relative abundance as the chicory flour for three taxa (Prevotellaceae, Lachnospiraceae bacterium
A2 and Clostridium ASF356). Fructose alone impacted 5 taxa (Butyricicoccaceae UCG-009,
Oscillospiraceae NK4A214, Ruminococcus, Faecalibacterium sp. UBA1819, and Enterococcaceae
bacterium RF39), while CGA affected only the Erysipelotrichaceae. The results showed that,
sometimes, two different classes of molecules could be involved together in changes in the
abundance, as for Muribaculaceae, Coriobacteriales, Oscillospirales and Rikenella. A basic part
of these results was validated by qPCR (File S7).
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Figure 5. Relative abundance of main genera in mice fecal microbiota after chicory flour (Chic),
fructose (Fru), chlorogenic acids (CGA) or sesquiterpene lactones (STL) diet. (A) Relative abundances
of genera (%) are indicated when their values are >0.1%. Genera with a low relative abundance
were assigned as “Others”. (B) Heatmap representing the fold change of standardized abundance
ratio. Increased abundance compared to control was considered when FC > 1.30 (red squares) and
decreased when <0.70 (green squares).

3.5. In Vitro Evaluation of the Apoptotic Effect

The effect of raw chicory flour decoction on apoptosis was studied by labelling HepG2
cells with Annexin V and propidium iodide and analyzed by flow cytometry. The amount
of total apoptotic cells was calculated by considering both cells in early and late apoptosis
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(Figure 6); each value was reported to their respective control (DMEM). The chicory de-
coction induced a concentration-dependent increase in the number of apoptotic cells. Fru,
CGA and STL were also tested separately and results showed that only STL at 75 µM and
100 µM induced a significant apoptotic effect (Figure 7).

3.6. In Vitro Anti-Inflammatory Effect

Chicory and its compounds at the highest non-cytotoxic concentration (data not
shown) were screened for their anti-inflammatory activity in vitro using U937 cells, differ-
entiated in macrophages and their capacity to secrete cytokines. Three pro-inflammatory
cytokines (TNF-α, IL-8, IL-1β) were quantified in the cell media. As a control, stimulation
with LPS significantly increased the secretion of TNF-α, and interleukin IL-8, (p < 0.0001)
and IL-1β (p < 0.05) (Figure 8). The addition of the chicory decoction markedly reduced the
secretion of all cytokines (p < 0.005) in inflamed cells. The decrease in interleukin levels
seems to be due to CGA and STL effect and the reduction of TNF-α can probably be linked
to the fructose effect.
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Figure 6. Dot plots illustrating the apoptotic effect of chicory flour and its compounds on HepG2
cells. HepG2 cells were treated for 24 h with chicory decoction (Chic), fructose (Fru), CGA and
STL solutions at different concentrations and analyzed using propidium iodide and Annexin V.
Representations were selected among the most elevated concentration of each compound (3% for
Chic and Fru; 100 µM for CGA and STL). Resveratrol at a concentration of 200 µM was used as a
positive control, and DMEM as a negative one. The top left quadrant of each plot represents unviable
cells, the top right quadrant represents necrotic cells or cells in late apoptosis. The bottom left
quadrant represents viable cells and the bottom right quadrant represents early apoptotic cells. Total
apoptotic cells were calculated by adding the top right and bottom right quadrant’s content. Samples
illustrated in the top of the figure (Resveratrol, Chic and STL) provided an increased apoptotic effect
compared to the other samples.
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Figure 7. Apoptosis induction on HepG2 cells. HepG2 cells were treated with various concentrations
of a chicory flour decoction (Chic) or D-fructose solution (Fru) (from 0.2% to 3%), and also with
chlorogenic acids (CGA) or sesquiterpene lactones (STL) (from 5 µM to 100 µM) for 24 h. Resveratrol
at a concentration of 200 µM was used as a positive control and DMEM and DMSO as negative ones.
As no significant variations were registered between negative controls, the apoptosis induction in
each condition was compared to the DMEM control and expressed as a ratio. Statistical analysis
was performed using one-way ANOVA and Dunnett’s multiple comparisons test (**** p < 0.0001;
*** p < 0.0005 compared with the DMEM control).
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Figure 8. Effects of chicory and its compounds on TNF-α, IL-1β and IL-8 production by human U937
macrophages. U937 were differentiated with PMA before being inflamed with LPS (w/LPS) and put
in contact with samples for 2 h. Dexamethasone (dexa) was used as a negative control of inflammation.
Efficiency of LPS inflammation was controlled (RPMI w/o LPS) in each test. Cytokine levels were
expressed as a ratio of the control (RPMI w/LPS) level. Statistical analysis was performed using
one-way ANOVA and Dunnett’s multiple comparisons test (* p < 0.05; ** p < 0.005; **** p < 0.0001
against control). dexa: 20 µM of dexamethasone; chic: 1% of chicory flour decoction; Fru: 1% of
D-fructose; CGA: 20 µM of chlorogenic acids mix; STL: 20 µM of sesquiterpene lactone mix.

3.7. In Vitro Antioxidant Effect

The antioxidant effect of the chicory flour was checked in a cell-free model for the
superoxide anion and hydroxyl radical inhibition. The aqueous extracts of chicory flour
triggered a significant decrease in superoxide anions, beginning from 0.5 mg·mL−1, and
also a decrease in hydroxyl radicals that became significant, beginning from 1 mg·mL−1

(Figure 9).
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sample decoction of chicory flour (Chic) was tested at increasing concentrations, ranging from 0.25 to
1 mg of dry matter equivalent per final mL. Statistical analysis for n = 6 independent assays were
performed with ANOVA: overall Fisher’s test, p < 0.0001; Tukey’s test, ** p < 0.01, *** p < 0.001,
**** p < 0.0001 (A) and Kruskal-Wallis test, p = 0.0017; Dunn’s test, ** p < 0.01 (B).

4. Discussion

Chicory flour is a food product used in pastry and, at the same time, a functional food
with multiple health benefits [2]. Several molecules or classes of molecules that enter the
composition of chicory flour are possible effectors in these effects. This work was carried
out to decompose the effects of chicory flour and to better understand the role of three
of its components, Fru, CGA and STL. To do this, in vivo murine experimental analyses
were carried out using an aqueous decoction of chicory, whose composition was found
similar and quantitatively close (up to 70–80%) to that of flour. Analyses were performed
to intercept nutrigenomic, hormonal and metagenomic changes that were subsequently
correlated with events observed in vitro on human cells or in acellular systems.

4.1. The Anti-Cancer Effect of the Chicory Roots as Observed in an In Vivo Murine and In Vitro
Human Cell Models

A chicory supplemented diet triggered the deregulation of nine genes involved in cell
proliferation and apoptosis (Figure 1). In addition, this diet induced an apoptotic effect
in HepG2 cells in vitro (Figures 6 and 7). To determine which compound from chicory is
responsible for this effect, we looked at the role of Fru, CGA and STL on gene expression
and on HepG2 cells phenotype.

In liver tissue, we found two down-regulated genes under chicory treatment. The
first one, Nanog, is a transcriptional factor that helps embryonic stem cells to maintain
pluripotency by suppressing cell determination factors [27]. As it is highly expressed in
cancer stem cells, this gene functions as an oncogene to promote carcinogenesis [28,29],
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being described as a prognostic and predictive cancer biomarker [30]. Its down-regulation
in Chic and Fru dietary conditions suggests that chicory flour, via its fructose content, can
lead to the arrest of cells engaged in cancer proliferation. The second gene in this group,
Particl, is involved in the response to irradiation and affords an RNA binding platform for
genomic silencers, such as DNA methyltransferase 1 and histone tri-methyltransferases, to
reign in the expression of tumor suppressors [31]. This gene was correlated to the expression
of tumor suppressor genes, as it operates an active feedback silencing mechanism upon the
putative tumor suppressor mat2a, to limit its expression [32]. The knockdown of this gene
resulted in inverse changes in Wwox transcripts levels, which is also known as coding for a
tumor suppressor [33]. As we found the Particl gene down-regulated by the Chic and STL
diets, we can suggest that chicory flour, via its STL content, can lead to an increase in tumor
suppression, probably by apoptosis [34]. Our results on HepG2 cells indicated that only STL
induced a significant apoptotic effect that could be related to Particl gene down-regulation.

In ileum cells, we found three up-regulated genes under the Chic diet. Mcmdc2 is an
essential gene for meiotic recombination-mediated repair [35] and fructose seemed to be the
compound responsible for its up-regulation. Mtss1 plays an important role in metastasis
blocking, by governing the metastatic nature of cancer cells [36,37], and its up-regulation
was led by the CGA and STL diets. Lzts1 codes for a tumor suppressor that may stabilize
the active CDC2-cyclin B1 complex and thereby contributes to the regulation of the cell
cycle and the prevention of uncontrolled cell proliferation [38]. All chicory compounds
(Fru, CGA and STL) seemed to participate in the up-regulation of this gene.

In caecum tissue, four genes were up-regulated during the chicory diet. Anp32a codes
for a protein that has been found to be decreased or absent in malignant tumors, and to
modulate cell growth by regulating p38 and AKT activity [39]. Cables1 codes for a vital cell
cycle regulator, dysregulation of which has been associated with a large number of human
malignancies [40]. Ctbp2 codes for a negative regulator of cell proliferation, and Chtf8 is
also involved in the cell cycle and, equally, in telomere maintenance via semi-conservative
replication [41]. These genes were found to be up-regulated by the chicory diet, and fructose
seems to be the bioactive component for all of them.

We observed that fructose plays a major role in the deregulation of genes involved in
cell proliferation regulation, but CGA and STL can also impact several key genes, especially
those involved in metastasis suppression. STL alone seems to be responsible for one
important apoptosis-related gene expression, and this observation could be associated with
in vitro results (Figure 8), showing a significant apoptotic effect of STL on HepG2 cells. Our
observations are consistent with other studies showing the effect of chicory extracts on the
regulation of cell proliferation and apoptosis in different human cancer cell lines [42,43].

4.2. The Anti-Inflammatory Effect as Observed in an In Vivo Murine and In Vitro Human Cell Models

All three analyzed tissues responded by an increase in the anti-inflammatory effect
during the chicory diet. The liver responded by the deregulation of Snx10, Nt5e and
Rwdd3, ileum, also by the Rwdd3 deregulation and the caecum by the Cfd gene deregulation
(Figure 1). SNX10 presents a crucial role in macrophage polarization and inflammation,
and the loss of SNX10 function was proposed to be a potentially promising therapeutic
strategy for inflammatory bowel disease [44]. The down-regulation of this gene suggests
an anti-inflammatory effect, triggered by the chicory flour, and among its components
by the fructose only. NT5E is a marker of lymphocyte differentiation, and this enzyme
contributes to the anti-inflammatory properties of afferent lymphatic endothelial cells in
humans and mice [45]. Fructose, but also CGA and STL, could induce an up-regulation
of the gene coding for this enzyme. RWDD3 is involved in the negative regulation of
NF-κB transcription factor activity [46] and its up-regulation by the chicory diet could
be attributed to the fructose in the liver. In ileum cells, in addition to fructose, CGA and
STL also increased the expression of this gene. CFD is a component of the alternative
complement pathway [47], involved in the inflammatory response. Its down-regulation
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during the chicory diet could be attributed to all analyzed compounds: fructose, CGA
and STL.

An anti-inflammatory response from chicory roots has already been observed by
Ripoll et al. [48] and Matos et al. [49], who investigated the immunomodulatory mecha-
nisms of STL across the modulation of inflammatory pathways in vivo, on rat and mouse
models and, respectively, in vitro, on human intestinal mucosa Caco-2 cells. Our observa-
tions in vivo were performed over nutrigenomic analyses, under chicory flour, fructose,
CGA and STL supplementation (Figure 1) and indicated a deregulation of four genes
involved in anti-inflammatory responses. Thereafter, our in vitro observations (Figure 8)
showed that chicory supplementation in mice led to a decrease in TNF-α, IL-1β, IL-8 levels.
The fructose, CGA and STL were pointed as effector molecules. CGA and STL seemed to
be affecting IL-1β and IL-8 levels more, and fructose was responsible for TNF-α reduction.

4.3. Antibacterial and Antiviral Effect as Observed in an In Vivo Murine Model

During the chicory diet, seven genes involved in the antimicrobial effect and innate
immune system were impacted (Figure 1). Thus, Wfdc21, Asb12, Ighv5-4, Ap1m1, Irf2bp2,
Saa3 and Mzb1 were found up-regulated under the Chic diet, except Ap1m1, which was
impacted by the CGA, while all the others were up-regulated by the fructose intake.
The antibacterial effect of a CGA-rich extract on several common pathogens was already
suggested by in vitro experiment [7] and the honey containing fructose was also described
as a potential anti-bacterial agent [50].

4.4. Hypolipidemic and Hypoglycemic Effects, Appetite Regulation and Intestinal Absorption as
Observed in an In Vivo Murine Model

Chicory has been described as a digestive remedy for both humans [51,52] and ani-
mals [53–55]. Hypolipidemic and hypoglycemic effects were already observed in mice [2].
We support these data with new in vivo nutrigenomic and hormonal effects in the present
study. Liver tissue, ileum enterocytes and caecum tissue responded to the chicory flour
diet by the up-regulation of seven genes, resulting in lipid metabolism modifications with,
consequently, hypolipidemic effects (Apoa1, Acox3, Pex11a, Akr1b8, Fa2h and Gla), the dereg-
ulation of five genes, triggering a hypoglycemic effect and affecting the appetite regulation
(Tpi1, Sp6, Gcg, Insm2, Sec11a), and also a gene playing an important role in intestinal
absorption (Add1) (Figure 1).

Gene coding for APOA1, which is the major component of the high-density lipoprotein
complex, playing a key role in the metabolism of triglycerides [56] and clear fats, including
cholesterol [57], was found up-regulated under the CGA diet. Gene coding for ACOX3
is essential for bile acid formation [58], with a role in lipid destructuration, and was up-
regulated by all chicory compounds (Fru, CGA and STL). Gene coding for LIPH, which is
also involved in the triglyceride catabolism [59], and for PEX11A that is known to have
a major impact on lipid metabolism [60,61], were found deregulated in both liver and
ileum, being impacted by the fructose only. AKR1B8, that regulates fatty acid synthesis [62],
FA2H, that is involved in galactosphingolipid synthesis [63], and GLA, that is involved in
sphingolipids metabolism [64], were also impacted by all bioactive effectors: fructose, CGA
and STL (Figure 1). All these deregulations could trigger a hypolipidemic effect, and this
consequence is also suggested by in vivo Luminex assay (Figure 2). The circulating level of
leptin was reduced after 30 days of chicory supplementation and significantly altered by
the CGA diet. Being directly linked to the body fat distribution [65], a decrease in plasmatic
leptin could be associated to the hypolipidemic effect. In our study, body weight was not
significantly altered (Supplementary File S1), however, a slight decrease in body weight
was observed for Chic fed mice.

Concerning glycemic effect, we observed that gene coding for TPI1, which is involved
in glycolysis [66], and for SP6, involved in hepatic gluconeogenesis [67], were up-regulated
during the chicory diet. The responsible bioactive compound seems to be the fructose that
induced the same deregulation as the chicory flour when administrated alone. We know
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that honey containing fructose exerts a hypoglycemic effect [68], and so, obviously, the
fructose contained in the chicory could act similarly.

The appetite regulation was already described as an important effect in chicory root
consumption [2,18]. We found Gcg gene coding for pro-glucagon to be down-regulated.
This gene, which plays a key role in glucose metabolism and homeostasis [69], was im-
pacted by the fructose and STL. The gene coding for INSM2 that stimulates the pancreatic
endocrine cell differentiation and, thus, the insulin biosynthesis [70], was up-regulated by
all chicory compounds. We also found that gene coding for Sec11a, involved in incretin
synthesis [71], was up-regulated under the chicory diet and that fructose seems to be the
bioactive compound that impacts this gene. More than that, the circulating GIP level was
increased after chicory consumption and significantly higher with STL supplementation
(Figure 2). It is known that GIP is a primary incretin hormone, secreted from the intestine,
to stimulate insulin secretion from pancreatic β cells and, thus, plays an important role in
glucose metabolism [72].

Finally, the intestinal absorption was already observed to be impacted by a chicory
supplementation [73], but the mechanism was unidentified. We found that gene coding for
ADD1, which is involved in actin cytoskeleton organization [74], and consequently in vari-
ous intestinal functions as cell motility, endothelial adhesion junctions, absorption, etc. [75],
was up-regulated under chicory flour and, respectively, fructose bioactive action.

4.5. Neural and Sensory Development as Observed in an In Vivo Murine Model

This study highlighted the effect of chicory on the neural and sensory development
by nutrigenomic analyses. A group of 13 genes was up-regulated under chicory intake
(Figure 1). Among these genes, we note that the one coding for POU6F1 is involved in
brain development and neural plasticity [76], NTF5 related to formation and maintenance
of neuronal connections [77] and to taste development [78], MECP2 is essential for the
normal function of nerve cells [79], and BICDL1 is a key component of vesicular transport
in developing neurons [80]. Further, in this group, we found the gene coding for NAV2
that is involved in the development of different sensory organs [81], CLIC5, which is
required for normal hearing [82], VMN1R101, OLFR1449 and OLFR1014, with a role in
smell perception [83,84]. Another worth noting is the deregulation of gene coding for
PAX7, which plays a role in neural crest development [85], RASGRF1, known for its role
in long-term memory [86] and PIGT, described as implied in neuron differentiation [87].
Surprisingly, we also found a significant up-regulation in gene coding for NOCT, which
is involved in the circadian rhythm regulation [88]. Other than Rasgrf1, which was up-
regulated under CGA, and Noct, which was up-regulated under CGA bioactive impact, the
rest of the genes were deregulated under fructose impact. Excess fructose consumption has
been related to metabolic syndrome and obesity, and more generally, to the feeding behavior
and a hunger-like state in the brain [89]. In chicory plants, the fructose is present in a low
quantity in roots (3–6 mg/g dry matter depending on genotype). Its regular consumption,
enclosed in the food matrix, was assimilated to a benefit as appetite booster [90] or appetite
regulator [18] and the mechanism of its action could most probably interfere with genes
involved in neural and sensory development.

4.6. Anti-Xenobiotic and Antioxidant Effect as Observed in Both In Vivo Murine and In Vitro
Cell-Free Models

The chicory decoction triggered an up-regulation of genes involved in anti-xenobiotic
and antioxidant effects, such as Abcc5, which codes for a transmembrane pump essential
for the elimination of certain toxins [91], Hvcn1 and Gstm2, which are involved in the
maintenance of redox homeostasis [92,93], and also several genes coding for cytochrome
P450 polypeptides, such as CYP2B23, CYP2C29 and CYP3A57, that are known to be
involved in xenobiotic metabolism [94]. Fructose was found to be the bioactive compound
involved in this effect for four genes, but also CGA (for three genes) and STL (for one gene)
(Figure 1). We also observed an important effect of the chicory decoction on the hydroxyl
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radical and on the superoxide anion (Figure 9). All these observations are in agreement
with other studies and confirm the antioxidant effect of the chicory, most likely due to
fructose, CGA and STL [6,11,95].

4.7. Microbiota Modifications

Fecal specimens were used for a 16S RNA targeted metagenomics analysis to estimate
gut microbiota changes during the different diets. The alpha diversity indicates a rela-
tive homogeneity of responses, and the beta diversity indicates that the different chicory
compounds trigger common, but also specific, modifications in bacterial taxa abundance
(Figure 3). The ratio between the Firmicutes and Bacteroidetes phyla was calculated for dif-
ferent treatments, and a decrease in this ratio was registered for the Chic diet, probably due
to the STL effect as the STL diet triggered a significant decrease in the F/B ratio (Figure 4).
A change of F/B ratio may be important because this was described to be correlated with
digestion and metabolic processes. In humans, this ratio was found to be significantly
increased in patients developing type 1 diabetes and also obesity [96,97]. In mice, this ratio
was already observed to be impacted by the chicory diet [2,18], which is also in accordance
with our observations. In addition to this, we were able to detect that STL is the class of
molecules that mostly modifies this ratio.

Daily feeding with the chicory flour decoction triggered changes in the relative abun-
dance of several bacterial genera (Figure 5). Several taxa increased in abundance (Prevotel-
laceae, Lachnospiraceae bacterium A2, Clostridium ASF356, Muribaculaceae, Butyricicoccaceae
UCG-009, Coriobacteriales), while others decreased (Oscillospirales, Oscillospiraceae NK4A214,
Ruminococcus, Faecalibacterium sp. UBA1819, Erysipelotrichaceae, Enterococcaceae bacterium
RF39, Rikenella) and these variations were tracked in Fru, CGA and STL diets to understand
the role of these compounds in the different modifications.

Thus, the abundance of Prevotellaceae was found to be increased in the Chic diet and
similarly impacted by all tested compounds. This gut bacterial taxon was found in humans,
correlated with Parkinson’s Disease [98,99], its decrease indicating a disease state. Prevotel-
laceae was assigned as a psychobiotic [100], in other words, a group of beneficial bacteria
that influences bacteria–brain relationships and exerts anxiolytic and antidepressant ef-
fects, characterized by changes in emotional, cognitive, systemic, and neural indices [101].
Short chain fatty acid (SCFA) producers were also recognized as psychobiotics [100], and
we noticed in our study at least four bacterial taxa, known as butyrate, and other SCFA
producers that were impacted by chicory flour and their abundance were found increased
during fructose but also by the CGA and/or STL: Lachnospiraceae bacterium A2, Clostridium
ASF356, Muribaculaceae, Butyricicoccaceae UCG-009 [102,103]. These observations go near
the neural and sensory development, suggested by the nutrigenomic analysis, and suggest
an improvement of neuronal functions during a chicory supplemented diet.

Coriobacteriaceae seemed to be positively affected under chicory uptake conditions and
mainly influenced by fructose and CGA. These bacteria carry out functions of importance,
such as the conversion of bile salts and steroids, as well as the activation of dietary polyphe-
nols [104] and its modifications could be associated to the hypolipidemic effect of the
chicory that was also observed across the nutrigenomic analysis. Our study showed that
Oscillospirales, Oscillospiraceae NK4A214 and Ruminococcus taxa were negatively impacted
by the chicory and fructose diets. These taxa were described as being negatively associated
with high fatty liver index (FLI) and connected with the non-alcoholic fatty liver disease
(NAFLD) [105–107], and their decrease in our study supports even more the hypolipidemic
and hepatoprotector effect of the chicory, and especially of the fructose.

Faecalibacterium sp. UBA1819, a succinate-producing bacterium that was described
to be involved in the increase in sleep fragmentation and blood pressure [108], was found
with a diminished abundance during the chicory diet, probably due to the fructose content.
This observation suggests a hypotensive effect of the chicory uptake.
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The chicory diet across fructose, but also CGA and STL, triggered the decrease in the
abundance of several taxa, known as mainly pathogenic or inflammatory factors, such as
Erysipelotrichaceae, Enterococcaceae bacterium RF39 and Rikenella [109,110].

We can conclude for the microbiota analysis that together, these modifications in taxa
composition surprisingly merged with many nutrigenomic impacts of the chicory uptake:
effects on the neural development (by the psychobiotics as Prevotellaceae or different SCFAs
producers increased abundance), hypolipidemic effects (by the Coriobacteriaceae increased
abundance, and Oscillospirales, Oscillospiraceae NK4A214 and Ruminococcus decreased abun-
dance), anti-inflammatory and anti-pathogenic effects (suggested by the Erysipelotrichaceae,
Enterococcaceae bacterium RF39 and Rikenella decreased abundance). A hypotensive effect
was also suggested by the Faecalibacterium sp. UBA1819 decreased abundance. As for
the transcriptomic analyses, the fructose was found to play an important role in bacterial
richness, being involved in the abundance modification of 12 bacterial taxa. The CGA was
also observed to exert a noticeable influence for six taxa, and the STL for the other six taxa.

5. Conclusions

Chicory as a functional food has been studied in the form of root, transformed into
flour, for pastry or bakery use, or more generally in the food industry. To identify the main
effector molecules of the chicory, we split the composition of this flour into several classes
of molecules. Inulin, the main component of the chicory root, has already been the subject
of studies, showing its exclusively prebiotic effect [2]. In this work, fructose, CGA and
STL were tested in daily administration in mice, and a set of analyses were performed.
The gene expression profile of the experimental animals, following the different diets,
indicated several deregulated biological functions, leading to several putative health effects:
anti-cancer, anti-inflammatory, antimicrobial effect, and metabolic effect concerning bile
acid biosynthesis, lipid and carbohydrate metabolism, appetite regulation and intestinal
absorption. A regulatory effect has also been observed in many genes affecting neuronal
and sensory development, suggesting a regulation of energy homeostasis. In addition,
anti-xenobiotic and antioxidant effects were also observed. All these effects seem similar in
the three different analyzed tissues, even though different genes appear to govern these
responses in each tissue.

These effects were then recognized by complementary in vivo analyses, such as hor-
monal assay, and also by in vitro analyses on cultured cells or on acellular assays, to
highlight the apoptotic, anti-inflammatory and antioxidant effects. A 16S RNA targeted
metagenomic analysis completed the panel of health effects of the chicory flour and its
components, and showed the role of fructose, CGA and STL in the development of several
SCFA producers, with a psychobiotic role, bacteria with hypolipidemic, hepatoprotective
and also a hypotensive role.

Hence, our study explicitly targeted these effects on gene expression, hormone-
releasing and microbiota modifications and pointed out the role of different effector
molecules contained in chicory roots: fructose, CGA and STL. All these responses are
summarized in Figure 10 and File S8. Fructose seems to be the most involved in these
activities, contributing to approximately 83% of all recorded responses. Almost half of
the fructose effects were observed at the metabolism level and brain appetite regulation.
CGA and STL have shown a specific role for all different effects, with an estimated 23
and 24% contribution, respectively. Further studies are certainly needed to test the role of
other classes of molecules, as well as the defined role of the food matrix. Chicory genotype
breeding and/or CRISPR-Cas9 tool [111] should be able to guide us even more quickly in
the complete deciphering of different effects and effectors of chicory flour on health.
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and its tested compounds: fructose (Fru), chlorogenic acids (CGA) and sesquiterpene lactones
(STL). Number of DEGs was considered in transcriptome analysis, and number of modified taxa
in metagenetic analysis. Results of hormone assay were constricted to significant modification as
well as for in vitro analyses as significant response was considered 1 and a non-significant one was
considered 0. A score was calculated by totaling these events for each diet. The Venn diagram’s
platform (http://bioinfogp.cnb.csic.es/tools/venny/index.html accessed on 21 January 2022) was
used to cross the data.
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