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“Oseen—Poiseuille” equations are developed from an asymptotic formulation of the
three-dimensional Navier—Stokes equations in order to study the influence of weak inertia on flows
between rough surfaces. The impact of the first correction on macroscopic flow due to inertia has
been determined by solving these equations numerically. From the numerical convergence of the
asymptotic expansion to the three-dimensional Navier—Stokes flows, it is shown that, at the
macroscopic scale, the quadratic correction to the Reynolds equation in the weak-inertial regime
vanishes generalizing a similar result in porous medi&2005 American Institute of Physics

[DOI: 10.1063/1.1923347

I. INTRODUCTION implicit perturbation expansion for a finite capillary
number® Numerical calculations have nevertheless shown

fThe S.tUd¥ .Oft wea;k_—mernal elffectst bitwleteﬁ tWE rOljg?that for any capillary number in two dimensions the gener-
suriaces Is ol Interest In several contexts. 1t has been, 104, ation of lubrication theory, including first inertial pertur-
example, investigated in microfluidic apph_catlons whgre th_ebations extends by more than one order of magnitude the
Eaeﬁ/gzlgSsgungﬁ]rzsairse%?;gnatlIf{)‘:‘?fi‘)l(liyh"eutrhiéfwlr']s tlr?crg(;range of applicability of standard lubrication thedtyThis
S 9 purpose. observation has led to the present study to assess the validity
cases, weak-inertial effects as those studied by Sohest

Jones, Thomas, and Afetould lead to important conse- range of inertial effects described through a generalization of

D S . K - lubrication theory in the context of confined flow between
quences on stirring. Approximating inertial effects with

. 2 . . : . complicated corrugated surfaces. In this context Sawyers,
asymptotic analysis is interesting for it avoids solving heavy en. and Charjré proposed such a long-wavelength expan-

three-dimensional Navier—Stokes equations in complicateé for the Navier—Stok i iated with a th
geometries. For example, in cylindrical geometries, the'ON TOT the Navier—->Iokes equations associated with a three-

Deard* approximation for curved pipes has been used todlmensmnal anisotropi¢one longitudinal direction varia-

study inertially driven chaotic advectiGrRecent experimen- tlpns "’_‘(rjelsuDIFI’osqu deCh Iaagiht?lg% the trlansverj_e done
tal resultd have shown that proper surface patterning coulPnusoldal walls. siddique an \ayalnave aiso §tu '€
generate vortex which are transverse to the longitudinaiumerically geometrically forced inertial effects in three-
mean flow that could be used to produce chaotic stir?ing.d'mer?s'onal cavities presenting two-dimensional spatial
These experiments have been successfully analyzed in tfy@nations. _ o _
context of Stokes flows, in the limit of small patterning [N this paper we derive the first inertial correction to
amplitude’ Small amplitude perturbation has also been disuPrication theory for flow in between three-dimensional
cussed to investigate inertial effects in two-dimensional cordeneral surfaces, having similar variations in the horizontal
rugated surface®’ In this paper we discuss another interest-Plane. We discuss this approximation for various boundary
ing limit associated with smooth boundary variations, orconditions over a wide range of Reynolds number.
similarly, three-dimensional channels having large aspect ra- Another related issue discussed in the porous media lit-
tio. The procedure is similar to the long-wavelength expan£rature is the macroscopic impact of the Navier inertial term
sion used in the study of falling films in W& or three  on the usual macroscopic relation between the mean pressure
dimensions>*° Contrary to the problem of fluid flows con- and the mean flux. Using homogenization theory, Mei and
fined between rigid surfaces, that of falling films is a free-Auriault'® derived general relationships between pressure
boundary problem which generally involves different nondi-and velocity at macroscopic scale for an isotropic homoge-
mensional numbers such as the Bond number, capillarjieous porous media. They obtained a cubic correction for the
number, and Reynolds number. Depending on the capillarjnacroscopic pressure gradient as a function of the macro-
number, the influence of inertia could be obtained either in &Copic imposed flux. Further experimental measurements and
closed form by ignoring surface-tension effects, or within annumerical simulations have shown that the range of validity
of this cubic regime is quite narrow and confined to small

JAuthor to whom correspondence should be addressed. Electronic maiReynOIdS number%. For |ar_ger ReynOIds_ numbers_! one re-
david.lojacono@epfl.ch covers the Darcy—Forcheimer quadratic correction to the
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macroscopic pressure gradient. More recently, Skejtnenolds numberi(H)/(U)e=(H)? or equivalently, Re<1,
Hansen, and Gudmunds$dnhave performed numerical where Re%U)(H)/v is the Reynolds number based on the
simulations of high velocity flows in fractures made of self- characteristic velocitfU) and the kinematic viscosity.
affine two-dimensional walls using full Navier-Stokes equa-This condition is also used by Tuck and Kousoubofor
tions. Of interest for this work is the cubic correction ob- investigating the influence of entry effects due to inertial on
served numerically by the authors in the weak-inertialboundary conditions. We will consider that the boundary lay-
regime. To our knowledge, no theoretical analysis of inertialers associated with the upper and lower surfaces are fully
effects has been developed for flows through fractures. Undeveloped from upstream conditions so that no restriction on
derstanding these effects cannot be achieved in the light afie upper Reynolds number values will be explicitly consid-
results available for flows in heterogeneous porous mediared in the following as far as boundary layers are con-
Because the lubrication approximation leads to a local Darcyerned. We will nevertheless consider “moderate” inertial ef-
relation, flows through fractures can be regarded as twofects, the precise meaning of which will later be discussed.
dimensional flows across a specific porous media. Howeveon the contrary, beside(e?) Stokes corrections to lubrica-
this analogy cannot be extended to include inertial effectsion theory are not considered in the following; it turns out
generalizing the results of Mei and Auriatiitto flows in that lubricated inertial effects of the order Rehould self-
fractures. The analysis of macroscopic inertial effects orconsistently be larger. Hence the range of the Reynolds num-
fracture flows first requires a generalization of lubricationper concerned by the following analysis @ e>Re> ¢,
theory including inertia. _ ~ wherec is a constant whose value will be discussed in the
Hence, Sec. Il A presents the asymptotic expansion ofight of the numerical results of Sec. Il B 3. Finally, we wish
the lubrication theory leading to the two-dimensional Oseen-yo illustrate the relevance of moderate inertial effects on a
Poiseuille equations. Those equations are solved analyticallimple example. Let us evaluate the Reynolds number asso-
in the limit of small amplitude in Sec. 1l B. Section Ill is ciated with water flowing through a channel whose vertical
concerned with the numerical solution and the validity of thegap is one-tenth of millimeter with a velocity of 1 cm/s.
asymptotic Oseen—Poiseuille equations, as previously invegiven the kinematic viscosity of watép=10"° m?/s), one
tigated by Sawyers, Sen, and Chéhfpr anisotropic three-  easily finds that Re=1 in that case. Hence, moderate veloci-
dimensional surfaces. The Oseen—Poiseuille equations afes associated with submillimeter dimensions and usual flu-
solved numerically with a method described in Sec. Il A andids could lead to moderate inertial effects which we have
validated in Sec. Ill B. Section Il B 2 discusses the physicsstudied here. Similar conclusions have been reached in the
of inertial effect in a simple example for which the aperturecontext of falling films'*3
perturbation displays a simple sinusoidal shape. The two-  The fields are then nondimensionalized usfhig/ e and
dimensional numerical solutions are then compared with theH) for distances in the horizontal and vertical directions,
numerical solutions of the full three-dimensional Navier-respectively, the averaged horizontal velodi)) for the ve-
Stokes equations in Sec. Il B 3. In Sec. IV the macroscopiqoity, and the usual viscous lubrication pressufJ)/ e(H)
effect of the first inertial corrections on the Oseen—PmseuHIerOr the pressure, wherg is the fluid dynamic viscosity. Us-
equations s investigated using two complementary macrop this scaling, and keeping the same notation for dimen-

scopization techniques. It is demonstrated that quadratic COgjon|ess variables, the incompressibility condition for the ve-
rections in the weak-inertial regime vanish in favor of NoN-ocity field reads

zero cubic inertial corrections. Those cubic corrections are
recovered by means of three-dimensional computations of

- e 1
the Navier—Stokes equations. V-U=0 withv = (ax'aY';aZ)' @

leading to the following self-consistenbndimensional ve-
locity scaling, U=(u,v,ew). The dimensionless Navier—
A. Governing equation and inertial correction Stokes equations are

Il. OSEEN-POISEUILLE WEAK-INERTIAL EQUATIONS

In this section, the equations for first-order inertial cor-  Re ¢ (ugyu + iyl + Wd,l) = = dyp + AU,
rection to the lubrication approximation are established. The
fracture is described by the volume inbetween two rough
surfacesZ;(X,Y) andZ,(X,Y) where(X,Y,Z) are the Carte-
sian coordinates. We defineas the horizontal extension in 3
the X andY directions andH(X,Y)=Z,-Z,>0 as the aper- Re € (UdkW + vy W + WA W) = = dzp + E55W.
ture. We focus on a flow through a thln and smooth fracturewe next expand the pressure and velocity fields in powers
where the local slope of each surfaeeas smalle<1. More- of €
over, the mean apertuxgd)=[5/5H(X,Y)dXdY/L? is small '
compared to the typical horizontal extensibrof the frac- (p,U,q) = (Po,Uo,0o) + Ree(py,U1,qy) + O(€2,RE €2,
ture. We study situations in which viscosity and inertial ef- (3)
fects are of the same order of magnitude and the boundary
layer fills all of the gap between the two rough surfaces. Thevhere the subscripts refer to the order of the correction and
condition for the boundary layer to be fully developed on thewhereq is the horizontal flux obtained after integration of
typical length(H)/e gives a condition related to the Rey- the velocity across the local apertucp:fﬁi(u,u)dz The

Ree (U(?Xv"' voyv+ Wazl}) =-p+ (9%1}, (2)
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leading order gives the classical lubrication boundary layecounting for inertial effects is obtained after substitution of

equations: expansion3) in (2), leading to
0=- V py+ Uy, U~ V Ug+Wodlg=— V py + Uy,
4 (8)
0= - d5Py. 0=0,p1.

whereV = (dy, dy) andug=(Ug, ) are the two-dimensional This correction to the leading-order I.ubrication flow still dis_—
leading-order velocity fields. These equations are easilyplays.a boqndary layer structure, W't.h a pressure correction
solved using no-slip boundary conditiong=0 alongz=z, ML being umform in the yert|cal direction. The correctian
andZ=2Z,. One recovers the usual Reynolds equations with an be obtame_d_ analytically from Ep) using the no-slip
Poiseuille profile of the in-plane velocity fieldy=(1/2)(Z oundary conditionsi,(x,y,z=+Z_)=0 and reads
-Z1)(Z-2Z,) V py. Integrating this profile in the vertical direc- 0= (2~ ZE){% H (A aPP+ 1lzi){V(V Po)2

tion gives the Darcy—Reynolds relation between the figx 240
and the pressure fieldgo=-(223/3)V py=-(H3/12)Vp,,
whereZ_=(Z,-Z,)/2=H/2. The fluxq, is divergence free + Vpo(Vpo - VZ—)] 9)
and the pressurgy=py(X,Y) satisfies 60Z_ '
V- (H3V pg) = 0. (5) From the in-plane inertial correctia®), one can obtain the

related flux after integration in the vertical direction. This
One can obtain the vertical velocity component from the  |eads to the same inertial pressure/flux dependence as the
divergence-free conditiofil). Sincew, is a third-order poly- lubrication leading order, plus some nontrivial inertial terms
nomial inZ, it cannot fulfill the no-slip boundary conditions depending on the leading-order pressure figjand the ap-
along the surfaceZ=2, andZ=2,. This apparent inconsis- erture fieldH=2Z_,
tency disappears when one realizes that lubrication approxi-

3
mation should be written on the relative curvilinear mean qlz—H—V pl_iO[V(VpO)ZW
: _ 12 224
reference surface defined By (x,y)=[Z;(X,y)+Zx(X,y)]/2.
Let us define byx,y,z) the curvilinear coordinate system in +4V po(Vpo- VH)HE]. (10)

which (x,y) are the orthogonal curvilinear coordinates lying
on the surfac&=Z, andz is parallel to the vertical coordi- Relation(10) is called the Oseen-Poiseuille equation, for it
nate withz=Z-Z,(x,y). Therefore(x,y,z) defines a nonor- gives the first in-plane inertial correction to the lubrication
thogonal curvilinear coordinate system in which they) Darcy—Poiseuille flux. The relationship between inertial ef-
part of the metric tensor is diagonal. In this coordinate sysfects and the Reynolds pressure fipldas well as between
tem, Euclidean differential operators must be translated int#ertial effects and the aperture field is far from being
covariant derivative operators. But a striking simplification SImple even in two dimensions. The flow incompressibility
can be obtained because the deviations of these covariatfPoses that this in-plane inertial correctigpis divergence
differential operators from their Euclidean form are smallfree, so that the pressure correctipnsatisfies

when the mean reference surface deviations from a plane are 3

small. More precisely, if the typical slopes of these variations V- (H*V py) =~ %V [V(Vpg)?H’

are O(e), the covariant derivative€D,,D,) differ from the

Euclidean versior{dy, dy) by O(€?).%* Hence, regarding the +4V po(Vpg - VHHL. (11
order of the expansiofB), the covariant derivatives in the
curvilinear coordinate&, y, z) will be self-consistently iden-
tified hereafter with their corresponding CartesiaqY,2)
formulation. One can easily recover the expression for th
leading-order velocity field in the curvilinear coordinates
(x,Y,2). Integration of Eq(4) with the no-slip boundary con-
ditions uy(x,y,z=+Z_)=0 leads to the parabolic velocity
profile ug=1/2V py(Z2-Z3) and Eq.(1) gives

As expected from the perturbation expansion, the pressure
correction satisfies the same heterogeneous two-dimensional
Poisson problem ap, [Eq. (5)] but with a nontrivial right-
fand side depending on the leading-order prespgr&ec-
tion 11l describes the numerical method used for solving this
problem.
To complete this section, we need to calculate the first
correctionw; to the vertical velocity field. The procedure is
IWe=—V - U, (6)  similar to that used fou,. The calculation is cumbersome
but a useful factorization can be obtained from Ed). The
whereVE(&X,&y):(&x,ay)+0(e2). Integrating(6) with the final result reads

symmetric boundary conditiongy(x,y,z=+Z_)=0 and sim- Vp..V7Z
plifying this result using5) lead to w,=-2Z-27% % +P13[V ® Vpg:V
Apg 2 .
=y 2- V(Vpy-VZ):-V
wo= - ~02F~22), (7) o vy Y(VPo v ) po}
which displays the correct antisymmetric vertical profile in
the relative coordinateéx,y,z). The next Oseen term ac- ~P1(Vpo- VZ)2=PisV(Vp)?- VZ, (12
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where “®” and “:” represent the tensorial product and the our study. We next consider situations where a macroscopic
double contraction, respectively. The analytical polynomialpressure gradient is imposed across the channel. Further-

dependence in the vertical directians given by more, we assume that the representative elementary volume
(REV) associated with the typical correlation length of the
P1s(2) = —(22 7%)\(2 - 572), aperture variations, is small compared to the problem scale
840 L and in the followingd,(r) is a Gaussian random field. This
hypothesis has also been confirmed by experimental
Pou2) = 2(524 22272 + 1097%), (13) observationg® According to the ergodic hypothesis, the

probability average is also identified with the spatial average
(') in an infinite domain. The aperture field is considered as
being stationary, so that the correlation function of the aper-
ture(5,(r +r")8,(r"))=p(r) only depends on the relative two-
_ ) ) ) ] point vectorr. All the corrections topgo) are periodic, and
The vertical velocity component obtained in EG2) fulfills  iherefore are more easily handled in their spectral form.
the_expected _antisymmetric vertical profile in {txey, z) co- Hereafterpo and p(”) stand for the result of the Eourier
ordinates. Using Eqg9) and(12), we have checked that the ynsform ofp” andp!”, respectively. Boundary conditions
perturbed flow; =(uy, vy, ew,) is divergence free. must be specified for the harmonic probléhs). When the
velocity field is periodic in the twox andy directions, the
resulting pressure includes a macroscopic pressure gradient
The purpose of this section is to obtain an approximatéVP equal to the leading-order pressure grad|eVip0
analytical expression for the inertial pressure correction |n:(Vp(°)> (Vpyy=VP. Hence, the periodic solution of the
the limit where the amplitude of the aperture variations isharmonic problen(16) p((’) fulfills a zero averaged pressure
weak. This analysis will be helpful to validate the numerlcalgramemwp1 y=0 and allows to sepl ) =0. Inserting these
procedure described in Sec. Il and used to solve the Inertlﬁxpressmns |nt(§17) and (18) and rewrmng Eqs(15) and

Z_
P15(Z) = EO(ZZ + 3ZE) .

B. Weak disorder asymptotic expansion

pressure and velocity correctiofsgs.(11) and(12)]. It will (16) in the Fourier space lead to

also be used to investigate the macroscopic effects of inertia -

in Sec. IV. Such a solution is obtained for aperture distribu-  — kpy’ = - 3ik - V P4, (20)
tions of the formZ_=(H)(1+05,)/2 in the limit where the

relative aperture variations are smalllc<1) and wheres, _ 2-(1) __ 9 4

is a normal-centered.e., (5,)=0, (53):1) periodic function K B 280<|_|> lik-[vP-ike |kp ]

in thex andy directions. The relevance of this approximation ) o~

has been suggested by previous experimental +2ik - [VP(VP-ik&)]}, (2D

measurements for fractures. wherek is the wave vector andZ is the Fourier transform of

The successive pressure corrections are expanded w@ Using Eq.(20), ~<1> can be expressed from E1) and
the small parameter so that gives

— A0 2
Po=py’ + opg’ + o?pg + <o+,

(14) P = <H>45 I(: VP® VP. (22)

k2
p1=py +op’ + o%piP + o | .y | .

® ® i i This last equation gives an analytical spectral representation
wherep, " andp, " denote thenth-order corrections i 0Py f the first correction to the pressure field in a weak disorder

and p,, respectively. Introducing this expansion in E@Sl  approximation. It is used in Sec. Il to check the numerical
and(11) leads to code and to compute the impact of the first inertial correction

ApY =0, (15  at the macroscopic scale.
Apl? =0, (16)  Ill. NUMERICAL COMPUTATIONS
@_ o A. Solving two-dimensional Oseen-Poisedille
Apy =-3V 4,- Vg (17 equations
L o In this section we describe a numerical method for solv-
ApP=-3V s, Vp? - 2_80<H>4 ing the asymptotic two-dimensional problems obtained in
Sec. Il. A spectral element mettSds used to discretize the
-{[Vp - V]V p(l) +2V p(o)[V p(o) V 5,1}, equations and to evaluate the pressure, velocity, stream func-

(18) tion, and their successive inertial corrections previously de-
scribed. The fields are approximated wily < N, order
Ap? = -3V 5,V D135V Voo 19 polynomlals in thex gndy d|rect|0|js, respectively, and. thg
Po Po 2V %V Po (19 interpolant of each field is numerically represented with its
Solving analytically Eqs(15)—(19) turns out to be extremely (N,+1) X (N,+1) values at the Gauss-Lobatto-Legendre
difficult in the general case and this is why we will restrict nodes?’ One advantage of this choice lies in the high-order
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Gauss—Lobatto quadrature that can be used for the evaluatio 08 - T - T
of the integrals arising from the variational formulation of N
the problem. As for Eqs(5) and (11), the corresponding
linear problem is(in general a nonhomogeneous Laplacian
which has the form discussed by Azaiez, Bergeon, and
Plourabou® for flows in heterogeneous porous media. Here,
it is solved with a conjugate gradient method preconditionedg
by the Laplacian. This last operator is inverted with a direct o4} ~-3
solver by means of a tensor product metfidd. e
The comparison of the size of the REV and that of the e
numerical domain defines two problems with different .-
boundary conditions. If the two domains are of the same 92T e i
order, Dirichlet or Neumann boundary conditions are used to o
take into account realistic boundary conditions and this case
falls in the numerical treatment that we described in the last
paragraph. On the other hand, if the REV is small compared
to the numerical domain, the corrections to the imposed pres-
sure gradient are periodic and are expanded in Fourier Serig$s. 1. Relative erroE=||p-pd-o(pi+eRepd)|| between the numerical
instead of polynomials. In this case, we impose a uniformpressurep and its asymptotic estimates established2d) and(23).
mean pressure gradient along thdirection. We then solve
a periodic problem in botk andy directions for the pressure
deviation to this uniformly increasing imposed pressure.
Hence in this casg is only periodic along the direction.
However, it should be noted that even if the aperttte
=27 and the corrections tp, andug are periodic, the cor- . ~ . 1) _
responding stream functioni, and its inertial correctior pression, we choosé,=codx+y) leading top;” =3 cogx

are not necessarily periodic. Since these fields are solutionsY)/°60- Figure 1 displays the relative error betweg

of a Laplacian equation with Neumann boundary conditions@d its numerical approximation and shows that it ap-

the problem must be rewritten on a Gauss—Lobatto—Legendfd0aches zero as— 0. Therefore, this result validates nu-
grid prior to being solved. merical procedure used for approximating E#8). More-

over, we know that the correction to the first ordeigr?),

B. Numerical tests with a corresponding relative error @(o). This result is
consistent with the linear behavior effectively observed in
Fig. 1 wheno<1.

To check the accuracy of the two-dimensional code, an ' S .
analytic solution is compared with its numerical approxima-2. Discussion about the resulting inertial perturbation

tion. SubstitutingVP by e, in Eq. (22) gives In this subsection we shall discuss the structure of the
inertial corrections to the zero Reynolds number lubrication
streamlines. As Sec. I, we consider a simple perturbation
P = i(H)“(cos&)ZEZ, (23)  S,=cogx+y)+cogx~-y) of the apertured, but the amplitude
280 o of this perturbation will not necessarily be small in this
subsection. Figure (B) displays the lubrication streamlines
d‘I'o associated with the divergence-free flgy computed
from inverting its relation with the flux,

0.6 [ k

0 (" L 1 L 1
0 0.1 0.2 0.3 0.4 0.5

3
piP(r,¢) = 250C0sb0)? cosko ). (25)

To compare the numerical solution with the analytical ex-

1. Validation with analytic two-dimensional solutions

where @ is the azimuthal angle in the Fourier space define
by cos#=e,-k/||k|. Transforming back to the physical space,
one obtains the solution expressed in cylindrical coordinates AW =V X qq, (26)

(r.¢),

whereWV,=(0,0,¥,). The inversion of the Laplacian opera-
tor is carried out with a direct method using periodic bound-
w_ 3 1 co92¢) &(0) ary conditions iny directions and Neumann boundary con-
=580l 2. 2 T o |* 3(r,¢,¢0),  (24)  ditions alongx direction. From the superposition of the
stream function and the aperture fittix,y) in the gray
level on Fig. Za), it can be observed, as expected, that the
where ¢ is the azimuthal angleg, is the angle between flux is maximal in regions where the aperture is the largest.
vectorsk, ande,, cos¢y=Kq-e/||kg|, and “” is the convo-  The symmetry invariances of the chosen aperture corrugation
lution product. This relation shows thpﬁl) varies linearly  are those of the group,, the symmetry group of the square.
with the aperture spatial variations, a direct consequence of Bhis group has eight elements and is generategtpr S))
first-order perturbative expansion. In the case of a simplandll,, (or I1,,) which are reflections with respect f&=7
sinusoidal aperture perturbatiof(r, ¢, ¢p) =cogky r), one  (or y=m) and x-y=m (or x+y=1), respectively. The sym-
gets metries of the noninertial pressupg which satisfies Eq(5)
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FIG. 2. (a) The dash-dotted lines refer to the streamlines associated with the : :\‘;KX

mean fluxW=V,+eReW¥,; while the local distanc&_ between the two 5
surfaces is represented in gray scale from black for the minimum to white

for the maximum whereZ_=e€{1+o{cogx+y)+cogx-y)]}, with ¢=0.30

and e=27/5. (b) Comparison between noninertial streamlifig (continu- f
ous lineg and streamlines’ =W,+eReV; associated with inertial effects /|
(dash-dotted lings :t
E’Z
not only depend on the symmetriesldtx,y) (i.e., those of gg' '
L2

8,) but also on boundary conditions. Because the boundary
conditions of the pressurpg, are different alongx=0, 27,
andy=0, 2w, the relevant symmetry is given by the group FIG. 3. Inertial correctiorn¥; to the stream functior{dotted line$ and
D, generated bys, and Sy As can be seen on Fig(1®, the inertial correction to the pressure (dashgd lines for Z=e€{1+o{cogx
noninertial flow(continuous linesis D, invariant. Now, in- Y *CoSx~y)l}, with e=2a/5 for four different values ofo: (@ o
) S =0.0005,(b) 0=0.15,(c) 0=0.30, and(d) c-=0.45.
cluding some inertia in the flow breaks some of these sym-
metry invariances. As observed on the same figure, the total
stream functionV =W,+e ReW; represented with the dotted
line is notS, symmetric any more. The broken symmetriesposed by Karniadakis, Israeli, and OrsfggThis Poisson
result from the physical effects that streamlines keep $roblem, as well as the Helmholtz problems which incorpo-
memory of the flow meandering with a delayed responsdate the viscous terms and constitute the final implicit step of
typical of inertia. The effect of inertia can better be identifiedthe scheme, is solved using a variational formulaffokost
by examining the inertial correction to the stream function®f the computational time is spent in the inversion of the
W,, while varying the amplitude of the perturbation The ~ Pressure and velocity problems. The corresponding algebraic
inertial correction¥; is computed from its relation taj, s:ystems are solved in the hexahedral element of reference
similar to (26) with periodic boundary conditions. As ob- Q=[-1,1]3in which all function evaluations are carried out.
served on Fig. @), wheno is very small, the stream func- These evaluations require the mapping frono the fracture
tion displays a quadrupolgr structure. From the orthogonali%nd its Jacobian which are both analytically knownOlthe
between the stream function and the pressure, this property {fiscrete Laplacian takes the form of a tensor product sum of
expected from the quadrupolar structure of the pressure fielgne_gimensional stifiness and mass matrix associated with
obtained from(25) {i.e., py=3o{codx+y)+codx-y)]/560,  ihe three spatial directions. If the aperture is constant, this
in the limit of o<1 when &,=codx+y)+codx-y)}. In this  gm has three terms and can be easily rewritten so that each
casep; and'V; are S, and §, antisymmetric, as can be 0b- oy jn the sum involves only one spatial direction. This
served on Fig. 3. When increasing the parametethe \yay the algebraic linear system can be inverted with a direct
stream function¥, still display a quadrupolar symmetry, but ethod based on a diagonalization proceddi@uch a trans-
a more complex shape with secondary maximiiigs.  formation is not possible in the present case where the frac-
3(b)-3(d)] resuilts from an increased perturbation These ¢ s a nontrivially deformed hexahedral element. We there-
effects illustrate on a simple example the physics of inertiakye yse a conjugate gradient method preconditioned by a
effects, as well as the rich behavior of the flow field StrUCturenomogenized version of the Laplacian as described in Ref.
on a very simple perturbation. 28. This preconditioning turns out to be very efficient com-
pared with the the Laplacian when the aspect ratio of the
3. Comparison with full three-dimensional initial problem is large or the variations of the aperture are
Navier-Stokes computations small. We have used the code to compute the steady states
The numerical simulation of the three-dimensio(&D) increasing the Reynolds numbglefined in Sec. Il Afrom 0
Navier—Stokes equations employs a projection method based 200 with a step of 5.
on a spectral spatial discretization already described in Sec. For Reynolds in [0,200, the Oseen—Poiseuille
[Il A. After the nonlinear terms have been computed explic-asymptotic and full three-dimensional Navier—Stokes flows
itly via second-order extrapolation, a Poisson problem is forare compared in Fig. 4 for a simple one-mode geometry
mulated for the pressure using the boundary conditions praZ_(x,y) =e{1+o{cogx+y)+cogx-y)]} with ¢=0.15, €

—
(2]
~
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FIG. 5. View of the fracture geometry and surfacgks and 2 used for
Figs. 6-8.

0.01 - . W5
0 20000 20000 of the lateral boundary layers proportionally to*ReFigure

Re? 6 shows that for Re=50 this extension is twice the mean
aperture. Therefore, even if the proposed asymptotic is inter-
FIG. 4. Continuous line: Evolution with the Reynolds number of the relativeesting for describing the inertial flows far from lateral bound-

error e=||uys(Re) —uag(RO)|/[|uns(RE)||, where uys and u,g refer to the ; : ; ;
velocity field obtained with the Navier—Stokes equations and the first-orderanes’ I Shou.lq be ke.pt in mind th"?‘t bo.undary Iayer effects
re also significantly increased by inertia.

asymptotic approximation, respectively. The dashed line refers to the apa g X ’ ) . .
proximation by means of a linear regression on the values obtained for Re  In Fig. 9, the relative contribution of the inertial correc-
€[0,100. The aperture isZ (x,y)=e{1+o{cosdx+y)+codx-y)]} with  tjons to the lubrication approximation is presented as a func-
0=0.15 ande=27/10. Periodic boundary conditions are imposed inxhe tion of the Revnolds number and for the geometry used in
and y directions and no slip along the rough surfaces. Resolution is S y . . 9 . Y
64X 32X 21. the periodic caséthe configuration used for Fig.)4At Re
=100, the relative contribution is 20% for the velocity field
and becomes 40% at Re=200. This indicates that the first
—27/10, and periodic boundary conditions in theand y mer_tlal _contnbuuor] mtroduces a S|gn|f|ca_1nt dlﬁergnce in the

S i . - . lubrication approximation. The asymptotic modeling of iner-
directions. The figure displays the variations of the d|fference[. . . . A

ial effect thus provides an interesting approximation for

between the two velocity fields with the Reynolds number. ) . S
The results indicate that the part neglected when approximap-OWS confined in between two rough surfaces where inertial
contribution to the velocity field is still small for Reynolds

ing the Navier—Stokes flows to the first order varies quadrati-number as large as 100
cally with the Reynolds number. This behavior was expected 9 ’
and also proves that the asymptotic approximation correctly

captures the first inertial correction: if the approximation had'V- MACROSCOPIC INERTIAL EFFECTS

not been consistent, the figure would have displayed a linear  gquation(10) describes the first-order nonlinear relation
dependence with the Reynolds numper. Examination of Figyetween the fluxj and the pressure gradieWp on the mi-

4 also shows that the error arising from second-ordegroscopic length scale. In this section, we address the impact
O(€? R€) inertial contributions remains smaller than those of this first inertial correction on the macroscopic fl{og)
existing at Re=0. As a matter of fact at Re=0 there is anz g due to an imposed pressure gradié¥p)=VP. We

error of 1.8%. This is consistent with an expected error cOMyq ;5 on situations where the macroscopic pressure gradient
ing from Stokes corrections of ordet when the aspect ratio

of the chosen surfacesis 0.1, so that? gives 1% errors. It
is also interesting to compare linear inertial corrections to
quadratic ones from direct numerical simulations. For ex-

ample, at Re=50 we found that linear inertial corrections (§©g g@jl

representi.e., their quadratic norm contributipi% of the  (g)
total flow field, whereas quadratic corrections represent onlye———_____ — —
0.1%. The differences in the velocity fields between the
Stolfes flow and its Iubrlcat!on approximation are _|I_Iustr§1ted (>
in Figs. 6-8a) and &b) for different boundary conditions in © @
they direction: no-slip, stress-frd@u/ 9x=dow/ dz=v=0) and
periodic velocity boundary conditions, respectively. It iS FIG. 6. [(a) and(b)] Comparison of the full 3D Navier-Stokes flow and the
completed with Figs. 6+8) and 8d) where the inertial ef- asymptotic approximation at Re=[ic) and(d)] Same aga) and(b) but for
fects for the Navier—Stokes and Oseen—Poiseuille asymptoth‘? inertial correction &t Re=50. The bold lines refer to Navier—Stokes so-
fl f _ . utions and the thin lines to first- or zeroth-order asymptotic approximation.

(_)WS are Compamd or Re=50. For perlc_>d|c _boundary Conla)—(d) depict the isovalues af (top) andv (bottom on two plane$(a) and
ditions, the figures show that the velocity fields are very(c)] x=m/4 (surfaceSl) and[(b) and(d)] x=21m/32 (surfaceS2). The two
similar. As observed from Fig. 4, the differences betweerpurfacesSl andS2 are presented in Fig. 5 along with the fracture defined by
Stokes and lubrication flows are larger than those bet\Neeéx'y)ze[“"cos(X*y)] with ¢=0.15 ande=2n/10 and G=x,y=2m.

. . . L tress free-boundary conditions are used for the velocity along the vertical

the mgrual Corr?CUOPS- In the case of nonperlod_lc bound?-rYateral side walls for the asymptotic computation and no slip for the Navier—
conditions, the inertial effects increase the spatial extensioBtokes. Resolution is 3241x 21.
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0.05
0.04 |
e 0.03
£|3
0.02
FIG. 7. [(a) and(b)] Comparison of the full 3D Navier—Stokes flow and the 0.01 b
asymptotic approximation at Re=[dc) and(d)] Same a%a) and(b) but for ’
the inertial correction at Re=50. The bold lines refer to Navier—Stokes so-
lutions and thin lines to first- or zeroth-order asymptotic approximation. 0 L
(a)—(d) depict the isovalues af (top) andv (bottom on two planeg(a) and 0 100 200
(c)] x=m/4 (surfaceSl) and[(b) and(d)] x=217/32 (surfaceS2). The two Re

surfacesS1 andS2 are presented in Fig. 5 along with the fracture defined by ) . L .
2x,y)=¢[1+0 cogx+y)] with ¢=0.15 ande=27/10 and O<x,y=< 2. FIG. 9. Evolution with the Reynolds number of the first inertial relative

Stress free-boundary conditions are used for the velocity along the verticdiorrection||usl|/[[ud|, where u(Re)=uo+eReu,. The aperture iZ_(x,y)

lateral side walls for the asymptotic computation and for the Navier—Stokes— €1 *olcosx+y) +cosx-y)]} with ¢=0.15 and e=2/10. Periodic

Resolution is 3X 41X 21. boundary conditions are imposed in thandy directions and no slip along
the rough surfaces. Resolution is$82X 21.

is imposed. The macroscopic fll@ is decomposed into a @ _ ) @ - )

Reynolds contributiorQ, and a first inertial correctio®, ©f Py [while the evaluation of;” is not necessary since

with Q=Qy+ReeQ);. <Vp(12)>:0]. Again this is achieved in the Fourier space. The
In a general case, solving E(L1) is far from simple. solution of (19) can be obtained from E@20) and leads to

Here, two complementary techniques are presented: pertur- o K ® K’ 5 ~

bative spectral methods and volume averaging techniqu? = = f (k-k") -(3—,2 + 1) Sk") 8k —k")dk’

The perturbative spectral method permits to obtain analyti- k k

cally the inertial macroscopic flux for any gene(periodig . VP, (27)

permeability field provided that it weakly fluctuates around ) _ _ ) )

its mean value. The volume averaging technique allows tavheré “” is the contraction, the upper tilde is the Fourier

evaluate the macroscopic flux given a specified permeabilitffansform of previously defined fields, and 1 represents the

field after solving a closure problem written on a REV. ~!dentity tensor. We now wish to compute the macroscopic
inertial flux (gq,)=(HV p;). Using relation§22) and(27) and
A. Weak disorder perturbative spectral collecting equal powers af, the averaging leads to the fol-
method lowing expressions:
In Sec. Il B, we obtained the first-order term for the  (q”)=0, (28)
pressure perturbation. To complete our calculation and ex-
pressQ;, we need to evaluate all successive corrections in (q(ll)> =0, (29

to P,. Following the expansion carried out in Sec. Il B, it is
i i i 3iHY® (keokek
easy to see that the expressmndiff? requires the evaluation <q(12)> _ (H) f Z(k)dk: VP VP,

30
280 k2 (30)

wherep(k)=[8,(k)|? is the power spectrum of the aperture
fluctuations which is equal to the Fourier transform of the
correlation function. Since the aperture field is stationary,
p(r)=p(-r), and thereforé(k)=p(-k). The term in the in-
tegral of Eqg.(30) is an odd function ofk and therefore
(q(12)>:0. Hence, up to the second order of a weak disordered
expansion, the inertial pressure field does not produce any
contribution to the macroscopic fluQ. Since by symmetry

i i the third-order contributions also vanis@®;=0 up to the
FIC. 8. [(a) and(b)] Comparison of the full 3D Navier—Stokes flow and the fourth-ordero contributions. To further investigate this re-
asymptotic approximation at Re=[ic) and(d)] Same aga) and(b) but for

the inertial correction at Re=50. The bold lines refer to Navier-Stokes soSult, we next turn to the volume averaging technique.
lutions and the thin lines to first- or zeroth-order asymptotic approximation.

(a)—(d) depict the isovalues af (top) andv (bottom on two planes(a) and B. Volume averaging technique
(c)] x=m/4 (surfaceSl) and[(b) and(d)] x=217/32 (surface2). The two

surfacesSl andS2 are presented in Fig. 5 along with the fracture defined by We shall consider the aperture as being a deterministic

2x,y)=€[1+a codx+y)] with ¢=0.15 ande=27/10 and 0=xy<2m. Pe- periodic field among the REV. The pressure field is then
riodic boundary conditions are used for the velocity along the vertical latera

side walls for the asymptotic computation and for the Navier—Stokes. Rescd€COmposed into a macroscopic presseiend deviatio.m’,
lution is 64X 64X 41. p=P+p’. Consequently, we assume that the correctibto
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the macroscopic pressure fieRlis periodic in thex andy 0
directions. At the REV scale, the macroscopic pressure gra-

dient is supposed to be constant. Following Quintard and

Whitaker? the deviation is decomposed along the constant
macroscopic pressure gradienP. Including inertial effects,

the deviationp’ can then be written as

<& 2e4t
p'=by- VP+Reeb:VP® VP, (31

whereb, is a two-component closure vector field dndis a

2X 2 closure tensor field which must be evaluated numeri-

cally. The inertial contribution to the macroscopic flQx is

then directly related to the second closure tenisprafter

averaging the local flux/pressure gradient relation. We obtain —4e—4

0 20000 40000
1 Re2
Q;=-—=(H3Vb):VP® VP, (32
12 FIG. 10. Continuous line: Evolution of the total flux of the full Navier—
. . . Stokes inertial correction(Re)-u(Re=0 with the Reynolds number. The
whereVb, is a third-order tensor. Using the pressure decoMyashed line refers to the approximation by a linear regression of the values

position(31) in relation(5) one gets the first noninertial clo- obtained for Re:[0,100. The aperture isZ (x,y)=e{l+o{cogx+y)

sure problem, +cogx-y)]} with 0=0.15 ande=27/10. Periodic boundary conditions are
imposed in thex andy directions and no slip along the rough surfaces.
V - [H3Vby+ 1)]=0, (33)  Resolution is 64 32X 21.

where Vb, is a second-order tensor. The closure problem
(33) has been already obtained by Quintard and Whitaker
in the context of heterogeneous porous media and is di
cussed by Prat, Plouraboué, and Letaflédor flows be-
tween rough surfaces. Equatigd3d) has to be solved with
periodic boundary conditions for the vector fiddg and ap-
erture fieldH. Moreover, since the solution is defined up to a
constant vector, the conditiofiby)=0 is prescribedarising
from the decompositiodp=P+p’)=P). The second inertial
closure problem for the second closure terspis obtained
after inserting decompositiof31) in Eq. (11). The right-
hand side of Eq(11) can be simplified after observing that
whereK is a nondimensional second-order permeability ten-

V(Vp)?=[2V @ Vbo+ V(Vby)*: VP® VP, (34) sor andB is a fifth-order macroscopic inertial tensor. Esti-

S'Qrder tensoKZ3Vb,) vanishes. We therefore conclude that
the quadratic inertial corrections have zero net fl@x=0.

It is then expected that weak-inertial effects produce a
cubic macroscopic dependence, as already obtained in the
case of porous medid. The general form for such a cubic
correction can be formally written in its dimensionless ver-
sion as

K .
Q:1_2.VP+(Ree)ZB:VP®VP®VP, (37)

whereb2=b,-by is the norm of vectob, and mating the detailed dependenceBfon microscopic geom-
etry is far beyond the scope of this paper and would require
Vpo(Vpo- VH)=[(1+ Vbg) ® (1+ Vbg) - VH]: VP much larger computational efforts. This law is usually ex-
® VP. (35)  bressed in the porous media literature in the case of imposed

flux boundary condition, for which it can very easily be
The equation for the inertial 22 deviation matrixb; can  transposed,

therefore be written independently from the imposed macro- B . o
scopic pressure gradient, VP=1X"-Q+(ReeB': Q®Q®Q. (38)
3 This last expression has been numerically evaluated in the
V.- (H3Vb)=—-——V -{H[2V ® Vby+ V(Vby)?] case of two-dimensional fracture flofisfor which it be-
560 comes a scalar relation. The range of validity of this regime
+4H%1+ Vbg) ® (1+ Vbg) - VH}. was found numerically to be rather narrow, confined to Rey-
(36) nolds numbers smaller than unity. These numerical results
have nevertheless been obtained for a fracture having large
This complicated X 2 closure problem for the second-order slopes. They should be considered in the light of the accom-
tensorb; must be solved numerically for a given permeabil- panying analysis. As a matter of fact it has been shown that
ity field and using periodic boundary conditions and theinertial effects are revealed through the product of the mean
same average constraitii;)=0 as for the previous closure slope and the reduced lubricated Reynolds number for frac-
problem. The solution of this problem has been obtainedures with small slopes—relevant for real fractuféghe
numerically for a two parameter aperture famiB(x,y) validity range of cubic inertial effects should thus be much
=1+0, cogx+y)+o, cogx—y). This aperture family gener- larger for flows through geometries having a small slope.
ates the base functions for every one-periodic aperture fieltligure 10 shows the computed flux from the full three-
on the REV. Using the spectral numerical method of Sec. llldimensional Navier—Stokes solution in the geometry ana-
we found that for any parametets;, o) € [0, 1[?, the third-  lyzed in Figs. 6—8. These variations with Re confirm the
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