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We prove semiclassical resolvent estimates for the Schrödinger operator in

x α with C, α > 0, we get better resolvent bounds of the form exp Ch -1 log(h -1 ) 1 α .

Introduction and statement of results

Our goal in this note is to improve some of the resolvent bounds proved in [START_REF] Vodev | Improved resolvent bounds for radial potentials[END_REF] for radial realvalued potentials. We also give a different, shorter proof of the sharp resolvent bounds proved recently in [START_REF] Datchev | Semiclassical resolvent bounds for compactly supported radial potentials[END_REF] for radial compactly supported real-valued potentials. Consider the Schrödinger operator

P (h) = -h 2 ∆ + V (x)
where 0 < h ≪ 1 is a semiclassical parameter, ∆ is the negative Laplacian in R d , d ≥ 3, and

V ∈ L ∞ (R d
) is a real-valued short-range potential satisfying the condition

(1.1) |V (x)| ≤ C(|x| + 1) -δ
where C > 0 and δ > 1 are some constants. We are interested in bounding the quantity g ± s (h, ε) := log (|x| + 1) -s (P (h) -E ± iε) -1 (|x| + 1) -s

L 2 (R d )→L 2 (R d )
from above by an explicit function of h, independent of ε. Here 0 < ε < 1, s > 1/2 is independent of h and E > 0 is a fixed energy level independent of h. When δ > 2 it has been proved in [START_REF] Galkowski | Semiclassical resolvent bounds for weakly decaying potentials[END_REF] that (1.2) g ± s (h, ε) ≤ Ch -4/3 log(h -1 ). The bound (1.2) was first proved in [START_REF] Klopp | Semiclassical resolvent estimates for bounded potentials[END_REF] and [START_REF] Shapiro | Semiclassical resolvent bound for compactly supported L ∞ potentials[END_REF] for compactly supported potentials, and in [START_REF] Vodev | Semiclassical resolvent estimates for short-range L ∞ potentials[END_REF] when δ > 3. It was also shown in [START_REF] Vodev | Semiclassical resolvent estimates for L ∞ potentials on Riemannian manifolds[END_REF] that (1.2) still holds for more general asymptotically Euclidean manifolds. On the other hand, it is shown in [START_REF] Vodev | Improved resolvent bounds for radial potentials[END_REF] that the logarithmic term in the righ-hand side of (1.2) can be removed for real-valued potentials V depending only on the radial variable r = |x|, provided V satisfies (1.1) with δ > 2. Furhtemore, for compactly supported radial potentials a much better bound has been recently proved in [START_REF] Datchev | Semiclassical resolvent bounds for compactly supported radial potentials[END_REF], namely the following one

(1.3) g ± s (h, ε) ≤ Ch -1 . The bound (1.
3) was previously proved in [START_REF] Datchev | Quantative limiting absorption principle in the semiclassical limit[END_REF], [START_REF] Galkowski | Semiclassical resolvent bounds for long-range Lipschitz potentials[END_REF], [START_REF] Vodev | Semiclassical resolvent estimates for Hölder potentials[END_REF] for slowly decaying Lipschitz potentials V with respect to the radial variable r. Note also that when d = 1 the bound (1.3) is proved in [START_REF] Datchev | Semiclassical estimates for scattering on the real line[END_REF] for V ∈ L 1 (R). We show in the present paper that better resolvent bounds than those obtained in [START_REF] Vodev | Improved resolvent bounds for radial potentials[END_REF] can be proved for non-compactly supported radial potentials, too. Our main result is the following Theorem 1.1. Let d ≥ 3 and suppose that the potential V depends only on the radial variable. If V satisfies (1.1) with δ > 4, then there exist constants C > 0 and h 0 > 0 independent of h and ε but depending on s, E, such that the bound

(1.4) g ± s (h, ε) ≤ Ch -δ δ-1 log(h -1 ) 1 δ-1
holds for all 0 < h ≤ h 0 . If the potential satisfies the condition

(1.5) |V (x)| ≤ C 1 e -C 2 |x| α
with some constants C 1 , C 2 , α > 0, then we have the better bound

(1.6) g ± s (h, ε) ≤ Ch -1 log(h -1 ) 1 α .
Note that when V is compactly supported the proof of Theorem 1.1 leads to the bound (1.3) already proved in [START_REF] Datchev | Semiclassical resolvent bounds for compactly supported radial potentials[END_REF] in a different way.

The fact that the potential is radial plays an important role in the proof of the above theorem. It allows us to reduce the d -dimensional resolvent bound to one-dimensional ones. In other words, we have to bound the resolvent of an infinite family of one-dimensional Schrödinger operators depending on an additional parameter denoted by ν ≥ 0 below, which can be expressed in terms of the eigenvalues of the Laplace-Beltrami operator on the d -1 -dimensional unit sphere (see Section 2). To do so, we make use of some bounds already proved in [START_REF] Vodev | Improved resolvent bounds for radial potentials[END_REF] (see Proposition 2.2) and we show that Proposition 3.2 of [START_REF] Vodev | Improved resolvent bounds for radial potentials[END_REF] can be improved significantly for potentials decaying at infinity sufficiently fast (see Proposition 2.3). It is not clear if the bounds in Theorem 1.1 still hold for non-radial L ∞ potentials since neither a proof nor counterexamples are available. To author's best knoweldge, the best resolvent bound for such potentials is (1.2), which seems hard to improve without extra conditions even if the potential is supposed to be compactly supported.

Preliminaries

We will use the fact that the potential is radial to reduce the resolvent bound to infinitely many one-dimensional resolvent bounds (see also Section 2 of [START_REF] Vodev | Improved resolvent bounds for radial potentials[END_REF]) . To this end we will write the operator P (h) in polar coordinates (r, w) ∈ R + × S d-1 , r = |x|, w = x/|x| and we will use that

L 2 (R d ) = L 2 (R + × S d-1 , r d-1 drdw). We have the identity (2.1) r (d-1)/2 ∆r -(d-1)/2 = ∂ 2 r + ∆ w r 2
where ∆ w = ∆ w -1 4 (d -1)(d -3) and ∆ w denotes the negative Laplace-Beltrami operator on S d-1 . Using (2.1) we can write the operator

P ± (h) = r (d-1)/2 (P (h) -E ± iε)r -(d-1)/2
in the coordinates (r, w) as follows

P ± (h) = D 2 r + Λ w r 2 + V (r) -E ± iε
where we have put D r = -ih∂ r and Λ w = -h 2 ∆ w . Let λ j ≥ 0 be the eigenvalues of -∆ w repeated with the multiplicities and let e j ∈ L 2 (S d-1 ) be the corresponding eigenfunctions. Set

ν = h λ j + 1 4 (d -1)(d -3)
and

Q ± ν (h) = D 2 r + ν 2 r 2 + V (r) -E ± iε. Let v ∈ L 2 (R + × S d-1 , drdw) and set v j (r) = v(r, •), e j L 2 (S d-1 ) . We can write v = j v j e j , P ± (h)v = j Q ± ν (h)v j e j , so we have v 2 L 2 (R + ×S d-1 ) = j v j 2 L 2 (R + ) , (r + 1) -s v 2 L 2 (R + ×S d-1 ) = j (r + 1) -s v j 2 L 2 (R + ) , (r + 1) s P ± (h)v 2 L 2 (R + ×S d-1 ) = j (r + 1) s Q ± ν (h)v j 2 L 2 (R + ) .
The following lemma is proved in Section 2 of [START_REF] Vodev | Improved resolvent bounds for radial potentials[END_REF] using the above identities.

Lemma 2.1. Let s > 1/2 and suppose that for all ν the estimates

(r + 1) -s u 2 L 2 (R + ) ≤ M ν (r + 1) s Q ± ν (h)u 2 L 2 (R + ) (2.2) +M ν ε u 2 L 2 (R + ) + M ν ε D r u 2 L 2 (R + ) hold for every u ∈ H 2 (R + ) such that u(0) = 0 and (r + 1) s Q ± ν (h)u ∈ L 2 (R +
), with M ν > 0 independent of ε and u. Suppose also that

M := (2 + E + V L ∞ ) sup ν 2 ∈spec Λw M ν < ∞.
Then we have the bound

(2.3) g ± s (h, ε) ≤ log(M + 1
). Thus we reduce our problem to proving estimates like (2.2) with as good bounds M ν as possible. We will make use of the following proposition proved in Section 3 of [START_REF] Vodev | Improved resolvent bounds for radial potentials[END_REF] (see Proposition 3.1 of [START_REF] Vodev | Improved resolvent bounds for radial potentials[END_REF]).

Proposition 2.2. The estimate (2.2) holds for all ν with M ν = e C(ν+1)/h , where C > 0 is a constant independent of ν and h.

Therefore, we only need to bound M ν for large ν.

Set τ = 1 if V is compactly supported, τ = (ǫh) -1 δ-1 if V satisfies (1.1) and τ = ǫ -1/α if V satisfies (1.5), where ǫ = (log(h -1 )) -1 ≪ 1.
In what follows in this paper we will prove the following Proposition 2.3. The estimate (2.2) holds for all ν ≥ cτ with M ν = C(ǫh) -2 , where C, c > 0 are constants independent of ν and h.

Clearly, the bounds (1.4) and (1.6) follow from (2.3) and Propositions 2.2 and 2.3.

A priori estimates

Let φ 0 ∈ C ∞ (R) be a real-valued function such that 0 ≤ φ 0 ≤ 1, φ ′ 0 ≥ 0, φ 0 (σ) = 0 for σ ≤ 1, φ 0 (σ) = 1 for σ ≥ 2, and set φ(r) = φ 0 (r/λ), where λ ≫ 1. We also set

Q ± ν,0 (h) = D 2 r + ν 2 r 2 -E ± iε.
In this section we will prove the following

Proposition 3.1. For every u ∈ H 2 (R + ) such that (r + 1) 1+ǫ Q ± ν,0 (h)u ∈ L 2 (R + ), we have the estimate ∞ 0 (r + 1) -1-ǫ |φu(r)| 2 + |D r (φu)(r)| 2 dr ≤ Cλ -1 ǫ -1 h 2λ λ |u(r)| 2 + |D r u(r)| 2 dr +C(ǫh) -2 ∞ 0 (r + 1) 1+ǫ |φQ ± ν,0 (h)u(r)| 2 dr (3.1) +C(ǫh) -1 ε ∞ 0 |u(r)| 2 + |D r u(r)| 2 dr
with a constant C > 0 independent of ǫ, ε, ν, λ and h.

Proof. It is easy to see that the first derivative of the function

F (r) = (E -ν 2 r -2 )|φu(r)| 2 + |D r (φu)(r)| 2 .
is given by

F ′ (r) = 2ν 2 r -3 |φu| 2 -Φ(r) where Φ(r) = 2h -1 Im Q ± ν,0 (h)φuD r (φu) ∓ 2εh -1 Re φuD r (φu) = 2h -1 Im φQ ± ν,0 (h)uD r (φu) ∓ 2εh -1 Re φuD r (φu) + Ψ(r) ≤ γ(r + 1) -1-ǫ |D r (φu)| 2 + γ -1 h -2 (r + 1) 1+ǫ φQ ± ν,0 (h)u 2
+εh -1 |u| 2 + |D r u| 2 + Ψ(r), γ > 0 being arbitrary, where

Ψ(r) = 2h -1 Im [D 2 r , φ]uD r (φu) = -2Im 2iφ ′ D r u + hφ ′′ u φD r u + ihφ ′ u = -4φφ ′ |D r u| 2 + 2h(2φ ′2 + φφ ′′ )Im uD r u -2h 2 φ ′ φ ′′ |u| 2 ≤ Chλ -2 φ ′ 0 (r/λ) + |φ ′′ 0 (r/λ)| |u(r)| 2 + |D r u(r)| 2
with some constant C > 0 independent of h and λ. Hence, given any t > 0, we get

F (t) = - ∞ t F ′ (r)dr ≤ ∞ 0 Φ(r)dr ≤ γ ∞ 0 (r + 1) -1-ǫ |D r (φu)| 2 dr +γ -1 h -2 ∞ 0 (r + 1) 1+ǫ φQ ± ν,0 (h)u 2 dr +h -1 ε ∞ 0 |u| 2 + |D r u| 2 dr +Chλ -2 2λ λ |u| 2 + |D r u| 2 dr.
Multiplying this inequality by (t + 1) -1-ǫ and integrating with respect to t lead to the estimate

∞ 0 (t + 1) -1-ǫ F (t)dt ≤ γ ∞ 0 (r + 1) -1-ǫ |D r (φu)| 2 dr +γ -1 (ǫh) -2 ∞ 0 (r + 1) 1+ǫ φQ ± ν,0 (h)u 2 dr +(ǫh) -1 ε ∞ 0 |u| 2 + |D r u| 2 dr +Chλ -2 ǫ -1 2λ λ |u| 2 + |D r u| 2 dr
for any γ > 0, where we have used that

∞ 0 (t + 1) -1-ǫ dt = ǫ -1 .
Taking γ small enough, indpendent of ǫ, h and λ, we can absorb the first term in the right-hand side of the above inequality. Thus we get

∞ 0 (r + 1) -1-ǫ |φu(r)| 2 + |D r (φu)(r)| 2 dr ∞ 0 ν 2 r -3 |φu| 2 dr +(ǫh) -2 ∞ 0 (r + 1) 1+ǫ φQ ± ν,0 (h)u 2 dr +(ǫh) -1 ε ∞ 0 |u| 2 + |D r u| 2 dr +hλ -2 ǫ -1 2λ λ |u| 2 + |D r u| 2 dr.
On the other hand, we have

∞ 0 ν 2 r -3 |φu| 2 dr = ∞ 0 F ′ (r)dr + ∞ 0 Φ(r)dr = ∞ 0 Φ(r)dr ≤ γ ∞ 0 (r + 1) -1-ǫ |D r (φu)| 2 dr +γ -1 h -2 ∞ 0 (r + 1) 1+ǫ φQ ± ν,0 (h)u 2 dr +h -1 ε ∞ 0 |u| 2 + |D r u| 2 dr +Chλ -2 2λ λ |u| 2 + |D r u| 2 dr
for any γ > 0. Combining the above inequalities and taking γ small enough, indpendent of ǫ, h and λ, in order to absorb the corresponding term, we get (3.1). ✷

Proof of Proposition 2.3

We will first derive from Proposition 3.1 the following

Proposition 4.1. Let u ∈ H 2 (R + ) be such that (r + 1) 1+ǫ Q ± ν (h)u ∈ L 2 (R + ).
There exists a constant λ 0 > 0 such that if λ ≥ λ 0 τ , then we have the estimate

∞ 2λ (r + 1) -1-ǫ |u(r)| 2 + |D r u(r)| 2 dr ≤ Cλ -1 ǫ -1 h 2λ λ |u(r)| 2 + |D r u(r)| 2 dr +C(ǫh) -2 ∞ 0 (r + 1) 1+ǫ |Q ± ν (h)u(r)| 2 dr (4.1) +C(ǫh) -1 ε ∞ 0 |u(r)| 2 + |D r u(r)| 2 dr
with a constant C > 0 independent of ǫ, ε, ν, λ and h.

Proof. We apply the estimate (3.1) and observe that

∞ 0 (r + 1) 1+ǫ |φQ ± ν,0 (h)u(r)| 2 dr ≤ ∞ 0 (r + 1) 1+ǫ |φQ ± ν (h)u(r)| 2 dr + ∞ 0 (r + 1) 1+ǫ |V (r)(φu)(r)| 2 dr ≤ ∞ 0 (r + 1) 1+ǫ |Q ± ν (h)u(r)| 2 dr (4.2) +ρ(λ) ∞ 0 (r + 1) -1-ǫ |(φu)(r)| 2 dr where ρ(λ) = sup r≥λ (r + 1) 2+2ǫ |V (r)| 2 .
When V is compactly supported we have ρ(λ) = 0, provided λ = λ 0 is big enough, independent of h. When V satisfies (1.1) with δ > 4 we have

ρ(λ) λ -2δ+2+2ǫ λ -2δ+2 0 (ǫh) 2 .
When V satisfies (1.5) we have

ρ(λ) λ 2+2ǫ e -C 2 λ α λ 2 0 ǫ -2/α e C 2 λ α 0 log h ǫ -2/α h C 2 λ α 0 h(ǫh) 2
provided λ 0 is big enough, independent of h and ǫ. Thus, taking h small enough or λ 0 big enough, we can absorb the last term in the right-hand side of (4.2) and obtain (4.1). ✷

To prove Proposition 2.3 we will combine Proposition 4.1 with the following Proposition 4.2. Let u ∈ H 2 (R + ) be such that u(0) = 0. Then there exists a constant κ > 0 such that we have the estimate

3κν 0 |u(r)| 2 + |D r u(r)| 2 dr (4.3) ≤ Ch 2 ν -2 4κν 3κν |u(r)| 2 + |D r u(r)| 2 dr + 4 ∞ 0 |Q ± ν (h)u(r)| 2 dr
with a constant C > 0 independent of ε, ν and h.

Proof. Let ψ 0 ∈ C ∞ (R) be a real-valued function such that 0 ≤ ψ 0 ≤ 1, ψ 0 (σ) = 1 for σ ≤ 3, ψ 0 (σ) = 0 for σ ≥ 4, and set ψ(r) = ψ 0 (r/κν), where κ -1 = 4 1 + E + V L ∞ . The estimate (4.3) is a consequence of the following Lemma 4.3. We have the estimate

(4.4) ∞ 0 |ψu(r)| 2 + |D r (ψu)(r)| 2 dr ≤ 4 ∞ 0 |Q ± ν (h)(ψu)(r)| 2 dr.
Proof. The choice of κ guarantees the inequality

(ν 2 r -2 + V (r) -E)|ψu(r)| 2 ≥ |ψu(r)| 2
for all r. Therefore, integrating by parts we obtain

Re ∞ 0 Q ± ν (h)ψu(r)ψu(r)dr = ∞ 0 |D r (ψu)(r)| 2 + ∞ 0 (ν 2 r -2 + V (r) -E)|ψu(r)| 2 dr ≥ ∞ 0 |D r (ψu)(r)| 2 dr + ∞ 0 |ψu(r)| 2 dr. Hence ∞ 0 |D r (ψu)(r)| 2 dr + ∞ 0 |ψu(r)| 2 dr ≤ 2 ∞ 0 |Q ± ν (h)(ψu)(r)| 2 dr + 1 2 ∞ 0 |ψu(r)| 2 dr, which clearly implies (4.4). ✷ Since ∞ 0 |[Q ± ν (h), ψ]u(r)| 2 dr = ∞ 0 |[D 2 r , ψ]u(r)| 2 dr ≤ Ch 2 ν -2 4κν 3κν |u(r)| 2 + |D r u(r)| 2 dr, the estimate (4.3) follows from (4.4). ✷ Let u ∈ H 2 (R + ) be such that u(0) = 0 and (r+1) 1+ǫ Q ± ν (h)u ∈ L 2 (R + ).
We apply Proposition 4.1 with λ = κν and suppose that ν ≥ λ 0 τ /κ. By (4.1) and (4.3) we have 

(4κν + 1) -1-ǫ 4κν 3κν |u(r)| 2 + |D r u(r)| 2 dr ≤ ∞ 2κν (r + 1) -1-ǫ |u(r)| 2 + |D r u(r)| 2 dr ≤ Cν -1 ǫ -1 h 2κν κν |u(r)| 2 + |D r u(r)| 2 dr +C(ǫh) -2 ∞ 0 (r + 1) 1+ǫ |Q ± ν (h)u(

2 ∞ 0 (r + 1 )≤ Cǫ - 2 ∞ 0 (r + 1 ) 2 + 2 ∞ 0 (r + 1 ) 0 (r + 1 ) 2 +

 2012012201012 r)| 2 dr +C(ǫh) -1 ε ∞ 0 |u(r)| 2 + |D r u(r)| 2 dr ≤ Cν -3 ǫ -1 h 3 4κν 3κν |u(r)| 2 + |D r u(r)| 2 dr +C(ǫh) -1+ǫ |Q ± ν (h)u(r)| 2 dr +C(ǫh) -1 ε ∞ 0 |u(r)| 2 + |D r u(r)| 2 dr.It is clear that taking h small enough we can absorb the first term in the right-hand side of the above inequality. Thus we obtain(4κν + 1) -1-ǫ 4κν 3κν |u(r)| 2 + |D r u(r)| 2 dr ≤ C(ǫh) -2 ∞ 0 (r + 1) 1+ǫ |Q ± ν (h)u(r)| 2 dr +C(ǫh) -1 ε ∞ 0 |u(r)| 2 + |D r u(r)| 2 dr, which together with (4.3) yield 3κν 0 |u(r)| 2 + |D r u(r)| 2 dr 1+ǫ |Q ± ν (h)u(r)| 2 dr |D r u(r)| 2 drwith a new constant C > 0. Combining (4.1) with (4.5) leads to the estimate∞ 2κν (r + 1) -1-ǫ |u(r)| 2 + |D r u(r)| 2 dr ≤ C(ǫh) -1+ǫ |Q ± ν (h)u(r)| 2 dr (4.6) +C(ǫh) -1 ε ∞ 0 |u(r)| 2 + |D r u(r)| 2 dr. By (4.5) and (4.6) we conclude ∞ -1-ǫ |u(r)| 2 + |D r u(r)| 2 dr ≤ C(ǫh) |D r u(r)| 2 dr.

Taking h small enough we can arrange that ǫ < 2s -1. Therefore, Proposition 2.3 follows from (4.7). ✷