
HAL Id: hal-03599601
https://hal.science/hal-03599601

Submitted on 14 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Journey to the Frontiers of Query Rewritability
Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, Sebastian

Rudolph

To cite this version:
Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, Sebastian Rudolph. A Journey to
the Frontiers of Query Rewritability. PODS 2022 - 41st ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems, Jun 2022, Philadelphia, United States. pp.359-367,
�10.1145/3517804.3524163�. �hal-03599601�

https://hal.science/hal-03599601
https://hal.archives-ouvertes.fr

A Journey to the Frontiers ofQuery Rewritability
(Extended Technical Report)

Piotr Ostropolski-Nalewaja

University of Wrocław, Institute of Computer Science

Jerzy Marcinkowski

University of Wrocław, Institute of Computer Science

David Carral

LIRMM, Inria, University of Montpellier, CNRS

Sebastian Rudolph

TU Dresden, Computational Logic Group

ABSTRACT
We consider (first-order) query rewritability in the context of theory-

mediated query answering. The starting point of our journey is the

FUS/FES conjecture, which states that any theory that is a finite

expansion set (FES) and admits query rewriting (BDD, FUS) must be

uniformly bounded. We show that this conjecture holds for a large

class of BDD theories, which we call “local”. Upon investigating how

“non-local” BDD theories can actually get, we discover unexpected

phenomena that, we think, are at odds with prevailing intuitions

about BDD theories.

1 INTRODUCTION
The scenario we consider in this paper has been studied extensively

both in database theory and in knowledge representation: consider

a database instance D (also called fact set, or structure) and a theory
T (or rule set) that consists of tuple generating dependencies (or
rules). For a given conjunctive query 𝜙 , we ask if D and T together

logically entail 𝜙 , written: D,T |= 𝜙 . This problem is also referred

to as ontology-mediated query answering.

The chase. The notion of the chase is fundamental in this context.

It denotes a structure obtained from D via the chase procedure,
which iteratively adds new terms and atoms in order to satisfy the

constraints from T , producing a growing sequence of structures

D=𝐶ℎ0 (D,T), 𝐶ℎ1 (D,T), 𝐶ℎ2 (D,T), The chase 𝐶ℎ(D,T) is
then obtained as the corresponding fixpoint

⋃
𝑖∈N𝐶ℎ𝑖 (D,T).

It is known [1] that a conjunctive query is entailed if and only

if it holds in the corresponding chase, which allows for reducing

entailment to model checking:

∀T ∀D ∀𝜙
(
𝐶ℎ(D,T) |= 𝜙 ⇔ D,T |= 𝜙

)
.

Finite expansion sets. We say T enjoys the finite expansion set
property [2] (or simply is FES) if, for everyD, all conjunctive queries
satisfied in𝐶ℎ(D,T) are already jointly satisfied after finitely many

chase steps. More precisely, T is FES if:

∀D ∃𝑖 ∈N ∀𝜙
(
𝐶ℎ(D,T) |= 𝜙 ⇔ 𝐶ℎ𝑖 (D,T) |= 𝜙

)
(FES)

This is an important property, since 𝐶ℎ(D,T) is typically an

infinite structure, only existing as an abstract mathematical object,

and impossible to query, whereas𝐶ℎ𝑖 (D,T) is always finite and so
in principle it can be computed and queried.

Bounded derivation depth. An arguably even more beneficial

property a theory can enjoy in this context is the following: We say

T has the bounded derivation depth property (or is BDD) if

∀𝜙 ∃𝑖 ∈N ∀D
(
𝐶ℎ (D, T) |= 𝜙 ⇔ 𝐶ℎ𝑖 (D, T) |= 𝜙

)
, (BDD)

which means that, in order to evaluate 𝜙 , it is enough to run only

the first 𝑖 steps of the chase, with 𝑖 depending on 𝜙 but not on D.
As it turns out, BDD is equivalent [3] to FUS (finite unifica-

tion set) [2]. FUS is the class ensuring that conjunctive queries

always rewrite: for each 𝜙 one can compute a query 𝜙T , being a

union of conjunctive queries, such that for each D we have that

𝐶ℎ(D,T) |= 𝜙 exactly if D |= 𝜙T — this is known to be equivalent

to the existence of an arbitrary first-order rewriting [4].

Behold the extreme usefulness of this property: instead of query-

ing 𝐶ℎ(D,T), an elusive infinite structure, we can equivalently

query D, the only structure we have immediate access to.

No wonder the BDD/FUS property has been considered in liter-

ally hundreds of papers. Numerous classes of BDD theories have

been identified and intensively studied, among them subclasses

with decidable membership like:

• linear theories, where rules have at most one body atom;

• guarded BDD theories (while not all guarded theories are BDD, it

is decidable to determine if a guarded theory is BDD [5, 6]), gener-

alizing linear theories;

• sticky theories, defined by a reasonably natural syntactic restric-

tion on the use of joins [7].

Apart from the decidable subclasses of BDD, there are also natu-

ral undecidable subclasses:

• bounded Datalog theories, already studied decades before the

class BDD itself was discovered [8];

• binary BDD theories, where the arity of relation symbols is at

most 2 (also studied in the context of description logics [9]);

• backward shy theories [10], a superclass of sticky theories.

As we expose in this paper, despite this extensive body of work,

we still understand very little about the deeper mathematical prop-

erties of BDD theories. In particular, we are going to show that the

intuition of BDD theories as being “local”, “only depending on the

small pieces of D”, and “unable to look too far” while (more or less)

correct for all aforementioned classes of BDD theories is blatantly

incorrect for BDD theories in general.

The FUS/FES conjecture. There is a striking similarity between

formulas (BDD) and (FES), inspiring a natural conjecture, which

we call the FUS/FES conjecture: For any BDD theory that is also FES,

it should be possible to choose the number 𝑖 in a uniform way,
independently from both D and 𝜙 . In other words, the conjecture

says that if T is both BDD and FES then:

∃𝑖 ∈N ∀𝜙 ∀D
(
𝐶ℎ(D,T) |= 𝜙 ⇔ 𝐶ℎ𝑖 (D,T) |= 𝜙

)
(UBDD)

This conjecture was studied earlier [11] and a proof was proposed,

which however turned out to be incorrect and was later withdrawn.

Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph

Later, it was shown that the conjecture would hold if the assumption

that T is FES were replaced by a stronger property [12].

Main results. We identify the new, generic class of local BDD
theories. Informally, such theories enforce that the creation of every

chase atom depends only on a constant number of facts from the

database. Importantly, this new class not only includes most of the

aforementioned subclasses of BDD (with sticky and backward shy

being notable exceptions) but also all BDD theories over signatures

with a maximum predicate arity of 2.

With this new class of theories defined (and the above inclusions

proved), we present our three main results: First that the FUS/FES
conjecture holds for local theories (Theorem 2). Second that the

conjecture holds for every BDD theory over a binary signature

(Corollary 1) – an immediate consequence of the fact that such

theories are local (Theorem 1).

Yet, as least as interesting as these insights we find our third
result (reflected in Theorem 3): the discovery of very much non-

local (and not even what we call bounded-degree local) theories that
are still BDD. Such theories not only defy many of the popular

intuitions about the BDD class, but also shows that all previous

investigations into that class have probably barely scratched its

surface and that there is a lot of room for new decidable/syntactic

classes of BDD theories, richer than all hitherto considered. One

plausible reason why this new world exhibits counterintuitive phe-

nomena and has gone entirely unnoticed is that it requires theories

of arity higher than 2. Binary theories are much easier to imagine

and they are mainly responsible for shaping our intuitions.

Summarizing, the main message of this paper is: even if a

(finite) counterexample to the FUS/FES conjecture should exist, it

is going to be found nowhere near the familiar avenues of the BDD

class. But we also show that the known avenues only reach a small

part of the BDD class and there is a lot of uncharted territory left.

Organisation of this paper. Apart from its preliminary sections

(Sections 2–7), the paper is organized as follows:

In Section 8 we define local theories. Later we state our first

result Theorem 1 and present a brief insight into its proof.

In Section 9 we state our second result – that the FUS/FES con-

jecture holds for local theories (Theorem 2) – and prove it. Also we

note that the conjecture holds for theories over binary signatures

(Corollary 1).

In Section 10, we notice that sticky theories, while BDD, are not

always local. We define another, weaker, notion, of bounded-degree-
local theories (or bd-local) and note that it covers sticky. Later we

discuss properties of this newly defined class.

In Section 11 we examine the intuition that “BDD theories are

unable to look too far”. We define the notion of distancing theories,

and show that if a theory is local then it is also distancing. We also

notice that backward shy theories are distancing, so that most of the

previously known examples of BDD theories are indeed distancing.

We show however, that there exists a BDD theory T𝑑 that is not

distancing. As a corollary we get that, for this BDD theory, the

rewriting 𝜙T𝑑 (which is a disjunction of conjunctive queries) of a

query 𝜙 can require disjuncts of exponential size with respect to the

size of 𝜙 . This is in stark contrast to any BDD theories previously

considered.

Finally in Section 12, we conclude and discuss future work.

This is an extended technical report of an article with the same

title published at PODS 2022. It includes the complete formal proofs

for all results in the appendix.

2 PRELIMINARIES
Queries and TGDs. A conjunctive query (CQ) is a formula𝜓 (𝑦) =
∃𝑥 𝛽 (𝑥,𝑦) with 𝛽 being a non-empty conjunction of atomic for-

mulas over some signature (or schema) Σ (which is a finite set of

relation symbols) and over some set of variables and set of constants.

So, for example ∃𝑥 𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝐴𝑏𝑒𝑙, 𝑥), 𝐹𝑒𝑚𝑎𝑙𝑒 (𝑥) is a CQ.
A boolean CQ (short: BCQ) is a CQ with all variables quantified

(as in the preceding example). We refer to 𝛽 as the body of 𝜓 (𝑦).
By a union of conjunctive queries (UCQ) we mean a formula being a

disjunction of CQs. By the size of a CQ, denoted |𝜓 (𝑦) |, we mean the

number of atomic formulas it is built of. By the width of a UCQ we

will mean the size of its greatest disjunct. Also, we will sometimes

treat UCQs as sets of CQs.

A theory or a rule set is a finite set of tuple generating dependencies
(TGDs, often just referred to as rules). A rule is a first-order logic
formula of the form ∀𝑥,𝑦

(
𝛽 (𝑥,𝑦) ⇒ ∃𝑤̄ 𝛼 (𝑦, 𝑤̄)

)
, where 𝑥 , 𝑦 and

𝑤̄ are pairwise disjoint lists of variables, 𝛽 (𝑥,𝑦) (the rule’s body) is
a conjunction of atomic formulas and 𝛼 (𝑦, 𝑤̄) (the rule’s head) is
an atomic formula. The frontier 𝑦 of a rule 𝜌 , denoted fr (𝜌), is the
set of all variables that occur both in the body and the head of the

rule. We omit universal quantifiers when writing rules and treat

conjunctions of atoms (such as 𝛽) as sets of atoms.

Note that, in database theory terminology, our rules are “single

head” TGDs. This is the only reasonable choice in this context,

since we want to talk about theories over a binary signature: if

we allowed rule heads to comprise several atoms, then rules with

predicates of any arity could be easily simulated using only arity

2 predicates. On the other hand, this does not restrict our results

in the cases where we do not assume that the signature is binary,

since every multi-head theory can be rewritten into a single-head

one, using higher-arity auxiliary predicates, and this rewriting does

not affect the property of being FUS or FES.

Structures and entailment. A database instance (or structure or
fact set) is a set of facts – atomic formulas over Σ. For a structure F
over Σ we let 𝑑𝑜𝑚(F) denote its active domain – the set of all terms

that appear in the facts of F. For 𝑐, 𝑐 ′ ∈ 𝑑𝑜𝑚(F), we let 𝑑𝑖𝑠𝑡F (𝑐, 𝑐 ′)
denote the distance between 𝑐 and 𝑐 ′ in the Gaifman graph of F:
the vertices of this graph are elements of 𝑑𝑜𝑚(F) and two vertices

are connected by an edge if and only if they appear in the same

fact. We define the degree of F as the degree of F’s Gaifman graph.

F is a model of T (written: F |= T) if F satisfies all TGDs from

T . For a pair T ,D, a CQ 𝜙 (𝑦), and a tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | , we
write T ,D |= 𝜙 (𝑎) (or T ,D, 𝑎 |= 𝜙 (𝑦)) to indicate that T and D
jointly entail 𝜙 (𝑎), which means that 𝜙 (𝑎) holds in each structure F
satisfying F |= T ,D, which serves as a shortcut for F |= T ∧ D ⊆ F.

Example 1. Consider the instance D𝑎 = {𝐻𝑢𝑚𝑎𝑛(𝐴𝑏𝑒𝑙)} and the
theory T𝑎 consisting of the following two rules:

𝐻𝑢𝑚𝑎𝑛(𝑦) ⇒ ∃𝑧 𝑀𝑜𝑡ℎ𝑒𝑟 (𝑦, 𝑧)
𝑀𝑜𝑡ℎ𝑒𝑟 (𝑥,𝑦) ⇒ 𝐻𝑢𝑚𝑎𝑛(𝑦)

Then T𝑎,D𝑎 |= ∃𝑦, 𝑧 𝑀𝑜𝑡ℎ𝑒𝑟 (𝐴𝑏𝑒𝑙,𝑦), 𝑀𝑜𝑡ℎ𝑒𝑟 (𝑦, 𝑧).
Homomorphisms and query containment. For structuresD, F,
a homomorphism from D to F is a function ℎ : 𝑑𝑜𝑚(D) → 𝑑𝑜𝑚(F)

A Journey to the Frontiers of Query Rewritability
(Extended Technical Report)

such that 𝐴(ℎ(®𝑥)) ∈ F for each fact 𝐴(®𝑥) ∈ D and that ℎ(𝑎) = 𝑎 for
any constant 𝑎 ∈ 𝑑𝑜𝑚(D). Given a fact 𝛼 = 𝐴(®𝑥) ∈ D, we will use
ℎ(𝛼) to denote 𝐴(ℎ(®𝑥)).

For two CQs 𝜙 (𝑦) and𝜓 (𝑦), with the same set of free variables,

we say that 𝜙 (𝑦) contains 𝜓 (𝑦) if for every structure D and for

every tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | if D |= 𝜓 (𝑎) than also D |= 𝜙 (𝑎). It
is well known that 𝜙 (𝑦) contains 𝜓 (𝑦) if and only if there is a

homomorphism
1
from 𝜙 (𝑦) to𝜓 (𝑦) that is the identity on 𝑦.

Core of a structure. A substructure H of a finite structure G is

a core of G (see [13]) if there exists a homomorphism ℎ : G → H
but there is no homomorphism from G to H′ where H′ is a proper
substructure of H. Note that the definition of homomorphisms

ensures that ℎ(𝑎) = 𝑎 for every constant 𝑎 ∈ 𝑑𝑜𝑚(G).
It is well known that [13]:

(1) Every finite structure has a core.

(2) Cores of a finite structure are unique up to isomorphism.

(3) If H is a core (of any structure) then it is a core of itself.

Given a (finite) structure G, we let 𝐶𝑜𝑟𝑒 (G) denote a function
that returns some induced substructure of G that is a core.

Connected queries, rules and theories. For a CQ, one can define
its Gaifman graph in the natural way: Variables are the vertices of

this graph and two variables are connected by an edge if and only if

they both appear in the same atomic formula. A conjunctive query

is connected if its Gaifman graph is connected. A TGD is connected
if its body is. A theory is connected if each of its rules is.

All the theories we consider in this paper are connected
with the important exception of theories over a binary signature.

Forcing theories to be connected will help us to better express

the nuances of the BDD class in Sections 10–11. This assumption

does not reduce the expressive power of such theories due to the

following trivial trick: add a fresh variable as an additional, first

variable in all the atoms appearing in the rules of the theory. This

will make the theory connected, and it will obviously preserve its

BDD and FES status. But it will increase the arity – so if we care

about the arity we do not get connectivity for free.

Note that after applying the trivial trick to an instance F the
distance between each 𝑐 and 𝑐 ′ from 𝑑𝑜𝑚(F) will be at most 2. Also,

applying this trick turns any instance with a Gaifman graph of a

low (bounded) degree into one with a high degree Gaifman graph.

3 THE SKOLEM CHASE.
The chase procedure is a standard algorithm, studied in a plethora

of papers. It can be used to semi-decide whether T ,D |= 𝜙 (𝑎) for
given theory T , instance D, CQ 𝜙 (𝑦) and tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | . In
fact the algorithm comes in many variants and flavors. The best way

to present our results is by using a variant of the the semi-oblivious
Skolem chase, which we define in this section.

We say that two CQs have the same isomorphism type when one

can be obtained from the other by means of bijective renaming of

variables. For a CQ Φ define 𝜏 (Φ) as the isomorphism type of Φ.
For each possible isomorphism type 𝜏 = 𝜏 (𝜙 (𝑦)) of some atomic

conjunctive query 𝜙 (𝑦), and for each natural number 1 ≤ 𝑖 ≤
𝑎𝑟𝑖𝑡𝑦 (𝐸), where 𝐸 is the relation symbol of𝜙 (𝑦), let 𝑓 𝜏

𝑖
be a function

1
The queries 𝜙 (𝑦) and𝜓 (𝑦) are seen as structures here: the active domains of these

structures are the sets of variables of 𝜙 (𝑦) and𝜓 (𝑦) .

symbol, with arity equal to |𝑦 |, that is the number of free variables

in 𝜙 (𝑦).

Definition 2 (Skolemization). For a given TGD 𝜌 , of the form
𝛽 (𝑥,𝑦) ⇒ ∃𝑤̄ 𝛼 (𝑥, 𝑤̄) by sh(𝜌) we denote the Skolemization of

the head of 𝜌 , that is the atom 𝛼 (𝑥, 𝑤̄), with each variable 𝑤 ∈ 𝑤̄
replaced by the term 𝑓 𝜏

𝑖
(𝑥), where 𝑖 is the earliest position in 𝛼 (𝑥, 𝑤̄)

where the variable𝑤 occurs.

Let, for example 𝜌 be 𝐸 (𝑥,𝑦, 𝑧), 𝑃 (𝑥) ⇒ ∃𝑣 𝑅(𝑦, 𝑣, 𝑧, 𝑣). Then sh(𝜌)
will be the atom 𝑅(𝑦, 𝑓 𝜏

2
(𝑦, 𝑧), 𝑧, 𝑓 𝜏

2
(𝑦, 𝑧)) where 𝜏 is the isomor-

phism type of ∃𝑣 𝑅(𝑦, 𝑣, 𝑧, 𝑣). Notice that sh(𝜌) does not depend on
the body of 𝜌 , only on its head. In particular it does not depend on

the non-frontier variables
2
of the body of 𝜌 .

Now we can define the procedure of rule application. Parameters

of this procedure are an instance F, a rule 𝜌 , and a mapping 𝜎

assigning elements of the active domain of F to the variables that

occur in the body of 𝜌 :

Definition 3 (Rule application). Let 𝜌 be a rule of the form
𝛽 (𝑥,𝑦) ⇒ ∃𝑤̄ 𝛼 (𝑦, 𝑤̄), and let F be a fact set.

• Define H𝑜𝑚(𝜌, F) as the set of all mappings 𝜎 from variables
in 𝑥 ∪ 𝑦 to 𝑑𝑜𝑚(F) such that 𝜎 (𝛽 (𝑥,𝑦)) ⊆ F (which means
that all the atoms from 𝛽 are in F after we apply 𝜎 to them).

• For 𝜎 ∈ H𝑜𝑚(𝜌, F), define 𝑎𝑝𝑝𝑙 (𝜌, 𝜎) = 𝜎 (sh(𝜌)).

With these notions in place, we can now define the chase proce-

dure as a whole. Given an instance D and a theory T , it produces a

sequence (Ch𝑖 (T ,D))𝑖∈N of instances and the structure Ch(T ,D),
according to the following definition.

Definition 4 (Semi-oblivious Skolem chase procedure).

• Ch0 (T ,D) = D,
• Ch𝑖+1 (T ,D) = Ch𝑖 (T ,D) ∪

{𝑎𝑝𝑝𝑙 (𝜌, 𝜎) | 𝜌 ∈T , 𝜎 ∈H𝑜𝑚(𝜌,Ch𝑖 (T ,D))},
• Ch(T ,D) = ⋃

𝑖∈N Ch𝑖 (T ,D).

It is well known that Ch(T ,D) is a universal model for T and D
(i.e., a model that can be homomorphically mapped into any other

model). Thus, this structure can be used to solve CQ entailment: for

any theory T , CQ 𝜙 (𝑦), instance D and 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | , we have:
𝐶ℎ(T ,D) |= 𝜙 (𝑎) ⇔ D,T |= 𝜙 (𝑎)

Example 5. Let T𝑎 and D𝑎 be as in Example 1, then
• Ch0 (T𝑎,D𝑎) = D𝑎 = {𝐻𝑢𝑚𝑎𝑛(𝐴𝑏𝑒𝑙)},
• Ch1 (T𝑎,D𝑎) = Ch0 (T𝑎,D𝑎) ∪ {𝑀𝑜𝑡ℎ𝑒𝑟 (𝐴𝑏𝑒𝑙,𝑚𝑢𝑚(𝐴𝑏𝑒𝑙))},
• Ch2 (T𝑎,D𝑎) = Ch1 (T𝑎,D𝑎) ∪

{𝑀𝑜𝑡ℎ𝑒𝑟 (𝑚𝑢𝑚(𝐴𝑏𝑒𝑙),𝑚𝑢𝑚(𝑚𝑢𝑚(𝐴𝑏𝑒𝑙)))},
and so on (we use the function symbol “mum” as an alias for the ugly
Skolem function symbol from Definition 2).

Now note that there is nothing in Definition 4 that could prevent

us from taking D = Ch2 (T𝑎,D𝑎) and running the chase for such D.
It is easy to see that in that case we obtain Ch(T𝑎,D) = Ch(T𝑎,D𝑎).
This leads to the following easy insight:

Observation 6. If D⊆F⊆Ch(T,D) then Ch(T, F) =Ch(T,D).
2
Including non-frontier variables as arguments of the functions 𝑓 𝜏

𝑖
(like 𝑥 in the

current example) would lead to the oblivious chase. Also note that the names of the

terms do not identify 𝜌 (their “rule of origin”). This is going to be important in the

proof of Theorem 1.

Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph

Note that that equality in Observation 6 is to be understood

literally (rather than “up to isomorphism”). This is crucial for our

treatise and it constitutes the main reason why we use the Skolem

naming convention.

Finally, let us state another property of the chase – a direct

consequence of the fact that Ch(T ,D) is a universal model.

Property 7. Let T be a theory and let D and F be fact sets sat-
isfying D ⊆ F ⊆ Ch(T ,D) as well as F |= T . Then there exists a
homomorphism from Ch(T ,D) to F that is the identity on 𝑑𝑜𝑚(F).

Frontier and birth atoms. Let 𝛼 be an atom from 𝐶ℎ(T ,D) \ D,
created as 𝑎𝑝𝑝𝑙 (𝜌, 𝜎) for some 𝜌 ∈ T and 𝜎 ∈ 𝐻𝑜𝑚(𝜌,D). We let

the frontier of 𝛼 (written: fr (𝛼)) denote the set of terms 𝜎 (fr (𝜌)).
Notice that there may be more than one rule application creating

the same atom 𝛼 , but:

Observation 8. For every 𝜌, 𝜌 ′ ∈ T and every 𝜎 ∈ 𝐻𝑜𝑚(𝜌,D)
if 𝑎𝑝𝑝𝑙 (𝜌, 𝜎) = 𝑎𝑝𝑝𝑙 (𝜌 ′, 𝜎 ′) then heads of 𝜌 and 𝜌 ′ when treated as
CQs have the same isomorphism type.

Clearly, for each 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(T ,D)) either 𝑡 ∈ 𝑑𝑜𝑚(D) or
𝑡 was created by the chase procedure as a Skolem term. Notice

that, despite the name of the rule of T that created 𝑡 not being

indicated in the name of 𝑡 (as per our Skolem naming convention),

the following still holds:

Observation 9. Suppose 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(T ,D)) \ 𝑑𝑜𝑚(D). Then
there exists exactly one atom 𝛼 ∈ 𝐶ℎ(T ,D) such that 𝑡 appears in 𝛼 ,
but 𝑡 ∉ fr (𝛼).

We will refer to such an atom 𝛼 as the birth atom of 𝑡 .

For the proof of the last observation notice that one can uniquely

reconstruct 𝛼 using only 𝑡 . This is because 𝑡 contains both the

isomorphism type of 𝛼 (so that one can reconstruct 𝛼 up to bijective

renaming of its terms) and its frontier terms.

4 THE THREE CLASSES
For a theory T , an instanceD, a natural number𝑛 and a conjunctive

query 𝜙 (𝑦) we will write 𝐸𝑛𝑜𝑢𝑔ℎ(𝑛, 𝜙 (𝑦),D,T) as a shorthand for:

∀𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 |
(
𝐶ℎ(T ,D) |= 𝜙 (𝑎) ⇔ 𝐶ℎ𝑛 (T ,D) |= 𝜙 (𝑎)

)
.

Meaning that “it is enough to run 𝑛 steps of the T -chase on D to

fully evaluate 𝜙”.

Now we will provide definitions for three separate classes: BDD,

FES, and UBDD [2, 14].

Definition 10 (BDD). A theory T has the bounded derivation

depth property if:
∀Φ ∃𝑛Φ ∀D 𝐸𝑛𝑜𝑢𝑔ℎ(𝑛Φ,Φ,D,T)

Definition 11 (FES). A theory T has the finite expansion set

property if:
∀D ∃𝑛D ∀Φ 𝐸𝑛𝑜𝑢𝑔ℎ(𝑛D,Φ,D,T)

Definition 12 (UBDD). Theory T is uniformly BDD if:
∃𝑐T ∀D ∀Φ 𝐸𝑛𝑜𝑢𝑔ℎ(𝑐T ,Φ,D,T)

Notice the striking similarity between the above expressions.

Connections between those classes will be discussed later in Sec-

tion 7, but before we need to explore BDD and FES in greater detail.

5 BDD AND FINITE UNIFICATION SETS
As with many important notions, it happens that the same concept

is defined by multiple communities using different properties. This

is exactly the case with finite unification set property [2] and BDD.

Definition 13 (FUS). A theory T has the finite unification set

property if every conjunctive query𝜓 (𝑦) has a rewriting — a UCQ,
denoted𝜓 rew (𝑦), such that the following holds:
For each instance D and each tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | we have

𝐶ℎ(T ,D), 𝑎 |= 𝜓 (𝑦) ⇐⇒ D, 𝑎 |= 𝑟𝑒𝑤 (𝜓 (𝑦)) .

It is well known that T is BDD if and only if it is FUS [3], so

we will use the two terms interchangeably. For simplicity of our

arguments and without loss of generality, we will require the set

𝑟𝑒𝑤 (𝜓 (𝑦)) to be minimal: If 𝜙 (𝑦) ≠ 𝜙 ′(𝑦) are two elements of

𝑟𝑒𝑤 (𝜓 (𝑦)) then 𝜙 (𝑦) is not contained in 𝜙 ′(𝑦).

The BDD/FUS class admits several interesting properties. The

following will be used later: facts about terms are produced by the

chase soon after the terms are created (with only a constant delay).

Observation 14. There exists a natural number 𝑛𝑎𝑡 (depending
only on T) such that for any instance D, for any 𝑖 ∈ N, for any
tuple 𝑡 of domain elements from 𝑑𝑜𝑚(𝐶ℎ𝑖 (T ,D)) and for any 𝑅 ∈ Σ,
𝐶ℎ(T ,D) |= 𝑅(𝑡) implies 𝐶ℎ𝑖+𝑛𝑎𝑡 (T ,D) |= 𝑅(𝑡).

Proof (sketch). For any query 𝜙 , let 𝑛𝜙 denote the constant

from Definition 10. Note, that there is only a finite number of

non-isomorphic atomic queries. Therefore, we can obtain 𝑛𝑎𝑡 as

max({𝑛𝜙 | 𝜙 is an atomic query}). □

The BDD property – exercises.Now, we would like to encourage
the reader to solve a few exercises. While they are not part of the

actual proofs, we believe they might provide valuable insights.

Exercise 15. Consider the theory T𝑝 over schema {𝐸} consisting
of just one rule 𝐸 (𝑥,𝑦) ⇒ ∃𝑧 𝐸 (𝑦, 𝑧). Show that this theory is BDD.

Comment: This can be easily generalized: it is well known that all

linear theories are BDD [14] (a theory is linear if each rule only has

one atom in its body).

Exercise 16. Show that, if T is BDD and connected then there
exists some 𝑑 ∈ N such that for each D and for each two terms 𝑐, 𝑐 ′

of 𝑑𝑜𝑚(D), if 𝑑𝑖𝑠𝑡𝐶ℎ (T,D) (𝑐, 𝑐 ′) = 1 then 𝑑𝑖𝑠𝑡D (𝑐, 𝑐 ′) ≤ 𝑑 .

Comment: the didactic purpose of Exercise 16 is to evoke or reinforce
the intuition of BDD as a “locality” property: if terms from 𝑑𝑜𝑚(D)
appear in one atom somewhere in 𝐶ℎ(T ,D) then they could not

possibly be far away from each other already in D.

6 FES AND CORE TERMINATION
FES theories always (regardless of the initial structure D) produce
all the positive information present in 𝐶ℎ(T ,D) already after a

finite number of chase steps (this number can depend onD though).

This is, as well, the case with the core termination [1, 2]:

Definition 17. A theory T is core-terminating if for each fact
set D there exists a 𝑘 ∈ N such that for each 𝑖 ≥ 𝑘 :

𝐶𝑜𝑟𝑒 (Ch𝑖 (T ,D)) is isomorphic to 𝐶𝑜𝑟𝑒 (Ch𝑖+1 (T ,D)) .

A Journey to the Frontiers of Query Rewritability
(Extended Technical Report)

It is well known that T is core-terminating if and only if it is

FES [15], so we will use the two terms interchangeably. Moreover,

the smallest numbers 𝑛D and 𝑘 satisfying Definitions 11 and 17

(respectively) are equal; from now on this number will be denoted

with 𝑐T,D. It is also known [1] that 𝐶𝑜𝑟𝑒 (Ch𝑐T,D (T ,D)) |= T ,D.

Definition 18. Given a FES theory T and an instance D, we let
𝐶𝑜𝑟𝑒 (T ,D) denote 𝐶𝑜𝑟𝑒 (Ch𝑐T,D (T ,D)).

Exercises Also this section comes with a few exercises. Again, we

expect them to provide valuable insight, but they are not required

for our subsequent proofs.

Exercise 19. Show that the theory from Exercise 15 is not FES.

Exercise 20. Show that the theory consisting of two rules
𝐸 (𝑥,𝑦) ⇒ ∃𝑧 𝐸 (𝑦, 𝑧) and 𝐸 (𝑥, 𝑥 ′) ⇒ 𝐸 (𝑥, 𝑥) is FES.

7 THE FUS/FES CONJECTURE
It is very easy to produce examples of BDD theories that are not

UBDD (see Exercise 15). However, all examples we could produce

are not core-terminating. Likewise, it is easy to produce examples

of core-terminating theories that are not UBDD, but they are not

BDD either (all unbounded Datalog theories will be very happy to

serve as examples). This gives rise to the following conjecture.

Conjecture 1 (The FUS/FES conjecture). Any theory that is
both FUS and FES is also UBDD.

This conjecture was studied in [11] where an incorrect proof was

proposed, and in [12] where it was proved that it would hold true

if the assumption that T is FES was replaced by the significantly

stronger assumption that it is all-instances Skolem chase terminat-
ing. Note that the conjecture would be false if infinite theories, over
infinite (yet just binary) schemas were allowed:

Example 21. Suppose a relation symbol 𝐸𝑖 for every 𝑖 ∈ N. Let the
theory T∞ consist of all rules of the form 𝐸𝑖 (𝑥,𝑦) ⇒ ∃𝑧 𝐸𝑖−1 (𝑦, 𝑧)
for 𝑖 ∈ N+. Then T∞ is BDD and core-terminating, but it is not UBDD.
To see why this is the case, notice that only facts from a finite number
of relations can appear in every given finite instance.

8 LOCAL THEORIES.
We are now ready to introduce the central notion of local theories.
As it will turn out, not only the FUS/FES conjecture holds for these

(Theorem 2) but they also subsume all BDD theories over binary

signatures (Theorem 1). Notwithstanding, as we will argue near

the end of the paper, there exists an untapped potential within the

BDD class beyond the veils of locality (Theorem 3).

Definition 22. A theory T is local if there exists some number
𝑙T ∈ N such that for every instance D the following holds:

Ch(T ,D) =
⋃
F⊆D, |F | ≤𝑙T

Ch(T , F)

Note that the Skolem naming convention is important here.With-

out it, it would be unclear or at least ambiguous what a union of

chases is supposed to mean. Importantly, we obtain that locality

implies the BDD property.

Observation 23. If a theory is local then it is BDD.

Proof (sketch). Given a local theory T and a CQ Φ, we show
that there exists a natural number 𝑛Φ satisfying Definition 10. Due

to T being local, we can, for every F with F |= Φ, identify some

D ⊆ F with D |= Φ and |D| ≤ 𝑙T |Φ|. Therefore, we let F =

{D | Ch(T ,D) |=Φ ∧ |D| ≤ 𝑙T |Φ|}. For any D ∈ F , define 𝑛D as

the minimal natural number such that Ch𝑛D (T ,D) |= Φ. As F
contains just a finite number of non-isomorphic instances, picking

𝑛Φ = max{𝑛D | D ∈ F } witnesses that Definition 10 applies. □

We defer any further discussion about locality until later sections.

And now, let us state our first result.

Theorem 1. Every BDD theory over binary signature is local.

The detailed proof will be presented in Appendix A. Here, we

just outline the proof idea. We start by observing that the atoms

created in the chase by rules that contain existentially quantified

variables form a forest. This is a crucial property of single-head rule

sets over binary signatures as any such rule must have a frontier of

size ≤1. (Obviously, this property ceases to hold for signatures of

higher arities.) Essentially, as the chase progresses, the existential

atoms (those produced through “proper” existential rules) are cre-

ated further and further away from the instance. If we were able

to bound the number of each such atom’s ancestors — the atom

set required for its creation — then we could finish the proof by

slightly extending Observation 14. The forest shape, however, is not

immediately sufficient to bound the ancestors of its atoms. To over-

come this issue, we propose a normalization technique, that, given

a BDD theory T over binary signature, produces a new theory T𝑁𝐹 ,
which might no longer be BDD but admits two important proper-

ties: First, the sets of existential atoms produced by T and by T𝑁𝐹
on any instance coincide (Lemma 48). Second, it is straightforward

to find the mentioned bound on the number of ancestors for every

atom produced by T𝑁𝐹 (Lemma 57). These two properties grant us

Theorem 1. But how does such a normalization work? In simple

words, it relies on the fact that T is BDD. In the absence of both

disconnected and Datalog rules, the normalization would be rather

simple: we could take any existential rule 𝛽 ⇒ 𝛼 ∈ T and replace

it with rules 𝛾 ⇒ 𝛼 for all 𝛾 ∈ 𝑟𝑒𝑤 (𝛽). Dealing with disconnected

bodies and Datalog rules complicates matters somewhat.

We are very confident that our proof can be generalized to all

frontier-guarded BDD theories. As this is not yet spelled out in full

detail, we prefer to be cautious and formulate it as conjecture.

Conjecture 2. Every frontier-guarded BDD theory is local.

9 THE FUS/FES CONJECTURE IS TRUE FOR
LOCAL THEORIES

We proceed by presenting the second of our three main results.

Theorem 2. If a theory T is FES and local then it is UBDD.

This means that the FUS/FES conjecture holds for local theories.

Before we start our proof, let us note that by Theorem 1 and The-

orem 2, we can immediately conclude that Conjecture 1 holds for

theories over binary signatures:

Corollary 1. If a theory T over a binary signature is both FES
and BDD then it is UBDD.

Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph

Also, Theorem 1 implies that any counterexample to the conjec-

ture – should it exist – would have to be outside the realm of local

classes. We explore this uncharted lands in Section 11.

Proof of Theorem 2
As any UBDD theory is core-terminating as well, it is easy to see

that a theory T is UBDD if and only if there exists some 𝑐T ∈ N
such that𝐶𝑜𝑟𝑒 (T ,D) ⊆ Ch𝑐T (T ,D) holds for any instanceD. Note
that the numbers 𝑐T here and in Definition 12 are equal. Thus we

can reformulate Theorem 2 as follows:

Theorem 2 (alternative). Let T be a core-terminating local the-
ory. Then there exists a 𝑐T ∈ N such that𝐶𝑜𝑟𝑒 (T ,D) ⊆ Ch𝑐T (T ,D)
holds for any instance D .

Until the end of this section, we will consider T a fixed theory

that is both core-terminating and local (so also BDD). To simplify

notation, Ch(T ,D) will be shortened to Ch(D).

Definition 24. For an instance D define ID as the family of sets
{F | F ⊆ D, |F| ≤ 𝑙T }. Define CD =

⋃
F∈ID 𝐶𝑜𝑟𝑒 (T , F).

Lemma 25. There exists a 𝑘T ∈ N depending only on T (but not
on D), such that CD ⊆ Ch𝑘T (D).

Proof. The set A = {F | |F| ≤ 𝑙T } of all instances (over Σ)
of size at most 𝑙T is finite (up to isomorphisms). Recall that T is

core-terminating and let 𝑘T = max{𝑐T,D | D ∈ A}. □

If we were able able to find a homomorphism
¯ℎD from 𝐶ℎ(D) to

CD, the alternative formulation of Theorem 2would be proved. Also,

since T is core-terminating, we know that for each F ∈ ID there

exists a homomorphism ℎF from 𝐶ℎ(F) to CD and we know that⋃
F∈ID 𝐶ℎ(F) = 𝐶ℎ(D). So can’t we just define

¯ℎD =
⋃
F∈ID ℎF?

Unfortunately not, because the domains of ℎF and ℎF′ may overlap

(for some F ≠ F′) and there is no guarantee that ℎF and ℎF′ will

agree on the terms that are in both domains. If
¯ℎD could be produced

this way, CD |= T would always hold. Yet, we found an example

(not included here) of a pair D, T for which CD ̸ |= T .

Luckily, the idea to build a global homomorphism
¯ℎD using the

local homomorphisms ℎF can be put to use in a different way, and

the set of facts CD will indeed prove very useful in this context.

The following lemma will be crucial in this endeavor:

Lemma 26. For any instance D there exists a homomorphism ¯ℎD
from 𝐶ℎ(D) to 𝐶ℎ(D) such that for each 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(D)) there is
¯ℎD (𝑡) ∈ 𝑑𝑜𝑚(CD).

Let us first discuss howTheorem 2 can be concluded from Lemma 26.

Suppose someD is fixed and
¯ℎD is a homomorphism as in Lemma 26.

We know that 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(D)) implies
¯ℎD (𝑡) ∈ 𝑑𝑜𝑚(CD) and we

know thatCD ⊆ 𝐶ℎ𝑘T (D). So one might be tempted to immediately

conclude
¯ℎD (Ch(D)) ⊆ 𝐶ℎ𝑘T (D). But it is not quite that simple.

Admittedly, Lemma 26 tells us that all the terms of
¯ℎD (Ch(D))

will indeed appear in 𝐶ℎ𝑘T (D). But it says nothing like that about

the atoms of
¯ℎD (Ch(D)). Rather, it might be that there are atoms

in
¯ℎD (Ch(D)) that, despite having all their terms in 𝑑𝑜𝑚(CD) are

not themselves in CD. To overcome this little problem, we recall

Observation 14 and let 𝑐T = 𝑘T +𝑛𝑎𝑡 . Then ¯ℎD (Ch(D)) ⊆ 𝐶ℎ𝑐T (D)
follows as desired.

This means what remains to be presented in this section is the

proof of Lemma 26:

Definition 27. Let D be a set of facts and let F ⊆ D. We let
𝑀F denote3 the substructure of Ch(D) induced by the set of terms
𝑑𝑜𝑚(Ch(D)) \

(
𝑑𝑜𝑚(Ch(F)) \ 𝑑𝑜𝑚(𝐶𝑜𝑟𝑒 (T , F))

)
.

In the following, the terms of 𝑑𝑜𝑚(Ch(F)) \ 𝑑𝑜𝑚(𝐶𝑜𝑟𝑒 (T , F)
will be referred to as banned terms.

Lemma 28. For any instance D and for any F ⊆ D, the structure
𝑀F is a model of T and D.

Proof. Clearly𝑀F |= D. In order to prove𝑀F |= T , consider any

𝜌 ∈ T and any 𝜎 ∈ H𝑜𝑚(𝜌,𝑀F). Of course, 𝑎𝑝𝑝𝑙 (𝜌, 𝜎) ∈ Ch(D),
since Ch(D) is by definition closed under rule applications.

In the following, the atom 𝑎𝑝𝑝𝑙 (𝜌, 𝜎) will be mentioned often

enough to deserve a shorter name, so we will call it 𝛼 .

It is now sufficient (and necessary) to prove that there exists a

homomorphism from 𝛼 to some atom 𝛼 ′ ∈ 𝑀F, that is the identity
on fr (𝛼). In other words, we need to show that if the body of the

rule 𝜌 matches 𝑀F (via mapping 𝜎), then we can find an atom in

𝑀F that witnesses satisfaction of 𝜌 . Such an 𝛼 ′ needs to have the
same terms as 𝛼 in the frontier positions and may have arbitrary

terms in the positions of the existentially quantified variables in

ℎ𝑒𝑎𝑑 (𝜌), except that if 𝛼 had equal terms on two such positions

then the respective terms in 𝛼 ′ must also be equal.

If 𝛼 ∈ 𝑀F then of course we pick 𝛼 ′ = 𝛼 . So, for the rest of the
proof, assume 𝛼 ∉ 𝑀F. Note that the only reason for 𝛼 to be in

Ch(D) but not in𝑀F is that 𝛼 contains some banned term 𝑡 .

But 𝜎 (𝑏𝑜𝑑𝑦 (𝜌)) ⊆ 𝑀F. Thus fr (𝛼) ⊆ 𝑑𝑜𝑚(𝑀F) and so 𝑡 ∉ fr (𝛼).
At this point, we can be sure that 𝜌 is not a Datalog rule – atoms

derived via a Datalog rule do not have non-frontier terms.

Term 𝑡 being a non-frontier term of 𝛼 means that 𝛼 is the birth

atom of 𝑡 in Ch(D). But 𝑡 ∈ 𝑑𝑜𝑚(Ch(F)) so from Observation 9, we

know that 𝛼 is the birth atom of 𝑡 in Ch(F) and thus 𝛼 ∈ Ch(F).
Note that fr (𝛼) ⊆ 𝑑𝑜𝑚(𝐶𝑜𝑟𝑒 (T , F)) (∗), as fr (𝛼) ⊆ 𝑑𝑜𝑚(Ch(F))

and none of the terms in fr (𝛼) are banned.
Now let ℎ∗F : Ch(F) → 𝐶𝑜𝑟𝑒 (T , F) be a homomorphism as in

Property 7. Since 𝛼 ∈ Ch(F), we obtain ℎ∗F (𝛼) ∈ 𝐶𝑜𝑟𝑒 (T , F) and
thus ℎ∗F (𝛼) ∈ 𝑀F. As ℎ

∗
F is a retraction, ℎ

∗
F (fr (𝛼)) = fr (𝛼) follows

from (∗). Hence,ℎ∗F (𝛼) can serve as our𝛼
′
, concluding the proof. □

Lemma 29. For any instance D and any F ⊆ D there exists a
homomorphism ℎ∗

𝑀F
from Ch(D) to itself that maps all terms to

𝑑𝑜𝑚(𝑀F) and is the identity on 𝑑𝑜𝑚(𝑀F).

Proof. Note that 𝑀F |= T (Lemma 28) and D ⊆ 𝑀F. Then

Property 7 ensures the existence of the claimed homomorphism. □

LetHD be the set of all homomorphisms ℎ∗
𝑀F

for F ∈ ID.
Each ℎ∗

𝑀F
∈ HD has as its domain the set 𝑑𝑜𝑚(Ch(𝑀F)), that is

equal to 𝑑𝑜𝑚(Ch(D)), and has as its image a subset of this domain.

This means that one can compose such homomorphisms, and the

resulting function will also be a homomorphism from Ch(D) to
Ch(D) (and it will be the identity on 𝑑𝑜𝑚(D), since each ℎ𝑀F is).
Now the rabbit is going to be pulled out of the hat: let us compose

3
To be precise we should call this new structure𝑀D,F , but D will be fixed and clear

from the context.

A Journey to the Frontiers of Query Rewritability
(Extended Technical Report)

all homomorphisms ℎ𝑀F ∈ HD, in any order. Call the resulting

(“global”) homomorphism
¯ℎD.

Now recall that the proof of Lemma 26 (and thus also of Theo-

rem 2) will be finished once we can show that
¯ℎD (𝑡) ∈ 𝑑𝑜𝑚(CD)

does indeed hold for each term 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(D)).
Recall our notion of banned terms. Now F is no longer fixed, i.e.,

for each F ∈ ID there is a set 𝑏𝑎𝑛F of terms that occur somewhere

in Ch(F) but not in 𝐶𝑜𝑟𝑒 (T , F). Each ℎ∗
𝑀F

∈ HD is the identity on

all terms except those of 𝑏𝑎𝑛F, and maps the terms from 𝑏𝑎𝑛F into

𝑑𝑜𝑚(𝐶𝑜𝑟𝑒 (T , F)), which means into 𝑑𝑜𝑚(CD).
Now suppose we apply

¯ℎD to any 𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(D)). If there is
any ℎ∗

𝑀F
∈ HD with ℎ∗

𝑀F
(𝑡) ≠ 𝑡 then of course

¯ℎD (𝑡) ∈ 𝑑𝑜𝑚(CD).
In case ℎ∗

𝑀F
(𝑡) = 𝑡 for each ℎ∗

𝑀F
, consider any F𝑡 ∈ ID for which

𝑡 ∈ 𝑑𝑜𝑚(𝐶ℎ(F𝑡)). Then 𝑡 ∈ 𝑑𝑜𝑚(𝐶𝑜𝑟𝑒 (T , F𝑡)) ⊆ 𝑑𝑜𝑚(CD).

10 SLIGHTLY BEYOND LOCALITY: STICKY
THEORIES

Unfortunately, our notion of locality fails to characterize the entire

BDD class, as demonstrated in the following example.

Example 30. Let 𝐸 be a relation of arity 4 and 𝑅 one of arity 2.
Read 𝐸 (𝑎, 𝑏, 𝑏 ′, 𝑐) as “𝑎 sees an edge from 𝑏 to 𝑏 ′ colored with color 𝑐”
and 𝑅(𝑎, 𝑐) as “𝑎 considers 𝑐 a color”. The following one-rule sticky
theory T is not local:

𝐸 (𝑥,𝑦,𝑦′, 𝑡), 𝑅(𝑥, 𝑡 ′) ⇒ ∃𝑦′′ 𝐸 (𝑥,𝑦′, 𝑦′′, 𝑡 ′)
(meaning “if 𝑥 sees an edge from 𝑦 to 𝑦′ and considers 𝑡 ′ a color, then
𝑥 must also see another edge from 𝑦′ to some 𝑦′′ of color 𝑡 ′”).

To see that it is indeed not local, suppose it were and let 𝑙T be the
corresponding constant as in Definition 22. Now take an instance D
consisting of 𝑙T +1 atoms: one atom 𝐸 (𝑎, 𝑏1, 𝑏2, 𝑐1) and atoms 𝑅(𝑎, 𝑐𝑖)
for 1 ≤ 𝑖 ≤ 𝑙T . It is not hard to see that there are atoms in 𝐶ℎ(T ,D)
that require all the atoms from D to be produced.

The only reason, however, for connected sticky theories to be

non-local are high-degree vertices, like the 𝑎 in the example. This

leads to a natural generalization of the notion of locality:

Definition 31. A theory T will be called bounded-degree local

(or bd-local) if for any 𝑘 ∈ N there exists a constant 𝑙T (𝑘) such that
for every instance D having degree at most 𝑘 , the following holds:⋃

F⊆D, |F | ≤𝑙T (𝑘)
Ch(T , F) = Ch(T ,D)

As of yet, we have been unable to show that the FUS/FES conjecture

holds for bounded-degree local theories, but we believe that with

some additional effort, the ideas from Section 9 could probably be

adapted to work also for such theories. And of course they do work

if only instances of fixed degree are considered.

It is not hard to show that sticky theories are indeed bd-local (cf.

Appendix E). Hence, in view of Conjecture 2, it seems that most

known decidable BDD classes are bounded-degree local. Perhaps

surprisingly, unlike local theories, not all bounded-degree local

theories are BDD:

Example 32. It is easy to see that the following single-rule theory
is bounded-degree local but not BDD: 𝐸 (𝑥,𝑦, 𝑧), 𝑅(𝑥, 𝑧) ⇒ 𝑅(𝑦, 𝑧).

But even if not all bd-local theories are BDD, it is not straight-

forward to come up with a BDD theory that is not bd-local. So a

natural question arises: are there BDD theories that are not local in

this generalized sense? We found it quite surprising to realize that

the answer is positive:

Example 33. The following BDD theory T𝑐 is not bd-local:
𝐸 (𝑥,𝑦) ⇒ ∃𝑥 ′, 𝑦′ 𝑅(𝑥,𝑦, 𝑥 ′, 𝑦′)

𝑅(𝑥,𝑦, 𝑥 ′, 𝑦′), 𝐸 (𝑦, 𝑧) ⇒ ∃𝑧′ 𝑅(𝑦, 𝑧,𝑦′, 𝑧′)
To prove that it is BDD one can notice that if T𝑐 ,D |= 𝜙 (𝑎), for someD
and some 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑎 | then𝐶ℎ |𝜙 (𝑦) | |= 𝜙 (𝑎). In order to prove that
it is not bd-local consider, for each 𝑛 ∈ N, the instance D𝑛 consisting
of atoms 𝐸 (𝑎1, 𝑎2), 𝐸 (𝑎2, 𝑎3) . . ., 𝐸 (𝑎𝑛, 𝑎1). The degree of this instance
is 2. And there are atoms in 𝐶ℎ𝑛 (T𝑐 ,D𝑛) that are not in 𝐶ℎ𝑛 (T𝑐 , F)
for any proper subset F of D𝑛 .

We were, however, not able to find an example of a theory that

would be hereditary BDD — a BDD theory such that every its sub-

sets is BDD as well — but not bd-local. We think it reasonable to

conjecture that there are no such theories.

11 FAR BEYOND LOCALITY: BDD THEORIES
WITHOUT SMALL REWRITINGS

As we know, any local theory is also BDD. Additionally, local theo-

ries admit rewritings of linear width:

Observation 34. For each local theory T and for each CQ Ψ, the
size of the greatest disjunct in the rewriting is at most 𝑙T |Ψ|.

Clearly, the linear bound on the width of 𝑟𝑒𝑤 (Ψ) gives us an
immediate exponential upper bound on the number of its disjuncts.

A matching lower bound is trivial to obtain:

Observation 35. LetT consist of the two rules: 𝐸 (𝑥,𝑦) ⇒ 𝑅(𝑥,𝑦)
and 𝐸 ′(𝑥,𝑦) ⇒ 𝑅(𝑥,𝑦). Then T is BDD and the number of disjuncts
in 𝑟𝑒𝑤 (Ψ) can be exponential in the size of Ψ.

Recall the notion of backwards shy theories [10] – these are BDD

theories such that, for every query𝜓 (𝑦) if 𝜙 (𝑦) ∈ 𝑟𝑒𝑤 (𝜓 (𝑦)) then
only variables from 𝑦 can occur more than once in 𝜙 (𝑦). Sticky the-

ories are backward shy. It is easy to see that backward shy theories

admit rewritings of linear width as well and, in consequence, also

all sticky theories do. This is related to another notion of locality:

Definition 36. We call a theory Tdistancing if there is a 𝑑T ∈ N
such that for any instance D, any 𝑐, 𝑐 ′ ∈ 𝑑𝑜𝑚(D), and any 𝑛 ∈ N if
𝑑𝑖𝑠𝑡𝐶ℎ (T,D) (𝑐, 𝑐 ′) ≤ 𝑛 then 𝑑𝑖𝑠𝑡D (𝑐, 𝑐 ′) ≤ 𝑑T𝑛.

Is every BDD theory distancing? It might seem that this can

be shown using Exercise 16. However, this is not the case, since

the path from 𝑐 to 𝑐 ′ in 𝐶ℎ(T ,D) might lead through atoms not

containing any constants from the original D. What can be proven

is the following correspondency:

Observation 37. If a BDD theory admits rewritings of linear
width, then it is distancing.

Assuming Conjecture 2, this implies that all theories from previ-

ously known BDD classes are distancing. The converse of Observa-

tion 37 does not hold, and such theories can be easily found:

Observation 38. The theory consisting of the single Datalog rule
𝐴(𝑥), 𝐸 (𝑥,𝑦) ⇒ 𝐴(𝑦) is distancing but not BDD.

Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph

So do there exist non-distancing BDD theories at all? Do there

exist BDD theories that do not admit rewritings of linear width?

The answer is given by Theorem 3, which constitutes the third

main result of this paper:

Theorem 3. There exists a BDD theory that is non-distancing and
does not even admit rewritings of polynomial width.

To see how this is possible, consider the following theory:

Definition 39. Consider a signature with two binary predicates
𝑅 and 𝐺 . Let the theory T𝑑 consist of the following rules:

(loop) 𝑡𝑟𝑢𝑒 ⇒ ∃𝑥 𝑅(𝑥, 𝑥),𝐺 (𝑥, 𝑥)
(pins) ∀𝑥 (𝑡𝑟𝑢𝑒 ⇒ ∃𝑧, 𝑧′ 𝑅(𝑥, 𝑧),𝐺 (𝑥, 𝑧′))
(grid) 𝑅(𝑥, 𝑥 ′),𝐺 (𝑥,𝑢),𝐺 (𝑢,𝑢 ′) ⇒ ∃𝑧 𝑅(𝑢 ′, 𝑧),𝐺 (𝑥 ′, 𝑧)

Note that the rules of T𝑑 are not single-head and some of them have

empty bodies. One could easily reformulate them to avoid this at

the cost of readability (see Appendix D).

We will think of instances over our signature (and of bodies of

queries) as graphs with edges colored in red or green. For 𝑛 ∈ N, let
𝐺𝑛 (𝑥0, 𝑥𝑛) denote the CQ ∃𝑥1 . . . 𝑥𝑛−1𝐺 (𝑥0, 𝑥1), . . . ,𝐺 (𝑥𝑛−1, 𝑥𝑛)
and 𝑅𝑛 (𝑥0, 𝑥𝑛) likewise. Define conjunctive queries 𝜙𝑛

𝑅
(𝑥,𝑦) by

∃𝑥 ′, 𝑦′𝑅𝑛 (𝑥, 𝑥 ′), 𝑅𝑛 (𝑦,𝑦′),𝐺 (𝑥 ′, 𝑦′) and let G𝑛 (𝑎, 𝑏) be a path of 𝑛

green edges, with 𝑎 as the first vertex and 𝑏 as the last.

The following technical lemma substantiates Theorem 3:

Lemma 40. (A) The theory T𝑑 is BDD.
(B) 𝐺2

𝑛 (𝑥,𝑦) ∈ 𝑟𝑒𝑤T𝑑 (𝜙𝑛𝑅 (𝑥,𝑦)) holds for every 𝑛 ∈ N.

Let us first prove claim (B) of the theorem, which implies that

T𝑑 is not distancing. The claim follows once we notice that: (i)

Ch(T𝑑 ,G2
𝑛 (𝑎, 𝑏)) |= 𝜙𝑛

𝑅
(𝑎, 𝑏) and (ii) if D is a proper subset of

G2
𝑛 (𝑎, 𝑏) then 𝐶ℎ(T𝑑 ,D) ̸|= 𝜙𝑛𝑅 (𝑎, 𝑏). Establishing (i) is immediate,

as exemplified in Fig. 1 displaying the case 𝑛 = 3. To show (ii), we

note that if D is a proper subset of G2
𝑛 (𝑎, 𝑏) then 𝑎 and 𝑏 are in two

different connected components of D and, since T𝑑 is connected,

they are in two different connected components of 𝐶ℎ(T𝑑 ,D).

Figure 1: Fragment of 𝐶ℎ(T𝑑 ,G8 (𝑎0, 𝑎8)) (print in colors!)

The proof of claim (A) is much harder (see Appendix B). It defines

a rewriting procedure in the spirit of [4, 16], whose termination

for any given query 𝜙 (𝑦) is shown, via an invariant defined by a

complicated multiset ordering.

As our final exercise illustrates, the reasons why T𝑑 is BDD are

quite subtle indeed:

Exercise 41. Show that without rule (loop), T𝑑 would not be BDD.
Hint: Consider the CQ ∃𝑥,𝑦 𝑅(𝑥,𝑦),𝐺 (𝑥,𝑦).

A remark on Theorem 3. A folklore belief seems to be that the

existence of BDD theories that enforce rewritings of unbounded

width is a consequence of the the fact that it is undecidable to

check if a theory is BDD (see e.g. a recent stackexchange post

[17]). Our results call this belief into question, because being BDD

is undecidable for theories with a binary signature, and yet such

theories, if BDD, are local and thus admit rewritings of linear width.

Remark on distancing and linear width rewritings. One may

ask whether distancing is the same as admitting rewritings of linear

width. The answer is no. While Observation 37 shows one implica-

tion, the converse is not true. Consider theory T𝑑 fromDefinition 39,

but with every predicate’s arity increased by one, and the new vari-

able 𝑟 occurring in the last position in every atom. Then the new

theory is distancing (unlike T𝑑), but it still requires exponential size
rewritings (and, of course, it will remain BDD).

12 CONCLUSIONS AND FUTUREWORK
Our major motivation to embark on this journey was the pending

status of the FUS/FES conjecture. On our way, we realized that

any progress in that direction requires to significantly advance

our understanding of the BDD class, seperating folklore beliefs

from hard facts. To this end, we introduced several new notions,

characterizing specific properties of theories, and investigated their

correspondencies. Most notably, we defined local theories, a BDD
subclass. Our major results are the following:

• We show that the FUS/FES conjecture holds for all local

theories (Theorem 2), which include all theories over binary

signatures (Corollary 1). If the conjecture holds in the general

case, then our work may provide the basis for a complete

proof. If it does not, we now know that we must look for

counter-examples of higher arity to disprove it.

• We show that there are BDD theories that are non-distancing

and even necessitate rewritings of exponential width (Theo-

rem 3). This result highlights the limitations of existing BDD

classes [7, 9, 10], which can only characterise rule sets that

admit rewritings of polynomial width.

As for future work, we intend to explore the following:

• Study the relation between distancing and bd-local. More

precisely, find out if there are theories that are BDD and

bd-local but are not distancing.

• Extend the proof of Theorem 1 to show Conjecture 2, i.e.,

that all BDD frontier-guarded theories [2] are local and thus

the FUS/FES conjecture holds for them. Also, show if the

FUS/FES conjecture holds for bd-local theories and then, of

course, try to show the conjecture in the general case!

• Define a class of BDD theories that contains rule sets such

as the one from Definition 39. Also, define an expressive

class that captures the intuitive notion of locality, contains

all known BDD classes, and implies BDD membership.

• Even though we extend Theorem 3 in the appendix (see

Lemma 40), we wonder if there is a theory that does not

admit an elementary bound on the width of its rewritings.

Acknowledgements. Ostropolski-Nalewaja and Marcinkowski

were supported by the Polish National Science Centre (NCN) grant

2016/23/B/ST6/01438. Carral was supported by the ANR project

CQFD (ANR-18-CE23-0003), the DFG project 389792660 (TRR 248,

Center for Perspicuous Systems) and by the BMBF in the Center

for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI).

Rudolph was supported by the European Research Council through

the ERC Consolidator Grant DeciGUT (project number 771779).

https://www.perspicuous-computing.science/
https://www.scads.de
https://www.scads.de

A Journey to the Frontiers of Query Rewritability
(Extended Technical Report)

REFERENCES
[1] A. Deutsch, A. Nash, and J. B. Remmel, “The chase revisited,” in Proc. of the 27th

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2008, (M. Lenzerini and D. Lembo, eds.), pp. 149–158, ACM, 2008.

[2] J. Baget, M. Leclère, M. Mugnier, and E. Salvat, “On rules with existential variables:

Walking the decidability line,” Artif. Intell., vol. 175, no. 9-10, pp. 1620–1654, 2011.
[3] A. Calì, G. Gottlob, and T. Lukasiewicz, “Datalog

±
: a unified approach to on-

tologies and integrity constraints,” in Proc. of the 12th International Conference
on Database Theory, ICDT 2009, (R. Fagin, ed.), vol. 361 of ACM International
Conference Proceeding Series, pp. 14–30, ACM, 2009.

[4] M. König, M. Leclère, M. Mugnier, and M. Thomazo, “Sound, complete and

minimal UCQ-rewriting for existential rules,” Semantic Web, vol. 6, no. 5, pp. 451–
475, 2015.

[5] P. Barceló, G. Berger, C. Lutz, and A. Pieris, “First-order rewritability of frontier-

guarded ontology-mediated queries,” in Proc. of the 27th International Joint Con-
ference on Artificial Intelligence, IJCAI 2018,, pp. 1707–1713, 2018.

[6] C. Civili and R. Rosati, “On the first-order rewritability of conjunctive queries

over binary guarded existential rules,” in Proc. of the 30th Italian Conference on
Computational Logic, (D. Ancona, M. Maratea, and V. Mascardi, eds.), vol. 1459 of

CEUR Workshop Proceedings, pp. 25–30, CEUR-WS.org, 2015.

[7] A. Calì, G. Gottlob, and A. Pieris, “Advanced processing for ontological queries,”

Proc. VLDB Endow., vol. 3, no. 1, pp. 554–565, 2010.
[8] H. Gaifman, H. G. Mairson, Y. Sagiv, and M. Y. Vardi, “Undecidable optimization

problems for database logic programs,” J. ACM, vol. 40, no. 3, pp. 683–713, 1993.

[9] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev, “The DL-Lite

family and relations,” J. Artif. Intell. Res., vol. 36, pp. 1–69, 2009.
[10] M. Thomazo, Conjunctive Query Answering Under Existential Rules - Decidability,

Complexity, and Algorithms. PhD thesis, Montpellier 2 University, France, 2013.

[11] S. Delivorias, M. Leclère, M. Mugnier, and F. Ulliana, “On the k-boundedness

for existential rules,” in Proc. of 2nd International Joint Conference on Rules and
Reasoning, RuleML+RR 2018, (C. Benzmüller, F. Ricca, X. Parent, and D. Roman,

eds.), vol. 11092 of Lecture Notes in Computer Science, pp. 48–64, Springer, 2018.
[12] P. Bourhis, M. Leclère, M. Mugnier, S. Tison, F. Ulliana, and L. Gallois, “Obliv-

ious and semi-oblivious boundedness for existential rules,” in Proc. of the 28th
International Joint Conference on Artificial Intelligence, IJCAI 2019, (S. Kraus, ed.),
pp. 1581–1587, ijcai.org, 2019.

[13] P. Hell and J. Nesetril, “The core of a graph,” Discret. Math., vol. 109, no. 1-3,
pp. 117–126, 1992.

[14] A. Calì, G. Gottlob, and T. Lukasiewicz, “A general datalog-based framework for

tractable query answering over ontologies,” J. Web Semant., vol. 14, pp. 57–83,
2012.

[15] J. Baget, F. Garreau, M. Mugnier, and S. Rocher, “Revisiting chase termina-

tion for existential rules and their extension to nonmonotonic negation,” CoRR,
vol. abs/1405.1071, 2014.

[16] G. Gottlob, G. Orsi, and A. Pieris, “Query rewriting and optimization for ontolog-

ical databases,” vol. 39, Oct. 2014.

[17] M. Krötzsch, “What is first-order rewritable (and fo-query)?.” https:

//cstheory.stackexchange.com/questions/4859/what-is-first-order-rewritable-

and-fo-query. Accessed: 2020-11-27.

[18] J. Baget, M. Leclère, M. Mugnier, and E. Salvat, “Extending decidable cases for

rules with existential variables,” in Proc. of the 21st International Joint Conference
on Artificial Intelligence, IJCAI 2009, (C. Boutilier, ed.), pp. 677–682, 2009.

[19] N. Dershowitz and Z. Manna, “Proving termination with multiset orderings,”

Commun. ACM, vol. 22, no. 8, pp. 465–476, 1979.

Appendices

Appendix A PROOF OF THEOREM 1
Let us now fix a binary signature Σ and a BDD theory T over Σ.
By T𝐷𝐿 we will denote the Datalog rules of T and by T∃ its proper

existential rules.

First we will need to distinguish, among all elements of T∃, de-
tached4 rules that are of the form 𝜙 (𝑥) → ∃𝑦, 𝑧𝜓 (𝑦, 𝑧) or 𝜙 (𝑥) →
∃𝑦𝜓 (𝑦), that is, rules having empty frontier. Note that when firing a

detached rule, the newly created atom, has no common terms with

the rest of the chase. Notice that, since we only consider binary

schemas, the non-empty frontier of an existential rule always con-

sists of exactly one variable
5
. Rules from T∃ which are not detached

will be called sensible
Clearly, whatever fact set D we consider, the structure Ch(T ,D)

is a disjoint union of three sets of atoms. One set consists of the

original facts fromD. Second contains existential atoms, that is facts
created in the process of the chase, by rules of T∃. The third set

consists of atoms that are created by the rules of T𝐷𝐿 which be

called Datalog atoms. We will denote the set of existential atoms of

Ch(T ,D) together with atoms of D with Ch∃ (T ,D).
Let us now concentrate on the structure of Ch∃ (T ,D). Notice

that there are again two kinds of atoms there: detached atoms,

created by detached rules and sensible atoms, created by sensible

rules. Notice also that our taxonomy of atoms implies a taxonomy

of the terms of Ch∃ (T ,D) (that is the elements of 𝑑𝑜𝑚(Ch(T ,D)) \
𝑑𝑜𝑚(D)): there are sensible terms, created by sensible rules and

detached terms, created by detached rules. The set of detached

terms will be called 𝑑𝑒𝑡 (Ch(T ,D)).

Observation 42. The graph whose vertices are the terms from
𝑑𝑜𝑚(Ch(T ,D)) and whose edges are sensible atoms of Ch∃ (T ,D)
is a forest. The set of the roots of the trees of this forest is equal
to 𝑑𝑜𝑚(D) ∪ 𝑑𝑒𝑡 (Ch(T ,D)). The number of children of any of the
vertices of this forest is bounded by the number of existential rules in
T .

For any 𝑎 ∈ 𝑑𝑜𝑚(D) ∪ 𝑑𝑒𝑡 (Ch(T ,D)) let S(𝑎) be the set of

all atoms of Ch∃ (T ,D) which are edges of the tree rooted in 𝑎.

Following the naming convention, we call trees that are rooted in

detached terms detached trees.

A.1 First (failed) attempt at the Crucial Lemma
For any given set of facts D let a parent function 𝑝𝑎𝑟T be any

function from Ch(T ,D) \D to the power set of Ch(T ,D) such that

for any atom 𝛼 ∈ Ch(T ,D) there exists a rule 𝜌 and a mapping 𝜎

satisfying:

• 𝛼 = 𝑎𝑝𝑝𝑙 (𝜌, 𝜎),
• 𝜎 (𝑏𝑜𝑑𝑦 (𝜌)) = 𝑝𝑎𝑟T (𝛼).

The parent function points to some (arbitrarily chosen) set of

atoms that leads to the creation of 𝛼 . Note that there may be more

4
Such rules are called disconnected in [18], however we think that calling those rules

detached might help the reader to distinguish those from rules that have disconnected

bodies.

5
Actually, the assumption we really use in the proof of Theorem 1 is not that relations

are at most binary, but that the existential rules are “frontier one”.

https://cstheory.stackexchange.com/questions/4859/what-is-first-order-rewritable-and-fo-query
https://cstheory.stackexchange.com/questions/4859/what-is-first-order-rewritable-and-fo-query
https://cstheory.stackexchange.com/questions/4859/what-is-first-order-rewritable-and-fo-query

Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph

than one such function as 𝛼 could be created in more than one way

during the chase.

Let D be any set of facts and let 𝑝𝑎𝑟T be some parent function.

Then we define an ancestor function 𝑎𝑛𝑐T as follows:

• 𝑎𝑛𝑐T (𝛼) = {𝛼} for an atom 𝛼 ∈ D,
• 𝑎𝑛𝑐T (𝛼) =

⋃
𝛼′∈𝑝𝑎𝑟T (𝛼) 𝑎𝑛𝑐T (𝛼

′) for atoms of Ch(T ,D) \
D.

Intuitively the set 𝑎𝑛𝑐T (𝛼) consists of facts from D which were

used during the chase, to prove 𝛼 . Of course there might be more

than one ancestor function for any given set of facts as that func-

tion is strictly associated with a particular parent function. This

freedom in taking parents, and so in picking ancestors, leads to

some problems, as we will soon discover.

We would be one step from proving Theorem 1 if we had:

Lemma 43 (Crucial Lemma, first attempt, false). There is a
natural number 𝑀 , depending on the rule set T but not on the fact
set D, such that for every ancestor function 𝑎𝑛𝑐T , for each constant
and any detached term 𝑡 in Ch(T ,D) holds:���⋃

𝛼 ∈S(𝑡) 𝑎𝑛𝑐T (𝛼)
��� ≤ 𝑀

But that lemma is unfortunately not true. For a counterexample

see:

Example 44. Let T consist of two rules:
• 𝐸 (𝑥,𝑦), 𝑅(𝑧,𝑦) → ∃𝑣 𝐸 (𝑦, 𝑣)
• 𝐸 (𝑥,𝑦), 𝑃 (𝑧) → 𝑅(𝑧,𝑦)

Suppose that𝑀 as in the lemma exists and that D consists of atom
𝐸 (𝑎0, 𝑎1) and atoms 𝑃 (𝑏𝑖) for each 1 ≤ 𝑖 ≤ 𝑀 .

Then Ch(T ,D) will consist of an infinite number of new facts
𝐸 (𝑎1, 𝑎2), 𝐸 (𝑎2, 𝑎3),𝐸 (𝑎3, 𝑎4) In order to build them, however,
some facts about relation 𝑅 will need to be proven by the second rule
using a number of 𝑃 atoms fromD. And it might happen (Skolem/semi-
oblivious chase is non-deterministic in that aspect) that the proven
𝑅-facts will be𝑅(𝑏1, 𝑎1),𝑅(𝑏2, 𝑎2), . . .𝑅(𝑏𝑀 , 𝑎𝑀), meaning that S(𝑎1)
uses during its creation all the𝑀 + 1 facts of D. But of course this is
for irrelevant reasons: the same chase could be built if 𝑃 (𝑏1) was used
each time some 𝑃 was needed.

A.2 The normalization of T
In order to circumvent the problems highlighted by Example 44, we

will now transform the rule set T into another rule set T𝑁𝐹 which,

apart from some other useful properties, will satisfy the equality

(∗) Ch∃ (T𝑁𝐹 ,D) = Ch∃ (T ,D).
First we will define the signature of T𝑁𝐹 . Let us take a fresh set

of nullary predicates M = {𝑀𝜙 | 𝜙 is a boolean CQ over Σ}. Then
our new signature

6 Σ′ is Σ ∪ M.

Two procedures will be used during the normalization: body
rewriting and body separation.

Definition 45 (Body rewriting). Let 𝜌 be some rule with body
𝛽 (𝑥,𝑦) over Σ and a head 𝛾 (𝑦) which is an atom from Σ′ possibly
preceded with the existential quantifier (or two). Then by 𝑅𝑒𝑤 (𝜌) we
denote the set:

{𝛽 ′(𝑥,𝑦) ⇒ 𝛾 (𝑦) : 𝛽 ′(𝑥,𝑦) ∈ 𝑟𝑒𝑤T (∃𝑥 𝛽 (𝑥,𝑦))}
6
We briefly forget here about our promise that signatures would be finite.

While body rewriting can be applied both to existential rules

and Datalog rules, the second procedure will only be applied to

existential rules. It separates the disconnected fragment of body of

given existential rule and “encapsulates” that fragment in a single

nullary predicate from M. That is, given a rule, the procedure re-

turns a pair of rules. One being almost the original rule, but with

its body changed to consist of nullary predicate and a connected

conjunction of atoms. The second being a rule whose job is to prove

the aforementioned nullary predicate.

Definition 46 (Body separation). If 𝜌 is an existential rule of
the form 𝛽 (𝑥,𝑦) ∧ 𝜙 (𝑧) ⇒ ∃ 𝑢𝛾 (𝑦,𝑢) such that:

• (𝑥 ∪ 𝑦) ∩ 𝑧 = ∅,
• 𝛽 (𝑥,𝑦) is connected,

then
• 𝑠𝑒𝑝𝑐𝑐 (𝜌) = 𝛽 (𝑥,𝑦) ∧𝑀𝜙 ⇒ ∃𝑢 𝛾 (𝑦,𝑢)
• 𝑠𝑒𝑝𝑀 (𝜌) = 𝜙 (𝑧) ⇒ 𝑀𝜙

If the body of 𝜌 is connected, we assume that 𝜙 (𝑧) is empty. And
we have a nullary predicate𝑀∅ ∈ Σ′ for this occasion.

The normalization algorithm is performed in three steps:

Normalization Algorithm

Step One: T𝐼 =
⋃
𝜌∈T∃ 𝑅𝑒𝑤 (𝜌)

Step two: T𝐼 𝐼 = {𝑠𝑒𝑝𝑐𝑐 (𝜌) : 𝜌 ∈ T𝐼 }

Step three: T𝐼 𝐼 𝐼 =
⋃
𝜌∈T𝐼 𝑅𝑒𝑤 (𝑠𝑒𝑝𝑀 (𝜌))

Return: T𝑁𝐹 = T𝐼 𝐼 ∪ T𝐼 𝐼 𝐼

The normalization allows us to attack the source of the problem

highlighted in the previous section by separating the “disconnected

ancestors" required by existential rules and encapsulating those

ancestors within rules producing nullary predicates.

Observation 47. Let 𝜌 be a rule that creates a detached atom
in Ch(T𝑁𝐹 ,D) for some fact set D. Then 𝜌 is a rule from T𝐼 𝐼 and its
body consists of a single nullary atom.

Lemma 48. For any set of facts D over Σ:

Ch∃ (T ,D) = Ch∃ (T𝑁𝐹 ,D)

Here, our choice of the Skolem naming convention can be ex-

plained. We want to show equality of the structures in Lemma 48

and so if we choose our Skolem naming convention to be dependent

on rule names then Lemma 48 would obviously be false.

A.3 Proof of Lemma 48
This entire subsection is devoted to the proof of Lemma 48, which

will follow directly from Lemma 52 and Lemma 55. But first, as a

warm-up, notice that:

Exercise 49. LetD be any instance and let𝑎 ∈ 𝑑𝑜𝑚(𝐶ℎ(T ,D)) |𝑦 | .
Let𝜙 (𝑦) ∈ 𝑟𝑒𝑤 (𝜓 (𝑦)) (where𝜓 (𝑦) is some CQ) and suppose𝐶ℎ(T ,D) |=
𝜙 (𝑎). Then 𝐶ℎ(T ,D) |= 𝜓 (𝑎).

A Journey to the Frontiers of Query Rewritability
(Extended Technical Report)

Hint: Recall that 𝐶ℎ(T ,𝐶ℎ(T ,D)) = 𝐶ℎ(T ,D).

Exercise 50. Let 𝜓 (𝑦) be any CQ and 𝜙 (𝑦) ∈ 𝑟𝑒𝑤 (𝜓 (𝑦)). Let
D be any instance and 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | . Suppose 𝐶ℎ(T ,D) |= 𝜙 (𝑎).
Then there exists query 𝜙 ′(𝑦) ∈ 𝑟𝑒𝑤 (𝜓 (𝑦)) such that D |= 𝜙 ′(𝑎).

Hint: Notice that 𝐶ℎ(T ,𝐶ℎ(T ,D)) = 𝐶ℎ(T ,D).

Exercise 51. Suppose (∃𝑡,𝑢 𝜙 (𝑡, 𝑦) ∧ 𝛾 (𝑢)) ∈ 𝑟𝑒𝑤T (∃𝑥𝛽 (𝑥,𝑦))
for some CQs 𝜙 , 𝛾 and 𝛽 , where the tuples of variables 𝑡 ∪ 𝑦 and
𝑢 are disjoint. And suppose ∃𝑣 𝜁 (𝑣) ∈ 𝑟𝑒𝑤T (∃𝑢 𝛾 (𝑢)). Then there
exists a query ∃𝑧 𝜚 (𝑧,𝑦) ∈ 𝑟𝑒𝑤T (∃𝑥𝛽 (𝑥,𝑦)) which is contained in
(∃𝑡, 𝑣 𝜙 (𝑡, 𝑦) ∧ 𝜁 (𝑣)).

Hint: Let database D be a frozen body of ∃𝑡, 𝑣 𝜙 (𝑡, 𝑦) ∧ 𝜁 (𝑣) and
observe that D |= 𝑟𝑒𝑤T (∃𝑥 𝛽 (𝑥,𝑦))

Notice that the only existential rules in T𝑁𝐹 are the ones in

T𝐼 𝐼 . Notice also that the only Datalog rules in T𝑁𝐹 are the ones in

T𝐼 𝐼 𝐼 and hence the only atoms which are in Ch(T𝑁𝐹 ,D) but not in
Ch∃ (T𝑁𝐹 ,D) are the nullary atoms from the set M.

By Ch𝑖,∃ (T ,D) we denote the intersection of Ch𝑖 (T ,D) and
Ch∃ (T ,D).

Lemma 52. For each fact set D over Σ and each 𝑘 ∈ N:

Ch𝑘,∃ (T𝑁𝐹 ,D) ⊆ Ch∃ (T ,D).

Proof. We will show this by induction on 𝑘 . The case for 𝑘 = 0

is trivial. Assume the claim is true for some 𝑘 ∈ N. We are going to

show that it is also true for 𝑘 + 1.

Let 𝛼 be an atom from Ch𝑘+1,∃ (T𝑁𝐹 ,D), which is not in

Ch𝑘,∃ (T𝑁𝐹 ,D). Then 𝛼 = 𝑎𝑝𝑝𝑙 (𝜌𝛼 , 𝜎𝛼) for some:

– 𝜌𝛼 ∈ T𝐼 𝐼 , the rule which actually created 𝛼 , of the form 𝜙 (𝑡, 𝑦)∧
𝑀𝛾 ⇒ ∃𝑧 𝛼0 (𝑦, 𝑧),
– 𝜎𝛼 such that 𝜎𝛼 (𝜙 (𝑡, 𝑦)) ⊆ Ch𝑘,∃ (T𝑁𝐹 ,D), (♥)
–𝑀𝛾 such that Ch𝑘,∃ (T𝑁𝐹 ,D) |= 𝑀𝛾 .

It follows from the construction of T𝑁𝐹 that there must exist:

(1) A rule 𝜌 ′ ∈ T𝐼 of the form:

𝜙 (𝑡, 𝑦) ∧ 𝛾 (𝑢) ⇒ ∃𝑧 𝛼0 (𝑦, 𝑧)

which, by Step II of the normalization algorithm, led to the

creation of 𝜌𝛼 , such that the tuple 𝑢 of variables is disjoint

with 𝑦 and with 𝑡 , and that 𝜙 (𝑡, 𝑦) is a connected query.

(2) A rule 𝜌 ∈ T∃ of the form:

𝛽 (𝑥,𝑦) ⇒ ∃𝑧 𝛼0 (𝑦, 𝑧)

which, by Step I of the normalization algorithm, led to the

creation of 𝜌 ′, such that:

(∃𝑡,𝑢 𝜙 (𝑡, 𝑦) ∧ 𝛾 (𝑢)) ∈ 𝑟𝑒𝑤T (∃𝑥 𝛽 (𝑥,𝑦)) (♣)

(3) A rule 𝜌𝑀𝛾 inT𝐼 𝐼 𝐼 of the form 𝜁 (𝑢) ⇒ 𝑀𝛾 such that∃𝑢 𝜁 (𝑢) ∈
𝑟𝑒𝑤T (∃𝑢 𝛾 (𝑢)) and a substitution 𝜎𝜁 from the variables in

𝑢 to 𝑑𝑜𝑚(Ch𝑘−1,∃ (T𝑁𝐹 ,D)) such that 𝜎𝜁 (𝜁 (𝑢)) ⊆
Ch𝑘−1,∃ (T𝑁𝐹 ,D). This is because, for 𝜌𝛼 to be applicable

in Ch𝑘,∃ (T𝑁𝐹 ,D), there must be Ch𝑘,∃ (T𝑁𝐹 ,D) |= 𝑀𝛾 , and
since D ̸ |= 𝑀𝛾 , a rule able to produce𝑀𝛾 must have earlier

been applied.

In order to complete the induction step, we need to show that

𝛼 ∈ Ch∃ (T ,D). Since 𝜌 is a rule of T this claim will follow once

we can prove that:

Ch∃ (T ,D) |= ∃𝑥 𝛽 (𝑥, 𝜎𝛼 (𝑦)) (♦)
And (♦) will follow (using Exercise 49) once we can show that

for some query 𝜚 (𝑦) ∈ 𝑟𝑒𝑤T (∃𝑥 𝛽 (𝑥,𝑦)) there is:
Ch∃ (T ,D) |= 𝜚 (𝜎𝛼 (𝑦)) (♠)

Recall that from (♥) we know that:

Ch𝑘,∃ (T𝑁𝐹 ,D) |= ∃𝑡 𝜙 (𝑡, 𝜎𝛼 (𝑦)) .
By hypothesis this implies that:

Ch∃ (T ,D) |= ∃𝑡 𝜙 (𝑡, 𝜎𝛼 (𝑦)) .
The claim (♠) would be now proven, using (♣), if we could also

show that:

Ch∃ (T ,D) |= ∃𝑢 𝛾 (𝑢),
But this may not be the case. All we know is that:

Ch𝑘,∃ (T𝑁𝐹 ,D) |= ∃𝑢 𝜁 (𝑢)
and therefore (using the hypothesis again) that:

Ch∃ (T ,D) |= ∃𝑢 𝜁 (𝑢) .
So we get that Ch∃ (T ,D) |= ∃𝑠, 𝑡 𝜙 (𝑡, 𝜎𝛼 (𝑦)) ∧ 𝜁 (𝑠). Now use

Exercise 51 to get (♠). □

The proof of the following lemma seems overly complicated.

Why doesn’t it just follow from Exercise 50? This is because, while

we assume that T is BDD, we never proved that T𝑁𝐹 is BDD too.

Lemma 53. Suppose Ch(T𝑁𝐹 ,D) |= 𝑀𝜙 for some nullary fact𝑀𝜙 .
Then 𝐶ℎ1 (T𝑁𝐹 ,D) |= 𝑀𝜙 .

Proof. Suppose Ch(T𝑁𝐹 ,D) |= 𝑀𝜙 and let 𝛽 (𝑥) be the body of

the rule from T𝐼 𝐼 𝐼 that created𝑀𝜙 .
Recall that 𝛽 (𝑥) does not contain nullary predicates and that T𝑁𝐹

consists only of existential rules (from T𝐼 𝐼) and of Datalog rules that
prove nullary facts (from T𝐼 𝐼 𝐼). This means that Ch∃ (T𝑁𝐹 ,D) |=
∃𝑥 𝛽 (𝑥).

Now we can use Lemma 52 and get: Ch∃ (T ,D) |= ∃𝑥 𝛽 (𝑥).
Now recall that ∃𝑥 𝛽 (𝑥) ∈ 𝑟𝑒𝑤T (𝜙). From Exercise 50 we get

that there exists another boolean query 𝛽0 such that 𝛽0 ∈ 𝑟𝑒𝑤T (𝜙)
and that D |= 𝛽0. And from this we can immediately conclude that

Ch1 (T𝑁𝐹 ,D) |= 𝑀𝜙 . □

Combining Lemma 53 and Observation 47 we get:

Corollary 54. If Ch(T𝑁𝐹 ,D) |= 𝛼 for some detached atom 𝛼

then 𝐶ℎ2 (T𝑁𝐹 ,D) |= 𝛼 .

The last lemma we need for the proof of Lemma 48 is:

Lemma 55. Ch𝑖,∃ (T ,D) ⊆ Ch𝑖+2,∃ (T𝑁𝐹 ,D)

Proof. The induction base D ⊆ Ch
2,∃ (T𝑁𝐹 ,D) is clearly true.

And so let us move to the induction step.

Let 𝛼 be an atom produced by an existential rule during the

𝑖 + 1-th step of Ch(T ,D). Let a rule 𝜌 ∈ T and a mapping 𝜎 be such

that 𝛼 = 𝑎𝑝𝑝𝑙 (𝜌, 𝜎) and let 𝛾 (𝑥,𝑦) be a body of 𝜌 where 𝑦 are the

frontier variables.

Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph

While we know that Ch𝑖 (T ,D) |= 𝜎 (𝛾 (𝑥,𝑦)) we are not sure if
Ch𝑖,∃ (T ,D) |= 𝜎 (𝛾 (𝑥,𝑦)): some of the atoms in 𝜎 (𝛾 (𝑥,𝑦)) could
be produced by Datalog rules of T .

But𝐶ℎ(T ,D) = 𝐶ℎ(T ,Ch𝑖,∃ (T ,D)), so ifCh𝑖 (T ,D) |= 𝜎 (𝛾 (𝑥,𝑦))
then we can be sure that there exists a query ∃𝑧𝛽 (𝑧,𝑦) ∈
𝑟𝑒𝑤T (∃𝑥𝛾 (𝑥,𝑦)) such that Ch𝑖,∃ (T ,D) |= ∃𝑧𝛽 (𝑧, 𝜎 (𝑦)) or, in other
words, Ch𝑖,∃ (T ,D) |= 𝛽 (𝜎𝛽 (𝑧), 𝜎 (𝑦)) for some substitution 𝜎𝛽 .

Observe that from the induction hypothesis we know that

Ch𝑖+2,∃ (T𝑁𝐹 ,D) |= 𝛽 (𝜎𝛽 (𝑧), 𝜎 (𝑦)).
Let now 𝜌 ′ be the rule from T𝑁𝐹 (or, to be more precise, from

T𝐼 𝐼), such that ℎ𝑒𝑎𝑑 (𝜌 ′) = ℎ𝑒𝑎𝑑 (𝜌) and that the body of 𝜌 ′ is of
the form 𝛽0 (𝑢,𝑦) ∧𝑀𝜙 , where 𝛽 (𝑧,𝑦) = 𝛽0 (𝑢,𝑦) ∧ 𝜙 (𝑣) for some

𝑣 disjoint from 𝑢 ∪ 𝑦. It follows from the construction of T𝑁𝐹 that

such a 𝜌 ′ exits.
Let us consider the second case. Note that Ch𝑖+2,∃ (T𝑁𝐹 ,D) |=

𝜎𝛽 (𝛽 ′(𝑥,𝑦)) and so all we need to show in order to complete our

induction step is that Ch𝑖+2 (T𝑁𝐹 ,D) |= 𝑀𝜙 .
Clearly Ch𝑖+2,∃ (T𝑁𝐹 ,D) |= ∃𝑧𝜙 (𝑧) as we know that 𝜙 ⊆ 𝛽 .

From this we can conclude that D |= 𝑟𝑒𝑤T (𝜙) and thus 𝑀𝜙 ∈
Ch

2,∃ (T𝑁𝐹 ,D).
This ends the proof of Lemma 55 and therefore of Lemma 48. □

Note that this implies that the sensible and non-nullary atoms

of Ch(T𝑁𝐹 ,D) form a set of trees having a tree S(𝑡) for each term 𝑡

that is a constant of D or detached term of Ch∃ (T𝑁𝐹 ,D). And that

this set of trees is exactly this same set of trees as in the case of rule

set T . Also, note that having Lemma 48 we get a very important:

Corollary 56. For any set of facts D:

Ch(T𝐷𝐿,Ch∃ (T𝑁𝐹 ,D) ∪ D) = Ch(T ,D)

A.4 The Crucial Lemma
In this section, we state and prove the Crucial Lemma. Recall, that

we want to prove, that for any term 𝑡 being a constant of D or

a detached term of Ch∃ (T𝑁𝐹 ,D), the tree S(𝑡) rooted in 𝑡 and

consisting of sensible atoms of Ch∃ (T𝑁𝐹 ,D) requires only a small

subset of D to be built by the chase Ch(T𝑁𝐹 ,D).
First let us distinguish, among the parents and ancestors of some

atom in Ch(T𝑁𝐹 ,D), its connected parents and connected ancestors:
given some parent function 𝑝𝑎𝑟T𝑁𝐹 for Ch(T𝑁𝐹 ,D) and an atom 𝛼

of Ch(T𝑁𝐹 ,D) we define the set of connected parents 𝑐𝑝𝑎𝑟 (𝛼) as
the set of all the non-nullary atoms of 𝑝𝑎𝑟T𝑁𝐹 (𝛼). Then for atoms of

Ch(T𝑁𝐹 ,D) we define their respective sets of connected ancestors

as follows:

• 𝑐𝑎𝑛𝑐 (𝛼) = {𝛼} for an atom 𝛼 ∈ D,
• 𝑐𝑎𝑛𝑐 (𝛼) = ⋃

𝛼′∈𝑐𝑝𝑎𝑟 (𝛼) 𝑐𝑎𝑛𝑐 (𝛼 ′), otherwise.
Before proceeding, let us define a number ofmeasures, depending

on T𝑁𝐹 .
• Let 𝑘 be the number of nullary predicates in T𝑁𝐹 .
• Let ℎ be the maximal number of atoms in the body of a rule

from T𝑁𝐹 .
• Let 𝑛 be the number of rules in T𝑁𝐹 .
• Let 𝑁 be the number of elements of a full 𝑛-ary tree of depth

ℎ.

• Let𝑀 = 𝑁ℎ + 𝑘ℎ
Now having prepared everything we are going to prove the

Crucial Lemma:

Lemma 57 (crucial). For every set of facts D, every term 𝑡 that is
constant of D or detached term of Ch∃ (T𝑁𝐹 ,D) and every ancestor
function 𝑎𝑛𝑐T𝑁𝐹 : ���⋃

𝛼 ∈S(𝑡) 𝑎𝑛𝑐T𝑁𝐹 (𝛼)
��� ≤ 𝑀

Notice that we now count ancestors with respect to T𝑁𝐹 instead

of ancestors with respect to T . This is, in fact, the only difference

between this lemma and the (false) Lemma 43.

Proof. The atoms of S(𝑡) are all produced by the rules of T𝐼 𝐼 .
Recall that bodies of those rules consist of one connected 𝐶𝑄 and

one nullary atom. The number of atoms that are ancestors of nullary

atoms can easily be bounded by 𝑘ℎ using Lemma 53.

What is left to be bound is the number of connected ancestors of

S(𝑡). Recall that for 𝑡 ∈ 𝑑𝑜𝑚(D) ∪𝑑𝑒𝑡 (Ch(T𝑁𝐹 ,D)) the set of facts
S(𝑡) is a tree with 𝑡 as its root. This gives us a natural notion of

depth of atoms in S(𝑡), with atoms containing 𝑡 being at depth one.

First we will consider the easier case when 𝑡 ∈ 𝑑𝑒𝑡 (Ch(T ,D)).
ThenS(𝑡) is a detached tree, not connected by atoms ofCh(T𝑁𝐹 ,D))
to D. Moreover the connected parents and connected ancestors are

defined in such a way that every atom is in one connected compo-

nent of Ch(T𝑁𝐹 ,D)) with all its connected ancestors. So, no atom

in S(𝑡) has any connected ancestors, and thus the entire S(𝑡) has
in total at most 𝑘ℎ ancestors.

Let us now move to the case when 𝑡 ∈ 𝑑𝑜𝑚(D). Clearly, to be

a connected ancestor of someone in S(𝑡) an atom in D must be a

connected parent of someone in S(𝑡):⋃
𝛼 ∈S(𝑡) 𝑐𝑎𝑛𝑐 (𝛼) =

(⋃
𝛼 ∈S(𝑡) 𝑐𝑝𝑎𝑟 (𝛼)

)
∩ D.

Using the above equality, one can bound the number of ancestors

of atoms in the connected ancestors of someone in S(𝑡) in the

following way:���(⋃
𝛼 ∈S(𝑡) 𝑐𝑝𝑎𝑟 (𝛼)

)
∩ D

��� ≤ ∑
𝛼 ∈S(𝑡)

|𝑐𝑝𝑎𝑟 (𝛼) ∩ D| .

Now, we can easily bound |𝑐𝑝𝑎𝑟 (𝛼) ∩ D| with ℎ for any atom 𝛼

of Ch(T𝑁𝐹 ,D). Finally we are going to show that only a finite (and

bounded) number of atoms of S(𝑡) have any connected parents in

D. Observe that, if an application of an existential rule 𝜌 created an

atom at depth greater than ℎ then the connected part of the body

𝜌 , of size at most ℎ, could not “reach” the atoms of D. From this

we get 𝑁ℎ as bound for the number of connected ancestors of S(𝑡)
which implies that𝑀 is a bound on the number of ancestors of S(𝑡)
for any 𝑡 . □

A.5 Proving Theorem 1
Now we can finally prove Theorem 1. The following is an easy

corollary of Lemma 57 and Corollary 56:

Corollary 58. For any term 𝑡 ∈ 𝑑𝑜𝑚(D) ∪ 𝑑𝑒𝑡 (Ch(T𝑁𝐹 ,D))
there exists a subset D′ of D of size at most 𝑀 such that S(𝑡) ⊆
Ch(T ,D′).

A Journey to the Frontiers of Query Rewritability
(Extended Technical Report)

This is almost Theorem 1, but only for existential atoms of

Ch(T ,D). However, observe that:

Observation 59. There exists a constant 𝑑T such that for any set
of facts D and for any atom 𝛼 of Ch(T𝐷𝐿,D) there exists a subset D′
of D such that |D′ | < 𝑑T and 𝛼 ∈ Ch(T ,D′).

Proof. FromObservation 14 the size ofD′ can easily be bounded
by ℎ𝑛𝑎𝑡 where ℎ is the maximal number of atoms in a rule of T and

𝑛𝑎𝑡 is the constant from Observation 14. □

Thus𝑀𝑑T is a locality constant for Datalog atoms of Ch(T ,D).
This concludes the proof of Theorem 1.

Appendix B PROOF OF LEMMA 40 (A).
THE HIGH-LEVEL VIEW.

SinceT𝑑 is fixed, wewill use the notation𝐶ℎ(F) instead of𝐶ℎ(T𝑑 , F)
Clearly, to prove that T𝑑 is BDD, it is enough to consider only

connected queries, since a bound for any non-connected query can

be derived from bounds of its connected components. Additionally,

notice that due to the rule (loop), if 𝜙 is a boolean query and if D
is any instance then 𝐶ℎ1 (D) |= 𝜙 . So for the rest of the proof of

Lemma 40 (A) we will consider only connected non-boolean
queries. Let us start with:

Definition 60 (Marked qery). We define a marked query as
a pair ⟨𝜙 (𝑦),𝑉 ⟩ where 𝜙 (𝑦) = ∃𝑥𝛽 (𝑥,𝑦) is a CQ and 𝑉 is a subset
of variables of 𝜙 (𝑦) such that 𝑦 ⊆ 𝑉 ⊆ 𝑦 ∪ 𝑥 .

We say that the variables in 𝑉 are marked. It will often be more

convenient to refer to a marked query without (or before) specifying

its components. The letter 𝑄 will be used for that. If 𝑄 = ⟨𝜙 (𝑦),𝑉 ⟩
then by 𝑉 (𝑄) we mean 𝑉 , and 𝑞(𝑄) denotes 𝜙 (𝑦). By 𝑣𝑎𝑟 (𝑄) we
mean the set of all variables of 𝑞(𝑄), and 𝑄

R
(𝑄

G
) is the set of red

(green) atoms in 𝑞(𝑄).
For a marked query 𝑄 the intention behind the set of marked

variables 𝑉 (𝑄) is that the variables of 𝑉 (𝑄) should not be mapped

onto the chase-produced Skolem terms:

Definition 61. For a marked query 𝑄 = ⟨𝜙 (𝑦),𝑉 ⟩, a fact set
D, and 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | we say that 𝐶ℎ(D) |= 𝑄 (𝑎) if there exists a
homomorphism ℎ : 𝑣𝑎𝑟 (𝑄) → 𝑑𝑜𝑚(𝐶ℎ(D)) witnessing 𝐶ℎ(D) |=
𝜙 (𝑎) such that for every 𝑣 there is ℎ(𝑣) ∈ 𝑑𝑜𝑚(D) if and only if
𝑣 ∈ 𝑉 .

Some marked queries are false – it follows directly from Defini-

tion 39 that they cannot be satisfied in any 𝐶ℎ(D):

Observation 62. For any instance D
• if 𝑅(𝑎, 𝑏) or 𝐺 (𝑎, 𝑏) is an edge in 𝐶ℎ(D) and if 𝑏 ∈ 𝑑𝑜𝑚(D)
then 𝑎 ∈ 𝑑𝑜𝑚(D);

• ifC = {𝐸0 (𝑎0, 𝑎1), 𝐸1 (𝑎1, 𝑎2) . . . 𝐸𝑘 (𝑎𝑘 , 𝑎0)} is a cycle in𝐶ℎ(D)
(where each 𝐸𝑖 ∈ {𝑅,𝐺}) then C ⊆ D;

• if 𝐸 (𝑎1, 𝑏) and 𝐸 (𝑎2, 𝑏) are two atoms in 𝐶ℎ(D) (where 𝐸 ∈
{𝑅,𝐺}) and 𝑎1 ∈ 𝑑𝑜𝑚(D) then also 𝑎2 ∈ 𝑑𝑜𝑚(D).

Then it follows from Observation 62 that:

Observation 63. Suppose 𝐶ℎ(D) |= 𝑄 . Then:
(i) if 𝑅(𝑧, 𝑧′) or 𝐺 (𝑧, 𝑧′) is an atom in 𝑞(𝑄) and 𝑧′ ∈ 𝑉 (𝑄) then

also 𝑧 ∈ 𝑉 (𝑄);

(ii) if {𝐸0 (𝑧0, 𝑧1), 𝐸1 (𝑧1, 𝑧2) . . . 𝐸𝑘 (𝑧𝑘 , 𝑧0)} is a cycle in𝑞(𝑄) (where
each 𝐸𝑖 ∈ {𝑅,𝐺}) then 𝑧𝑖 ∈ 𝑉 (𝑄) for each 𝑖 ∈ {0, . . . 𝑘};

(iii) if 𝐸 (𝑧1, 𝑢) and 𝐸 (𝑧2, 𝑢) are two atoms in 𝑞(𝑉) (where 𝐸 ∈
{𝑅,𝐺}) and 𝑧1 ∈ 𝑉 (𝑄)) then also 𝑧2 ∈ 𝑉 (𝑄).

Marked queries satisfying conditions (i)-(iii) of Observation 63

will be called properly marked. Marked queries whose all variables

are marked will be called totally marked. Properly marked queries

that are not totallymarkedwill be called live. Notice that for a totally
marked query ⟨𝜙 (𝑎),𝑉 ⟩, an instance D and a tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 |
there is 𝐶ℎ(D) |= ⟨𝜙 (𝑎),𝑉 ⟩ if and only if D |= 𝜙 (𝑎).

B.1 High-level proof of claim (A). The process.
Now we get some conjunctive query 𝜙 (𝑦), that will be fixed

till the end of this proof, and we want to show that there exists a

rewriting of 𝜙 , i.e. a finite set 𝑟𝑒𝑤 (𝜙 (𝑦)) of CQs such that for each

D and 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | there is 𝐶ℎ(D) |= 𝜙 (𝑎) if and only if there

exists a𝜓 (𝑦) ∈ 𝑟𝑒𝑤 (𝜙 (𝑦)) such that D |= 𝜓 (𝑎).
Notice that 𝑟𝑒𝑤 (𝜙 (𝑦)) will be constructed if we can produce a

finite set S of marked queries, such that:

(♠) for each D and each 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | we have 𝐶ℎ(D) |= 𝜙 (𝑎) if
and only if 𝐶ℎ(D) |= 𝑄 (𝑎) holds for some 𝑄 ∈ S;
(♣) there are no live queries in S.

S will be constructed as the result of some process. As the starting
point of this process let S0 = {𝑄 : 𝑞(𝑄) = 𝜙 (𝑦)}, the set of all

possible markings of 𝜙 (𝑦). One can easily see that S0 satisfies

Condition (♠) above, but there is no reason to think that it also

satisfies Condition (♣).
Now, the plan is as follows. Five operations are going to be defined

in Appendix B.3, called cut-red, cut-green, fuse-red, fuse-green, and
reduce. Each of them will:

• take, as an input, some marked query 𝑄 ;

• remove from 𝑞(𝑄), one variable and some atoms (operation reduce
will remove one red atom and one green) ;

• keep the marking of the surviving variables unchanged;

• in one case (of operation reduce) add two new variables, one red

atom, and two green atoms);

• return the resulting marked query (except for operation reduce
which will return four marked queries: one for each of the four

possible markings of the two new variables).

It will be shown in Appendix B.3 that:

Lemma 64 (Completness). If a query is live then at least one of
the five operations can be applied to it.

At this point we can define our process, which is supposed to

ultimately create S. Start from S0. Once S𝑖 is defined, which does

not satisfy condition (♣), take any live query 𝑄 ∈ S𝑖 , apply one

of the five operations to this query, and define S𝑖+1 as S𝑖 with 𝑄
replaced by the query (or queries) resulting from this application.

Clearly, for the process to make sense we will need to prove (in

Appendix B.4):

Lemma 65 (Soundness). Suppose an application of one of the five
operations to some marked query𝑄0 returns a set Q consisting of one
or several marked queries. Then, for any D and any 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑎 |
we have𝐶ℎ(D) |= 𝑄0 (𝑎) if and only if there exists a𝑄 ∈ Q such that
𝐶ℎ(D) |= 𝑄 (𝑎).

Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph

It follows from the above lemma that each S𝑖 satisfies Condition
(♠). What we still need to show is that the process terminates: at

some point we will get S𝑖 without live queries. To this end, we are

going to use ranks.

B.2 High-level proof of claim (A).
Termination.

For a marked query𝑄 and an atom 𝛼 ∈ 𝑄
G
the edge rank 𝑒𝑟𝑘 (𝛼,𝑄)

will be defined (Definition 75) as some natural number, reflecting

“the minimal cost of hiking from a marked variable to 𝛼”. Then we

will prove that:

Lemma 66. Suppose a marked query 𝑄 ′ is returned as a result of
applying one of the five operations to 𝑄 . Then:

(i) If the operation is cut-red or fuse-red then |𝑄R | > |𝑄 ′
R |.

(ii) If the operation is cut-green then |𝑄R | = |𝑄 ′
R | and for each

𝛼 ∈ 𝑄G there is 𝑒𝑟𝑘 (𝛼,𝑄) ≥ 𝑒𝑟𝑘 (𝛼,𝑄 ′).
(iii) If the operation is fuse-green then |𝑄R | > |𝑄 ′

R | or |𝑄R | ≥ |𝑄 ′
R |

and 𝑒𝑟𝑘 (𝛼,𝑄) ≥ 𝑒𝑟𝑘 (𝛼,𝑄 ′) for each 𝛼 ∈ 𝑄G.
(iv) If the operation is reduce and if 𝛼 ∈ 𝑄G is the green atom

removed by the operation and if 𝛼 ′ ∈ 𝑞(𝑄 ′) is any of the two
green atoms added by the operation then:

(a) |𝑄R | = |𝑄 ′
R |;

(b) 𝑒𝑟𝑘 (𝛼 ′, 𝑄 ′) < 𝑒𝑟𝑘 (𝛼,𝑄);
(c) if 𝛽 ∈ 𝑄G ∩𝑄 ′

G then 𝑒𝑟𝑘 (𝛽,𝑄 ′) ≤ 𝑒𝑟𝑘 (𝛽,𝑄).

Recall that all the operations except for reduce will decrease the
number of variables and of atoms in 𝑄 .

Multisets. Using Lemma 66 we are going to prove that our process

indeed terminates. To this end we borrow a technique from the

term rewriting community. We will use the notation {. . .}𝑚 to

denote a multiset.𝑀 (𝐴) will denote the family of all finite multisets

with elements from 𝐴. By <𝑚 we will denote the (strict) mutiset

ordering on𝑀 (N). By R we will mean the set of all possible pairs

⟨𝑘,𝐴⟩ where 𝑘 ∈ N and 𝐴 ∈ 𝑀 (N). For ⟨𝑘,𝐴⟩, ⟨𝑘 ′, 𝐴′⟩ ∈ R define

⟨𝑘,𝐴⟩ <R ⟨𝑘 ′, 𝐴′⟩ if 𝑘 < 𝑘 ′, or 𝑘 = 𝑘 ′ and𝐴 <𝑚 𝐴′
. Finally, let <𝑀

be the (strict) multiset ordering on 𝑀 (R). It is well known ([19])

that (♥) if 𝐴 is well-ordered then the multiset ordering on 𝑀 (𝐴)
is also a well-ordering. So <𝑚 is a well-ordering. In consequence

<R , which is the lexicographic ordering on the Cartesian product

of two well-ordered sets is a well-ordering too. And, again using

(♥), we get that <𝑀 is a well-ordering.

Definition 67. • For a marked query 𝑄 define its rank
𝑞𝑟𝑘 (𝑄) ∈ R as ⟨|𝑄R |, {𝑒𝑟𝑘 (𝛼,𝑄) : 𝛼 ∈ 𝑄G}𝑚⟩.

• For a set of marked queries S define its rank 𝑠𝑟𝑘 (S) ∈ 𝑀 (R)
as the multiset {𝑞𝑟𝑘 (𝑄) : 𝑄 ∈ S}𝑚 .

Now, since the set𝑀 (R) is well-ordered by <𝑀 , to prove termi-

nation of our process it is enough to show that whenever it produces

two subsequent sets S𝑖 and S𝑖+1 there must be (∗) 𝑠𝑟𝑘 (S𝑖+1) <𝑀
𝑠𝑟𝑘 (S𝑖). But recall that S𝑖+1 is S𝑖 with one marked query, call it 𝑄 ,

replaced by one of the five operations, with a set Q consisting of

one or several marked queries. So (this is how the multiset order-

ing works) in order to show (∗) it is enough to show that for each

𝑄 ′ ∈ Q we have 𝑄 ′ <R 𝑄 .
But this follows immediately from Lemma 66, from the definition

of the lexicographic ordering <R (if the operation in question is

cut-red or fuse-red) and from the definition of the multiset ordering

<𝑚 (for the remaining three operations).

B.3 Proof of Lemma 40 (A).
Five operations.

It easily follows from Observation 63 that for every live query 𝑄

there must exist a maximal variable 𝑥 ∈ 𝑣𝑎𝑟 (𝑄). By this we mean

that 𝑥 ∉ 𝑉 and that no atom of the form 𝐸 (𝑥, 𝑧) occurs in 𝑞(𝑄) for
𝐸 ∈ {𝐺, 𝑅}. Note that:

Lemma 68. Let 𝑥 be a maximal variable of a live query ⟨𝜙 (𝑦),𝑉 ⟩.
Then one of the following condition holds:

(i) 𝑥 occurs in exactly one atom 𝐸 (𝑧, 𝑥), with 𝐸 ∈ {𝐺, 𝑅};
(ii) 𝑥 occurs in exactly two atoms 𝑅(𝑥𝑟 , 𝑥) and 𝐺 (𝑥𝑔, 𝑥) for some

𝑥𝑟 , 𝑥𝑔 ;
(iii) there exist at least two vertices 𝑧 ≠ 𝑧′ and 𝐸 ∈ {𝐺, 𝑅} such

that 𝐸 (𝑧, 𝑥) and 𝐸 (𝑧′, 𝑥) are atoms of 𝜙 (𝑦).

As promised, now we can define the five operations.
Suppose 𝑄 = ⟨𝜙 (𝑦),𝑉 ⟩ is a live query and 𝑥 ∈ 𝑣𝑎𝑟 (𝑄).

Definition 69 (cut-red). Suppose 𝑥 is as in Lemma 68(i), with
𝐸 = 𝑅. Define cut-red(𝑄, 𝑥) as ⟨𝜙 ′(𝑦),𝑉 (𝑄)⟩ where 𝜙 ′(𝑦) is created
from 𝜙 (𝑦) by removing the sole atom containing 𝑥 .

Operation cut-green is defined in an analogous way.

Definition 70 (fuse-red). Let 𝑥 , 𝑧 and 𝑧′ be as in Lemma 68 (iii),
with 𝐸 = 𝑅. Then fuse-red(𝑄, 𝑥, 𝑧, 𝑧′) = ⟨𝜙 ′(𝑦),𝑉 ⟩ where 𝜙 ′(𝑦) is
𝜙 (𝑦) with all occurences of 𝑧′ renamed7 as 𝑧.

Operation fuse-green is defined in an analogous way.

Definition 71 (reduce). Suppose 𝑥 is as in Lemma 68 (ii). Let
𝜙 ′(𝑦) be a query obtained from 𝜙 (𝑦) by removing atoms 𝑅(𝑥𝑟 , 𝑥) and
𝐺 (𝑥𝑔, 𝑥) and replacing themwith atoms𝐺 (𝑥 ′, 𝑥 ′′),𝐺 (𝑥 ′′, 𝑥𝑟), 𝑅(𝑥 ′, 𝑥𝑔)
where 𝑥 ′ and 𝑥 ′′ are fresh variables. Then define reduce(𝑄, 𝑥) as
the set of four marked queries ⟨𝜙 ′(𝑦),𝑉 (𝑄)⟩, ⟨𝜙 ′(𝑦),𝑉 (𝑄) ∪ {𝑥 ′}⟩,
⟨𝜙 ′(𝑦),𝑉 (𝑄) ∪ {𝑥 ′, 𝑥 ′′}⟩ and ⟨𝜙 ′(𝑦),𝑉 (𝑄) ∪ {𝑥 ′′}⟩8.

Now, Lemma 64 easily follows from Lemma 68 and from Defini-

tions 69–71.

The next thing left to be proven in this section is Lemma 66.

Notice that claim (i) of the Lemma is now obvious: cut-red just

removes a single red edge and fuse-red merges two red edges into

one. In order to prove claims (ii)-(iv) however one needs to work a

little bit harder.

Ranks. We are now going to define the rank 𝑒𝑟𝑘 (𝛼,𝑄) for a
live query 𝑄 and an atom 𝛼 ∈ 𝑄

G
. To this end we consider paths,

from some marked variable to 𝛼 , traversing edges of 𝑞(𝑄) (in both

directions). To be more precise:

Definition 72. Given a live query𝑄 an𝑅-path is a finite sequence
𝑃 such that:
• each of the elements of 𝑃 is either 𝐸 (𝑡, 𝑧) or 𝐸-1 (𝑧, 𝑡) for some 𝐸 (𝑡, 𝑧)
from 𝑞(𝑄), where 𝐸 ∈ {𝐺, 𝑅} (obviously, 𝐸-1 (𝑧, 𝑡) means that we
traverse 𝐸 (𝑡, 𝑧) backwards);
7
One could wonder what happens if one of the two variables we unify is in𝑉 and the

other is not in𝑉 . But this is prohibited by Observation 63 (iii).

8
Note that ⟨𝜙′ (𝑦),𝑉 (𝑄) ∪ {𝑥 ′′ }⟩ is not properly marked, and thus not live, and it

will in no way contribute to our process any more.

A Journey to the Frontiers of Query Rewritability
(Extended Technical Report)

• if 𝐸 (𝑠, 𝑡) and 𝐸 ′(𝑢, 𝑧) are two consecutive elements of 𝑃 then 𝑡 = 𝑢
(where 𝐸, 𝐸 ′ ∈ {𝐺, 𝑅,𝐺 -1, 𝑅-1});
(★) if 𝑅(𝑡, 𝑧) is an atom of 𝑞(𝑄) then only one of 𝑅(𝑡, 𝑧) or 𝑅-1 (𝑧, 𝑡)
can appear in 𝑃 and it can appear at most once.

Notice that an atom 𝐺 (𝑡, 𝑧) of 𝑞(𝑄), as well as 𝐺 -1 (𝑧, 𝑡), can ap-

pear any number of times in a 𝑅-path. Each 𝑅-path has its elevation

and its cost
9
:

Definition 73 (elevation and cost). For an empty 𝑅-path ∅
we define 𝑐𝑜𝑠𝑡 (∅) = 0 and 𝑒𝑙𝑒𝑣 (∅) = 3

|𝑄R | . For a path 𝑃 = 𝑃 ′𝐸 (𝑥, 𝑧)
we define:

• 𝑒𝑙𝑒𝑣 (𝑃) = 𝑒𝑙𝑒𝑣 (𝑃 ′) if 𝐸 ∉ {𝑅, 𝑅-1}
• 𝑒𝑙𝑒𝑣 (𝑃) = 3 · 𝑒𝑙𝑒𝑣 (𝑃 ′) if 𝐸 = 𝑅

• 𝑒𝑙𝑒𝑣 (𝑃) = 1

3
· 𝑒𝑙𝑒𝑣 (𝑃 ′) if 𝐸 = 𝑅-1

• 𝑐𝑜𝑠𝑡 (𝑃) = 𝑐𝑜𝑠𝑡 (𝑃 ′) + 𝑒𝑙𝑒𝑣 (𝑃 ′) if 𝐸 ∈ {𝐺,𝐺 -1}
• 𝑐𝑜𝑠𝑡 (𝑃) = 𝑐𝑜𝑠𝑡 (𝑃 ′) if 𝐸 ∉ {𝐺,𝐺 -1}

Notice that it follows from condition (★) of Definition 72 that

𝑒𝑙𝑒𝑣 (𝑃) is always a positive natural number.

Definition 74. For an atom 𝛼 = 𝐺 (𝑢,𝑢 ′) in 𝑞(𝑄) by an 𝛼-hike
we mean an 𝑅-path such that:
• if 𝐸 (𝑡, 𝑧) or 𝐸-1 (𝑡, 𝑧) is the first atom of 𝑃 then 𝑡 ∈ 𝑉 (𝑄);
• the last element of 𝑃 is either 𝐺 (𝑢,𝑢 ′) or 𝐺 -1 (𝑢 ′, 𝑢).
For 𝛼 ∈ 𝑄

G
we denote the set of all 𝛼-hikes as ℎ𝑖𝑘𝑒𝑠 (𝛼,𝑄).

Definition 75. For an atom 𝛼 ∈ 𝑄G its rank is defined as:
𝑒𝑟𝑘 (𝛼,𝑄) =𝑚𝑖𝑛({𝑐𝑜𝑠𝑡 (𝑃) : 𝑃 ∈ ℎ𝑖𝑘𝑒𝑠 (𝛼,𝑄)}).

It is easy to see that:

Observation 76. For a marked query 𝑄 and for 𝛼 = 𝐺 (𝑢,𝑢 ′)
in 𝑄G, if 𝑃 ∈ ℎ𝑖𝑘𝑒𝑠 (𝛼,𝑄) and 𝑐𝑜𝑠𝑡 (𝑃) = 𝑒𝑟𝑘 (𝛼,𝑄) then any of 𝛼 or
𝐺 -1 (𝑢 ′, 𝑢) can occur only as the last atom of 𝑃 .

Now we can finally prove Lemma 66.

Proof of Lemma 66 (ii). Let 𝑄 ′ = cut-green(𝑄, 𝑥). It follows di-
rectly from the construction that |𝑄

R
| = |𝑄 ′

R
|. Now take any 𝛼 ∈ 𝑄 ′

G
.

We need to show that 𝑒𝑟𝑘 (𝛼,𝑄) ≥ 𝑒𝑟𝑘 (𝛼,𝑄 ′). Let 𝑧 ∈ 𝑣𝑎𝑟 (𝑄) be
such that𝐺 (𝑧, 𝑥) is an atom of 𝑞(𝑄). Consider any 𝑃 ∈ ℎ𝑖𝑘𝑒𝑠 (𝛼,𝑄).
Let 𝑃 ′ be a path obtained from 𝑃 by deleting each occurrence

of 𝐺 (𝑧, 𝑥) and 𝐺 -1 (𝑥, 𝑧). Then 𝑃 ′ ∈ ℎ𝑖𝑘𝑒𝑠 (𝛼,𝑄 ′) and 𝑐𝑜𝑠𝑡 (𝑃 ′) ≤
𝑐𝑜𝑠𝑡 (𝑃). □

Proof of Lemma 66 (iii). Let 𝑄 ′ = fuse-green(𝑄, 𝑥, 𝑧, 𝑧′).
If (∗) there exists a variable 𝑢 ∈ 𝑣𝑎𝑟 (𝑄) such that atoms 𝑅(𝑧,𝑢)

and 𝑅(𝑧′, 𝑢) are in 𝑞(𝑄), or that 𝑅(𝑢, 𝑧) and 𝑅(𝑢, 𝑧′) are in 𝑞(𝑄),
then the two red edges merge in 𝑞(𝑄 ′) and |𝑄

R
| > |𝑄 ′

R
|. Also, if (∗∗)

at least two of the atoms 𝑅(𝑧, 𝑧′), 𝑅(𝑧′, 𝑧), 𝑅(𝑧, 𝑧), and 𝑅(𝑧′, 𝑧′) are
in 𝑞(𝑄) then |𝑄

R
| > |𝑄 ′

R
|.

So suppose there is neither (∗) nor (∗∗). Take any 𝛼 ∈ 𝑄 ′
G
and

𝑃 ∈ ℎ𝑖𝑘𝑒𝑠 (𝛼,𝑄). Consider path 𝑃 ′ obtained from 𝑃 by replacing

each occurrence of 𝑧′ in 𝑃 with 𝑧. Obviously, 𝑐𝑜𝑠𝑡 (𝑃) = 𝑐𝑜𝑠𝑡 (𝑃 ′).
We now will show that 𝑃 ′ ∈ ℎ𝑖𝑘𝑒𝑠 (𝛼,𝑄 ′). Clearly, one only needs

to worry if condition (★) of Definition 72 holds. Suppose towards

contradiction that it does not. It can only happen when there exist

𝑠, 𝑡 ∈ 𝑣𝑎𝑟 (𝑄 ′) such that two atoms from {𝑅(𝑠, 𝑡), 𝑅-1 (𝑡, 𝑠)} appear
in 𝑃 .

9
The cost of making a step depends on the current elevation. Current elevation depends

on the difference between the total ascent and total descent.

Let us assume that 𝑅(𝑠, 𝑡) (other cases are analogous) appears
twice in 𝑃 ′. But of course 𝑅(𝑠, 𝑡) could not appear twice in 𝑃 , which
is an 𝑅-path. So at least one occurrence of 𝑅(𝑠, 𝑡) in 𝑃 ′ results from
the unification of 𝑧 and 𝑧′.

There are two cases: either (a) 𝑠 = 𝑡 = 𝑧 or (b) exactly one of 𝑠, 𝑡

equals 𝑧. So suppose (b) happened and without loss of generality

assume that 𝑠 = 𝑧. We know that there was 𝑅(𝑧, 𝑡) and 𝑅(𝑧′, 𝑡) in
𝑃 and they both unified to 𝑅(𝑧, 𝑡) in 𝑃 ′. But this would imply (∗),
leading to a contradiction. The remaining case (a) is that 𝑅(𝑧, 𝑧)
occurs twice in 𝑃 ′. But this would need (∗∗) to be true, which is a

contradiction again.

So 𝑃 ′ ∈ ℎ𝑖𝑘𝑒𝑠 (𝛼,𝑄 ′) and 𝑒𝑟𝑘 (𝛼,𝑄) ≥ 𝑒𝑟𝑘 (𝛼,𝑄 ′). □

Proof of Lemma 66 (iv). Let 𝑄 ′
be any of the marked queries in

reduce(𝑄, 𝑥). Let 𝑥𝑟 and 𝑥𝑔 be variables of𝑄 such that𝐺 (𝑥𝑔, 𝑥) and
𝑅(𝑥𝑟 , 𝑥) are atoms of 𝑞(𝑄). Recall that 𝑥 ′, 𝑥 ′′ ∈ 𝑣𝑎𝑟 (𝑄 ′) are two
new variables added by reduce.

Clearly, |𝑄 ′
R
| = |𝑄

R
|, since when creating 𝑞(𝑄 ′) from 𝑞(𝑄) we

have just replaced one red edge with another.

Let us first show claim (c). Take some 𝛽 ∈ 𝑄
G
∩ 𝑄 ′

G
and 𝑃 ∈

ℎ𝑖𝑘𝑒𝑠 (𝛽,𝑄) such that 𝑐𝑜𝑠𝑡 (𝑃) = 𝑒𝑟𝑘 (𝛽,𝑄). Our goal is to find 𝑃 ′ ∈
ℎ𝑖𝑘𝑒𝑠 (𝛽,𝑄 ′) such that 𝑐𝑜𝑠𝑡 (𝑃 ′) ≤ 𝑐𝑜𝑠𝑡 (𝑃).

Obviously, one can assume that 𝑃 does not contain, as a con-

nected subsequence,𝐺 (𝑥𝑔, 𝑥)𝐺 -1 (𝑥, 𝑥𝑔). If it did, we could remove

such subsequence to get a new 𝑃 with lower cost. And, as an R-path,

𝑃 does not contain subsequence 𝑅(𝑥𝑟 , 𝑥)𝑅-1 (𝑥, 𝑥𝑟) either.
If no atom of 𝑃 contains 𝑥 then 𝑃 ∈ ℎ𝑖𝑘𝑒𝑠 (𝛽,𝑄 ′) and thus we

set 𝑃 ′ = 𝑃 . Otherwise it contains exactly one of 𝑅(𝑥𝑟 , 𝑥)𝐺 -1 (𝑥, 𝑥𝑔)
or 𝐺 (𝑥𝑔, 𝑥)𝑅-1 (𝑥, 𝑥𝑟) as a connected subsequence. Suppose 𝑃 =

𝑃0𝑅(𝑥𝑟 , 𝑥)𝐺 -1 (𝑥, 𝑥𝑔)𝑃1. Let𝐴 = 𝐺 -1 (𝑥𝑟 , 𝑥 ′′)𝐺 -1 (𝑥 ′′, 𝑥 ′)𝑅(𝑥 ′, 𝑥𝑔) and
consider path 𝑃 ′ = 𝑃0𝐴𝑃1. Note that 𝑃 ′ ∈ ℎ𝑖𝑘𝑒𝑠 (𝛽,𝑄). Now we

need to show that 𝑐𝑜𝑠𝑡 (𝑃) > 𝑐𝑜𝑠𝑡 (𝑃 ′). But:
𝑐𝑜𝑠𝑡 (𝑃) = 𝑐𝑜𝑠𝑡 (𝑃0) + 3 · 𝑒𝑙𝑒𝑣 (𝑃0) + 3 · 𝑒𝑙𝑒𝑣 (𝑃0) · 𝑐𝑜𝑠𝑡 (𝑃1)
𝑐𝑜𝑠𝑡 (𝑃 ′) = 𝑐𝑜𝑠𝑡 (𝑃0) + 2 · 𝑒𝑙𝑒𝑣 (𝑃0) + 3 · 𝑒𝑙𝑒𝑣 (𝑃0) · 𝑐𝑜𝑠𝑡 (𝑃1)
The case when 𝑃 = 𝑃0𝐺 (𝑥𝑔, 𝑥)𝑅-1 (𝑥, 𝑥𝑟)𝑃1, is similar.

Let us now move to claim (b). Take 𝑃 ∈ ℎ𝑖𝑘𝑒𝑠 (𝛼,𝑄) such that

𝑐𝑜𝑠𝑡 (𝑃) = 𝑒𝑟𝑘 (𝛼,𝑄).We are going to build a path 𝑃 ′ ∈ ℎ𝑖𝑘𝑒𝑠 (𝛼 ′, 𝑄 ′)
such that 𝑐𝑜𝑠𝑡 (𝑃 ′) < 𝑐𝑜𝑠𝑡 (𝑃).

There are two cases depending on the last atom of 𝑃 :

In the first case 𝑃 is 𝑃0𝐺 (𝑥𝑔, 𝑥). Let then 𝑃 ′ be
𝑃0𝑅

-1 (𝑥𝑔, 𝑥 ′)𝐺 (𝑥 ′, 𝑥 ′′) or 𝑃0𝑅
-1 (𝑥𝑔, 𝑥 ′)𝐺 (𝑥 ′, 𝑥 ′′)𝐺 (𝑥 ′′, 𝑥𝑟) (depend-

ing on whether 𝛼 ′ is 𝐺 (𝑥 ′, 𝑥 ′′) or 𝐺 (𝑥 ′′, 𝑥𝑟)). Then of course 𝑃 ′ ∈
ℎ𝑖𝑘𝑒𝑠 (𝛼 ′, 𝑄) and 𝑐𝑜𝑠𝑡 (𝑃) = 𝑐𝑜𝑠𝑡 (𝑃0) + 𝑒𝑙𝑒𝑣 (𝑃0) while 𝑐𝑜𝑠𝑡 (𝑃 ′) ≤
𝑐𝑜𝑠𝑡 (𝑃0) + 2

3
· 𝑒𝑙𝑒𝑣 (𝑃0).

The second case is that 𝑃 = 𝑃0𝑅(𝑥𝑟 , 𝑥)𝐺 -1 (𝑥, 𝑥𝑔). Here the argu-
ment is similar. Now we take 𝑃 ′ = 𝑃0𝐺

-1 (𝑥𝑟 , 𝑥 ′′) or
𝑃 ′ = 𝑃0𝐺

-1 (𝑥𝑟 , 𝑥 ′′)𝐺 -1 (𝑥 ′′, 𝑥 ′) (again depending on whether 𝛼 ′ is
𝐺 (𝑥 ′, 𝑥 ′′) or 𝐺 (𝑥 ′′, 𝑥𝑟)). Then 𝑃 ′ ∈ ℎ𝑖𝑘𝑒𝑠 (𝛼 ′, 𝑄) and 𝑐𝑜𝑠𝑡 (𝑃) =

𝑐𝑜𝑠𝑡 (𝑃0) + 3 · 𝑒𝑙𝑒𝑣 (𝑃0) while 𝑐𝑜𝑠𝑡 (𝑃 ′) ≤ 𝑐𝑜𝑠𝑡 (𝑃0) + 2 · 𝑒𝑙𝑒𝑣 (𝑃0) . □

B.4 Proof of Lemma 65
Let 𝑄 = ⟨𝜙 (𝑦),𝑉 ⟩ be any live marked query.

Lemma 65 will follow directly from Lemmas 77–79:

Lemma 77. For any set of facts D, tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | and 𝑥
such that𝑄 ′ = cut-green(𝑄, 𝑥) (or𝑄 ′ = cut-red(𝑄, 𝑥)) the following

Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph

holds:

Ch(T𝑑 ,D) |= 𝑄 (𝑎) ⇐⇒ Ch(T𝑑 ,D) |= 𝑄 ′(𝑎).

Proof. Let𝐺 (𝑧, 𝑥) be the atom removed from𝑞(𝑄) by cut-green.

(⇒). It follows immediately as 𝑞(𝑄 ′) is a subset of 𝑞(𝑄) and
𝑉 (𝑄 ′) = 𝑉 (𝑄).

(⇐). Let ℎ′ be a homomorphism witnessing that Ch(T𝑑 ,D) |=
𝑄 ′(𝑎). Due to the rule (𝑝𝑖𝑛𝑠) of 𝑟𝑢𝑙𝑒𝑠𝑒𝑡𝑑 there must exist 𝑡 ∈
𝑑𝑜𝑚(Ch(T𝑑 ,D)) such that 𝐺 (ℎ′(𝑧), 𝑎) ∈ Ch(T𝑑 ,D). Define a new
homomorphism ℎ as ℎ′ ∪ ⟨𝑥, 𝑡⟩. Then ℎ is a homomorphism wit-

nessing that Ch(T𝑑 ,D) |= 𝑄 (𝑎).
The proof for cut-red is analogous. □

Lemma 78. For any set of factsD, tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | and 𝑥, 𝑧, 𝑧′
such that 𝑄 ′ = fuse-green(𝑄, 𝑥, 𝑧, 𝑧′) (or 𝑄 ′ = fuse-red(𝑄, 𝑥, 𝑧, 𝑧′))
the following holds:

Ch(T𝑑 ,D) |= 𝑄 (𝑎) ⇐⇒ Ch(T𝑑 ,D) |= 𝑄 ′(𝑎).

Proof. Note that there exists a homomorphism (the one that

identifies 𝑧′ with 𝑧) from 𝑞(𝑄) to 𝑞(𝑄 ′) which preserves markings

of variables. Thus (⇐) is trivial.
(⇒). Let ℎ be a homomorphism witnessing that Ch(T𝑑 ,D) |=

𝑄 (𝑎). If we can show that ℎ(𝑧) = ℎ(𝑧′) then ℎ will witness that

Ch(T𝑑 ,D) |= 𝑄 ′(𝑎) as well. First recall that, since 𝑥 ∉ 𝑉 (𝑄) we
can be sure that ℎ(𝑥) ∈ 𝑑𝑜𝑚(Ch(T𝑑 ,D) \ 𝑑𝑜𝑚(D). Then notice

that it follows from the rules of T𝑑 that the in-degree, with respect

to relation 𝐺 , of any term of 𝑑𝑜𝑚(Ch(T𝑑 ,D) \ 𝑑𝑜𝑚(D) is at most

one. Thus the only way for Ch(T𝑑 ,D) |= 𝑄 (𝑎) to happen is that

ℎ(𝑧) = ℎ(𝑧′) thus Ch(T𝑑 ,D) |= 𝑄 ′(𝑎). The proof for fuse-red is

analogous. □

Lemma 79. For any set of factsD, tuple 𝑎 ∈ 𝑑𝑜𝑚(D) |𝑦 | and 𝑥 such
that Q = reduce(𝑄, 𝑥) the following holds:

Ch(T𝑑 ,D) |= 𝑄 (𝑎) ⇐⇒ ∃𝑄 ′ ∈ Q Ch(T𝑑 ,D) |= 𝑄 ′(𝑎) .

Proof. Let 𝑥 ′, 𝑥 ′′, 𝑥𝑟 , and 𝑥𝑔 be variables of 𝑞(𝑄) such that

𝑅(𝑥𝑟 , 𝑥),𝐺 (𝑥𝑔, 𝑥) ∈ 𝑞(𝑄) and that 𝑅(𝑥 ′, 𝑥𝑔),𝐺 (𝑥 ′, 𝑥 ′′),𝐺 (𝑥 ′′, 𝑥𝑟) ∈
𝑞(𝑄 ′).

(⇐). Let 𝑄 ′ ∈ Q be such that Ch(T𝑑 ,D) |= 𝑄 ′(𝑎) and let ℎ′ be a
homomorphism witnessing that. We need to show that there exists

a homomorphism ℎ witnessing Ch(T𝑑 ,D) |= 𝑄 (𝑎).
Since 𝑅(𝑥 ′, 𝑥𝑔),𝐺 (𝑥 ′, 𝑥 ′′),𝐺 (𝑥 ′′, 𝑥𝑟) are atoms of 𝑞(𝑄), and ℎ′ is

a homomorphism,we know that𝑅(ℎ′(𝑥𝑔), ℎ′(𝑥 ′)),𝐺 (ℎ′(𝑥 ′), ℎ′(𝑥 ′′))
and 𝐺 (ℎ′(𝑥 ′′), ℎ′(𝑥𝑟)) are atoms of Ch(T𝑑 ,D). But, since (𝑔𝑟𝑖𝑑) is
a rule of T𝑑 , this implies that there exists an element 𝑡 ∈ Ch(T𝑑 ,D),
such that𝐺 (ℎ′(𝑥𝑔), ℎ′(𝑡)) and𝑅(ℎ′(𝑥𝑟), ℎ′(𝑡)) are also inCh(T𝑑 ,D).

Define ℎ by:

• ℎ(𝑢) = ℎ′(𝑢) for 𝑢 ∈ 𝑣𝑎𝑟 (𝑄) \ {𝑥}.
• ℎ(𝑥) = 𝑡 .

(⇒). Let ℎ be a homomorphism witnessing that Ch(T𝑑 ,D) |=
𝑄 (𝑎). We will show that there exist 𝑄 ′ ∈ Q and a homomorphism

ℎ′ such that ℎ′ is witnessing Ch(T𝑑 ,D) |= 𝑄 ′(𝑎). Again recall that

𝑥 is an unmarked variable and so let us find parents of ℎ(𝑥) in
Ch(T𝑑 ,D). Note that ℎ(𝑥) could be created only by rule (𝑔𝑟𝑖𝑑) as
it has an in-degree of two. Let 𝜎 be such that 𝑎𝑝𝑝𝑙 ((𝑔𝑟𝑖𝑑), 𝜎) =

𝑅(ℎ(𝑥𝑟), ℎ(𝑥)),𝐺 (ℎ(𝑥𝑔), ℎ(𝑥)). We set:

ℎ′ = ℎ \ {𝑥, ℎ(𝑥)} ∪ {⟨𝑥 ′, 𝜎 (𝑥)⟩, ⟨𝑥 ′′, 𝜎 (𝑦)⟩}.

There are four possible picks for𝑄 ′
from Q. While homomorphism

ℎ′ works for any of them as elements of Q differ only by markings,

we need to make sure that the marking of 𝑄 ′
agrees with ℎ′. Ob-

viously for every variable of 𝑄 this is the case. However we have

two new variables to consider, namely 𝑥 ′ and 𝑥 ′′. Thus we need to

take 𝑄 ′
such that it satisfies:

• ℎ′(𝑥 ′) is a constant of D if and only if 𝑥 ′ ∈ 𝑉 (𝑄 ′).
• ℎ′(𝑥 ′′) is a constant of D if and only if 𝑥 ′′ ∈ 𝑉 (𝑄 ′).

This is trivially possible due to Definition 71. □

Appendix C GENERALIZATION OF LEMMA 40
For 𝐾 ∈ N define T𝐾

𝑑
as the theory, over Σ𝐾 = {𝐼𝐾 , 𝐼𝐾−1, . . . 𝐼1}

(each 𝐼𝑘 is a binary relation symbol), comprising, for each 1 ≤ 𝑖 < 𝐾
and each 1 ≤ 𝑘 ≤ 𝐾 the following 2𝐾 + 1 rules:

(𝑙𝑜𝑜𝑝) 𝑡𝑟𝑢𝑒 ⇒ ∃𝑥 𝐼𝐾 (𝑥, 𝑥), 𝐼𝐾−1 (𝑥, 𝑥), . . . 𝐼1 (𝑥, 𝑥)
(𝑝𝑖𝑛𝑘) ∀𝑥 (𝑡𝑟𝑢𝑒 ⇒ ∃𝑧 𝐼𝑘 (𝑥, 𝑧))
(𝑔𝑟𝑖𝑑𝑖) 𝐼𝑖+1 (𝑥, 𝑥 ′), 𝐼𝑖 (𝑥,𝑢), 𝐼𝑖 (𝑢,𝑢 ′) ⇒ ∃𝑧 𝐼𝑖+1 (𝑢 ′, 𝑧), 𝐼𝑖 (𝑥 ′, 𝑧)

Using the ideas from Appendix B one can now show that:

Lemma 80. For each 𝐾 ∈ N:
A. theory T𝐾

𝑑
is BDD;

B. there is a query𝜓 (𝑦,𝑦′) such that 𝑟𝑒𝑤T𝐾
𝑑
(𝜓 (𝑦,𝑦′)) contains a CQ

of size (𝐾-1)-fold exponential in the size of𝜓 .

Like in the case of Lemma 40, claim B of Lemma 80 is relatively

easy to prove.

For the proof of claimA, properly marked queries first need to be

slightly redefined (but let us skip it here). Then the five operations
need to be generalized in the natural way: we will now have 𝐾 cut
operations, 𝐾 fuse operations, and 𝐾-1 reduce operations.

The non-obvious part is how to modify the ranks 𝑒𝑟𝑘 and 𝑞𝑟𝑘

so that they do their job correctly in the new circumstances. For

that 𝐼𝑖 -paths need to be defined (for 1 ≤ 𝑖 < 𝐾), analogous to

𝑅-paths in Definition 72. But now the condition (★) will apply to

atoms of the relation 𝐼𝑖 (including 𝐼
-1

𝑖
). Then 𝑖-elevation (𝑒𝑙𝑒𝑣𝑖) will

be defined, like in Definition 73. And finally, we will need 𝑐𝑜𝑠𝑡𝑖 of

a path, calculated almost like the cost of the path in Definition 73:

for a path 𝑃 = 𝑃 ′𝐸 (𝑥, 𝑧) we have 𝑐𝑜𝑠𝑡𝑖 (𝑃) = 𝑐𝑜𝑠𝑡 (𝑃 ′) + 𝑒𝑙𝑒𝑣𝑖 (𝑃 ′) if
𝐸 = 𝐼𝑖−1 or 𝐼 -1

𝑖−1
and 𝑐𝑜𝑠𝑡𝑖 (𝑃) = 𝑐𝑜𝑠𝑡 (𝑃 ′) otherwise. Notice that 𝐼𝑖

is the new red and 𝐼𝑖−1 is the new green. Note also that we have a

new situation: 𝐸 may now very well be neither “green” nor “red”.

And that is fine, in such case it neither contributes to the elevation

nor to the cost of the path.

Having the function 𝑐𝑜𝑠𝑡𝑖 , rank 𝑒𝑟𝑘 (𝛼) of an atom 𝛼 of the re-

lation 𝐼𝑖−1 is (like in Appendix B.3) defined as minimal 𝑐𝑜𝑠𝑡𝑖 of

an 𝐼𝑖 -path from some marked variable to 𝛼 , and rank 𝑞𝑟𝑘𝑖 (𝑄) is
the multiset of all ranks 𝑒𝑟𝑘 (𝛼) of all atoms 𝛼 of 𝐼𝑖−1 in 𝑄 . Finally,

𝑞𝑟𝑘 (𝑄) is the tuple:
⟨|𝑄𝐾 |, 𝑞𝑟𝑘𝐾 (𝑄), |𝑄𝐾−1 |, 𝑞𝑟𝑘𝐾−1 (𝑄), . . . |𝑄2 |, 𝑞𝑟𝑘2 (𝑄)⟩

where |𝑄𝑖 | is the number of the atoms of the relation 𝐼𝑖 in𝑄 . Clearly,

the lexicographic ordering on the set of such ranks is a well order-

ing. Now, a careful case inspection shows that each of the 3𝐾-1

operations decreases the rank of a query.

Appendix D REMARKS ON T𝑑
There are two technical problems one needs to deal with here:

A Journey to the Frontiers of Query Rewritability
(Extended Technical Report)

(1) There are conjunctions in the heads of rules (loop) and (grid)

(notice that the rule (pins) can be simply split into two single-

head rules).

(2) we have predicate "true" in the bodies of rules (loop) and

(pins)

To deal with the first problem we could introduce a new ternary

predicate 𝑇 , and rewrite the rules as:

(𝑙𝑜𝑜𝑝) 𝑡𝑟𝑢𝑒 ⇒ ∃𝑥𝑇 (𝑥, 𝑥, 𝑥)
(𝑔𝑟𝑖𝑑) 𝑅(𝑥, 𝑥 ′),𝐺 (𝑥,𝑢),𝐺 (𝑢,𝑢 ′) ⇒ ∃𝑧𝑇 (𝑢 ′, 𝑥 ′, 𝑧)

Then add Datalog rules:

𝑇 (𝑥,𝑦, 𝑧) ⇒ 𝑅(𝑥, 𝑧)
𝑇 (𝑥,𝑦, 𝑧) ⇒ 𝐺 (𝑦, 𝑧)

𝑅(𝑥, 𝑧),𝐺 (𝑦, 𝑧) ⇒ 𝑇 (𝑥,𝑦, 𝑧)
In this way 𝑇 (𝑥,𝑦, 𝑧) is just a macro for 𝑅(𝑥, 𝑧) and 𝐺 (𝑦, 𝑧) and

clearly the transformation does not change the BDD status of the

theory.

To deal with the second problemwe need to replace the predicate

"true" with something like "if anything at all exists". For rule (loop)

it would mean that it should be replaced with three rules:

𝑅(𝑦, 𝑧) ⇒ ∃𝑥𝑇 (𝑥, 𝑥, 𝑥)
𝐺 (𝑦, 𝑧) ⇒ ∃𝑥𝑇 (𝑥, 𝑥, 𝑥)

𝑇 (𝑡, 𝑦, 𝑧) ⇒ ∃𝑥𝑇 (𝑥, 𝑥, 𝑥)
This transformation leads to a theory which is equivalent to our

T𝑑 on all nonempty instances, but this is of course good enough.

An analogous (albeit slightly more complicated) trick works for

(pins).

Appendix E STICKY AND BD-LOCAL
Here we prove the following observation:

Observation 81. Every connected sticky theory is bd-local

Proof. Let T be a connected sticky theory and D be any in-

stance with 𝑘 being its degree. Let 𝐴(®𝑎) be an atom of Ch(T ,D)
and F be the minimal subset of D such that 𝐴(®𝑎) ∈ Ch(T , F). We

show that |F| depends only on T and 𝑘 . As T is connected and

sticky we know that if |F| > 1 then every fact of F needs to contain
some term of ®𝑎. From this we conclude that |F| ≤ | ®𝑎 |𝑘 , thus we
know that T is local. □

	Abstract
	1 Introduction
	2 Preliminaries
	3 The Skolem chase.
	4 The three classes
	5 BDD and Finite Unification Sets
	6 FES and core termination
	7 The FUS/FES conjecture
	8 Local theories.
	9 The FUS/FES conjecture is true for local theories
	10 Slightly beyond locality: Sticky theories
	11 Far beyond locality: BDD theories without small rewritings
	12 Conclusions and Future Work
	References
	A Proof of Theorem 1
	A.1 First (failed) attempt at the Crucial Lemma
	A.2 The normalization of T
	A.3 Proof of Lemma 48
	A.4 The Crucial Lemma
	A.5 Proving Theorem 1

	B Proof of Lemma 40 (A). The high-level view.
	B.1 High-level proof of claim (A). The process.
	B.2 High-level proof of claim (A). Termination.
	B.3 Proof of Lemma 40 (A). Five operations.
	B.4 Proof of Lemma 65

	C Generalization of Lemma 40
	D Remarks on T d
	E Sticky and bd-local

