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Abstract—Magnetic Resonance Angiography (MRA) has be-
come a routine imaging modality for the clinical evaluation of
obstructive vascular disease. However, complex circulatory flow
patterns, which redistribute the Magnetic Resonance (MR) signal
in a complicated way, may generate flow artifacts and impair
image quality. Numerical simulation of MRAs is a useful tool to
study the mechanisms of artifactual signal production. The present
study proposes a new approach to perform such simulations, ap-
plicable to complex anatomically realistic vascular geometries.
Both the Navier-Stokes and the Bloch equations are solved on the
same mesh to obtain the distribution of modulus and phase of the
magnetization. The simulated angiography is subsequently con-
structed by a simple geometric procedure mapping the physical
plane into the MRA image plane. Steady bidimensional numerical
simulations of MRAs of an anatomically realistic severely stenotic
carotid artery bifurcation are presented, for both time-of-flight and
contrast-enhanced imaging modalities. These simulations are val-
idated by qualitative comparison with flow phantom experiments
performed under comparable conditions.

Keywords—Magnetic resonance, Angiography, Bloch equations,
Computer simulation, Flow artifacts, Carotid stenoses.

NOMENCLATURE

A Area
B(t) Time-dependent applied magnetic field
B1(t) Radio-Frequency pulse
E Quadrangular element of the physical plane
(i, j , k) Laboratory frame of reference
G f (t) Frequency-encoding gradient
G p(t) Phase-encoding gradient
Gss(t) Slice selection gradient
I (X, Y ) Signal intensity in the image plane
I(V ) Signal intensity in a voxel V

J Jacobian determinant
Gp Intensity of the frequency-encoding

gradient
G f Intensity of the phase-encoding gradient
L Length of the domain considered
M Magnetization of the spin system
M0 Longitudinal magnetization before any

excitation
Mt Modulus of the transverse magnetization
n Normal vector of the boundary
r Location of the spin
kx and ky k-Space coordinates
S MR signal
t Time
T Transformation of the physical plane into

the image plane
T1 Longitudinal relaxation time
T2 Transverse relaxation time
TE Echo time
Tp Duration of the phase-encoding
TR Repetition time
u Spin velocity
U0 Entry velocity
V Voxel
x , y Physical coordinates
X , Y Image plane coordinates
α Flip angle
δ Dirac function
γ Gyromagnetic ratio
ϕ Phase of the transverse magnetization
ϕ0 Reference phase for stationnary spins
ϕ̃ Total motion-dependent phase
ϕ̃ f Motion-dependent phase accumulated

through the frequency-encoding
gradient

ϕ̃p Motion-dependent phase accumulated
through the phase-encoding gradient

τ Duration of the readout-range
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INTRODUCTION

There is an increasing acceptance of Magnetic Reso-
nance Angiography (MRA) as a modality for the clini-
cal evaluation of obstructive vascular disease.13 However,
complex flow patterns, such as convective accelerations,
recirculation areas, vortical structures, and pulsatile flows,
may produce flow artifacts like intravoxel phase dispersion
(IVPD) and misregistration effects.8,9,17,27 These effects
are encountered both at sites of severe stenoses, even if
situated in a straight vessel, and at sites of curves or vessel
branching, which are preferential areas for the development
of atherosclerotic disease. They result in a complex redistri-
bution of the MR signal which creates image artifacts that
are difficult to interpret in an intuitive manner. For example,
flow-induced signal loss is often observed both upstream
and downstream of stenoses, thereby making the differen-
tiation between severe stenoses and occlusions difficult or
even impossible.19,20,26 Thus, such artifacts can lead to mis-
interpretations of imaging studies and inappropriate patient
treatment.

For about a decade, numerical simulations of MRA have
emerged as one of the essential tools for understanding
the mechanisms of artifactual signal production and their
implication for in vivo imaging. Simple model geometries
(such as curved tubes 8,27 and axisymmetric plug flow7,19

or streamlined stenoses20) and more complex idealized ge-
ometries (such as a bypass graft end-to-side anastomosis21

or a bidimensional healthy carotid bifurcation27) have been
studied by means of a Lagrangian approach. In this ap-
proach, spin trajectories are obtained by a computational
fluid dynamics (CFD) simulation. The temporal evolution
of magnetization along spin trajectories is subsequently cal-
culated by integrating the Bloch equations following each
trajectory.

This is an intuitive approach, as analytic solutions of
the Bloch equations along spin trajectories are known.
In most cases (i.e. most geometries and imaging condi-
tions, from time of flight (TOF) MR angiography to phase
contrast (PC) velocity measurements), simulated MR im-
ages compare favorably with MR experiments performed
on flow phantoms of identical geometry in equivalent
conditions.

However, in flow configurations exhibiting high veloc-
ity gradients near the vessel wall (for example in curved
tubes), important discrepancies appear due to the difficulty
of tracking spin trajectories near the wall.8 Even in regions
not containing complex velocity fields, high spatial resolu-
tions are required near the wall to adequately resolve subtle
changes in geometry.25 In addition, in the Lagrangian ap-
proach, many spin trajectories must be computed in order
to correctly account for intravoxel phase dispersion and
misregistration effects, which requires extensive compu-
tation time. The time-consuming nature of these calcula-
tions renders prohibitive the extension of Lagrangian-based

numerical calculations to complex anatomically realistic
geometries.

In such geometries, the Eulerian approach developed by
Jou et al.8,9,17 seems more convenient. Briefly, the veloc-
ity field, i.e., the three components of the velocity vector at
each point of a mesh, is obtained by a CFD simulation. This
velocity field is used to solve the Bloch equations in Eu-
lerian formulation,6 which describe the inflow and outflow
of magnetization at each point of the domain as a function
of magnetization at neighboring points. These equations
are solved numerically on the same mesh used by the CFD
simulation, without requiring spin trajectories to be tracked.
Misregistration effects arise from fluid motion between the
time of phase-encoding (at that time, the phase generated by
the phase-encoding gradient at each mesh node is propor-
tional to the y-position of the node) and the time of readout.
Thus, in order to account for misregistration effects, the ini-
tial mesh is transformed to the corresponding mesh of the
image plane by determining the transformed y-position of
each node from its phase at the time of readout. The appar-
ent proton density in the reconstructed image plane is given
by the jacobian of this transformation, and accounts for the
component of the intravoxel phase dispersion (IVPD) effect
generated by the phase-encoding gradient. Signal intensity
in the image plane is subsequently calculated, assuming
the magnetization modulus and phase within a voxel to
be bilinear, by searching all the quadrangles of the initial
mesh that map to this voxel. By contrast to the Lagrangian
approach, the Eulerian approach has been successfully used
to simulate MRAs in curved tubes.8,17 In addition, the com-
putation time reduction allowed the simulation of MRAs of
a bidimensional healthy carotid bifurcation with pulsatile
flow.9

In parallel with these advances in MRA simulation, the
development of efficient numerical methods and new com-
puter capabilities has made possible the calculation of blood
flow in anatomically realistic geometries.2,3,11,12,14,22,23 In
particular, such calculations have shown that minor details
of the vascular geometry (surface irregularities, curvature,
etc.) can affect the flow significantly, even relatively far
away from their location.

Thus, performing numerical simulations of MRAs in
complex anatomically realistic geometries seems attainable
in the near future. In this paper, the case of a severely
stenotic carotid artery bifurcation with realistic shape will
be presented. However, because of the complexity of the
geometry involved, only the steady flow through a two-
dimensional model of this bifurcation will be considered.
This simplified test case will be studied following the
Eulerian approach described above,8,9,17 revisited in a sig-
nal processing perspective, and with further improvements
of the phase-averaging procedure.

Both time of flight and contrast-enhanced (CE) MRAs
will be simulated. The TOF technique relies on inflow-
ing blood to transport full magnetization into the image



volume resulting in signal enhancement and high vessel to
background contrast and on velocity-compensated gradi-
ent echo sequences to retain all transverse magnetization.
Unfortunately, this technique requires long repetition times
in order to avoid blood signal saturation, which makes it
difficult to reduce flow artifacts. To achieve good vessel
contrast with a short repetition time, a contrast agent, such
as gadolinium, can be used to reduce the longitudinal re-
laxation time T1 of blood. In order to achieve the very short
echo times needed, no velocity compensation is used in the
gradient echo sequences. Vessel contrast, in this so-called
contrast-enhanced MRA technique (CE-MRA), is then due
to T1 effects instead of inflow effects as in TOF. Qualitative
comparisons of the simulated MRAs with MR phantom
experiments performed in comparable conditions will be
presented.

METHODS

Severely Stenotic Carotid Artery Bifurcation Model

Surgical treatment of carotid artery disease involves
opening the artery and removing the plaque lining the ves-
sel wall, a procedure known as an endarterectomy. One of
the plaques was resected en bloc in one intact piece at the
San Francisco VA Medical Center [specimen provided by
Dr. Joseph Rapp, Associate Professor of Vascular Surgery,
UCSF/VA Medical Center, to the author (DS)]. This spec-
imen was imaged using Magnetic Resonance Imaging at
high resolution (200 µm3) and the lumenal contour was
obtained by image postprocessing.

Because of the complexity of the geometry involved,
only a two-dimensional model based on one coronal plane
of the three-dimensional contour has been considered
(Fig. 1). This simplification is consistent with the numerical
analysis of flow through the same two-dimensional stenotic
bifurcation performed by Stroud et al.,23 which aimed to
supplement MR and other in vivo diagnostic techniques to
provide an accurate picture of the clinical status of particular
vessels.

In addition, a phantom, i.e., a three-dimensional true-to-
scale physical model with nearly rigid wall, was constructed
in silicone (silastic) rubber (Fig. 2.) in order to make qualita-
tive comparisons between MR simulations and experiments
performed in equivalent conditions.26

Simulation of Magnetic Resonance Angiographies

Simulation of MRAs by means of the Eulerian ap-
proach requires the calculation of the velocity field in
the geometry described above. This calculation has been
previously reported.23 Briefly, the incompressible, steady
Navier-Stokes equations for a Newtonian fluid are solved
using a finite-volume CFD software package (From CFD
Research Corporation, Hunstville, AL) on the grid dis-
played on Fig. 1. The boundary conditions are uniform

FIGURE 1. Model Geometry : Two-dimensional structured grid
(9040 vertices, 8775 quadrangular elements) used in CFD com-
putations (scale in meters). (i, j, k) is the laboratory frame of
reference and k defines the longitudinal direction. When phase
encoding is aligned with the main-flow direction, then ex = i
and ey = j ; when phase encoding is perpendicular to the main-
flow direction, then ex = j and ey = i .

FIGURE 2. Model Geometry : Phantom used in MR experi-
ments.



inlet flow (“plug” flow), fixed pressure (equivalent to flow
through) at the outlet, and no-slip at wall. Note that the re-
sulting flow contains large recirculation areas, large spatial
variations in wall shear, and high velocity gradients near
the vessel wall (see ref. 23).

Transport of Magnetization

The Bloch equations in Eulerian formulation6 are the
following:

∂ M
∂t

+ (u · ∇) M = γ M × B(t) − Mx i + My j
T2

+ M0 − Mz

T1
k, (1)

where bold symbols are used to denote vectors and (i, j , k)
is the laboratory frame of reference (see Fig. 1. for the def-
inition of axes). In these equations, M is the magnetization
of a fluid element, originating from the presence of water
protons, and M0 is its longitudinal magnetization before any
excitation. The fluid velocity u is calculated as described
above. The gyromagnetic ration is γ , T1, and T2 are the
longitudinal and transverse relaxation times, and B(t) is
the time-dependent applied magnetic field:

B(t) = (B0 + G(t) · r) k + B1(t)(cos(γ B0t)i

− sin(γ B0t) j ), (2)

with

G(t) = G f (t)i + G p(t) j + Gss(t)k. (3)

In the above expressions, r is spin position vector, B0 is
the static magnetic field, B1(t) is the radio-frequency (RF)
pulse10 used to rotate the longitudinal magnetization into
the transverse plane, i.e., (i , j ) plane, and G f (t), G p(t), and
Gss(t), respectively, denote the frequency encoding, phase
encoding, and slice selection gradients. The timing diagram
for this pulse sequence is schematized on Fig. 3. The values
of the parameters used in both TOF and CE simulations are
presented in Table 1. For CE-MRA, injection of the contrast

FIGURE 3. Schematic timing diagram of a single repetition cy-
cle of a gradient echo sequence. Left: Velocity uncompensated
gradient; Right: Velocity compensated gradient. Note that cy-
cles are separated by the repetition time TR. TE is the echo
time.

TABLE 1. Values of the parameters used for the simulation
of TOF and CE MRAs. VC: Velocity compensated gradients;

VU: Velocity uncompensated gradients.

T1 (ms) TR (ms) TE (ms) α (degrees) Sequence

TOF 1000 30 7 20 VC
CE 200 7 3 20 VU

agent, such as gadolinium, is modeled by reducing the blood
longitudinal relaxation time T1 uniformly in space and time,
which is an additional simplification.24

The set of partial differential equations [Eq. 1] can be
rewritten using Mx = Mt cos ϕ and My = Mt sin ϕ, where
Mt and ϕ are the modulus and phase of transverse mag-
netization. In addition, in the following, this set will be
simplified considering the different steps of the imaging
sequence.

a. Excitation range: Since the duration of the excitation
pulse is very short compared with the relaxation times T1

and T2 (see Table 2), relaxation effects can be neglected dur-
ing the excitation pulse. The spin transit time (evaluated by
L/U0, where L is the length of the domain considered and
U0 is the entry velocity) is large compared to the duration
of the RF pulse (see Table 2). Thus, convective transport
of magnetization by blood flow [term (u · ∇) M in Eq. (1)]
can also be neglected.

In addition, the exact temporal dependence of the RF
pulse is designed as a function of the slice selection gra-
dient Gss in order to produce a block rotation of the spins
contained in the selected slice.28 As the studied domain
is two-dimensional, the selected slice corresponds to the
whole domain. Thus, the coupled effect of the RF pulse and
of the slice-selection gradient is to flip the magnetization
vector around the direction of the RF pulse (contained in the
transverse plane) and to produce a simultaneous rephasing
of the spins:

M+
z = M−

z cos α, M+
t = M−

z sin α, ϕ+ = 0, (4)

where + and − respectively denote the instants just after
and just before excitation, and α is the flip angle.

b. Relaxation range: During the relaxation phase, B(t)
is directed along k. Thus, the Bloch equations [Eq. (1)] lead
to

∂Mz

∂t
+ u · ∇Mz = M0 − Mz

T1
, (5)

TABLE 2. Order of magnitude of the characteristic
times for relaxation (T1 and T2), transit (L/U0), exci-
tation range (Texc), relaxation range (TE), and readout

(τ) (in ms).

T1 T2 L/U0 Texc TE τ

200–1000 50 150–300 3 3–7 3–7



∂Mt

∂t
+ u · ∇Mt = −Mt

T2
, (6)

and

∂ϕ

∂t
+ u · ∇ϕ = −γ (B0 + G(t) · r) . (7)

In addition, in the sequences considered, the echo time
(TE) is very short compared to the relaxation time T2 and
to the spin transit time (see Table 2). Thus, from Eqs. (4)
and (6)

Mt (TE) � M+
t = M+

z tan α, (8)

which means that image appearance is unaffected by trans-
verse relaxation.

Let us introduce ϕ0, the reference phase for stationary
spins [i.e., the solution of Eq. (7) when u ≡ 0)]:

ϕ0 = −γ

(
B0t + r ·

∫ t

0
G(ξ ) dξ

)
. (9)

We introduce ϕ̃ f and ϕ̃p, the motion-dependent phases
accumulated through the frequency-encoding and phase-
encoding gradients, which respectively satisfy:

∂ϕ̃f

∂t
+ u · ∇ϕ̃ f = γ u · i

∫ t

0
G f (ξ ) dξ, (10)

and

∂ϕ̃p

∂t
+ u · ∇ϕ̃p = γ u · j

∫ t

0
G p(ξ ) dξ, (11)

so that, from Eqs. (7) and (9)

ϕ = ϕ0 + ϕ̃ f + ϕ̃p. (12)

Equations (5), (10), and (11) are numerically solved by
a marching predictor–corrector method, on the same grid
used for the CFD computation, with the following entry
conditions:

– Mz = M0 (incoming blood has not been subjected to any
RF excitation and is thus unsaturated),

– n · ∇ϕ̃ f = 0 and n · ∇ϕ̃p = 0, where n is the normal vec-
tor of the simulation domain boundary.

The initial conditions for each repetition cycle, whose dura-
tion is the repetition time TR, are given by Eq. (4). Note that
the resulting initial conditions for ϕ̃ f and ϕ̃p (ϕ̃ f

+ = 0 and
ϕ̃p

+ = 0) are independent of the number of anterior repeti-
tion cycles performed. Thus, ϕ̃ f and ϕ̃p temporal evolutions
are the same for each repetition cycle. On the contrary, the
initial condition for Mz at a given repetition cycle depends
on its value at the end of the previous repetition cycle.
Equation (5) is therefore solved until the distribution of
longitudinal magnetization does not change with additional
RF excitation, i.e., the dynamic equilibrium is reached.

Signal Expression

In the following, Gp and G f denote the intensities of the
phase and frequency encoding gradients when not set to
zero, and Tp denotes the duration of the phase encoding.
The MR signal S(t,Gp) is given by

S(t,Gp)

=
∫

x

∫
y

Mt (x, y, t)ei(ϕ0(x,y,t)+ϕ̃ f (x,y,t)+ϕ̃p(x,y,t)) dx dy.

(13)

During the readout range (of duration τ ), i.e for
TE − τ/2 ≤ t ≤ TE + τ/2, and according to the timing
diagram sketched on Fig. 3, Eq. (9) gives:

ϕ0(x, y, t) =

−γ

(
B0t + yGpTp + x

∫ TE

0
G f (t) dt + (t − TE)x G f

)
.

(14)

From sequence design (see Fig. 3), x
∫ TE

0 G f (t) dt equals
zero. Thus, using TE as a new time reference and using
Eq. (8), we have

S(t,Gp) =
∫

x

∫
y

M+
z (x, y)

× tan α ei(−γ (B0(t+TE)+yGpTp+xG f t)+ϕ̃ f (x,y,t)+ϕ̃p(x,y,t)) dx dy.

(15)

This signal is a high frequency signal because the transverse
magnetization vector precesses at the Larmor frequency,
as observed in the laboratory frame. In practice, S(t) is
moved to a low frequency band using a signal demodulation
method10:

S(t,Gp) =
∫

x

∫
y

M+
z (x, y)

× tan α ei(−γ (yGpTp+xGf t)+ϕ̃f (x,y,t)+ϕ̃p(x,y,t)) dx dy. (16)

Interestingly, due to the signal demodulation, this expres-
sion is equivalent to the expression that would be obtained
by resolution of the Eulerian Bloch equations written in the
rotating frame but with u kept in the laboratory frame.

Spatial Decoding

Let us introduce the k-space coordinates:

kx = −γG f t, ky = −γGpTp. (17)

Note that

– for steady flow, Eq. (11) implies that ϕ̃p is proportion-
nal to Gp, and thus to ky (note that this is still true for
periodic flows if the beginning of each repetition cycle



corresponds to the same instant of the flow period). It
can then be expressed as

ϕ̃p(x, y, t) = ky ỹ(x, y, t), (18)

– since the duration of the readout range is very short com-
pared to the spin transit time (Table 2) and to the char-
acteristic times for precession in Eq. (10) and (11) (see
Appendix A), ỹ, and ϕ̃ f may be considered as indepen-
dent of t during the readout range, and equal to their
values at TE (i.e. origin of the new time frame). ỹ and
ϕ̃ f are therefore independent of kx .

– in addition, from Eq. (10), ϕ̃ f is independent of Gp and
thus of ky ,

Equation (16) thus becomes in k-space:

S(kx , ky) =
∫

x

∫
y
M(x, y)ei(kx x+ky (y+ỹ(x,y)) dx dy, (19)

where M(x, y) = M+
z (x, y) tan α ei ϕ̃ f (x,y). The signal in-

tensity in the image plane, described by its coordinates X
and Y , is given by the inverse Fourier transform of S(kx , ky):

I (X, Y ) = 1

(2π )2

∫
kx

∫
ky

S(kx , ky) e−i(kx X+kyY ) dkx dky .

(20)
By inverting the integration order,18 we obtain:

I (X, Y ) = 1

(2π )2

∫
x

∫
y
M(x, y) dx dy

∫
kx

eikx (x−X ) dkx

×
∫

ky

eiky (y+ỹ(x,y)−Y ) dky (21)

Finally, as
∫

kx
eikx x dkx = δ(x), where δ is the Dirac func-

tion, we deduce:

I (X, Y ) = 1

(2π )2

∫
x

∫
y
M(x, y)δ (x − X )

× δ(y + ỹ(x, y) − Y ) dx dy (22)

Let us introduce transformation T : (x, y) �→ (x̂, ŷ) of
space:

x̂ = x, ŷ = y + ỹ(x, y). (23)

Let first assume that transformation T is a bijection, and
denote by T −1 the inverse transformation. Using x̂ and ŷ
as new variables, Eq. (22) rewrites:

I (X, Y ) = 1

(2π )2

∫
x̂

∫
ŷ
M ◦ T −1(x̂, ŷ)δ (x̂ − X )

× δ (ŷ − Y ) JT −1 (x̂, ŷ) dx̂ d ŷ, (24)

where JT −1 is the Jacobian of transformation T −1. Thus:

I (X, Y ) = 1

(2π )2
M ◦ T −1(X, Y )JT −1 (X, Y ), (25)

FIGURE 4. Transformation T of the physical plane into the
image plane. The schematized situation corresponds to a flow
from right to left with a peak velocity profile close to the vessel
wall, as observed in the vicinity of the bifurcation apex. Con-
tinuous lines (a’, d’, e’) and (b’,c’,f’) are the images of dotted
lines (a, d, e) and (b,c,f). They intersect in O which has therefore
two antecedents (O’ and O”) by T . In addition, images of the
distinct quadrangles (a,b,c,d) and (c,d,e,f) of the physical plane
are the superposed quadrangles (a’,b’,c’,d’) and (c’,d’,e’,f’) of
the image plane.

Finally, the signal intensity I in a voxel V is the sum of
I (X, Y ) over the whole voxel:

I(V ) = 1

(2π )2

∫ ∫
V
M ◦ T −1(X, Y )JT −1 (X, Y ) d X dY,

(26)
which simplifies to

I(V ) = 1

(2π )2

∫ ∫
T −1(V )

M(x, y) dx dy, (27)

where T −1(V ) is the image of voxel V by transformation
T −1.

However, transformation T is not a bijection, because
some points in the transformed plane may have more than
one antecedent (see Fig. 4). Nevertheless, Eq. (27) still
holds (see Appendix B for a one-dimensional demonstra-
tion), which calls for several comments.

First, as indicated by Eq. (24), it appears that the image
plane coordinates X and Y do not correspond to x and
y, physical coordinates of the carotid bifurcation, but to x̂
and ŷ. In other words, the misregistration components are
(x̂ − x, ŷ − y), i.e., (0, ỹ). Second, the local signal intensity
in the image plane equals the corresponding local intensity
in the physical plane (M ◦ T −1) multiplied by the Jaco-
bian of transformation T −1 [see Eq. (25)]. This jacobian
represents the apparent proton density in the image plane.
Third, from Eq. (27), the signal intensity in a voxel equals
the sum of the local magnetization M in the physical plane
over the physical area matching the image plane voxel after
misregistration.

Image Construction

The simulated MRA is constructed by evaluating the
contribution to the voxel V of each quadrangular element



E of the grid used for the CFD calculation:

I(V, E) = IE
A(T (E) ∩ V )

A(T (E))
, (28)

where A(T (E)) and A(T (E) ∩ V ) respectively denote the
areas of the image plane elementT (E) and of its intersection
with V and IE denotes the total intensity contribution of E
evaluated by

IE = 1

4


 4∑

j=1

M(x j , y j )


A(E), (29)

where (x j , y j ) are the four edges of E and A(E) is its area.
Thus, image construction requires the calculation of the

following areas:A(E),A(T (E)), andA(T (E) ∩ V ), as sum-
marized in Appendix C. Note that, due to misregistration,
T (E) is not necessarily a simple quadrangle but may be self-
intersecting. Area calculations are checked by summing the
intersections of T (E) with every voxel of the image plane,
and comparing with A(T (E)).

Finally, the (complex) signal intensity I in the voxel
V is the sum of the contributions of each quadrangular
element whose image by transformation T has a non-null
intersection with V . The simulated MRA is constructed by
mapping the voxel intensity modulus to 255 grey levels
(GL):

GL(V ) = max

(
Trunc

(
255

|I(V)|
|I(Vref)|

)
, 255

)
, (30)

where Vref is an entry reference voxel.

Flow Phantoms Experiments

The flow phantom experiments were performed on a
commercial scanner (1.5-T Siemens Magnetom, Siemens
Medical Systems, Erlangen, Germany) using 3D time of
flight or contrast-enhanced MRA gradient echo sequences.
The head coil was used as the receiver coil. A steady water
flow was used. The mean velocity in the common carotid
artery, evaluated by inversion bolus tagging before image
collection, was 0.14 ms−1.

For TOF sequences, parameters were as follows:
TR/TE/flip angle = 30 ms/6 ms/20◦ with velocity com-
pensation along slice-selection and frequency-encoding di-
rections. In-plane resolution was 0.7 mm × 0.7 mm with
slice thickness of 1 mm.

For CE sequences, a 60 ml bolus of Gd-DTPA (gadalo-
nium) at a concentration of 1:60 was injected over 20 s. A
timing run was performed to determine transit time between
injection and arrival in the flow phantom. Imaging param-
eters were as follows TR/TE/flip angle = 6 ms/2.2 ms/25◦.
In-plane resolution was 0.5 mm × 0.86 mm with slice
thickness of 1.6 mm.

RESULTS AND DISCUSSION

The complex flow pattern in the severely stenotic carotid
bifurcation has been described in Stroud et al.23 As already
mentioned, the flow contains large recirculation zones and
strong jet areas, resulting in high spatial variations in shear
stress. In particular, there is a large recirculation region
filling the carotid sinus upstream of the point of maximum
stenosis, the spatial extent of which is independent of the
Reynolds number. A second elongated recirculation zone,
downstream of the stenosis throat, enlarges with increasing
Reynolds number. The strongest jet is observed in the entry
region of the common carotid artery, where the maximum
velocity is almost four times the entry velocity, indepen-
dently of the Reynolds number.

Transport of Magnetization

Isovalues of the TOF equilibrium longitudinal magneti-
zation Mz are plotted on Fig. 5., for two values of the inlet
Reynolds number (based on the inlet diameter and mean ve-
locity and for a kinematic viscosity of 3.4 × 10−6 m2 s−1).

Equilibrium magnetization is maximal at the inlet of the
common carotid artery, due to entry of “fresh” blood, not
subjected to any RF excitation (i.e. Mz = M0). Using the
Lagrangian approach, it can be shown that, for a given set of
imaging parameters T1 and TR, equilibrium magnetization
only depends on the number of RF pulses experienced by
the fluid during its motion from the inlet. In other words,
equilibrium magnetization only depends on the transit time,
as displayed in Fig. 6. Thus, isovalues of the equilibrium
magnetization and isovalues of transit time from the in-
let are superimposed. When the inlet Reynolds number

FIGURE 5. Isovalues of the TOF equilibrium magnetization M z
normalized by M 0, the longitudinal magnetization before any
excitation. Reynolds number at the inlet of the common carotid
artery is 300 (left) and 600 (right). Parameters used are listed
in Table 1. The dashed line outlines the vessel wall.



FIGURE 6. Equilibrium magnetization normalized by M 0 as a
function of transit time (s), for TOF and CE sequences. Param-
eters used are listed in Table 1.

increases from 300 to 600, “fresh” blood is convected
faster, longitudinal magnetization decreases more slowly
following the flow direction and the inflow effect is
strengthened. Concurrently, the elongated recirculation
zone located downstream of the stenosis throat enlarges,
deflecting the “fresh” blood region toward the internal
carotid artery divider wall.

Because the flow field displays recirculation areas and
because the geometry considered is bidimensional, the fluid
contained in these recirculations areas is “trapped,” i.e.
there is no mechanism to bring unsaturated spins from the
main flow into these areas. Thus, in the recirculation areas,
blood is fully saturated and its equilibrium magnetization
corresponds to the magnetization of stationary spins M∞
calculated with an infinite transit time:

M∞ = 1 − e−TR/T1

1 − cos(α)e−TR/T1
(31)

Note that the spatial extent of these fully saturated zones is
overestimated because, in the equivalent three-dimensional
stenotic flow field, out of plane velocity components may
be significant to mix fluid from the main flow and fluid
from the recirculation areas (see the experimental work of
Bale-Glickman et al.1)

Isovalues of the CE equilibrium longitudinal magne-
tization Mz are plotted on Fig. 7. As before, when the
inlet Reynolds number increases, inflow effect is more pro-
nounced. However, it is markedly reduced compared to the
TOF simulation.

Figure 8 simultaneously displays isovalues of the image
plane coordinate ŷ (continuous lines) and of the motion-
dependent phase accumulated through the frequency-
encoding gradient ϕ̃ f (color map) in both TOF and CE
conditions, when phase encoding is perpendicular to the
main flow direction. Misregistration is demonstrated by the
distortion of the ŷ isovalues, which would be vertical lines
for stationary spins (for stationary spins, ỹ = 0 and ŷ = y).
In both TOF and CE conditions, misregistration is maximal
at the edge of the bifurcation and in the main recircula-
tion area situated upstream of the stenosis, where veloci-

FIGURE 7. Isovalues of the CE equilibrium magnetization M z
normalized by M 0, the longitudinal magnetization before any
excitation. Reynolds number at the inlet of the common carotid
artery is 300 (left) and 600 (right). Parameters used are listed
in Table 1. The dashed line outlines the vessel wall.

ties perpendicular to the main flow direction are observed.
Because the time between phase encoding and readout is
smaller in the CE sequence, misregistration is smaller in CE
conditions. On the contrary, as the CE frequency-encoding
gradient is not velocity compensated, the amplitude of the
ϕ̃f variation is larger even if the CE sequence duration is
shorter. Positive values of ϕ̃ f are observed when the ve-
locity component in the main flow direction is positive,
whereas negative values are observed when the velocity
component in the main flow direction is negative. Strong
phase gradients are noticed at the surrounding of the flow jet
in the internal carotid artery (including along the walls at the
stenosis throat) and along the walls in the external carotid
artery, where velocity gradients in the main flow direction
are elevated. These phase gradients will produce significant
IVPD after image construction. In TOF conditions, due to
velocity compensation, positive values of ϕ̃f are observed
when the acceleration in the main flow direction is positive
(stenosis throat, end of the common carotid artery), whereas
negative values are observed when the acceleration in the
main flow direction is negative (downstream of the stenosis
throat, bifurcation apex).

Figure 9 simultaneously displays isovalues of the image
plane coordinate ŷ (continuous lines) and of the motion-
dependent phase accumulated through the frequency-
encoding gradient ϕ̃ f (color map) in both TOF and CE
conditions, when frequency encoding is perpendicular to
the main flow direction. Misregistration is demonstrated by
the distortion of the ŷ isovalues, which would be horizontal
lines for stationary spins. In both TOF and CE conditions,
misregistration is maximal at the end of the common carotid
artery and at the stenosis throat, where elevated veloci-
ties in the flow direction are observed. Areas of retrograde



FIGURE 8. Isovalues of the phase ϕ̃f (color map) and of the
image plane coordinate ŷ (continuous lines) obtained with TOF
parameters (left) and CE parameters (right). Phase encoding
is perpendicular to the main flow direction. Reynolds number
at the inlet of the common carotid artery is 300. The dotted line
outlines the vessel wall.

flow are apparent near the wall both in the internal and
external carotid arteries. In CE conditions, positive values
of ϕ̃ f are observed when the velocity component trans-
verse to the main flow direction is from left to right (inter-
nal carotid artery), whereas negative values are observed

FIGURE 9. Isovalues of the phase ϕ̃f (color map) and of the
image plane coordinate ŷ (continuous lines) obtained with TOF
parameters (left) and CE parameters (right). Frequency encod-
ing is transverse to the main flow direction. Reynolds number
at the inlet of the common carotid artery is 300. The dotted line
outlines the vessel wall.

FIGURE 10. Simulated TOF-MRAs. Phase encoding is trans-
verse to the main flow direction (left) or aligned with the main
flow direction (right). The square at the right bottom shows the
grey level obtained for the surrounding tissue (T1 = 500 ms)
using Eq. (31). Reynolds number at the inlet of the common
carotid artery is 300.

when the transverse velocity component is from right to
left (external carotid artery). Thus, strong phase gradients
are noted at the flow divider. In TOF conditions, due to ve-
locity compensation, ϕ̃ f is significant in areas of transverse
acceleration.

Simulated MRAs

In the following, the field of view of the simulated MRAs
is 50 mm × 50 mm. A 100 × 100 matrix is used, giving
in-plane resolution of 0.5 mm × 0.5 mm.

Figure 10 (left) displays the TOF-MRA simulated when
phase encoding is transverse to the main flow direction. The
overall MRA appearance is determined by saturation of the
longitudinal magnetization (see Fig. 5, left), misregistration
and phase dispersion (see Fig. 8, left). In particular, due to
saturation, image intensity is very low in the recirculation
areas. Due to IVPD, it is markedly reduced at the end of the
common carotid artery and slightly reduced at the stenosis
throat. On the contrary, due to misregistration, a strong
signal enhancement is observable at the bifurcation apex
and behind the divider wall of the external carotid artery
(i.e. outside the true flow lumen). As a result, the apparent
angle between the dividers walls is more acute than in the
physical plane.

Figure 10 (right) displays the TOF-MRA obtained when
frequency encoding is perpendicular to the main flow di-
rection. In that case (see Fig. 9, right), misregistration and
phase dispersion concurrently lead to signal dropout at the
apex of the bifurcation, at the beginning of the internal
carotid artery and at the stenosis throat. Misregistration
alone leads to signal enhancement along the nondivider
wall of the external carotid artery and before and after the
stenosis throat.

Figure 11 displays the CE-MRAs simulated when
phase encoding (left) or frequency encoding (right) is
perpendicular to the main flow direction. Compared to



FIGURE 11. Simulated CE-MRAs. Phase encoding is transverse to the main flow direction (left) or aligned with the main flow
direction (right). The square at the right bottom shows the grey level obtained for the surrounding tissue (T1 = 500 ms) using
Eq. (31). Reynolds number at the inlet of the common carotid artery is 300.

TOF simulations, the contrast between blood and surround-
ing tissue (whose intensity, assuming T 1Tissue = 500 ms
is displayed on the square at the right bottom of the fig-
ures) is enhanced. As expected, intensity modulation due
to misregistration is smaller than in TOF simulations and
areas of signal drop correlate well with areas of strong
phase gradients in Figs. 8, right and 9, right. In particu-
lar, the strong phase gradients along the walls at stenosis
throat when phase encoding is transverse to the main flow
direction leads to a reduction of apparent throat width,
even if the residual lumen is larger than the voxel reso-
lution. This reduction of apparent throat width is shown
in Fig. 12. Corresponding numerical values are given in
Table 3.

FIGURE 12. Mean image intensity in seven pixels transverse to
the stenosis throat. Mean is performed over five pixels along
the throat. Phase encoding is transverse to the main flow di-
rection (TOF and CE) or aligned with the main flow direction
(TOF 90 and CE 90). Reynolds number at the inlet of the com-
mon carotid artery is 300.

Comparison with Flow Phantoms Experiments

As the geometry considered for MRA simulation is
two-dimensional whereas the flow phantom is three-
dimensional, the following comparison is only qualitative.
In addition, even if the experimental mean velocity at the
inlet of the common carotid artery (0.14 ms−1) closely
matches the value used in the simulations (0.15 ms−1

when the inlet Reynolds number is 300), the experimen-
tal Reynolds number is approximately 900 due to the lower
viscosity of water compared to blood. Consequently, the
experimental flow structure does not exactly correspond
to the simulated one (see Fig. 4 of ref. 23): the main dif-
ference is the spatial extent of the elongated recirculation
area downstream of the stenosis. However, experimental
and numerical values of the spin transit time are identical.
Thus, the orders of magnitude of misregistration and IVPD
should be similar.

Figure 13 (left) shows the TOF-MRA of the flow phan-
tom in a coronal plane nearly corresponding to the plane
used in the calculations, with frequency-encoding trans-
verse to the main flow direction. Areas of maximal intensity
are highlighted (dotted region) in the right part of the same
figure. Signal dropout is observable at the apex of the bi-
furcation, at the beginning of the internal carotid artery and
at the stenosis throat, whereas signal enhancement can be
seen along the nondivider wall of the external carotid artery
and before the stenosis throat, which compares well with

TABLE 3. Stenosis throat width (in pixels).

TOF CE TOF 90 CE 90

Re = 300 3.1 2.0 3.0 2.8
Re = 600 3.5 1.9 3.0 2.8

Note. The stenosis throat width is defined by the width at me-
dian height of the mean image intensity in seven pixels trans-
verse to the stenosis throat (see Fig. 12). One pixel is 0.5 mm ×
0.5 mm. Throat width in the physical plane is 1.4 mm.



FIGURE 13. Flow-phantom experimental TOF-MRA (left) with high intensity areas highlighted by the dotted area (right). Frequency
encoding is perpendicular to the main flow direction.

the corresponding simulated MRA (Fig. 10, right). An addi-
tional area of signal dropout is apparent just downstream of
the stenosis throat, which might be due to flow instabilities
probably arising in the jet area at the high experimental
Reynolds number.

Figure 14 (left) shows the CE-MRA of the flow phantom
with phase-encoding transverse to the main flow direction.
Areas of signal dropout, indicated by arrows on the figure,
compare well with areas of signal dropout in the corre-
sponding simulated MRA (Fig. 11, left), highlighted by
thresholding in Fig. 14 (right). Both their localization and
spatial extent are similar.

In addition, the reduction of apparent stenosis throat
width obtained in CE conditions when phase-encoding is
perpendicular to the flow direction (see Table 3) has already
been reported, both clinically and in the same flow phantom
as we have used.26

FIGURE 14. Flow-phantom experimental CE-MRA (left) and
simulated CE-MRA after thresholding (right). Phase encoding
is transverse to the main flow direction. Arrows indicate areas
of signal loss.

Finally, even if the simulated intensity is significantly
underestimated in bidimensional recirculation areas, sim-
ulated MRAs are in qualitative agreement with MR phan-
tom experiments performed in comparable conditions, for
both TOF and CE sequences and whatever the phase and
frequency-encoding directions.

CONCLUSION

Numerical simulations of MRAs in a severely stenotic
carotid artery bifurcation with realistic shape have been pre-
sented and validated by qualitative comparisons with MR
phantom experiments. To the best of our knowledge, these
simulations, even if bidimensional and steady, are the first
numerical simulations of MRAs in a complex anatomically
realistic geometry.

The numerical method for performing such simulations
is based on the Eulerian approach proposed by Jou and
Saloner9 with further improvements of the phase-averaging
procedure, which have been suggested by the signal pro-
cessing perspective adopted in the current work. In par-
ticular, the approximate calculation of the jacobian of the
transformation between physical and image plane meshes
is avoided, as well as the determination of all the com-
putational mesh quadrangles that map to every voxel of
the image plane. Instead, both phase averaging and mis-
registration effects are determined by a simple geometric
procedure for calculating polygon intersections. This im-
portant simplification could be helpful to extend the present
work to complex three-dimensional geometries: first, the
simple geometric procedure used in the present work can
be applied in spaces of any dimension to determine the
intersection area of general polyhedra4; second, this pro-
cedure can be easily used with unstructured meshes, often
used in complex three-dimensional flow computations.3 In
particular, the simulation of a 2D-TOF-MRA sequence in



a three-dimensional geometry might be done by slightly
modifying the proposed method. To this end, the three-
dimensional velocity field has first to be computed using
a 3D-CFD approach. Then, the transport of magnetization
has to be calculated in three dimensions with the following
modified condition for the excitation range: Eq. (4) is still
holding for spins contained in the slice-selected plane and
M+

z = M−
z , M+

t = M−
t and ϕ+ = ϕ− holds elsewhere. The

procedure for image construction has then to be adapted in
order to account for misregistration in the k direction, trans-
formation T matching the slice-selected plane to a general
surface in three dimensions. This would allow a quantita-
tive comparison of simulations and experiments, required
before further clinical application.

However, the methodology presented here is not valid
for unsteady flows if the time scale of velocity variations
is of same order, or shorter, than the time scale of the
MR sequence. Thus, even under steady inflow conditions,
this methodology is not valid at high Reynolds number
when chaotic instabilities are present, which appear for
smaller Reynolds number in three-dimensional experimen-
tal flows1 than in bidimensional computations.23 On the
contrary, if the time scale of the velocity variations is large
compared to the time scale of the MR sequence, MRAs
of unsteady flows, such as physiological pulsatile flows,
can be simulated by our methodology coupled to the look-
up approach previously used in an idealized model of the
carotid bifurcation.9
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APPENDIX A: CHARACTERISTIC TIMES
FOR PRECESSION

The orders of magnitudes of the characteristic times
for precession in Eqs. 10 and 11 are 2π/(U0γ τG f ) and
2π/(U0γ TpGp), respectively. As the frequency-encoding
and phase-encoding gradients intensities are chosen in order
to scan a field of view corresponding to the domain of
interest, i.e of order L , we have:

γ τG f ∼ γ TpGp ∼ 2π

L
(A.1)

Thus, the characteristic times for precession are the same
in Eqs. 10 and 11 and equal the characteristic spin transit
time L/U0.

APPENDIX B: SIGNAL INTENSITY IN A VOXEL:
ONE-DIMENSIONAL DEMONSTRATION

Let first rewrite Eq. (22) at constant x and thus constant
X :

I (Y ) = 1

(2π )2

∫
y
M(y)δ (y + ỹ(y) − Y ) dy. (B.1)

The corresponding transformation T of space (ŷ = y +
ỹ(y)) is not a bijection. Let us consider the particular case
sketched in Fig. 15, where Y has two antecedents ya and
yb. In that case, Eq. (B.1) leads to

I (Y ) = 1

(2π )2

(∫
E−

M(y)δ (y + ỹ(y) − Y ) dy

+
∫

E+
M(y)δ (y + ỹ(y) − Y ) dy

)
, (B.2)

T being a bijection on each separate domain E− and E+

of the physical plane with inverse transformations respec-
tively being T −1

− and T −1
+ . Thus,

I (Y ) = 1

(2π )2

( ∫
T (E−)

M ◦ T −1
− (ŷ)δ (ŷ − Y )

dT −1
−

d ŷ
(ŷ) d ŷ

+
∫
T (E+)

M ◦ T −1
+ (ŷ)δ (ŷ − Y )

dT −1
+

d ŷ
(ŷ) d ŷ

)
,

(B.3)

or, defining respectively M−/+(y) = M(y) for y in
E−/+ and M−/+(y) = 0 everywhere else:

I (Y ) = 1

(2π )2

(∫
ŷ
M− ◦ T −1

− (ŷ)δ (ŷ − Y )
dT −1

−
d ŷ

(ŷ) d ŷ

+
∫

ŷ
M+ ◦ T −1

+ (ŷ)δ (ŷ − Y )
dT −1

+
d ŷ

(ŷ) d ŷ

)
. (B.4)

Finally:

I (Y ) = 1

(2π )2

(
M− ◦ T −1

− (Y )
dT −1

−
d ŷ

(Y )

+M+ ◦ T −1
+ (Y )

dT −1
+

d ŷ
(Y )

)
. (B.5)

FIGURE 15. Transformation ŷ(y) of the physical plane into the
image plane, with notations used in Appendix B.



The signal intensity I in a voxel V is the sum of I (Y )
over the whole voxel:

I(V ) = 1

(2π )2

( ∫
V
M− ◦ T −1

− (Y )
dT −1

−
d ŷ

(Y ) dY

+
∫

V
M+ ◦ T −1

+ (Y )
dT −1

+
d ŷ

(Y ) dY

)
, (B.6)

which simplifies to:

I(V ) = 1

(2π )2

(∫
T −1

− (V )
M(y) dy +

∫
T −1

+ (V )
M(y) dy

)

= 1

(2π )2

∫
V
M(y) dy, (B.7)

where V is the antecedent of V by T (i.e. T (V) = V ).
Note that the same argument is valid for a higher number of
antecedents or for cases where the number of antecedents
is not uniform throughout the voxel.

APPENDIX C: AREA OF POLYGONS AND
POLYGON INTERSECTIONS

By construction of the CFD grid, E is a simple
quadrangle5 whose area is given by

A(E) = 1

2

N∑
i=1

(xi yi⊕1 − xi⊕1 yi ), (C.1)

where (xi , yi ) are the coordinates of the i th edge of E ,
N = 4, and (N ⊕ 1 = 1).

However, due to misregistration, T (E) is not necessar-
ily a simple quadrangle but may be self-intersecting. In
this case, the intersection point is considered as two su-
perimposed additional vertices. In other words, the self-
intersecting quadrangle is considered as a six vertices sim-
ple polygon, whose area is calculated by Eq. (C.1) with
N = 6.

The procedure for calculating polygon intersections
has been described elsewhere15,16: briefly, the intersection
points of both polygons are calculated and used to generate
a new decomposition in simplices of both polygons, consid-
ering the new edges obtained from the intersection points.
Once the new decomposition is established, a triangle-
based description for polygons16 is used, where they are
represented as layers of original triangles (i.e., triangles
including two consecutive edges of the polygon and the
origin of coordinates). The level of each original triangle
according to an order relationship, the so-called subordina-
tion relationship, is subsequently determined. By definition
of this relationship, an original triangle t = O P1 P2 is sub-
ordinated to an original triangle s = O Q1 Q2 if and only if
t = s or, in the case that t �= s, it exists a point belonging
to the interior of the segment P1 P2 that also belongs to the
interior of s. In addition, the relationship of subordination of

each original triangle Si of the first polygon with respect to
each original triangle U j of the second polygon is studied.
Finally, several triangles from both polygons are selected
according to criterions described in ref. 15. In particular, if
Si is not subordinated to any U j , it does not belong to the
intersection. If Si is subordinated to one and only one U j of
a given level, it belongs to the intersection. The intersection
area is obtained by summing the areas of all the original
triangles belonging to the intersection. Note that this pro-
cedure is robust and efficient, and that no additional study
of particular cases is needed.
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