
HAL Id: hal-03599509
https://hal.science/hal-03599509

Submitted on 7 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Calcium carbonate-calcium phosphate mixed cement
compositions for bone reconstruction

Christèle Combes, Reine Bareille, Christian Rey

To cite this version:
Christèle Combes, Reine Bareille, Christian Rey. Calcium carbonate-calcium phosphate mixed cement
compositions for bone reconstruction. Journal of Biomedical Materials Research Part A, 2006, 79A
(2), pp.318-328. �10.1002/jbm.a.30795�. �hal-03599509�

https://hal.science/hal-03599509
https://hal.archives-ouvertes.fr


Calcium carbonate-calcium phosphate mixed cement compositions for bone

reconstruction

C. Combes1,*,  R. Bareille2, C. Rey1

1CIRIMAT, UMR CNRS 5085, Equipe Physico-Chimie des Phosphates, ENSIACET,

118 route de Narbonne, 31077 Toulouse cedex 4, France
2 INSERM U-577, Laboratoire “Biomatériaux et Réparation Tissulaire”, Université Victor

Segalen Bordeaux 2,146, rue Léo Saignat, 33076, Bordeaux Cedex, France

Abbreviated title: CaCO3-CaP mixed cement compositions

*Corresponding author. Fax: +33 5 62 88 5773

Email-address: Christele.Combes@ensiacet.fr

The original publication is available at www3.interscience.wiley.com

http://dx.doi.org/10.1002/jbm.a.30795



New CaCO3-CaP mixed cement compositions

Abstract

The feasibility of making calcium carbonate-calcium phosphate (CaCO3-CaP) mixed cements,

comprising at least 40 % (w/w) CaCO3 in the dry powder ingredients, has been demonstrated.

Several original cement compositions were obtained by mixing metastable crystalline calcium

carbonate phases with metastable amorphous or crystalline calcium phosphate powders in

aqueous medium. The cements set within at most 1 hour at 37°C in atmosphere saturated with

water. The hardened cement is microporous and exhibits weak compressive strength. The

setting reaction appeared to be essentially related to the formation of a highly carbonated

nanocrystalline apatite phase by reaction of the mestastable CaP phase with part or almost all

of the metastable CaCO3 phase. The recrystallization of metastable CaP varieties led to a final

cement consisting of a highly carbonated poorly crystalline apatite (PCA) analogous to bone

mineral associated with various amounts of vaterite and/or aragonite. The presence of

controlled amounts of CaCO3 with a higher solubility than the apatite formed in the well-

developed calcium phosphate cements might be of interest to increase resorption rates in

biomedical cement and favor its replacement by bone tissue. Cytotoxicity testing revealed

excellent cytocompatibility of CaCO3-CaP mixed cement compositions.

Keywords: bone cement, calcium carbonate, calcium phosphate, FTIR spectroscopy,

cytotoxicity
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Introduction

Among the large variety of biomaterials now available, an increasing number of calcium

phosphate (CaP) ceramics and cements are used as bone substitutes in orthopaedic and

maxillo-facial surgery [1]. Fast-setting CaP bone cements have been studied in depth and

developed in the last few years essentially as bone filling and bone reinforcement biomaterials

due to their excellent biocompatibility and bioactivity. However, even though they can

perfectly fill a bone cavity and be shaped as desired [2-10], one of the main concerns of

surgeons is to reach higher rates of resorption, an improvement of bone reconstruction and to

a lesser extent higher mechanical resistance [11-13].

Several types of setting reaction can be involved in CaP biomimetic cements hardening and

many of them lead to the formation of poorly crystalline apatites with a varying degree of

crystallization and carbonation. The aim of biomimetic bone cements is to disturb bone

functions and properties as little as possible and to behave similarly to bone tissue. From a

biological point of vue, this term defines cements which can reproduce the composition, the

structure, the morphology and the crystallinity of bone crystals [14].

Bone mineral is described as a poorly crystalline non-stoichiometric apatite and several

studies have revealed the existence of non-apatitic, labile environments of mineral ions

probably located at the surface of the crystals [15-16]. These specific ion environments have

been shown to be directly related to the reactivity of poorly crystalline apatites (PCA) and

bone mineral [16-17]. The solubility of apatites depends on the presence of vacancies and the

molar Ca/(P+C) ratio (P for phosphate ions and C for carbonate ions) [18]. Carbonate ions can

be incorporated into the apatite stucture and substitute for anions (phosphates and/or

hydroxide ions) [19]. The lower this ratio, the higher the amount of lacunae and the less the

cohesiveness of the crystals which implies higher solubility. Other physical chemical factors

such as porosity or the presence of labile non-apatitic environments have been found to affect

cement biodegradation properties.

The resorption properties of mineral biomaterials are generally believed to be related to the

solubility of their constitutive CaP phases. Several ceramic and cement compositions have

been studied to improve the bioactivity and biodegradation properties [14, 20]. For example,

the concept of biphasic calcium phosphate (BCP) ceramics is based on the optimum balance

between more stable (hydroxyapatite, HA) and more soluble (tricalcium phosphate, TCP)

phases to control material resorption [21]. This is based on the dissolution/transformation

processes of TCP and HA which depend on several factors such as the composition of the
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phases and the sintering temperature and conditions. Another example is coralline HA, a

carbonated hydroxyapatite which is prepared by the hydrothermal conversion of calcium

carbonate from coral in the presence of ammonium phosphate [22-23]. It has been suggested

that controlling the thickness of hydroxyapatite on a CaCO3 matrix could control the rate of

resorption of the implant and its replacement by newly formed bone [24]. The concept of

biphasic ceramics has however sparsely been developed in view of controlling the resorption

of ionic cements [25-29]. Calcium carbonate compounds have a higher solubility than apatite

[30-31] and although some mineral cements containing calcium carbonate have already been

proposed, the use of very large proportions of calcium carbonate (≥ 20% w/w in the dry

powder ingredients) opens new possibilities which have not yet been explored [4, 26, 32-33].

Several varieties of calcium carbonate (in increasing order of solubility of the CaCO3 phase:

calcite (C), aragonite (Ar), vaterite (V) and amorphous calcium carbonate (ACC)) can be

encountered in nature [34]. Calcium carbonates of biological origin (nacre and coral) and their

derivatives have been used as biocompatible and bioactive bone substitutes in the form of

powder, porous ceramic or associated with organic gels for more than 20 years [35-39].

Very recently, Combes et al. demonstrated the feasibility of calcium carbonate-based

biomedical cements consisting of 100% CaCO3 [40-42]. In order to propose a wide range of

cement compositions, we present here a CaCO3-CaP mixed cement concept which is based on

the idea that biphasic cements could be prepared which could behave in the same way as

biphasic ceramics. Calcium carbonate and biomimetic apatites appear to be one of the most

interesting associations for bone filling and repair as biodegradation could be controlled by

the proportion of the more soluble CaCO3 in the final cement composition. The CaCO3-CaP

mixed cement concept is based on the reactivity of biphasic or triphasic mixtures of highly

reactive calcium carbonate and calcium phosphate powders comprising amorphous and/or

metastable crystalline phases in the presence of small amounts of aqueous medium. Such

cements can be simply obtained by mixing calcium carbonate and calcium phosphate phases

in aqueous media. Moreover, cements, unlike materials obtained by high temperature

sintering or natural materials, can be intimately associated with biologically active molecules

(specific proteins, antibiotics, etc.) to improve bone reconstruction [43-44].

In this paper we present our preliminary investigations on this new type of bone cement:

CaCO3-CaP mixed cements. FTIR spectroscopy and X-ray diffraction were performed to

understand the reactions responsible for the setting and hardening of these cements. Setting

kinetics and mechanical properties were also investigated. Cytoxicity tests, a prerequisite

before in vivo evaluation, were also performed.
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Materials and Methods

Preparation and characterisation of powders

Calcium carbonate crystalline phases (aragonite (Ar) and vaterite (V)) were prepared by

double decomposition between a calcium chloride solution (7.35 g in 500 ml of deionized

water for Ar; 36.75 g in 250 ml of deionized water for V) and a sodium carbonate solution

(5.30 g + 0.08 g strontium chloride in 500 ml of deionized water for Ar; 26.50 g in 250 ml of

deionized water for V) at 100°C for aragonite and at 30°C for vaterite. Then the precipitates

were filtered and washed with 1 litre of deionized water.

Crystalline and amorphous calcium phosphate phases were prepared by double decomposition

between a calcium nitrate solution (86.74 g in 600 ml of deionized water for dicalcium

phosphate dihydrate (DCPD or brushite; CaHPO4. 2H2O); 47 g in 500 ml of deionized water

+ 20 ml of ammonium hydroxide solution at 20 % for amorphous tricalcium phosphate

(TCPam; Ca3(PO4)2. nH2O)) and an ammonium dihydrogenphosphate solution (42.26 g in

1400 ml of deionized water + 20 ml of ammonium hydroxide solution at 20 %) for DCPD

synthesis and a di-ammonium hydrogenphosphate solution (26 g in 1300 ml of deionized

water + 20 ml of ammonium hydroxide solution at 20 %) for TCPam. Then the precipitates

were rapidly filtered and washed (with 2 litres of deionized water for DCPD and 7 litres of

deionized water + 35 ml of ammonium hydroxide solution at 20 % for TCPam). Heat

treatment of the amorphous tricalcium phosphate at 400°C during 30 minutes was then carried

out to eliminate water associated with crystals while keeping amorphous structure.

After filtration and washing, the precipitates were lyophilised and the powders stored in a

freezer.

All the synthesised powders were characterised by transmission FTIR spectroscopy from KBr

pellets (Perkin Elmer FTIR 1600 spectrometer) and X-ray diffraction (Inel CPS 120

diffractometer) using a Co anticathode.

Preparation and characterisation of the cements

The cement powders were made up of a mixture of metastable calcium carbonate and calcium

phosphate phases; CaCO3 made up at least 40 % (w/w) of the cement dry powder ingredients.

The cement paste was obtained by mixing the powders, which had been first homogenised in

a mortar, with an appropriate amount of liquid phase (either deionized water or sodium

chloride solution (0.9 % w/w)). The amount of solution was determined to allow the

formation of a mouldable paste. We chose to test the use of isotonic solution (0.9 % (w/w)
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NaCl solution) as it is already the liquid phase of some cements (like alpha-BSM®) and

because it could open the possibility to use blood serum as liquid phase.

The wet paste was placed in a sealed container saturated with H2O at 37°C for setting and

hardening. In vitro cement evolution in an atmosphere saturated with water can be compared

to in vivo cement evolution in contact with biological tissues.

The carbonate content of cements was checked using a CO2 coulometer (Coulometrics Inc.,

USA) that measures the CO2 released during sample dissolution in acidic conditions (HClO4,

2M) and in a closed system. The CO2 released is transferred into a photometric cell in a non-

aqueous medium and titrated through an acid-base reaction [45].

To further characterize the carbonated apatite formed after cement setting and hardening, we

decomposed the ν2CO3 domain according to the work of Bohic and co-workers [46]. Three

bands can be detected by FTIR spectroscopy at 867, 872 and 879 cm-1 which have been

respectively assigned to type A carbonated apatite (carbonate ions substituted for OH ions in

the hydroxyapatite structure), type B carbonated apatite (carbonate ions substituted for

phosphate groups in the hydroxyapatite structure) and non-apatitic carbonate ions probably

located at the surface of the crystals. In addition, the ν2CO3 bands may be superimposed on a

broad band due to HPO4
2- ions which might be present in such PCA analogous to bone

mineral. This band has been shown to interfere on the low wavenumber side of the ν2CO3

domain [47]. However, the broadness of this band does not cause significant interference with

the CO3
2- band. The evaluation of carbonate type A/type B and non-apatitic/type B ratios

(noted A/B and non-Ap/B ratios, respectively) by FTIR spectroscopy was performed by

curve-fitting in the ν2CO3 domain (900-800 cm-1) using Grams/32 software (Galactic

Industries Corporation). In this domain, the CaCO3 crystal types (calcite, aragonite, vaterite)

showed a sharp and intense absorption band at 855 cm-1 for aragonite and 875 cm-1 for

vaterite and calcite.

Observation of cements by scanning electron microscopy (SEM) was carried out using a Leo

435 VP microscope. Small pieces of hardened and dried cement samples were placed and

fixed on a support with double faced carbon tape.

Setting time and compressive strength measurements
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The setting rate of the cement was followed with a TA–XT2 Texture Analyser fitted with a

cylindrical needle (0.7 mm in diameter). The setting time was considered to be reached when

the paste developed a resistance to needle penetration greater than 600 g/mm2.

The compressive strength of the cement was evaluated using a Hounsfield Series S apparatus.

The cement paste was placed in a cylindrical mould (height / diameter ratio ≅ 2 and diameter

equal to 10.5 mm) and packed tightly in order to eliminate air bubbles trapped in the paste.

The paste was left to set and harden at 37°C in a sealed container saturated with water for 1

day. The hardened cement was withdrawn from the container and left to dry for 1 week at

37°C. The cement was then removed from the mould and the compressive test performed.

Indirect cytotoxicity evaluation

The indirect cytotoxicity was assessed by an extraction method according to NFEN30993-5

ISO 10993-5 [48-49]. Osteoprogenitor cells arising from human bone marrow according to

Vilamitjana-Amédée et al. with some modifications [50] were used for testing the extracts

and cultured in Iscove Modified Dulbecco's Medium (IMDM, Sigma Aldrich, France)

containing 10% foetal calf serum (FSC, Sigma, France).

The cells were seeded at a density of 40 000 cells/cm2 in 96-well microtiter plates (Nunc,

Denmark) and the culture was maintained at 37°C for 96 h after cell plating. At

subconfluency the medium was replaced by the cement extraction vehicle. To obtain

extraction vehicles, fragments of sterile hardened cement were immersed in IMDM. The ratio

of the sample surface area to the volume of the vehicle was 5 cm2/ml. Extractions were

performed in borosilicate glass tubes at 37°C for 120 h without stirring according to the

standard procedures. Borosilicate tubes containing identical extraction vehicles with either no

cement or a solution of phenol at a concentration of 6.4 g/l (known to be cytotoxic) were

processed under the same conditions to provide negative and positive controls, respectively.

The medium was removed and replaced by control extracts at various concentrations (100%

(v/v), 50% (v/v), 10% (v/v), 1% (v/v)) in the culture medium for 24 h at 37°C. At the end of

the extract incubation period, tests were performed: cell viability (Neutral Red assay) and cell

metabolic activity (MTT assay) [51-52]. The intensity of the colors obtained (red and blue

respectively) is directly proportional to the viability and metabolic activity of the cell

population and inversely proportional to the toxicity of the material. Indirect cytotoxicity tests

were duplicated for each cement composition. The mean values of absorbance measurements

obtained from colorimetric tests and their corresponding standard deviation (± SD) were
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calculated. The results were expressed as a percentage of the negative control (plastic) tested

during the same experiment.

Results

Three examples of initial powder mixtures that lead to hardened cements are reported in table

1. The liquid-to-solid ratio (L/S) ranges between 0.5 and 0.72 depending on the composition

of the powder mixture. For a given powder mixture composition, this ratio can vary to some

extent but the value reported corresponds to the optimum final mechanical resistance of the

cement.

The setting time and the compressive strength of (Ar+V+Br), (V+Br) and (V+TCPam)

cements are reported in table 1. Just after mixing the powders with the liquid phase, the paste

was viscous and easily mouldable for several minutes. The cements set within one hour and

hardened. Slower setting (i.e. longer setting times) and higher compressive resistance were

measured for cements prepared with vaterite and brushite mixtures. In all cases, the

compressive strength remained rather weak (≤ 13 MPa).

Figure 1 shows the X-ray diffraction (XRD) diagrams of two examples of CaCO3-CaP mixed

cements after setting and hardening. The final composition of such cements comprises a

poorly crystalline apatite analogous to bone mineral which can be associated with a calcium

carbonate crystalline phase (vaterite, aragonite or calcite) depending on the relative amount of

phosphate compound in the initial mixture. For example, vaterite was present in the final

composition of (V+Br) cement (see figure 1) and also of (V+TCPam) cement. The XRD

diagram of the (V+TCPam) cement (not presented) was  similar to that of (V+Br) cement. A

small amount of brushite was seen to remain in the hardened (V+Br) cement. For (Ar+V+Br)

cement, no crystalline CaCO3 phase was detected by X-ray diffraction analysis and the

corresponding X-ray diagram is quite analogous to that of bone (see figure 1).

The FTIR spectra of different mixed CaCO3-CaP cements analyzed after setting and

hardening at 37°C are presented in figure 2. The analogy of (Ar+V+Br) cement with bone

mineral is confirmed by FTIR spectroscopy. However, we can clearly notice the higher

intensity of the absorption bands in the ν2CO3 and ν3CO3 domains revealing the presence of a

highly carbonated apatite and/or calcium carbonate compounds. The decomposition of the

ν2CO3 domain of (Ar+V+Br) cement spectrum into 6 subbands (see figure 3) revealed the

formation of an AB type carbonated apatite analogous to bone mineral. The calculated area

ratios based on FTIR data were 0.40 and 0.88 for A/B and non-Ap/B ratios respectively.

These different values indicate that B type carbonate is the main species and that a large
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proportion of CO3
2- (non-apatitic CO3

2-) is located at the surface of apatite crystals. The broad

band, assigned to HPO4
2- ions, appeared clearly on the low wavenumber side of the ν2CO3

domain.

In addition, the decomposition of the ν2CO3 domain of (Ar+V+Br) cement reveals a peak at

855 cm-1 assigned to carbonate groups in aragonite. The presence of a small amount of

aragonite associated with PCA was confirmed by the presence of the two characteristic

absorption bands of aragonite at 700 and 713 cm-1 in the ν4CO3 domain (figure 2). These

results showed that the detection limit of FTIR spectroscopy for aragonite is higher than that

of X-ray diffraction.

For (V+Br) cement, the characteristic bands of vaterite at 875 cm-1 and 745 cm-1 can be

distinguished in the ν2CO3 and ν4CO3 domains respectively which confirmed the presence of

untransformed vaterite in the hardened cement also detected by X-ray diffraction analysis.

For the two kinds of cement, we observed a decrease of the FTIR band width of all CO3 and

PO4 vibration bands compared to those of bone mineral suggesting a better crystallinity of

PCA in cement than in bone. The X-ray diffraction peaks for bone also appeared broader than

those of the cements (see figure 1).

The total carbonate content in the initial powder mixture and the hardened cement for three

examples of CaCO3-CaP mixed cements are reported in table 2. It varies from 10 % to 21 %

for (Ar+V+Br) cement and (V+TCPam) cement respectively. In all cases, the strong decrease

of CO3
2- content for hardened cements compared to powder mixtures indicates that there is

release of CO2 during the setting reaction. The formation of a highly carbonated apatite

analogous to bone mineral was confirmed for (Ar+V+Br) cement; the weight proportion of

CO3
2- was 10 %. This value is in the range of carbonate contents found for human bone.

Figure 4 shows SEM micrographs of (V+TCPam) and (V+Br) cement. The hardened cements

appeared to be mainly formed of a poorly crystalline phase. For (V+Br) cement, the platelet

crystals of brushite disappeared after setting and hardening.

Many spherical micropores can be seen in (V+TCPam) cement (see figures 4c and 4d). These

micropores do not however seem to be interconnected.

The results of the indirect biocompatibility study following incubation of cells with cement

extracts at different dilutions, presented in figure 5, showed no cytotoxicity effect of cements

prepared with (Ar+V+Br) and (V+Br) mixtures. Values of cell viability obtained for undiluted

extracts were (102 ± 10 ) % for (Ar+V+Br) and (114 ± 14) % for (V+Br) which are close to

the 100% value for the referenced control (plastic). The results of metabolic activity
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measurement for undiluted extract were also close to the 100 % value for the referenced

control (plastic) ((94 ± 6 ) % for (Ar+V+Br) and (100 ± 13) % for (V+Br)). No significant

difference was ever noted for the two cement compositions or between the different extract

dilutions (1 to 100 %).

Discussion

CaCO3-CaP mixed cement compositions

The calcium carbonate-calcium phosphate (CaCO3-CaP) mixed cements presented in this

paper and the trial compositions, especially (V+Br; 1:1) and (V+TCPam; 1:1), are the first

CaCO3-CaP mixed cements for biomedical applications with more than 20 % calcium

carbonate(s) in the initial powder mixtures. Several CaP biomedical cement formulations that

incorporate a certain proportion of CaCO3 have been designed to improve the mechanical

properties of the cement or its compliance or to create macroporosity but the proportion of

calcium carbonate in such cement compositions did not exceed 15% (w/w) and the final

product did not contain a calcium carbonate phase [4, 26, 32-33]. However, we can note that

very recently Combes and co-workers demonstrated the feasibility of calcium carbonate

biomedical cements composed of 100 % CaCO3 [41].

The CaCO3-CaP mixed cement compositions proposed here can be prepared straightforwardly

by simply mixing water (liquid phase) with calcium carbonate phase(s) and a calcium

phosphate phase (solid phase) which can be easily obtained by precipitation. The initial

composition of CaCO3-CaP mixed cements comprised a powder biphasic or ternary mixture

including metastable calcium carbonate crystalline phase(s) (≥ 40 % w/w in the dry powder

ingredients) and a crystalline or amorphous calcium phosphate phase.

Among all the powder combinations tested, three dry powder compositions including at least

42 % of calcium carbonate phase(s) appeared as promising formulations for CaCO3-CaP

mixed cements. However, the initial cement compositions are not limited to the three

presented in table 1 and other (CaCO3+CaP) powder mixtures ((Ar+Br; 1:2; L/S = 0.5) and

(V+Ar+TCPam; 1:1:3; L/S = 0.8) mixtures for example) were in fact tested but led to a

setting paste with poor compressive strength. However, not all the parameters of these

complex mixtures have been optimised and mechanical resistance could certainly be

improved with further investigations on these cement compositions.

In a preliminary study of CaCO3-CaP mixed cement compositions, especially initial mixtures

of aragonite and brushite (1:2 (w:w)) for example), FTIR and XRD analyses revealed that the
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resulting cement was made up of brushite, aragonite and a small quantity of poorly crystalline

apatite, the formation of which appeared to determine cement setting. This was an original

and interesting final composition that can be compared to the brushite-type calcium phosphate

cement setting reaction which produces DCPD [3]. The final composition of (Ar+Br) cement

associating mostly DCPD and aragonite which have a higher solubility than PCA, probably

infers a high biodegradation rate along with less acid release than for brushite calcium

phosphate cements. Indeed, aragonite (basic component) would partly moderate the drop of

pH accompanying the transformation of DCPD into PCA. However, as the setting and

hardening time of (Ar+Br) cement can be longer than 12 h, we decided to discard this

composition from future investigations.

FTIR spectroscopy and X-ray diffraction analyses showed that for the cement compositions

presented herein a poorly crystalline apatite (PCA) analogous to bone mineral (AB type

carbonated apatite) associated or not with untransformed crystalline CaP and/or CaCO3

phases is involved in the final cement compositions. In addition, the preparation of CaCO3-

CaP mixed cements either with water or NaCl solution (0.9 % w/w) did not significantly

modify the composition, the setting or hardening reactions.

AB type carbonated apatites analogous to bone mineral can be described by the following

general chemical formula [16]:

Ca10-x (PO4)6-x(HPO4 and CO3)x (OH and ½ CO3)2-x

For (Ar+V+Br) cement, the high value of the non-Ap/B ratio determined from FTIR data

indicated that a large proportion of carbonate ions in the PCA were in the hydrated layer (non-

apatitic CO3
2- ions) [16, 18]. This observation is interesting as carbonate species slow down

the maturation of apatite nanocrystals and stabilise them in their native very reactive form.

In addition, the presence of non-apatitic HPO4
2- and PO4

3- groups, located in the hydrated

PCA surface layer, can be revealed by decomposition of the ν4 PO4 band of the cement FTIR

spectrum [16, 18].

An interesting ability of these CaCO3-CaP mixed cement compositions is to reach very high

carbonate contents and even to produce in most cases biphasic systems (CaCO3 and CaP

compounds) offering a wide range of CaCO3-CaP mixed final compositions. Indeed, by

comparing (V+Ar+Br) and (V+Br) cement final composition (see figure 1), we can clearly see

that the proportion of calcium carbonate associated with PCA varied significantly and we can

consider preparing and adapting the cement composition and thus its biodegradation
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properties depending on the biomedical applications. However, from these preliminary

investigations it appears difficult to precisely anticipate the final cement composition due to

the CO2 release that occurs during the setting and hardening reactions (see equation 1

hereafter). The composition of the apatite formed cannot be precisely determined due to the

presence of CaCO3 phase(s) remaining in the hardened cement and to the lack of analytical

methods to evaluate the proportion of CaCO3 in these biphasic cements. Part of our future

investigations into such cement compositions will focus on setting-up a quantitative method

based on FTIR spectroscopy and/or X-ray diffraction analysis to characterize the hardened

cement composition and thus indirectly quantify the CO2 released during cement preparation.

The possibility of having a large amount of calcium carbonate associated with PCA in the

hardened cement is an interesting feature. Indeed, due to the higher solubility of calcium

carbonate compared to apatite, we can expect a faster biodegradation rate for CaCO3-CaP

mixed cements than for CaP cements. The association of CaCO3 and PCA in the cement final

composition can be compared to the well-developed biphasic calcium phosphate ceramics

associating CaP phases with different solubilities (hydroxyapatite and tricalcium phosphate

for example) for a better control of bioceramic biodegradation and bone reconstruction

processes [21].

As the CaCO3-CaP mixed cement concept presented in this paper involved the formation of

an apatitic phase analogous to bone mineral after setting, we can consider such compositions

as biomimetic like most of the well-known and studied CaP cements [14].

Setting and hardening reaction

In the case of CaCO3-CaP mixed bone cements, the type of reaction responsible for setting

and hardening differs from that of CaP-based cements in several aspects. CaP biomedical

cements can be classified into two main categories: apatite and brushite cements that

respectively lead to hydroxyapatite and brushite (dicalcium phosphate dihydrate: DCPD)

which could be converted into apatite in vivo [1, 53-54]. Two main types of setting reactions

can be distinguished for CaP cements: acid-base reaction and/or phase transformation (fast

hydrolysis for example) of a metastable CaP phase into apatite associated with respectively

more or less pH variation of the paste during setting. The involvement of acid-base and/or

phase transformation reactions in CaCO3-CaP mixed bone cements will be discussed

hereafter.
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We have shown that the total content of CO3
2- in the hardened cement was, in all cases, lower

than the initial CO3
2- level in the powder mixture.

In the case of the CaCO3-brushite mixed cements presented herein ((V+Br) and (Ar+V+Br)

cements for example), the setting reaction appeared to be essentially related to the formation

of a highly carbonated nanocrystalline apatite analogous to bone mineral by reaction of

DCPD onto part or almost all of the CaCO3 metastable crystalline phase(s). Indeed, for all

cement compositions tested, no setting occurs if PCA is not formed. The decrease of the

CO3
2- level is related to the reaction of brushite hydrogenophosphate ions on carbonate ions of

vaterite or aragonite according to the following chemical reaction:

2 HPO4
2- + CO3

2-→ 2 PO4
3- + CO2 + H2O Eq. (1)

As vaterite is a slightly basic component and brushite an acidic one, this setting reaction can

be related to a rather slow acid-base setting reaction of CaP cements. The release of CO2

induces microporosity (see figure 4) in the hard cement without visible swelling. In addition,

the water molecules from the DCPD transformation and the above reaction fill up the pores

between crystals and participate in the formation of a hydrated layer on the PCA nanocrystals.

SEM observations (figures 4a and 4b) support the fact that DCPD was transformed into PCA

by a dissolution-reprecipitation process as platelet crystals of DCPD are no longer visible in

the hardened cement and the remaining phase appeared poorly crystallized. However, a few

lentil-like crystals of vaterite can be distinguished on the surface (see figure 4b).

In the case of (V+TCPam) cement, upon contact with an aqueous solution, fast hydrolysis of

the amorphous tricalcium phosphate into a poorly crystalline apatite phase is involved in the

cement setting reaction. A reaction between phosphate and carbonate ions (equation 1) can

also occur and participate in the formation of a poorly crystalline carbonated apatite.  This

cement composition can be related to the α-BSM cement concept (ETEX Corp.) for which

the setting reaction also involves the fast hydrolysis of the amorphous CaP phase into apatite

[53]. The crystalline metastable CaP phase (DCPD) in the α-BSM cement composition acts

as a template to facilitate apatite crystal nucleation and growth. By analogy with α-

BSMcement, which is made up of a mixture of DCPD and TCPam, a preliminary study on

(V+TCPam) cement showed that the presence of metastable crystalline phases such as vaterite

appears essential for cement setting and hardening since upon admixture with water, pure

TCPam powder alone did not harden whereas the paste formed by a mixture of TCPam and

vaterite set and hardened. However, we have shown that a large amount of untransformed
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vaterite can be detected by FTIR spectroscopy and X-ray diffraction techniques in the

hardened cement suggesting that, in CaCO3-CaP mixed cements, the initial vaterite crystals

serve as a template for the crystallization of a more stable calcium phosphate phase.

Furthermore, the stabilisation of vaterite and other calcium carbonate crystalline phases in the

presence of phosphate ions has been reported by several authors [55-56]. Thus, the

dissolution-reprecipitation process of vaterite can be (partly) inhibited due to the adsorption of

phosphate ions onto the CaCO3 crystal surface.

In the case of (V+TCPam) cement, the formation of OH- and HPO4
2- ions during the

formation of the poorly crystalline apatite from TCPam hydrolysis can be related to the

hydrolysis of PO4
3- ions according to equation 2 [57]:

PO4
3- + H2O → OH- + HPO4

2- Eq. (2)

This chemical reaction is endothermic which could explain the necessity to warm the paste, to

37°C for example, for faster setting.

For the (V+TCPam) cement, the slight acidification of the paste during the hydrolysis of

TCPam along with the presence of carbonate ions from the calcium carbonate source could

explain the release of part of the carbonate. In addition, a fraction of carbonate ions can also

be incorporated in the apatite lattice.

We can assume that the reactions involved during CaCO3-CaP mixed cement formation do

not cause a significant pH variation of the paste due to  the presence of large amounts of

CaCO3 (basic component) that can moderate the pH drop during PCA formation. Moreover,

no visible change in pH (solution color) was observed when fragments of hardened cement

were immersed and equilibrated in the IMDM solution used for the indirect cytotoxicity test

which means that the products of the setting reaction and/or the residues are, as expected, not

highly acidic and/or basic compounds. In addition, no significant rise in paste temperature

was detected during paste preparation, setting or hardening.

Even if the result of the setting reaction might be different in vivo and in vitro especially due

to the reactivity of the phases in the hardened cement, one of the remaining questions

concerned the future of these constituting phases once implanted in vivo. The evolution of

DCPD and PCA in vivo is quite well documented as these CaP phases are involved in the

well-developed CaP bioceramics and cements whereas no precise data have been reported for

the in vivo physical-chemical evolution of metastable calcium carbonate phase(s) such as
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vaterite or aragonite. Unlike for calcium phosphates, only a few studies reported the level of

saturation of biological fluids with respect to calcium carbonate crystalline phase [58-59].

However, the work of Maeda et al. showed the high apatite-forming ability of titania-vaterite

composite in simulated body fluid solution due to the high solubility of vaterite suggesting

that vaterite is unstable in biological fluids [60]. Thus, we can consider that metastable CaCO3

(vaterite) in hardened cement will dissolve or be transformed rather rapidly after implantation.

Properties of CaCO3-CaP mixed cements

Even though the compressive strength of the CaCO3-CaP mixed cement remained poor in all

cases (≤ 13 MPa), this would not be determinant for in vivo applications such as bone filling

especially in low mechanical stress locations. Moreover these properties can probably be

improved by optimising the specific surface area of the reactive powders and thus the L/S

ratio.

The excellent cytocompatibility of the CaCO3-CaP mixed cement compositions revealed by

indirect cytotoxicity evaluation is probably related to the stability of pH involved in the

setting reaction and the low solubility of the CaCO3 and CaP in the final composition.

Another advantage of such CaCO3-CaP mixed cements is that their in vivo biodegradation

would release calcium, carbonate and phosphate ions and/or CO2 which are non-cytotoxic

metabolites as they are under the control of the organism.

A recent study on fresh anatomical pieces, showed that we can consider preparing CaCO3-

CaP mixed cements with the patient’s blood as liquid phase [40]. In addition, we can take

advantage of the control of pH, temperature and final cement composition (resorption

properties) of CaCO3-CaP mixed cement by associating the paste with biologically active

components (growth factors, specific proteins, platelets) promoting tissue repair, which could

be progressively released after implantation.

Conclusions

Several original CaCO3-CaP mixed cement compositions containing at least 40 % calcium

carbonate (w/w in the dry powder ingredients) have been proposed. The setting and hardening

reaction is essentially related to the formation of a poorly crystalline carbonated apatite and

the composition of the hardened cement can be biphasic (metastable crystalline CaCO3 phase

and poorly crystalline apatite). The possibility to control and adapt the composition of the
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final phase(s) and consequently the cement biodegradation properties is an interesting feature

of these cements.

We did not detect any toxic effects on human osteoprogenitor cells suggesting good

cytocompatibility of the CaCO3–CaP mixed cement compositions.
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Figure 1: X-ray diffraction diagrams of examples of calcium carbonate-calcium phosphate

mixed cement compositions after setting and hardening compared to the bone X-ray

diffraction diagram. (V: vaterite, Ap: apatite, Br: brushite).

Figure 2: FTIR spectra of examples of calcium carbonate-calcium phosphate mixed cement

compositions after setting and hardening compared to the bone FTIR spectrum (V: vaterite,

Ar: aragonite).

Figure 3: Decomposition of the ν2CO3 band (900-800 cm-1) of (Ar+V+Br) cement FTIR

spectrum (4 main subbands: type A (A), type B (B) and  non-apatitic (non-Ap) carbonate ions

in apatite and carbonate ions (Ar) in aragonite).

Figure 4: SEM micrographs of two types of CaCO3-CaP mixed cements:

a) and b) (V+Br) cement

c)  and d) (V+TCPam) cement

Figure 5: Indirect cytotoxicity evaluation of two types of CaCO3-CaP mixed cement

compositions ((Ar+V+Br) and (Br+V)):

a) Cell viability

b) Metabolic activity
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 Table 1: Examples of calcium carbonate-calcium phosphate mixed cement compositions and
properties.

Powder

mixture

Powder ratio

(w:w)

L/S

(w/w)

Major final

phases

Setting

time

(min)

Compressive

strength

(MPa)

(V + Br) 1:1 0.50 PCA+V 60 13.0

(V + TCPam) 1:1 0.72 PCA+V 25 1.8

(Ar + V + Br) 1:2:4 0.71 PCA 30 7.4

   L = liquid; S = solid
   V = vaterite, Ar = aragonite
   Br = Brushite or dicalcium phosphate dihydrate (DCPD)
   TCPam: amorphous tricalcium phosphate
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Table 2: Carbonate content in CaCO3-CaP mixed cement final compositions.

Powder
mixture

Powder
weight ratio

Initial powder mixture
CO3

2- content (% w/w)a
Final cement CO3

2- content
(% w/w)b

V + Br 1:1
(L/S = 0.5)

30.0 % 17.5 %

V + TCPam 1:1
(L/S = 0.75)

30.0 % 21.2 %

Ar + V + Br 1:2:4
(L/S = 1)

26.7 % 10.0 %

L = liquid; S = solid
V = vaterite, Ar = aragonite
Br = Brushite or dicalcium phosphate dihydrate (DCPD)
TCPam: amorphous tricalcium phosphate
a Carbonate content calculated
b Carbonate content measured by coulometry
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Figure 1

10 20 30 40 50 60 70

V

V
V

V

V

V

V

V+Br

V

Ap+Br

Ap

2θθθθ

(V+Ar+Br) cement

Bone

(V+Br)
cement

ApBr

Br
ApAp



New CaCO3-CaP mixed cement compositions

Figure 2
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