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This study shows that Fe and Mn bearing phases in Al–Si alloys containing a low level of Fe 

and Mn are essentially cubic α-Al(Fe, Mn)Si with Im3 space group and δ-AlFeSi which is 

observed with both tetragonal and orthorhombic structures. As this latter phase is not 

expected to form according to the ternary Al–Fe–Si phase diagram, the present results suggest 

that it is stabilized in the quaternary Al–Fe–Mn–Si system with respect to other phases such 

as β-Al4FeSi.  
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 An analysis of the solidification sequence of some brazed aluminium clad alloys was 

presented previously [1] and [2]. The material consisted of a core made of AA3003 

(essentially an Al–Mn alloy) clad on its two faces with AA4343. This latter alloy is an Al–Si 

alloy with some low level iron. During brazing, the assemblage is heated for a few minutes at 

a temperature where the overlay melts whilst the core material remains solid. Most of the 

liquid fills the joints between the various parts in contact but some remains on the flat 

surfaces. After brazing, both the joint and the re-solidified overlay were slightly enriched in 

Mn due to partial dissolution of the core material during the process. This enrichment leads to 

the formation of precipitates containing Al, Si, Mn and Fe in addition to the (Al) matrix and 

the silicon lamellae. In the joint, these precipitates were either blocky in a three-phase eutectic 



with (Al) and silicon lamellae or Chinese-script in two-phase deposits with (Al) [1] and [2]. In 

the re-solidified overlay, the precipitates were again blocky in the three phase eutectics in the 

grain boundaries between the (Al) grains, or plate-like, when isolated inside or at the surface 

of the (Al) grains, as illustrated in Figure 1.  

Figure 1. SEM micrograph of the surface of the re-solidified cladding (SEI detector, 15 kV, 

32 mm, tilt 54°).  

 

 

Energy dispersive X-ray (EDX) spectroscopy analyses performed in a scanning electron 

microscope (SEM) showed that both types of precipitates have similar silicon content, 10–

12 at.%, with Mn and Fe apparently substituting for each other with a sum of their contents at 

15–16 at.% [1] and [2]. By comparison to other literature data, these results suggested that 

these precipitates correspond to the cubic α-Al(Mn,Fe)Si phase most often designated as 

Al 15(Fe,Mn)3Si2 [3]. However, there is so much controversy in the literature concerning the 

structure and composition of the compounds appearing upon solidification of aluminium 

alloys containing Si, Mn and Fe [4] and [5], that it was decided to resort to transmission 

electron microscopy (TEM) examination coupled with EDX analysis to confirm the previous 

conclusion.  



 To prepare TEM samples, sheets of the flat surfaces of the brazed assemblages were polished 

down to a thickness of 150 µm while preserving intact one of the re-solidified surfaces. Disks 

with a diameter of 3 mm were then cut by a mechanical punch and the side opposite to the 

initial surface was gently dimpled before ion milling to transparency with a precision ion 

beam polishing machine (Gatan PIPS™). Ion polishing was done for a few hours until a hole 

had formed. During this step, the disk was observed periodically with an optical microscope 

to ensure that the hole was appropriately located. Figure 2 presents an optical micrograph of 

two of the thin foils thus prepared, where precipitates located near the hole have been 

indicated with arrows. All the observations reported below were made on these two samples 

which will be referred as samples 1 and 2. On the micrographs in Figure 2, the grain 

boundaries are easily recognized by their darker contrast. It is seen that the lower precipitate 

in sample 1 is located within an (Al) grain while the other precipitate as well as the one in 

sample 2 are within a grain boundary.  

Figure 2. Optical micrographs of two TEM foils ((a) sample 1; (b) sample 2) prepared by ion 

milling showing the hole and precipitates located either in a grain boundary between (Al) 

grains or within an (Al) grain.  

 

 



TEM investigations were carried out on a JEOL JEM-2010 operating at 200 kV and fitted 

with a double tilt specimen holder allowing tilts of ± 30° around two orthogonal axes. 

Chemical analyses were achieved by EDX spectroscopy coupled with the TEM, with a spot 

size of about 40 nm. The EDX spectra were recorded with an acquisition time of 60 s, and 

treated semi-quantitatively using the k-factor and including all usual corrections (absorption 

and fluorescence).  

 Figure 3 shows a TEM micrograph of each of the two precipitates of sample 1 identified in 

Figure 2. Figure 3(a) and (b) relate respectively to the precipitate in the (Al) grain and to the 

one in the grain boundary. The numbers on the micrographs refer to locations where EDX 

measurements were performed. The whole set of measured compositions is listed in Table 1.  

Figure 3. Bright field images showing the two kinds of precipitates in sample 1: (a) precipitate 

in aluminium grain; (b) precipitate in the grain boundary.  

 

 



Table 1.  

Compositions (at.%) measured by EDX in the TEM on the two precipitates in sample 1  

 
Precipitate in the (Al) grain  

 
Precipitate in the grain boundary  

 

 1 2 3 4 1 2 3 4 5 6 

Al  75 71 77.8 73.5 54 58.6 49 88 100 87 

Si 10.5 10 10.2 9.7 35 29.8 42.5 8 – 8.2 

Fe 10 14 8 12.3 8.5 9 6.5 3.5 – 3.7 

Mn 4.6 4.2 4 4.5 2.3 2.6 2 0.7 – 0.8 

The compositions measured on the precipitate in the (Al) grain are very similar to the values 

previously obtained by SEM–EDX [1] and [2]. They are in agreement with the composition of 

the α-Al(Fe,Mn)Si phase measured on as-cast alloys by various authors as reviewed 

previously [2], but also with measurements on heat-treated alloys [6], [7], [8] and [9]. Munson 

[10] showed that there is a family of quaternary α-AlFeMSi phases (with M being either V, 

Cr, Mo, W, Cu and Mn) having body-centred cubic (bcc) unit cells very similar to that of the 

simple cubic ternary α-AlMnSi phase. With increasing the Mn:Fe ratio, the bcc α-

Al(Mn,Fe)Si phase would thus transform to the cubic α-AlMnSi phase. Cooper [11] 

investigated precipitates of this phase with a ratio Fe:Mn = 4:1 (corresponding to the formula 

Al 19Fe4MnSi2) and performed a refinement of its structure starting with the model of the α-

AlMnSi phase which has a Pm3 space group [12].  

Through this refinement, Cooper showed that the α-Al(Fe,Mn)Si has an Im3 space group [11], 

and this has been found by other authors since then [13]. Donnadieu et al. [14] investigated 

further the Im3 and Pm3 structures through TEM analysis of precipitates in 6xxx aluminium 

alloys, and showed that there is a transition between the two structures which depends on the 

Mn:Fe ratio in the intermetallic phase. However, to the best knowledge of the authors, no 

information is available on the type of transition involved.  

Electron diffraction patterns along the [1 1 1] and [2 3 0] zone axes recorded for the 

precipitate shown in Figure 3(a) are reproduced in Figure 4(a) and (b), respectively. Also, 

diffraction patterns for the Im3 and Pm3 structures were simulated using the EMS software 

[15] and are also shown in Figure 4. The calculations were performed with the description of 



the phases given by Cooper [11]. It is seen that along the [1 1 1] zone axis, the extinctions are 

similar for both space groups, while along the [2 3 0] zone axis, the reflections for which 

h + k + l is odd appear for the Pm3 group and not for the Im3 one. From this, it is concluded 

that the α-Al(Fe,Mn)Si phase observed in this study is cubic with the Im3 space group with a 

unit cell parameter close to 12.5 Å. This result agrees with the previous study by Donnadieu 

et al. [14] as the Mn:Fe ratio of the observed precipitate is quite low at 0.4 (Table 1).  

Figure 4. Experimental selected area diffraction patterns (SAD) of the precipitate located in 

the (Al) grain (Figs. 2(a) and 3(a) for the [1 1 1] (a) and [2 3 0] (b) zone axes, and simulation 

of the pattern expected at these orientations for Im3 (c), (d) and Pm3 (e), (f) space groups.  

 

 

 

Concerning the precipitate in the grain boundary, it is seen in Table 1 that the measurements 

may be sorted into two classes—compositions showing either high silicon content (30–

42.5 at.%) or high aluminium content (more than 87 at.%). These latter values are most likely 

due to a contribution of the aluminium matrix and will not be considered further. Looking at 



the various compounds appearing in the Al–Fe–Si system, it was found that this high silicon 

content may fit with the composition of the Al3FeSi2 phase (Fe 15–17 at.%, Si 27–43 at.%, Al 

40–58 at.%) as reviewed by Gueneau et al. [16]. This phase is most often called δ-AlFeSi.  

The structure of the phase Al3FeSi2 has been reported as being either orthorhombic [16] or 

tetragonal [13], [17] and [18] with nearly the same unit cell parameters. The orthorhombic 

structure may be distinguished from the tetragonal one by the presence of superstructure 

reflections, though there are only few zone axes allowing effectively such a distinction to be 

made, e.g. the [2 1 0] zone axis. Another methodology that was used in the present work to 

remove the uncertainty is based on the analysis of features of the reflection nets in the 

diffraction patterns including zero-order Laue zone (ZOLZ), first-order Laue zone (FOLZ) 

and second-order Laue zone (SOLZ). Simulation of diffraction patterns including high-order 

Laue zones (HOLZ) was performed by using the EMS program and the structural data 

obtained by Panday et al. [17] for the tetragonal structure and by Gueneau et al. [16] for the 

orthorhombic one. The relative intensity of spots from HOLZ has been arbitrarily increased in 

order to enhance the visual representation of the simulated patterns and the maximum 

deviation parameter from the Bragg position has been fitted to get the right number of 

spots in the ZOLZ. The identification of the structure was performed on a series of 

conventional selected area electron diffraction patterns (SAD) of different orientations with 

large angular separations recorded from the same area of the particle. Figure 5 presents the 

experimental diffraction pattern along the [1 3 5] zone axis (a) and the corresponding 

calculated patterns according to the tetragonal (b) and orthorhombic (c) unit cells. The 

comparison between the two simulated patterns reveals the absence of reflections in the FOLZ 

for the tetragonal structure in contrast to the orthorhombic structure. Comparison with the 

experimental SAD pattern shows that the structure is tetragonal with the I4/mcm space group 

(a = 6.1 Å; c = 9.5 Å), and the other electron diffraction patterns recorded on this precipitate 

were easily indexed considering a tetragonal unit cell.  

Figure 5. Experimental electron diffraction patterns for the precipitate in the grain boundary 

of sample 1 along the [1 3 5] zone axis (a) and corresponding calculated patterns according to 

a tetragonal (b) and orthorhombic unit cell (c) for (solid disks: ZOLZ; empty 

circles: FOLZ; crosses: SOLZ).  

 



 

 

Figure 6 shows a bright field image of the precipitate in sample 2 (Fig. 2(b)) that is also 

located in a grain boundary. EDX measurements were performed in various locations 

indicated with numbers on the figure and are reported in Table 2. The compositions obtained 

could be sorted in two groups, one rich in silicon (23–37 at.% Si) expected to correspond to 

the Al3FeSi2 phase as above and the other lower in silicon (7.1–17 at.% Si) that could 

correspond to the Al4FeSi phase [18]. Attention was focused only in the present work on the 

areas with high silicon content. Figure 7 shows the experimental pattern along the zone 

axis (a) and the simulated patterns corresponding to the tetragonal (b) and orthorhombic (c) 

structures. It is seen that reflections in the first-order Laue zone are consistent with an 

orthorhombic structure (Pbcn space group), with unit cell parameters: a = 6.1 Å and 

c = 9.5 Å. Weak additional spots in the ZOLZ can easily be explained by double diffraction 

phenomena that may occur between the different Laue zones.  



 

 

Figure 6. Bright field image of the precipitate in the grain boundary of sample 2. The numbers 

refer to locations of EDX measurements. 

Table 2.  

Compositions (at.%) measured by EDX in the TEM on the precipitate in sample 2  

 1 2 3 4 5 6 7 8 9 10 11 12 

Al  76.5 58.9 79.8 76.8 71.0 66.0 70.9 57.4 83.2 58.9 78.8 88.0 

Si 17.0 35.1 12.8 15.9 24.0 28.0 23.1 37.1 10.3 35.1 13.8 7.1 

Fe 4.6 4.21 5.1 5.0 4.0 4.6 4.2 3.9 4.5 4.2 5.1 3.5 

Mn 1.9 1.71 2.2 2.1 1.5 1.9 1.7 1.5 1.8 1.7 2.1 1.4 

             



Figure 7. Experimental electron diffraction patterns for the precipitate in the grain boundary 

of sample 2 along the zone axis (a) and corresponding calculated pattern indexed 

according to the tetragonal (b) and orthorhombic (c) unit cells for (solid 

disks: ZOLZ; empty circles: FOLZ; crosses: SOLZ).  

 

 

 

 

 

 The present study showed, in agreement with recent work [4], that the Fe and Mn bearing 

phases in Al–Si alloys containing low level of Fe and Mn are essentially cubic α-Al(Fe,Mn)Si 

with the Im3 space group and δ-AlFeSi. This latter phase was found with both tetragonal and 

orthorhombic structures in the same sample. This phase appears in the ternary Al–Fe–Si 

diagram and has a composition most often referred to as Al3FeSi2, but would better be written 

as Al3(Fe,Mn)Si2 when dealing with alloys containing both Fe and Mn. As there is no 

equilibrium between the (Al) and δ-AlFeSi phases in the ternary Al–Fe–Si phase diagram, the 

formation of this latter phase rather than the Al4FeSi phase upon solidification of Al–Si alloys 

should be investigated further. The present study suggests this is due to a stabilization of the 

Al 3(Fe,Mn)Si2 phase with respect to the β-Al4FeSi phase in the quaternary Al–Fe–Mn–Si 

system.  
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