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Abstract—The study to increase the capability to model strong
Physically Unclonable Functions (PUFs) has been a trend recently
in the field of Cryptography and Hardware Security. The race
between the increasing complexity of strong PUF structures
and the increasing capability of modeling strong PUFs with
fewer resources for training is still ongoing. In this work, we
evaluate a new technique to use Transfer Learning to model
strong delay-based PUF using Multi-Layer Perceptron (MLP)
as the probabilistic model. Transfer Learning has been already
proposed for modeling strong PUF with Convolutional Neural
Networks (CNNs). Here we propose Transfer Learning for MLP,
since MLP models are relatively less complex and can be trained
potentially with less training data. We exploit the reusability of
weight values in the hidden dense layers of an MLP model in
an existing domain, to further decrease the required resources in
training an MLP in another domain. Here a domain represents
the the CRP space of a given strong PUF instance. We support
our proposed Transfer Learning method with simulated data
of some variants of XOR Arbiter PUF. We show that our
proposed method can reduce the required number of CRPs by
approximately 50% compared to modeling the same MLP with
random initialization.

Index Terms—Transfer Learning, Artificial Neural Network,
Machine Learning, Multi Layer Perceptron, Physically Unclon-
able Functions, XOR Arbiter PUF

I. INTRODUCTION

The study of Physically Unclonable Function (PUF) through
the past 2 decades has been pervasively expanding. The
fundamental idea of PUF is to implement a hardware infras-
tructure that leverages the intrinsic manufacturing variations
(e.g., threshold voltage, critical dimensions) to extract device
specific fingerprints. PUFs are potential hardware primitives
for light-weight device authentication and encryption key
generation [1]–[4].

A PUF circuit generates a response to a given challenge,
the so-called Challenge-Response-Pair (CRP). A Strong PUF
is a PUF variation that can generate a very large amount of
CRPs. For instance, for a PUF circuit with 128-bit challenge
size, it is possible to generate 2128 CRPs.

The strong PUF variants, especially the delay-based PUF
which are based on linear concatenation of delay effects, are
likely to be modeled via machine learning methods [5]–[8].
The common practice in this context is to train a probabilistic
model to estimate the CRP characteristic of a given PUF

This material is based upon the work supported by the French National
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circuit. Consequently, the estimated model has the same CRP
manifestation with a high similarity to that of the PUF circuit.

The success in modeling strong PUF depends on the number
of CRPs given to train the estimated model. It is proven that
the minimum number of CRPs required to yield an accurate
model is proportional to the level of complexity in the structure
of the PUF [9]. Thus modeling a strong PUF can be very
data demanding for PUF which are largely complex [9]. For
instance, modeling k-XOR Arbiter PUF with k >= 5 need
above 1 million CRPs to yield estimation accuracy above 90%.

While the increased complexity in the structure of strong
PUF seems a workable solution against model-building at-
tacks, new researches such as the ones found in [7], [10] try to
tackle PUF complexity by proposing novel probabilistic mod-
eling based on deep learning methods which are structurally
tuned to converge faster and require lesser data for training.
Moreover, a recent work suggests that a transferring trained
data from one PUF to model a new PUF can yield accurate
model with reduced number of CRPs required for training
[11]. This work proposes using Transfer Learning on CNN
models which are relatively more complex models than MLPs
as used in [10].

In this work we show that there is also a potential to model
strong PUF with MLPs using Transfer Learning to reduce
the training CRPs. Our starting point is to use the latest
MLP proposed by Mursi et al in [10]. We experimentally
prove that it is possible to initialize some of the dense
layer weights of a given MLP model with pre-trained values,
and consequently train the model accurately with a reduced
CRP dataset. We demonstrate that our modeling technique
can model strong PUF with less resources compared to its
predecessor techniques [10] and [11]. Accordingly, we deliver
the following contributions:
• Schematic of a modeling procedure of strong PUF using

MLP and Transfer Learning.
• Evaluation with simulated noise-free data of several vari-

ants of strong PUF models to show that reusing dense
layer weight values can further decrease the required
number of CRPs for training compared to [10].

• Experimental assessment with simulated noisy data to
show the resilience of modeling scheme based on Trans-
fer Learning to PUF instability.

• A comparison between our proposed Transfer Learning
method and wang’s Transfer Learning on CNNs in [11]



in modeling some variants of strong PUF.
The rest of the paper is as follows. In section II, we discuss

the preliminary information. In section III, we elaborate on
our proposed method. Section IV elaborates on our evaluation
setup at the begining and then we discuss the experimental
results and comparisons. Section V contains the conclusion of
the work and our perspective for the future steps.

II. PRELIMINARIES

A. Modeling PUF with ANN

One of the commonly discussed use-cases of modeling
strong PUF is in impersonating attacks which aim at cloning
the PUF circuit of a target device [10], [12], [13]. Various
mediums are used to collect CRP for an adversary, such as
eavesdropping on a communication channel where CRP is
being transmitted.

In modeling PUF, the first step is to collect a dataset of
CRPs, we denote as CPUF , from the PUF circuit of the target
device. To model an strong PUF as we denote as fPUF , the
attempt is to train an estimated model hPUF which comprises
gPUF and a set of internal values θ. Model hPUF goes through
a training process which comprises several steps. The primary
step is the initialization where θ is initialized with some
primary values. After that the optimization process is started.
Let us consider ci as a challenge value from the dataset CPUF .
The optimization process iteratively changes the values of θ
until the following verification is true:

fPUF (ci) = ri ≈ r′i = gPUF (ci,θ) = hPUF (ci) (1)

Where ri is the PUF circuit’s response to the challenge ci
and r′i is the estimated model’s prediction of ri for ci. The
learning algorithm of the optimization process updates the
internal values θ with respect to CPUF and the function
gPUF . To know if hPUF is accurate, it is tested with a
subset of CPUF which is not used during the training. If the
model could predict correctly the majority of the responses
of the CRPs, the model is then considered optimally trained.
Noting that the training process is empirical and needs to be
performed in variable iterations until the desired prediction
accuracy is achieved. We assume here that the estimated
model is an ANN. A typical ANN comprises of several layers
{Li|i = (1, 2, ..., n)} of cumulative activations. Each layer Li
includes weighted inputs from the preceding layer, and several
nodes which comprise a bias value, and an activation function
of the weighted inputs. The activation function itself is a linear
regression of the sum of its inputs. Here the internal parameter
θ for an ANN is the weight and the bias values from all the
layers.

B. Transfer Learning

Depending on how the internal values of an ANN are
initialized, the training process can lead faster or slower to a
point of convergence. Several techniques for ANN weight and
bias initialization have been proposed . A selection of these
techniques are discussed in [14]. In contrast to these solutions,
another solution called Transfer Learning exists which is based
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Fig. 1: Our proposed Transfer Learning Plan, based on reusing
the hidden layers of Mursi’s [10] MLP model.

on reusing the values of internal parameters of the trained
estimated model [15]. It is proven that Transfer Learning is a
potential technique to mitigate the large data dependency issue
in deep learning. This addresses the demand on very large
number of samples in training in order to yield an optimal
prediction accuracy, which also appears in modeling variants
of strong PUFs.

In the context of strong PUF modeling, the main goal is
to reduce the required CRP in building an accurate estimation
model for a PUF circuit PUF GOAL. Here Transfer Learning
suggests extracting θ from an already trained model, we refer
to as MODEL P which is an estimation of a PUF circuit
we refer to as Prime PUF. A Transfer Learning Plan then
decides which part of θ can be reused. Based on the Transfer
Learning Plan, θ′ is generated from θ. The modified θ′ is then
assigned accordingly to the internal parameters of a new model
MODEL G. MODEL G is then passed to the training process
for estimating PUF GOAL. In the following we elaborate on
our proposed Transfer Learning Plan which can be applied to
MLPs in modeling strong PUF.

III. PROPOSED METHOD

MLPs have been a common selection as a fit probabilistic
model structure to estimate large and complex strong PUFs
[7], [10], [16]. Although other neural network models exist
such CNN that have the potential to model strong PUFs
with large complexity. However, CNN’s computation overhead
exceeds that of an MLP with the same capability. Therefore,
it is interesting to see if the potential of Transfer Learning
can emerge with MLPs in modeling strong PUFs. This has
not been practiced before. At the time, the latest practice of
Transfer Learning for modeling strong PUF we found is in
[11] which uses CNN models. We continue in the following to
elaborate on how we can successfully use Transfer Learning on
MLP models in modeling strong PUF to reduce the number of
CRPs required for training. In this work we take the following
assumptions:
• A target PUF exists which is the goal to model. We call

this the Goal PUF.
• Access to the Goal PUF is limited. Thus only a few CRPs

can be collected.



• The structure of the Goal PUF is known to the adversary.
• A PUF circuit is available with full control. We call this

the Prime PUF.
• Access to the Prime PUF is unlimited. Therefore as many

CRPs as required can be collected.
• The structure of the target PUF is known and is similar

to the structure of the Prime PUF.

In common Transfer Learning practices, it is suggested
to transfer the weight values from the initial layers of an
ANN model. It is assumed that the primary features of the
target domain are learned in the primary layers of an ANN.
In this work, we observed in a preliminary experiment that
if we transfer the first layer’s weight and bias values, the
training performance is negatively affected. Meaning that it
will take more CRPs and time of training until convergence.
On the other hand, we observed that transferring the weight
and bias values of the hidden layers have an opposite effect.
Meaning that the training improved in terms of number of
CRPs required for training, as well as the success rate of the
training and the time of training until convergence.

In using the lateral approach, we measured the average
distance between each corresponding layer’s weight and bias
values of Model P and Model G. We observed that the distance
between corresponding weight values on Model P and Model
G on the first layers, are considerably higher than that in the
subsequent hidden layers. Accordingly, we speculated that the
primitive features learned in the first dense layer of Model
P are device-specific. Therefore transferring these values to
Model G can lead to the possibility of requiring more CRPs
and time of training. On the other hand, the weight values in
the hidden layers and the output layer of a trained model in
general, could correspond to learned features in higher levels
of abstraction regarding the characteristic of the target PUF.
Therefore, we speculate that the weight value in the hidden
layers have potential to be reused in modeling strong PUF
with the same structural complexity.

Accordingly, we make a Transfer Learning plan to reuse the
values of all hidden layers weights and biases, excluding the
weights between the input layer and the first hidden layer. A
schematic of our Transfer Learning plan is shown in Fig. 1.
We take the following steps to perform our modeling method:

• Step 1) Initialize an MLP (Model P) to model the prime
PUF circuit.

• Step 2) Train Model P with the CRPs captured from the
prime PUF instance.

• Step 3) Initialize another MLP model (Model G) with
the similar structure to the prime model. All weights of
Model G are initialized with zeros.

• Step 4) Overwrite the weight and bias values of layer 2
to layer l of Model G with the weight and bias values of
layer 2 to layer l of Model P. Here l is number of layers
in the model.

• Step 5) Train Model G with a CRP set captured from the
PUF goal circuit.

In the following section we analyze our proposed Transfer
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Fig. 2: The structure of an n-stage k-XOR Arbiter PUF.

Learning plan.

IV. EVALUATION SETUP AND EXPERIMENTAL RESULTS

Our evaluation in this work is based on modeling variants
of XOR Arbiter PUFs using simulated data. Here we first
elaborate on the structure of XOR Arbiter PUF, and then the
simulation code which we used to generate our CRP dataset
for modeling. We will then elaborate on our model training
setup and discuss our experimental results.

A. Experimental Setup

XOR Arbiter PUF is a variant of the Arbiter PUF family
introduced first in [17]. Arbiter PUF is based on the delay dif-
ference between two racing signal paths which are structurally
similar. Due to minor process variations, the signals have a
timing difference which allows one path to reach the terminal
point (an Arbiter) faster than the other. This timing difference
also inherently varies between different PUF circuits. Which
then gives each PUF circuit a unique characteristic. An XOR
Arbiter PUF is created with 2 or more Arbiter PUFs which are
set in parallel, and their outputs connected to an XOR block.
The challenge input to all Arbiters is the same, and the output
of the XOR is the output of the XOR Arbiter PUF. Fig. 2
shows the structure of an n-stage k-XOR XOR Arbiter PUF.

We reused the Python-based XOR Arbiter PUF simulator
developed by Ruhrmair and described in [13]. The code of
this simulator is available in [18]. In this simulator the timing

TABLE I: Training specifications & Hyper-parameters

Parameter Value
Optimization function Adam
Loss function BCEloss
Learning rate 0.001, 0.0001
Weight initializer Kaiming Uniform
Bias initializer Unifrom
Maximum epoch 2000
Maximum re-training attempts
for Transfer Learning disabled 10

Maximum re-training attempts
for Transfer Learning enabled 2

Training batch size = Training set size
Optimal Test Accuracy 90%
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(c) 4-XOR

Fig. 3: Modeling variants of 64-bit XOR Arbiter PUF with and without Transfer Learning.
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Fig. 4: Modeling variants of 128-bit XOR Arbiter PUF with and without Transfer Learning.

difference in the two racing paths are modeled as the sum
of the delays in each stage. In simulating XOR Arbiter PUF,
the simulation employs k individual n-stage Arbiter PUF in
parallel. The same challenge input is applied to all parallel
Arbiter PUFs, and their individual outputs are XORed to yield
the final response. The delay parameter values in the simulator
are generated randomly with a standard normal distribution,
with mean 0 and standard deviation 1.

Using the python PUF simulator, we generated 10 instances
of 64, 128-stage 2, 3, 4-XOR Arbiter PUF variants. Noting that
this simulation does not inherently include the PUF instability
noise. To simulate noisy PUF, we randomly selected CRPs
from each dataset and flipped the response. Accordingly we
generated noisy CRP datasets for each PUF variant, with 2%,
5% and 10% noisy CRPs in each dataset.

On the modeling part, we recreated Mursi’s ANN in [10].
This model is an MLP with 3 hidden layers. The number of
neurons in each layer are 2(k−1), 2(k), 2(k−1), for the first,
second and third hidden layer, respectively. Here k associates
with the number of XORs in a n-stage k-XOR Arbiter PUF.
The activation function used for all layers except the output
layer is hyperbolic tangent function (Tanh). The output layer
uses the Sigmoid activation function.

In terms of the training specifications and hyper parameters,
our entire parametric consideration for the training are given
in Table I. We implemented the model creator and the trainer

code with Pytorch on Python 3.8 with Anaconda IDE and the
Spyder editor on Windows 10. The system we used for training
has 2 Nvidia Quadro RTX 5000 graphics cards. Each card
has 8 GBs of dedicated memory, 3072 cuda cores with 448
GB/s memory bandwidth. The system has also 2 intel Xeon
silver CPUs with 2.2 GHz speed, 128 GBs of RAM, and 10
TB of storage. It is worth noting that during our experiments,
only one of the Quadro RTX 5000 was enough. Also since
the dedicated GPU memory was large, we considered the
training batch size to be the size of the training set, and also
increased the number of epochs accordingly. We clarify that
the maximum epoch indicated in Table. I should not lead to
and overfitting problem, since the fitting iteration (updating the
trainable parameters θ) is performed only once per epoch (due
to the batch size being the same as training set size). This is
similar to having batch size = training set size

10 , and maximum
epoch = 200. However, the larger batch-size allowed us to get
a better training performance on GPU.

B. Experimental results

In modeling each variant of XOR PUFs for various training
set sizes, we measure the following:

• Averaged prediction accuracy =
Σ10

i=1εi
10

• Averaged failure-rate =
Σ10

i=1NTri
MAX NTr

Where εi and NTra, indicates the trained model’s prediction
accuracy and number of retraining attempts, respectively., of
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Fig. 5: Modeling 64-bit 4-XOR Arbiter PUF with and without Transfer Learning with presence of noisy CRP.
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Fig. 6: Modeling 128-bit 4-XOR Arbiter PUF with and without Transfer Learning with presence of noisy CRP.

modeling the ith PUF instance of a given PUF variant and
i ∈ {1, 2, ... , 10}. MAX NTr also indicates the maximum
re-training attempts as given in Table. I.

We first compare our method to Mursi’s MLP with random
initializer. Fig. 3 shows the training results for the variants
of 64-bit XOR PUFs. The first observation is on the average
prediction accuracy. If we consider 90% as the target accuracy,
we see that training with our Transfer Learning Plan leads to
the target accuracy with fewer CRPs in all cases. The average
failure-rate also is almost zero using our method. We measured
the same for variants of 128-bit XOR Arbiter PUF as shown
in Fig. 4. The same results as that in modeling 64-XOR PUF
variants can be seen here. Where the target accuracy above
90% can be achieved with fewer CRPs using our method for
initialization. The average failure-rate also is always less than
modeling with with random initializer.

Our Transfer Learning plan also shows to have a lead
against modeling with random initializer where the training
data includes some noisy CRPs. Fig. 5 shows the results of
training the 64-bit 4-XOR Arbiter PUF variant in different
levels of noise. It is apparent that the difference between
the deterioration rate in modeling with random initializer and
our proposed method is significant. For instance in the case
of 10% noise and for the maximum number of CRPs given
for training, the baseline’s prediction error has increased by
almost 20%, whereas the case with Transfer Learning, it

has dropped for 15%. Although it is apparent also that the
failure-rate has increased for both cases. Yet the difference of
the average failure-rate between the case of modeling with
random initailizer and our proposed method is significant.
Same conclusions can be drawn in modeling a variant with
larger challenge space. Fig. 6 shows the results of training
the 128-bit 4-XOR Arbiter PUF with different levels of noise.
The results prove that the modeling with our Transfer Learning
plan yields the similar advantage.

The observation on modeling with noisy data suggests that
using Transfer Learning for initialization has the potential
of more resilience to noise compared to a baseline where
initialization is performed randomly given any training CRP
set size.

We also compare our method to the Transfer Learning
method proposed by wang et al. in [11] . In their work,
Transfer Learning is done on CNN models to reduce the
required number of CRPs for training XOR Arbiter PUF
variants. Their method relies on transferring the convolutional
layer’s weight values from the source domain to the target
domain. This means that their method is applicable on CNNs
only. Since their CNN specification was not given, we could
not reproduce their modeling technique, as we did for Mursi’s
MLP in [10]. However, their work is the only attempt of
modeling PUF with Transfer Learning, and closest and to our
work. To compare, we consider the modeling targets (the XOR



TABLE II: Comparing Wang’s Transfer Learning with CNN
[11] (A) and our proposed transfer learing plan with MLP (B).

Challenge
size

No.
stage

Prediction
accuracy

No. CRPs ×103

A B

64
2 90% 3.5 .8
3 90% 31 3

4
70% 32 -
80% 39 9
90% NA 12

128

2 90% 5.5 2
3 90% 115 8

4
70% 170 30
80% 190 35
90% 380 45

Arbiter PUF variants) as the baseline for comparison. Table
II shows the comparison between our method and Wang’s
in [11]. Accordingly, to obtain estimated model with 90%
prediction accuracy, our method shows to require significantly
less number of CRPs for training overall, compared to that of
Wang’s. We assume that a good proportion of CRP reduction
is due to the structure of Mursi’s MLP [10] as we reproduced.
It is already proven in the experiments in [10] that this
MLP requires much less CRPs to converge to an accurate
model compared to previous MLP models. This therefore gives
advantage to our method where we apply Transfer Learning to
Mursi’s MLP in order to further decrease the required training
data.

V. CONCLUSION AND FUTURE PERSPECTIVE

In this work, we proposed Transfer Learning technique to
model strong PUF with Multi-layer Perceptron (MLP). We
proved that a trained MLP model of PUF circuit can be a
source domain, and the weight and bias values of the hidden
layers the model can be reused to model a PUF circuit with
similar structure with less training data. We experimentally
proved that we can considerably decrease the required number
of CRPs by approximately 50% compared to an MLP model
which is initialized with random values. We also showed that
our technique has a small failure-rate close to zero for noise-
free modeling and maximum 15% for training with noisy
CRPs where 10% of the CRPs are incorrect. We showed that
using Transfer Learning on MLPs has resilience to various
levels of noise up to 10% of noisy CRPs in the training data.
In a future extension of this work, our goal is to investigate
independent modeling schemes in which the exact structure of
the PUF is not known before hand. These models should be
large as the worst case is to anticipate that the target strong
PUF’s complexity is very high. The future work then will
discover the potential of using Transfer Learning in order to
reduce the training data for modeling strong PUF with large
design complexity.
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