
HAL Id: hal-03599317
https://hal.science/hal-03599317

Submitted on 7 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Processor Extensions for Hardware Instruction Replay
against Fault Injection Attacks

Noura Ait Manssour, Vianney Lapotre, Gogniat Guy, Arnaud Tisserand

To cite this version:
Noura Ait Manssour, Vianney Lapotre, Gogniat Guy, Arnaud Tisserand. Processor Extensions for
Hardware Instruction Replay against Fault Injection Attacks. DDECS: 25th International Symposium
on Design and Diagnostics of Electronic Circuits and Systems, Apr 2022, Prague, Czech Republic.
�hal-03599317�

https://hal.science/hal-03599317
https://hal.archives-ouvertes.fr


Processor Extensions for Hardware Instruction
Replay against Fault Injection Attacks

Noura AIT MANSSOUR1,3, Vianney LAPÔTRE2,3, Guy GOGNIAT2,3 and Arnaud TISSERAND1,3

CNRS1, Université Bretagne Sud2, Lab-STICC3 UMR 6285
Centre Recherche UBS, rue St Maudé, CS7030, 56321 Lorient, France

Abstract—The paper explores hardware supports for replaying
instructions to protect processors against some fault injection
attacks. A replay instruction is added to the instruction set
of a small 32-bit RISC processor to allow the automatic and
parametrized replay of sequences of instructions. Various detec-
tion elements are added to the processor, implemented on FPGA,
and compared in terms of performances, cost and fault cover-
age. The proposed extension leads to significant improvements
compared to software protections for a small silicon overhead.

Index Terms—processor architecture; instruction set architec-
ture extension; physical attack; hardware countermeasure.

I. INTRODUCTION

Embedded processors can be subject to physical attacks due
to some proximity between an attacker and the circuit. Side
channel attacks [1] exploit correlations between observable
parameters (e.g., computation time, power consumption, elec-
tromagnetic radiation) and secret data. Fault injection attacks
(FIAs) [2], [3] exploit perturbations (e.g., glitch on power
supply or clock, electromagnetic radiation, laser shot) in the
circuit to reveal secret data [4] or bypass security features [5].
Below, we deal with hardware protections against FIA builtin
in embedded processors.

Various protection methods exist against FIA (see [2]
for an introduction): error code correction/detection, alge-
braic/functional property check, information and temporal
redundancy, randomization, etc. Redundancy based solutions
are popular in hardware and software.

In software (SW), instruction duplication and triplication
[6], [7] are easy to use to secure critical (parts of) codes but
lead to important overheads in execution time and code size.
More, software protections rarely take into account hardware
implementation details, such as the processor pipeline, and
may not be as effective as intended. Sec. II quickly reviews
some previous works on this topic.

Hardware (HW) support for instruction replay in proces-
sors is well known to resolve speculation issues in high-
performance processors [8], improve fault-tolerance [9] and
security [10]. In this paper, we propose processor extensions
for hardware instruction replay in Sec. IV. One dedicated re-
play instruction is added to the instruction set of a small RISC
processor described in Sec. III. Several protection elements are
also added to the processor, see Sec. IV, and implemented on
FPGA, see Sec. VI.

We evaluate various protected versions of our processor and
compare them to typical software protections in terms of cost,

speed and robustness against FIA using logical simulations on
typical critical benchmarks in Sec. VI.

In this paper, we only protect the data flow but not the
control flow (see [11], [12]). Our team works on this topic
(see [13] for a recent PhD) and we plan to add protections of
the control flow in the future.

II. STATE OF THE ART

Faults are identified as a reliability issue in processors since
the 70s [14]. FIAs also lead to cybersecurity issues [2], [3].
Protections based on redundant computation or information
are available in hardware and software. In hardware for in-
stance, double data rate computation [15] allows high coverage
but requires larger circuits with a lower frequency. In software,
temporal redundancy is popular with methods from manual
instruction duplication and triplication [6], [7] to compiler-
assisted solutions [16].

Instruction duplication with comparison and instruction
triplication with voting from [6] lead to important overheads
in terms of execution time (resp. 2x to 4x) and code size
(resp. 4x to 14x per protected instruction). These overheads
are not the only concerns with such protections. [6] assumes
that a single fault only impacts a single instruction during
the execution, but this is not the case. [17] and [18] show
that in pipelined processors, a single fault impacts several
pipeline stages and then several instructions, not only one.
These software protections can be bypassed even with a single
fault [19], [20], [21].i

III. TARGET PROCESSOR

Our processor is a small homemade 32-bit RISC designed,
in System Verilog, for exploring hardware protections at archi-
tecture level. It is close to a RV32IM RISC-V core [22] with a
slightly different branching system and less features. We plan
to port our protections to RISC-V. Fig. 1 presents a simplified
schematic of the processor architecture. The pipeline has 2
stages: fetch | decode + execute. The register file (RF) has 32
registers of 32 bits each with 2 read ports and 1 write port.
Register R0 is fixed at the value 0. The processor contains 2
execution units for 32-bit integers: one arithmetic and logic
unit (ALU) and one multiplier. The load/store unit (LSU)
accesses the data-memory hierarchy (D-MEM) without cache
for this paper. The instruction memory I-MEM is also without
cache. The processor also includes hardware performance
counters for cycles, instructions, memory accesses, branches,



I MEM D MEM

C
O
R
E

FETCH

DECODE

FETCH DECODE + EXEC

CTRL

IR

RF EXEC

ALU

MULT

LSU

pc

inst.

rd

id

is1

is2

rs1

rs2

prd

pid

pir

fault-detected

Fig. 1. Simplified schematic of the processor architecture (not all signals and
elements are represented). Red elements are for replay protection.

and protections monitoring. It is fully implemented and vali-
dated on FPGA (see Sec. V).

We also develop an assembler to generate binaries and
scripts for cycle accurate and bit accurate HDL simulation
for functional validation and fault injection evaluation.

IV. PROPOSED HARDWARE REPLAY PROTECTION

Our protection consists in a replay instruction added to
the instruction set, various detection elements added to the
core and modifications in the processor control detailed in
this section. See Sec. VI for implementation results and
performance evaluation.

A. Replay Instruction

The replay instruction, named rpl, is intended to protect
small critical sequences of instructions, called replay windows.
It takes 2 arguments, rpl n w, and specifies that each
instruction in the window of the w instructions immediately
following rpl will be executed once and replayed n times
for a total of n+1 consecutive executions.

This behavior is illustrated in the right side of Fig. 2 with a
simple 4-instruction example: I1, I2, I3, I4. Instructions
I1, I2, I3 must be protected and executed twice while
I4 is kept unprotected. The window of instructions to be
protected has a width w=3 and the number of replay(s) is n=1.
Thus, a replay instruction rpl 1 3 is added just before the
instructions window I1-3.

Left side of Fig. 2 presents the same example in case of a
pure software replay protection for comparison.

B. Detection Elements

Just replaying instructions may not be sufficient. The result
of each replayed instruction has to be compared to the original
one. For this, we add detection elements (DE) depicted in
Fig. 3. At each replay cycle, a DE compares the current
value with the original one stored at the first execution of

SW replay

I11

I1’2

bneq ...3

I24

I2’5

bneq ...6

I37

I3’8

bneq ...9

I410

HW replay

rpl 1 31

I12

I23

I34

I45

w

code in memory

execution

rpl 1 31

I12

I13

I24

I25

I36

I37

I48

execution trace

n

n

n

Fig. 2. Illustration of a typical software protection and our hardware replay
protection in a small 4-instruction code (‘I1-4‘ where ‘I1-3‘ are protected
using one replay and ‘I4‘ is not).

the instruction. The enable signal on the register is man-
aged by the processor control. The comparison result diff
feeds the processor control to signal different values during
replay cycles. In such a case, a specific fault-detected
interruption signal is raised. The security policy related to this
interruption is out of the scope of this paper.

To protect the data flow in the processor, we protect the
result from the execution units and LSU. The 32-bit DE called
prd in Fig. 1 protects the destination register (rd) written in
RF. The index id of the destination register is protected by
the 5-bit DE called pid. The pir DE protects the instruction
register (see Sec. IV-D for details).

Compared to software replay, a cheap prd DE (one register
and comparator) avoids the use of additional registers in the
register file and explicit detection instructions in the code.
In software replay Fig. 2 (left side), instruction I1 (line
1) is replayed by instruction I1’ (line 2) with a different
destination register (but similar opcode and sources), and the
comparison in line 3 compares the two result registers and
branches to the software error handler if they are different.
Duplication with comparison in software leads to 3 executed
instructions for each protected instruction. This can be 4
in processors where comparison and conditional branch are
separated instructions. Our hardware replay leads to smaller
codes in memory and fewer executed instructions. The number
of original and replayed instructions is the same as for software
replay. But there is no comparison instruction(s) in the code
but one rpl instruction for each replay window. The window
width w in the rpl n w instruction leads to fewer instructions
as soon as w>1 compared to software replay.

?
= r value

`

enable

clk

diff

Fig. 3. Detection element (used for prd, pid, pir in Fig. 1).

2



C. Processor Modifications for Replay Support

The processor control is modified to handle our hardware
replay. A few internal flip-flops and logic gates are added to
control the replay in the pipeline. When a rpl is decoded,
the processor stores n and w into small local registers. During
the execution of an instruction in a replay window, small
counters control the number of replays and the position in
the window. For each DE, the control must enable its register
during the first execution of an instruction. During replay
cycles, the control checks for diff signals to raise the
fault-detected interruption.

The behavior of the processor is not modified at the ISA
level. The addition of the rpl instruction does not change the
behavior of the other instructions. This allows users to protect
their codes with small additions on the assembly code. The
automation of this protection for higher level codes (e.g., C)
is out of the scope of this paper.

D. Processor Versions

Several versions of the processor with different protections
solutions are evaluated in Sec. VI. The maximal width of a
replay window w is limited by a hardware parameter, called
Ω, in our HDL code such that 1 ≤ w ≤ 2Ω. We study the
impact of the replay window width on cost and performance
for Ω ∈ {1, 2, 3, 4} (see Sec. VI for Ω determination).

Possible values for n are in {1, 2, 3, 4} leading to 2-
bit registers and counters in the control for the number of
replays. We use 2-bit values for n since we target single fault
protection. Protection against injection with multiple faults
close in time and space will be a challenge for future systems
to avoid a prohibitive cost due to numerous replays.

The prd and pid DEs are intended to protect the destina-
tion register from execution units and LSU. To complement
this type of data flow protection, we also study replay support
with a DE called pir in Fig. 1 to protect the instruction
register (IR) fed from the instruction memory. It protects the
indexes for source registers is1, is2 as well as the index of
the destination register. Protecting the 3 indexes id, is1, is2
using individual DEs would cost 3 × 5 = 15 bits (about half
of the 32 bits in pir). Adding a specific DE for immediate
operands in the instruction would also add up to the protection
bill. Then adding pir may be a good way to protect all parts
of the instruction directly for a small overhead.

We also design a version with a refetch support. During
the replay cycles, the current protected instruction is refetched
from the instruction memory and compared to the original one.
This is simple in a 2-stage pipeline, but this would be more
costly for deeper ones. pir and refetch are different. Refetch
leads to detect more faults in the interface between the core
and I-MEM but costs more energy. We plan to study energy
aspects of our protections in a future work.

V. EVALUATION ENVIRONMENT

HDL codes are implemented in a Zynq 7020 FPGA using
Vivado V2018.3 from Xilinx after functional validation in
simulation. In the next sections, we report post-synthesis and

place&route results for area (LUTs, flip-flops) and perfor-
mance at the fastest obtained clock frequency for each version
of the processor. We evaluate various versions of the processor
and protection elements proposed in this paper:

• wop: base processor without any protection (implemen-
tation results at line V=1 in Tab. I);

• wphw_x: base processor with protection for different DE
selections and parameters where x ∈ {2, 3, · · · , 11} (see
lines V=x in Tab. I for details).

All the processor versions require the exact same number
of BRAMs (16) and DSP blocks (4). Since they are only used
in I-MEM, D-MEM and execution units, they are not impacted
by the replay support and DEs.

To compare to pure software replay, we also evaluate a
version called wpsw with the base processor wop and using
software protection from state of the art [6], [7]. This is not
a hardware version, the processor is the one in wop, only the
code is changed.

To evaluate and compare these versions over various repre-
sentative binary codes, we protect and execute the following
functions commonly used in parts of secure applications:

• verify_pin to authenticate users (tested with 4 digits
and a constant time code);

• memcpy to copy a memory region (critical for sensitive
data, tested for various lengths);

• atoi to convert a string to an integer (critical when
reading some identifiers, tested for various lengths);

• trivium a stream cipher used in some cryptographic
applications (to reduce simulation time, we only focus
on its generate_bit function which computes a new
result bit and update the internal state).

We plan to use benchmarks such as FISSC [23] in the future.
For evaluating our protections, we use logical fault injection

simulations on the HDL description (at cycle accurate and bit
accurate level) of the processor. We inject faults for numerous
injection times, locations and types as illustrated in the pseudo
algorithm below:

list_codes = [verify_pin, memcpy, atoi, trivium]
list_versions = [wop, wpsw, wphw_1, wphw_2, ...]
list_fault_types = [stuck0, stuck1, bit_flip]

for code in list_codes:
for version in list_versions:

trace = get_trace(code, version)
for inst in get_inst(trace):

for reg in get_reg(inst, version):
for type in list_fault_types:

ftrace = insert_fault(trace, inst, reg, type)
state = simulate(version, ftrace)
save(state)

For each code and version, the get_trace function
provides the execution trace corresponding to code adapted
for the processor version. For a version with software
protection, explicit replayed instructions (e.g. I1’ for I1
in Fig. 2 left side) and comparison instructions (e.g. bneq)
are added. For a version with hardware protection, rpl

3



instructions are added. When the version is unprotected,
there is no addition to base code.

We use a large selection of executed instructions related
to the data flow as injection times: all instructions before
and after a loop in the function, and all instructions in
the first, intermediate and last iterations of a loop (to save
simulation time). The get_inst function provides the list
of all instructions where a fault will be injected.

As injection locations we use all registers of the base pro-
cessors and all registers of our protection elements (DEs and
replay control). This is the purpose of the get_reg function.
We only inject faults on registers used by the inst instruction
(IR, RD in RF, registers in our hardware protections). In this
work, we only inject faults on registers since several physical
faults lead to setup/hold time violation in flip-flops [19], [20],
[21]. We plan to extend this with other types of faults in the
future (logical simulation may not be sufficient).

To limit simulation time, we only use 3 types of injection
types: stuck at 0 or 1, or one bit flip at a random position of
the faulted register.

When a code, version, instruction inst, faulted regis-
ter reg and type are selected, the insert_fault function
generates the HDL script for the simulation of this fault in
the complete trace. There is one simulation for each fault
time (inst instruction in trace), location (reg register)
and type. Then, the simulation is performed and its state
(memory, all registers contents and flags) is saved for analysis.

For each version of the processor and code, a reference trace
is also required for the execution of the base code without any
fault injection. This reference trace is used to compare the
simulation state of each simulation with a fault injection.
This reference simulation is not represented in the pseudo
algorithm to simplify the presentation.

The efficiency of a protection solution is evaluated using
its detection rate. For the software protection, there is a
detection when the detection code branches to the error handler
instead of continuing the nominal execution. For our hardware
protection, the detection signals are provided by the DEs.

The various loops iterations in the pseudo-algorithm above
correspond to dozens of thousands of simulations over a
few weeks of CPU time. Actual numbers of simulations are
reported in gray in Tab. II.

As this paper targets the protection of the data flow, we
do not attack the control flow of the pure software protection
and applications. But we inject faults in all registers of our
protections: both “data” registers in DEs and control registers
for replay management.

VI. EVALUATION OF OUR HARDWARE PROTECTIONS

Below, we report and analyze results for FPGA implementa-
tion, execution time, code size and fault injection simulations.
We close the section with additional discussions.

A. FPGA Implementations Results

Tab. I reports FPGA results for all versions of the processor
and various protection elements configurations (see Sec. IV-D

TABLE I
FPGA (ZYNQ 7020) IMPLEMENTATION RESULTS FOR VARIOUS VERSIONS

(V) OF THE PROCESSOR AND PROTECTION ELEMENTS.

Protection Area Freq.
V HW Ω pid prd ref pir LUT % FF % MHz %

1 8 8 8 8 8 8 731 +00 301 +00 304 +00

2 3 4 8 8 8 8 756 +03 324 +08 294 -03

3 3 4 3 8 8 8 759 +04 329 +09 301 -01

4 3 4 8 3 8 8 799 +09 356 +18 297 -02

5 3 4 3 3 8 8 801 +10 361 +20 294 -03

6 3 3 3 3 8 8 799 +09 359 +19 300 -01

7 3 2 3 3 8 8 797 +09 357 +19 303 -00

8 3 1 3 3 8 8 797 +09 355 +18 305 +00

9 3 4 8 8 3 8 757 +04 325 +08 295 -03

10 3 4 8 3 3 8 797 +09 357 +19 287 -06

11 3 4 8 3 3 3 809 +11 389 +29 283 -07

and Sec. V for details). Each line in the table is a version
denoted Vα with α ∈ [1, 11]. “Protection” columns indicate
the configuration of the protection elements in the version.
Gray values are relative differences (x− ref)/ref w.r.t. ref-
erence values in V1 expressed in %. Version 1 is the reference
processor without hardware replay or detection support.

Version 2 adds replay support but no detection for a very
small impact: +10% area and -3% clock frequency.

Versions 3 to 5 add various combinations of detection
elements to V2. Between V2 and V3, the 5 additional flip-
flops are for the 5 bits in pid. Between V2 and V4, the 32
additional flip-flops are for the 32 bits in prd. V5 costs 37
(32 + 5) flip-flops more than V2 due to pid and pir. The
area penalty is +20% for V5 but those DEs do not change
much the clock frequency.

Versions 5 to 8 only differ in the maximal window width
supported (w ≤ 2Ω). Its impact is negligible for 1 ≤ Ω ≤ 4.

Versions 9 to 11 add refetch support (column “ref”). V10
and V11 add prd and pir support to V9 for a more complete
protection. There is no pid in these versions since id is
already in the refetched instruction (and in pir in V11). The
impact is still limited: +30% area and -7% clock frequency.

In the following, we only use V11, the most advanced ver-
sion of the processor, for the other evaluations (performance,
code size, fault injection simulations) due to space constraints
and limited benefit of the smaller versions.

Adding hardware support for replay and detection support
does not cost much. The +30% area overhead in a very simple
core should be even smaller in more complex ones. In cores
with a deeper pipeline, hardware replay will require more
internal registers and slightly more complex control than in our
2-stage one. But we think that the overall penalty should be
still limited. We still have to evaluate if some internal resources
can be shared between deeper pipeline elements and hardware
replay support (and DEs).

4



B. Timing Performance and Code Size Results

Fig. 4 presents the performance results in terms of execution
time and code size for each evaluated code (verifyPin,
memcpy, atoi and trivium) used in 3 cases:

• reference: unprotected code on base processor V1;
• SW protection: protected code with software replay from

state of the art [6], [7] on base processor V1;
• HW protection: protected code with our hardware replay

on processor V11.
For both SW and HW protections, protected instructions are

replayed once (n=1 for our rpl instructions).

 0.0

 1.0

 2.0

 3.0

re
la

tiv
e

 e
xe

cu
tio

n 
tim

e

103

288

204

331

983

659

39

100

73

356

1086

747

x 2.85

x 1.99

atoi memcpy verifyPin trivium
 0.0

 1.0

 2.0

 3.0

re
la

tiv
e

 c
od

e 
siz

e

20

56

26
12

34

16
19

54

26
81

270

89

x 2.95

x 1.28

Reference SW protection HW protection

Fig. 4. Execution time and code size results. Values above the columns are:
the number of cycles (top); and the number of instructions (bottom). Values
on the right are averages.

The benefit of a hardware replay is clear compared to a
software one as illustrated in Fig. 2. The execution time is
reduced from a factor almost 3 with SW replay to 2 with HW
replay. Going well below 2 for n=1 (more generally below
n+1) will be difficult since the processor must execute n+1
times each protected instruction (unless using parallelism [10],
[14]). The code size is also significantly reduced from a factor
3 with SW replay to only 1.3 with HW replay. This may
constitute a potential interest in embedded systems.

C. Fault Injection Simulations Results

Using real fault injections would be interesting, but this is
not simple in a FPGA implementation of softcore processors
since one does not really know how close are the fault effects
in the FPGA compared to a hardcore processor in an ASIC.
We use logical fault injection simulations at HDL level as
explained in Sec. V. Tab. II reports the corresponding results
for 2 cases:

• SW protection: protected code with software replay from
state of the art [6], [7] on base processor V1;

• HW protection: protected code with our hardware replay
on processor V11.

The hardware replay leads to similar fault detection results
than the software one (about 75% of faults detected). But this
protection level is achieved with much faster execution times

protection solutions
codes software hardware

verifyPin 0.757 (969) 0.760 (3036)

memcpy 0.743 (1341) 0.796 (3954)

atoi 0.764 (1317) 0.790 (6897)

trivium 0.737 (3222) 0.772 (9195)

mean 0.750 0.779
std. dev. 0.011 0.014

TABLE II
FAULT INJECTION SIMULATION RESULTS. THE DECIMAL VALUES ARE

RATIOS OF NUMBER OF EXECUTIONS WHERE THE PROTECTION SOLUTION
(SW OR HW) DETECTS A FAULT OVER THE TOTAL NUMBER OF

EXECUTIONS (INTEGERS IN GRAY) FOR EACH CODE.

and smaller codes for a moderate hardware overhead. This
shows that hardware replay can be an interesting solution for
protecting the data flow.

One should keep in mind that this fault injection simulation
campaign is in favor of the software protection since we do
not inject faults in the control flow (e.g. all bneq instructions
in Fig. 2) while we inject faults in all the control and detection
registers of our hardware replay. We will complete those
simulations when working on the control flow protection.

D. Additional Discussions

To help to determine a good Ω value for the maximal width
of replay windows (w ≤ 2Ω), Tab. III reports the distribution
of w values in protected source codes and their corresponding
execution traces. The count of the number of times an actual
window of width w occurs is reported as w(count). Depending
on the actual input data of the code, replay windows in the
source code can be executed different numbers of times or
not executed at all in the execution trace due to conditional
jumps and loops. The “in source” column represents the effort
provided by the user to protect the code. The “in trace” column
shows what are the values w used during actual executions
(for given input data). Reported values in Tab. III (“in trace”
column) are typical results. Most of time, only small w values
are used. But in trivium example, there is a long 54-
instruction sequence to be protected before the loop (4 rpl
are required with Ω = 4, since 54 = 3 × 24 + 6) and a 17-
instruction one after the loop. As those sequences are only
used outside of the internal loop, the impact of a Ω value
smaller than dlog2 54e is very small. Increasing Ω would not

replay windows distributions wcount

codes in source in trace

atoi 1(1), 2(1), 3(3), 4(1) 1(1), 3(10), 4(8)

memcpy 2(1), 3(1), 4(1) 2(1), 3(1), 4(8)

verifPin 1(4), 3(1), 4(2) 1(4), 3(1), 4(5)

trivium 1(2), 6(2), 16(4) 1(35), 6(36), 16(4)

TABLE III
DISTRIBUTION OF THE WIDTHS OF REPLAY WINDOWS IN SOURCE CODES

AND THEIR CORRESPONDING EXECUTION TRACES.

5



cost much (see lines V5-8 in Tab. I), but this may not be
very useful. For instance, using Ω = 6 would reduce the total
number of rpl executed for trivium to (35-1)+(36-1)+2=71
instead of 75 for Ω = 4. In the future, we will evaluate how
this parameter impacts protections of the control flow. For the
atoi code in Tab. III, one can notice that the replay window
w=2 in the source code “disappears” in the trace since it is
not executed for the actual data set. We plan to evaluate more
codes and data sets in the future.

Currently, we consecutively execute each instruction and its
replay(s) before going to the next instruction in the window.
To reduce the switching activity in the processor, we do not
consider another solution: executing each instruction in the
window, then replay them as a block of instructions.

Regarding energy aspect, we also have to investigate links
between refetch and memory hierarchy.

VII. CONCLUSION AND FUTURE PROSPECTS

We propose a hardware support for instruction replay in a
small RISC processor. It consists in a small extension of the
instruction set (one new instruction), a few detection elements
(mainly registers and comparators) and light modifications of
the processor control. We explore various configurations of
internal protection elements for hardware replay.

The core area overhead is about +30% while the clock
frequency is reduced by less than 10% on FPGA.

The hardware replay allows to significantly reduce the exe-
cution time and code size compared to a pure software replay
protection (respective reductions: ×3→ ×2 and ×2→ ×1.3).

The protection efficiency is evaluated using numerous logi-
cal fault injections in HDL simulation. It is similar to the one
of software replay solutions but with much smaller execution
times and code sizes.

In the future, we plan to study deeper pipelines, pro-
tection of the rpl instruction itself, porting to a RISC-V
processor and energy optimizations. We also plan to study
hardware protections of the control flow and their combination
with hardware replay. Links to secure software development,
compilation and security policy management should also be
studied. Finally, we would like to perform more complete fault
injection simulations and real attacks for security evaluation.

ACKNOWLEDGMENTS

This work has been partially supported by a PhD grant from
Région Bretagne/Pôle de Recherche Cyber.

REFERENCES

[1] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks. Revealing
the Secrets of Smart Cards. Springer, 2007.

[2] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” Proceedings of the IEEE,
vol. 94, no. 2, pp. 370–382, Feb. 2006.

[3] B. Yuce, P. Schaumont, and M. Witteman, “Fault attacks on secure em-
bedded software: Threats, design, and evaluation,” Journal of Hardware
and Systems Security, vol. 2, no. 2, pp. 111–130, Jun. 2018.

[4] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of check-
ing cryptographic protocols for faults,” in Proc. Annual International
Conference on Theory and Applications of Cryptographic Techniques
(EUROCRYPT), ser. LNCS, vol. 1233. Springer, 1997, pp. 37–51.

[5] A. Vasselle, H. Thiebeauld, Q. Maouhoub, A. Morisset, and
S. Ermeneux, “Laser-induced fault injection on smartphone bypassing
the secure boot,” in Proc. Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, Aug. 2017, pp. 41–48.

[6] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni,
“Countermeasures against fault attacks on software implemented AES:
Effectiveness and cost,” in Proc. Workshop on Embedded Systems
Security (WESS). ACM, Oct. 2010, pp. 7:1–10.

[7] V. B. Thati, J. Vankeirsbilck, D. Pissoort, and J. Boydens, “Selective
duplication and selective comparison for data flow error detection,”
in Proc. International Conference on System Reliability and Safety
(ICSRS). IEEE, Nov. 2019, pp. 10–15.

[8] I. Kim and M. H. Lipasti, “Understanding scheduling replay schemes,”
in Proc. International Symposium on High Performance Computer
Architecture (HPCA). IEEE, Feb. 2004, pp. 198–209.

[9] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson,
S.-L. L. Lu, T. Karnik, and V. K. De, “Energy-efficient and metastability-
immune resilient circuits for dynamic variation tolerance,” IEEE Journal
of Solid State Circuits, vol. 44, no. 1, pp. 49–63, Jan. 2009.

[10] R. Psiakis, “Performance optimization mechanisms for fault-resilient
VLIW processors,” PhD Thesis, Université Rennes 1, Dec. 2018.
[Online]. Available: https://tel.archives-ouvertes.fr/tel-02137404

[11] M. Werner, E. Wenger, and S. Mangard, “Protecting the control flow
of embedded processors against fault attacks,” in Proc. International
Conference on Smart Card Research and Advanced Applications
(CARDIS). Springer, Nov. 2015, pp. 161–176.

[12] R. de Clercq, “Hardware-supported software and control flow
integrity,” PhD Thesis, KU Leuven, Nov. 2017. [Online]. Available:
https://www.esat.kuleuven.be/cosic/publications/thesis-297.pdf

[13] M. A. Wahab, “Hardware support for the security analysis of embedded
softwares: applications on information flow control and malware
analysis,” PhD Thesis, Centrale Supelec, Université Bretagne Loire, Dec.
2018. [Online]. Available: https://tel.archives-ouvertes.fr/tel-02634340

[14] T. Li, J. A. Ambrose, R. Ragel, and S. Parameswaran, “Processor design
for soft errors: Challenges and state of the art,” ACM Computing Surveys
(CSUR), vol. 49, no. 3, pp. 57:1–44, Sep. 2016.

[15] P. Maistri and R. Leveugle, “Double-data-rate computation as a coun-
termeasure against fault analysis,” IEEE Transactions on Computers,
vol. 57, no. 11, pp. 1528–1539, Nov. 2008.

[16] J. Proy, K. Heydemann, A. Berzati, and A. Cohen, “Compiler-assisted
loop hardening against fault attacks,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 14, no. 4, Dec. 2017.

[17] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and
P. Schaumont, “Software fault resistance is futile: Effective single-
glitch attacks,” in Proc. Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, Aug. 2016, pp. 47–58.

[18] B. Yuce, N. F. Ghalaty, C. Deshpande, H. Santapuri, C. Patrick,
L. Nazhandali, and P. Schaumont, “Analyzing the fault injection sen-
sitivity of secure embedded software,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 16, no. 4, pp. 95:1–25, Jul. 2017.

[19] N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson, and E. Encre-
naz, “Experimental evaluation of two software countermeasures against
fault attacks,” in Proc. International Symposium on Hardware-Oriented
Security and Trust (HOST). IEEE, May 2014, pp. 112–117.

[20] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A. Papadim-
itriou, “On the importance of analysing microarchitecture for accurate
software fault models,” in Proc. Euromicro Conference on Digital System
Design (DSD). IEEE, Aug. 2018, pp. 561–564.

[21] ——, “Cross-layer analysis of software fault models and countermea-
sures against hardware fault attacks in a RISC-V processor,” Micropro-
cessors and Microsystems (MICPRO), vol. 71, pp. 1–10, Nov. 2019.

[22] D. Patterson and J. Hennessy, Computer Organization and
Design RISC-V Edition: The Hardware Software Interface.
Morgan Kaufmann, 2017. [Online]. Available: https://www.elsevier.
com/books/computer-organization-and-design-risc-v-edition/patterson/
978-0-12-812275-4

[23] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and
P. de Choudens, “FISSC: A fault injection and simulation secure collec-
tion,” in Proc. International Conference on Computer Safety, Reliability,
and Security (SAFECOMP). Springer, Sep. 2016, pp. 3–11.

6

https://tel.archives-ouvertes.fr/tel-02137404
https://www.esat.kuleuven.be/cosic/publications/thesis-297.pdf
https://tel.archives-ouvertes.fr/tel-02634340
https://www.elsevier.com/books/computer-organization-and-design-risc-v-edition/patterson/978-0-12-812275-4
https://www.elsevier.com/books/computer-organization-and-design-risc-v-edition/patterson/978-0-12-812275-4
https://www.elsevier.com/books/computer-organization-and-design-risc-v-edition/patterson/978-0-12-812275-4

	Introduction
	State of the Art
	Target Processor
	Proposed Hardware Replay Protection
	Replay Instruction
	Detection Elements
	Processor Modifications for Replay Support
	Processor Versions

	Evaluation Environment
	Evaluation of our Hardware Protections
	FPGA Implementations Results
	Timing Performance and Code Size Results
	Fault Injection Simulations Results
	Additional Discussions

	Conclusion and Future Prospects
	Acknowledgments
	References

