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TOROIDAL GROTHENDIECK RINGS AND CLUSTER ALGEBRAS

LAURA FEDELE AND DAVID HERNANDEZ

Abstract. We study deformations of cluster algebras with several quantum parame-
ters, called toroidal cluster algebras, which naturally appear in the study of Grothendieck
rings of representations of quantum affine algebras. In this context, we construct toroidal
Grothendieck rings and we establish these are flat deformations of Grothendieck rings.
We prove that for a family of monoidal categories C1 of simply-laced quantum affine alge-
bras categorifying finite-type cluster algebras, the toroidal Grothendieck ring has a natural
structure of a toroidal cluster algebra.
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1. Introduction

Monoidal categories of finite-dimensional representations of affine quantum groups and
Yangians have been studied from various points of view. The reader may refer to [Kas, O] for
recent important developments. Deformations of the corresponding Grothendieck rings have
been introduced from the study of quantumW -algebras [FR1], of convolution rings obtained
from quiver varieties [N1, VV] and of vertex operators [H1]. One important application is
the proof by Nakajima [N1] that one can calculate algorithmically the character of simple
finite-dimensional representations of simply-laced quantum affine algebras. Although the
deformations above have similarities, they give rise to different Poisson structures. More-
over, the approach by the second author in [H1] gives naturally additional deformation
parameters whose corresponding deformations have not been exploited so far. We propose
to consider multi-deformed Grothendieck rings which encapsulate simultaneously various
deformations of the Grothendieck rings.

To do this, let us recall that cluster theoretic methods to study the representation theory
of affine quantum groups have been introduced in [HL1]. Indeed, Grothendieck rings of
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certain monoidal categories of such representations have a natural cluster algebra structure
(see [HL5] for a recent review). That is why cluster algebras and their deformations give a
natural framework to study deformations of such Grothendieck rings.

In this perspective, we study toroidal cluster algebras, that is deformations of cluster
algebras with several quantum parameters. We investigate several general properties of
toroidal cluster algebras, some of them being new as far as we know. We construct many
examples, partly from our study of quantum affine algebras, but the positive part of certain
multi-parameter quantum groups provide also examples. The notion of a quantum cluster
algebra with more than one quantum parameter also appeared in the work of Goodearl-
Yakimov [GYa, GYb], with a different motivation related to the study of quantum nilpotent
algebras.

Then we construct toroidal Grothendieck rings, that is certain deformations of Grothendieck
rings with several variables. We follow the approach to quantum Grothendieck rings in [H1],
that is we first prove the existence of classes of fundamental representations in a certain
quantum torus (with several parameter in our case) by using a relevant algorithm. Then
it turns out that the deformation of the Grothendieck ring is the subring of the ambient
quantum torus generated by the classes of fundamental representations. But in the toroidal
setting we have to deal with certain specific problems so that the deformation is flat. In-
deed, the ordered product of classes of fundamental representations, that are called classes
of standard modules, do not give a basis, in opposition to the classical and quantum cases.
We overcome this difficulty by introducing certain new relations in the ambient (multi-
parameter quantum) tori, and we establish the flatness of the deformation in this context.
This is our first main result (Theorem 5.8).

We study toroidal Grothendieck rings associated to different monoidal subcategories of
the category C of finite-dimensional representations of the quantum affine algebras. In par-
ticular we focus on remarkable monoidal subcategories C1 introduced in [HL1] and which
categorify cluster algebras of finite-type. Our second main result (Theorem 6.10) states that
the toroidal Grothendieck ring of C1 gives after a suitable specialization a toroidal cluster
algebra with two independent parameters. Moreover, the classes of fundamental representa-
tions correspond to toroidal cluster variables, certain distinguished elements of the toroidal
cluster algebra. From the results in [HL2, HL4, Bi, Q], it was known that the deformation
of Grothendieck rings with one quantum parameter corresponds to a quantization of the
cluster algebra structure on commutative Grothendieck rings. It is surprising to us that
the dependance in certain additional parameters also comes from certain quantum cluster
algebra structures. Besides, our result gives an incarnation of a toroidal cluster algebra for
each finite cluster type.

Other interesting phenomena arise from the examples we consider: for instance, from
the toroidal Grothendieck ring of the category CQ of [HL2] in type A2 one can recover the
positive part of a multi-parameter quantum group.

To sum-up, the main motivation for our work is threefold: we aim at giving a natural
framework to handle the various known deformations of Grothendieck rings of representa-
tions of quantum affine algebras (as well as multi-parameters quantum groups), involving
natural deformations of important relations such as T -systems or Serre relations. We also
aim at obtaining natural examples of toroidal cluster algebras, that are deformations of
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cluster algebras with multi-parameters. Ultimately we hope that these new structures will
be useful to understand better the intricate structure of categories of representations of
quantum affine algebras. We hope this work gives new motivations to study the theory of
toroidal cluster algebras.

The paper is organized as follows.
In Section 2, we give the setup for toroidal cluster algebras and discuss several results for

quantum cluster algebras which can be naturally extended to the toroidal setting : the Lau-
rent phenomenon (Theorem 2.6), the positivity (see Theorem 2.7) and the invariance of the
exchange graph (see Theorem 2.8). In Section 3 we consider multi-parameter quantum tori
which appear naturally in the study of the representation theory of quantum affine algebras.
In Section 4, we give a brief review on finite-dimensional representations of quantum affine
algebras. In Section 5, we introduce multi-parameter deformations of the Grothendieck ring
of various monoidal categories : we introduce a specific quotient of a multi-parameter quan-
tum torus (Definition 5.3) in which we construct the toroidal Grothendieck ring (Definition
5.7) which is proved to be a flat deformation (Theorem 5.8). We prove that the classes
of fundamental representations provide a generating family of the toroidal Grothendieck
ring (Proposition 5.11). In Section 6 we establish that toroidal Grothendieck rings of cer-
tain monoidal categories C1 are toroidal cluster algebras in all ADE-types (Theorem 6.10).
In Section 7, we study the quasi-commutation relation for remarkable pairs in the multi-
parameters quantum tori : we prove it depends on a single parameter, even in the toroidal
setting. In Section 8 we discuss various questions we would like to address in the future in
relation to the main results of this paper.

Acknowledgment : The authors would like to thank the referee for his comments and
remarks. The authors would like to thank also Martina Lanini, Bernard Leclerc and Bern-
hard Keller for discussions and references. The authors were supported by the European
Research Council under the European Union’s Framework Programme H2020 with ERC
Grant Agreement number 647353 Qaffine.

2. Toroidal cluster algebras setup

We give the setup for toroidal cluster algebras, mimicking the definition of quantum
cluster algebras [BZ]. The more recent [GYa] gives an alternative definition and a uniform
approach. Several results for quantum cluster algebras can be naturally extended to the
toroidal setting : the Laurent phenomenon established in [BZ, GYa] (see Theorem 2.6),
the positivity from the main results in [D] (see Theorem 2.7) and as a consequence the
invariance of the exchange graph (see Theorem 2.8).

2.1. Setup. Let 1 ≤ m ≤ n be integers. We also fix r ≥ 1 which we call the number of
parameters. These parameters are formal variables that we denote by t1, t2, · · · , tr.

We consider a based multi-parameter quantum torus T . It is the algebra over Z[t
± 1

2
1 , · · · , t

± 1
2

r ]
with generators X1,X2, · · · ,Xn that quasi-commute, that is they are subject to relations :

Xi ∗Xj =


 ∏

1≤a≤r

tΛa(i,j)
a


Xj ∗Xi.
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Here the

Λa : {1, · · · , n}2 → Z

are skew-symmetric maps. The matrices (Λa(i, j))1≤i,j≤n are the corresponding quasi-
commutation matrices. T is an Ore domain, and it is contained in its skew-field of fractions
F .

We remark that in [GYa] the quasi-commutation relations are denoted by Xi ∗ Xj =
qijXj ∗ Xi, where the qij’s are invertible elements in a base field K, not necessarily given
by powers of a same element q (the latter special situation is called uniparameter quantum

torus case). Thus, our notation compares to the one in [GYa] if we take K = Q(t
1
2
1 , . . . , t

1
2
r ),

D = Z[t
± 1

2
1 , . . . , t

± 1
2

r ] and each qij corresponds to the product
∏

1≤a≤r t
Λa(i,j)
a . Our choice of

working with the parameters ta is motivated by our examples where the quantum parameters
naturally appear in this form.

The datum of (Λa)1≤a≤r is equivalent to the datum of r Poisson brackets {, }a on the
commutative polynomial ring Z[Xi]1≤i≤n :

{Xi,Xj}a = Λa(i, j)XiXj .

These Poisson brackets {, }a are compatible, that is any linear combination of the Poisson
brackets {, }a is a Poisson bracket.

As for quantum tori with one quantum parameter, we have a Z[t
± 1

2
1 , · · · , t

± 1
2

r ]-basis of the
quantum torus given by commutative monomials

∏

1≤i≤n

Xui
i =


 ∏

1≤a≤r

t
1
2

∑
1≤i<j≤n uiujΛa(j,i)

a




→

*
1≤i≤n

Xui
i ,

where the ui are arbitrary integers. In the following we will use the notation
∏

for com-
mutative monomials as in this last formula.

For 1 ≤ a ≤ r, we have a unique specialization morphism sending commutative monomials
to commutative monomials

πT ,a : T → Ta

where Ta is the quantum torus defined from T by setting all ta′ = 1 if a′ 6= a.

Definition 2.1. A toroidal seed in F is a collection

S = (Y1, · · · , Yn; B̃)

where the Yi ∈ F and B̃ is a skew-symmetric n×m integer matrix satisfying the following
properties :

(i) the Yi are algebraically independent, generate the field F and quasi-commute with
quasi-commutation matrices denoted by Λa,S .

(ii) for any 1 ≤ a ≤ r, the m × n-matrix B̃TΛa,S has an m × m-left block diagonal of
constant sign and an m × (n − m) right block equal to zero. If all entries of the diagonal

left block are constant equal to k ∈ Z>0, we will use the shorthand B̃TΛa,S =
(
k Idm | 0

)
.

The Yi are called the toroidal cluster variables of the toroidal seed. We denote by TS the
quantum torus they generate.
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Remark 2.2. (i) The second condition means that for 1 ≤ a ≤ r, (B̃,Λa,S) is a compat-

ible pair in the sense of [GSV, BZ]. In particular B̃ has full-rank and its principal part

(B̃)1≤i,j≤m is skew-symmetrizable. If r = 1, we recover the definition of a quantum seed.
(ii) The maximal number of independent parameters, that is the dimension of the space

generated by the Λa,S , is known. The matrix B̃ is naturally associated to a quiver Q with n

vertices. It admits a subquiver Q′ associated to the principal part of B̃. By [GSV, 4.1.3.] the
maximal number of independent parameters is equal to the number of connected components

of Q′ plus

(
n−m

2

)
. In most cases we will study, Q′ will be connected, and this number

will be equal to 1 +

(
n−m

2

)
.

(iii) The number n − m is the number of coefficients in the standard terminology of

cluster algebras, that is the variables (Yi)m+1≤i≤n. The quantity

(
n−m

2

)
corresponds to

the number of quasi-commutation relations between the coefficients.
(iv) For 1 ≤ a ≤ r, we may set

t1 = · · · = ta−1 = ta+1 = · · · = tr = 1

in TS, that is we consider a corresponding specialization map πTS ,a as above. We get
a quantum seed of quantum parameter ta in the sense of [BZ]. More generally, for any
(a1, · · · , ar) ∈ (Z>0)

r and t an indeterminate, the specialization

(t1, · · · , tr) 7→ (ta1 , · · · , tar )

defines a quantum seed of quantum parameter t. Indeed the linear combination

{, } =
∑

1≤i≤r

ai{, }i

is a Poisson-bracket and the corresponding skew-symmetric Λ is compatible with B̃.
(v) The results in this paper (except for Theorem 2.7) can be straightforwardly generalized

to those for skew-symmetrizable toroidal cluster algebras, that is with B̃ skew-symmetrizable.

For a toroidal seed S = (Y1, · · · , Yn; B̃) and 1 ≤ k ≤ m, the toroidal mutation in the
direction k

µk(S) = (Y1, · · · , Yk−1, Y
′
k, Yk+1, · · · , Yn; B̃

′),

is defined in the following way : B̃′ = µk(B̃) is obtained by the usual mutation rule [FZ1] :

(1) B̃′
i,j =





−B̃i,j if i = k or j = k,

B̃i,j + B̃i,kB̃k,j if B̃i,k > 0 and B̃k,j > 0,

B̃i,j − B̃i,kB̃k,j if B̃i,k < 0 and B̃k,j < 0,

B̃i,j otherwise.

The new toroidal cluster variable Y ′
k is obtained by the toroidal mutation rule :

(2) Y ′
k ∗ Yk = u

∏

bi,k>0

Y
bi,k
i + v

∏

bi,k<0

Y
−bi,k
i .
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Here u, v are the Laurent-monomials in the quantum parameters t
1
2
1 , · · · , t

1
2
r defined by :

u2Yk ∗
∏

bi,k>0

Y
bi,k
i =

∏

bi,k>0

Y
bi,k
i ∗ Yk and v2Yk ∗

∏

bi,k<0

Y
−bi,k
i =

∏

bi,k<0

Y
−bi,k
i ∗ Yk.

Moreover, the quasi-commutation matrices Λa,S mutate according to the following formula:

(3) Λ′
a,S = µk(Λa,S) = ET

k Λa,SEk ,

where Ek is the n× n matrix with entries

(Ek)i,j =





δij if j 6= k,

−1 if i = j = k,

max(0,−Bi,k) if i 6= j = k

Both the results of Propositions 2.3, 2.4 below also appeared in [GYa]. We include here
a proof for completeness.

Proposition 2.3. The toroidal mutation of a toroidal seed in F is a toroidal seed in F .

Proof. Let S = (Y1, · · · , Yn; B̃) and let us keep the notations above for the mutated seed
S ′ = µk(S) for a certain 1 ≤ k ≤ m. From the toroidal mutation formula (2), the toroidal
cluster variables in S ′ are algebraically independent. Let us prove they quasi-commute. Let
k′ 6= k and we prove that Y ′

k and Yk′ quasi-commute. As Yk and Yk′ quasi-commute, it
suffices to check that Yk′ quasi-commute with the two terms in the sum in (2) and that
the quasi-commutation parameters are the same for both. For each 1 ≤ a ≤ r, we can
apply πS,a to the toroidal mutation formula (2) and we get a mutation relation for the
corresponding quantum cluster algebra. By the result on quantum cluster algebras [BZ],
the power of each quantum parameter ta is the same for both quasi-commutation relations.
Hence we obtain the result. To conclude, again from the result on quantum cluster algebras,
we get the compatibility in the mutated seed for each 1 ≤ a ≤ r. �

The quantum torus TS has an antimultiplicative bar-involution defined by Yi = Yi for
1 ≤ i ≤ n and ta = t−1

a for 1 ≤ a ≤ r. It can be extended to the ring of Laurent polynomials

in the Yi and the t
1
2
a . The commutative monomials are bar-invariant.

Proposition 2.4. The mutation of toroidal seeds is involutive.

Proof. The fact that the mutation of matrices is involutive is well-known. Then we note
that the toroidal cluster mutation (2) is equivalent to

Yk ∗ Y
′
k = u−1

∏

bi,k>0

Y
bi,k
i + v−1

∏

bi,k<0

Y
−bi,k
i .

It suffices to apply the antimultiplicative bar-involution discussed above. We get exactly
the toroidal mutation relation from the toroidal S ′ to S. �

Definition 2.5. Let S = (Y1, · · · , Yn; B̃) be a toroidal seed in F . The associated toroidal
cluster algebra

Ator(S) ⊂ F
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is the Z[t
± 1

2
1 , · · · , t

± 1
2

r ]-subalgebra of F generated by all toroidal cluster variables of all
toroidal seeds obtained by iterated toroidal mutations.

2.2. An example. Let 1 = m ≤ 3 = n, and r = 2. Let T be the algebra over Z[t
± 1

2
1 , t

± 1
2

2 ]
with generators X1,X2,X3 subject to the quasi-commutation relations

Xi ∗Xj = t
Λ1(i,j)
1 t

Λ2(i,j)
2 Xj ∗Xi,

where

Λ1 =




0 1 −1
−1 0 0
1 0 0


 , Λ2 =



0 0 −1
0 0 0
1 0 0


 .

Finally, let

B̃T =
(
0 −1 1

)
.

Then the collection S = (X1,X2,X3, B̃) is a toroidal seed. In fact, we have

B̃TΛ1 =
(
2 0 0

)
, B̃TΛ2 =

(
1 0 0

)
,

hence (B̃,Λ1) and (B̃,Λ2) are compatible. Note that the commutation relations give

t−1
1 X1 ∗X2 = X2 ∗X1 and t1t2X1 ∗X3 = X3 ∗X1.

We can mutate the toroidal seed S only in direction 1 and obtain a new toroidal seed

µ1(S) = S ′ = (X ′
1,X2,X3, B̃

′),

where the new toroidal cluster variable X ′
1 is defined as

(4) X ′
1 ∗X1 = t

− 1
2

1 X2 + (t1t2)
1
2X3.

We have B̃′ = −B̃ and the quasi-commutation matrices of the new seed are Λa,S′ = −Λa

(a = 1, 2), hence the pairs (B̃′,Λa,S′) (a = 1, 2) are clearly compatible.
The toroidal cluster algebra Ator(S) has two toroidal seeds S and S ′. So it is the subal-

gebra of the fraction field of T generated by the 4 toroidal cluster variables :

X1,X2,X3,X
′
1.

Note that the parameters t1, t2 are independent, and that in this case 2 is the maximal
number of independent parameters.

We have two different quantum cluster algebras corresponding to the specialization at
t1 = 1 or t2 = 1 relatively to the initial seed S, obtained by applying the specialization
morphisms πTS ,1, πTS ,2 to Ator(S). The specialization at t2 = 1 is a certain Z-form of the
positive part of the quantum group associated to sl3 :

πTS ,2(Ator(S)) ≃ Ut1(n)Z ⊂ Ut1(sl3).

Without a specialization, we have also the relation :

X1 ∗X
′
1 = t

1
2
1 X2 + (t1t2)

− 1
2X3.
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Hence {X1,X
′
1} generates Ator(S)Q, where the latter denotes the same toroidal cluster

algebra Ator(S) after extending the scalars from Z[t
± 1

2
1 , t

± 1
2

2 ] to Q(t
1
2
1 , t

1
2
2 ). These toroidal

cluster variables satisfy:

X1 ∗X1 ∗X
′
1 − (t−2

1 t−1
2 + 1)t1X1 ∗X

′
1 ∗X1 + t−1

2 X ′
1 ∗X1 ∗X1 = 0,

X ′
1 ∗X

′
1 ∗X1 − (t21t2 + 1)t−1

1 X ′
1 ∗X1 ∗X

′
1 + t2X1 ∗X

′
1 ∗X

′
1 = 0.

This is a complete presentation of the algebra Ator(S)Q. Indeed this is equivalent to the
fact that

{Xa
1X

b
2X

c
3|a, b, c ≥ 0} ∪ {(X ′

1)
aXb

2X
c
3|a, b, c ≥ 0}.

are linearly free over Z[t
± 1

2
1 , t

± 1
2

2 ], which is true at t2 = 1 as it is identified with the Lusztig
dual canonical basis of Ut1(sl3).

We recognize the relations above as quantum Serre relations with 2 parameters. The
quantum Serre relations for the multi-parameter quantum group Uq(sl3) in [HPR] are

e21e2 − (q11 + 1)q12e1e2e1 + q11q
2
12e2e

2
1 = 0,

e22e1 − (q22 + 1)q21e2e1e2 + q22q
2
21e1e

2
2 = 0,

for some indeterminates q = (q11, q12, q21, q22) over Q such that q12q21 = q−1
11 = q−1

22 .
Hence, the two sets of quantum Serre relations coincide if we take q12 = t1, q21 = t1t2
and q11 = q22 = t−2

1 t−1
2 , and therefore the multi-parameter quantum group Uq(sl3) is a

two-parameter quantum groups as in [HP] (cfr. [HPR, Remark 9 (2)]). More precisely,
Ator(S)Q is isomorphic to the subalgebra U(t1t2)−1,t1(n) of a quantum group U(t1t2)−1,t1(sl3)
with two parameters described in [HP]. We get as a by-product that there exists a Z-form
U(t1t2)−1,t1(n)Z ⊂ U(t1t2)−1,t1(n) such that there is an embedding

U(t1t2)−1,t1(n)Z →֒ Z[t±1/2
1 , t

±1/2
2 ,X±1

1 ,X±1
2 ,X±1

3 ].

2.3. Toroidal Laurent phenomenon and positivity. We have the following toroidal
Laurent phenomenon. The generalization of the proof of the commutative Laurent phe-
nomenon in [BFZ] to the quantum case in [BZ, Section 5] gives also the result in the
toroidal case as explained by Goodearl-Yakimov in [GYa].

Theorem 2.6. [GYa, Theorem 2.15] Let S = (Y1, · · · , Yn; B̃) be a toroidal seed in F .

The associated toroidal cluster algebra is contained in the Z[t
± 1

2
1 , · · · , t

± 1
2

r ]-subalgebra of F
generated by the Y ±1

1 , · · · , Y ±1
n .

Hence every toroidal cluster variable can be written in a unique way as a linear combi-
nation of commutative Laurent monomials M in the Y ±1

1 , · · · , Y ±1
n with coefficients

PM (t1, · · · , tr) ∈ Z[t
± 1

2
1 , · · · , t

± 1
2

r ].

These are called the coefficients of the Laurent expansion of the cluster variable with respect
to the toroidal seed S.

Let us state the positivity for toroidal cluster algebras. We explain it is a consequence of
positivity of quantum cluster algebras proved by Davison [D].
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Theorem 2.7. The coefficients of the Laurent expansion of every toroidal cluster variable
with respect to any toroidal seed in Ator(S) are positive.

Proof. It follows from [D] that for any (a1, · · · , ar) ∈ (Z>0)
r, the

PM (ta1 , · · · , tar) ∈ Z[t±
1
2 ]

are positive Laurent polynomials in t
1
2 (the fact that PM (1, · · · , 1) ≥ 0 is proved in [LS]).

Indeed, the corresponding specialization morphism

(t1, · · · , tr) 7→ (ta1 , · · · , tar )

defines a quantum seed from S, see (iv) in Remark 2.2. For any Laurent monomial in PM

m = tb11 · · · tbrr ,

then there is a choice (a1, · · · , ar) so that m is the only monomial contributing to t
∑

i biai

in

P (t) = PM (ta1 , · · · , tar ).

For example, for A the maximum of the absolute values of the powers of the t
1
2
i occurring

in PM , we may set ai = 10A i. Indeed, the application

[−A,A]r → Z so that (µ1, · · · , µr) 7→
∑

1≤i≤r

µi10
A i

is injective. As P (t) is positive, then m must have a positive coefficient in PM . �

The exchange graph of a cluster algebra is defined as the graph with the seeds as vertices,
and the edges corresponding to seed mutations. The toroidal exchange graph of a toroidal
cluster algebra is defined in exactly the same way. To a toroidal cluster algebra is naturally
associated its classical specialization which is the cluster algebra associated to the exchange
matrix of one of the toroidal seeds.

Theorem 2.8. The toroidal exchange graph of a toroidal algebra identifies with the exchange
graph of its classical specialization.

The proof relies on the result established in [BZ] for quantum cluster algebras.

Proof. There is a natural surjective map Ψ from the toroidal exchange graph to the exchange
graph of the specialization. To prove it is a bijection, is suffices to prove that two cluster
variables χ, χ′ whose images in the classical specialization are equal coincide. We use the
same strategy as in the proof of Theorem 2.7 above, that is we specialize to various quantum
cluster algebras. We fix an initial seed and we consider the Laurent developments of the
various cluster variables : for a Laurent monomial M of the cluster variables of the initial
seed, we denote by PM (t1, · · · , tr) and P ′

M (t1, · · · , tr) the coefficient of M in the respective
developments. As above, it follows from the result [BZ] in the quantum case that for any
(a1, · · · , ar) ∈ (Z>0)

r,

PM (ta1 , · · · , tar) = P ′
M (ta1 , · · · , tar).

By an analog argument as in the proof of Theorem 2.7, this implies that PM = P ′
M . �



10 LAURA FEDELE AND DAVID HERNANDEZ

As in the classical case, we say that a toroidal cluster algebra is of finite type if is has
a finite number of toroidal cluster variables. Fomin and Zelevinsky [FZ2] gave a complete
classification of cluster algebras of finite type, which turns out to mirror the Cartan-Killing
classification of simple Lie algebras and finite root systems. We say that two quivers asso-
ciated to different seeds in a (toroidal) cluster algebra are mutation equivalent if one can be
obtained from the other by performing a sequence of mutations of quivers. Then, a cluster
algebra is of (finite) type Xn if its underlying quiver is mutation equivalent to an orienta-
tion of the Dynkin diagram of type Xn (the vertices corresponding to frozen variables are
disregarded, that is we only consider the principal part of the quiver). Clearly, a cluster
algebra has a finite number of cluster variables if and only if its exchange graph is finite.
Thus, as a direct consequence of Theorem 2.8 we have the following :

Corollary 2.9. A toroidal cluster algebra Ator(S) is of finite type Xn, if the principal part
of the quiver associated to the initial seed S is mutation equivalent to an orientation of the
Dynkin diagram of type Xn.

3. Multi-parameter quantum tori

We consider multi-parameter quantum tori which appear naturally in the study of the
representation theory of quantum affine algebras and of certain formal power series with
coefficients in Heisenberg algebras studied in [H1]. These multi-parameter quantum tori will
allow us to construct toroidal Grothendieck rings and examples of toroidal cluster algebras
in the next Sections.

3.1. Quantized Cartan matrix. Let g be a simply-laced untwisted affine Kac–Moody Lie
algebra with underlying finite-dimensional simple Lie algebra g of rank n. Set I = {1, . . . , n}
and C = (Ci,j)i,j∈I the Cartan matrix of g. Let

{αi}i∈I , {α∨
i }i∈I , {ωi}i∈I , {ω∨

i }i∈I ,

and h be the simple roots, the simple coroots, the fundamental weights, the fundamental
coweights, and the Cartan subalgebra of g, respectively. We denote by ∆ be the root system
of g, and by ∆+ ⊂ ∆ the subset of positive roots. We use the numbering of the Dynkin
diagram as in [Kac].

Let z be an indeterminate, and let C(z) be the n× n-matrix with entries

Ci,j(z) = [Ci,j]z

Here for an integer m, [m]z =
zm−z−m

z−z−1 =
∑m−1

h=0 zm−2h−1 is the standard quantum number.

Thus C(1) is just the Cartan matrix C of g. Since det(C) 6= 0, det(C(z)) 6= 0. We

denote by C̃(z) the inverse of the matrix C(z). This is a matrix with entries C̃ij(z) ∈ Q(z).

Explicit formulas can be found in [GTL, Appendix A]. The entries of C̃(z) have power series
expansions in z of the form (see [HL2]) :

(5) C̃i,j(z) =
∑

m≥1

C̃ij(m) zm, where C̃i,j(m) ∈ Z.

We have the following periodicity property established in [HL2], for i, j ∈ I and m ≥ 1 :

C̃i,j(m+ 2h) = C̃i,j(m),
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where h (= h∨) is the (dual) Coxeter number of g. Moreover, by [HL2, Prop 2.1], the
following properties hold :

(6)
C̃i,j(1) = δij
C̃i,j(m+ 1) + C̃i,j(m− 1)−

∑

k∼i

C̃k,j(m) = 0 , m ≥ 1 .

Remark 3.1. When g of Dynkin type An, we can give a very explicit description of the

entries of the inverse of the quantum Cartan matrix C̃(z), which is easily derived by the
formulas in [GTL, Appendix A]: For 1 ≤ i ≤ j ≤ n we have

(7) C̃i,j(z) =
( i−1∑

a=0

zi+j−1−2a −

−n+i+j−2∑

a=−n+j−1

zi+j−1−2a
)∑

b≥0

z2(n+1)b ,

while for i > j we use the fact that the inverse of the quantum Cartan matrix is symmetric:

C̃i,j(z) = C̃j,i(z).

3.2. Heisenberg Lie-algebra and Frenkel-Reshetikhin currents. Let q be a non-zero
complex number which is not a root of unity. Following [H1], we consider the Heisenberg
algebra H as the C-algebra with generators ai[m] (i ∈ I,m ∈ Z\{0}), the central elements
cr (r > 0), and relations (i, j ∈ I,m, r ∈ Z \ {0}):

[ai[m], aj [r]] = δm,−r(q
m − q−m)Ci,j(q

m)c|m|.

For j ∈ I, m ∈ Z, let moreover yj [m] =
∑

i∈I C̃i,j(q
m)ai[m] ∈ H . We have

(8)
[ai[m], yj[r]] = (qm − q−m)δm,−rδijc|m|,

[yi[m], yj [r]] = δm,−rC̃j,i(q
m)(qm − q−m)c|m|.

Next, consider the C-algebra Hh := H [[h]]. Following [FR2, H1], we consider certain

invertible elements in Hh for (i, r) ∈ Î := I × Z :

Ai,r = exp
(∑

m>0

hmai[m]qrm
)
exp
(∑

m>0

hmai[−m]q−rm
)
,

Yi,r = exp
(∑

m>0

hmyi[m]qrm
)
exp
(∑

m>0

hmyi[−m]q−rm
)
.

Let U ⊂ Q(z) be the group of rational fractions of the form P (z)
Q(z) where P (z) ∈ 1

2Z[z
±1],

Q(z) ∈ Z[z], Q(0) = 1 and the zeros of Q(z) are roots of unity. By expanding Q(z)−1 in
Z[[z]] we have an embedding U ⊂ 1

2Z((z)). For R ∈ U we denote

tR = exp
(∑

m>0

h2mR(qm)cm

)
∈ Hh.

We denote by Ỹ∞ the Z-subalgebra of Hh generated by the elements Y ±1
i,r , A±1

i,r , tR

((i, r) ∈ Î, R ∈ U). We denote by ∗ the product in this algebra. By (8), the following
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quasi-commutation relations hold in Ỹ∞ :

(9)
Ai,p ∗ Yj,s ∗ A

−1
i,p ∗ Y −1

j,s = tδij(z−z−1)(z(p−s)−z(s−p)),

Yi,p ∗ Yj,s ∗ Y
−1
i,p ∗ Y −1

j,s = t
C̃j,i(z)(z−z−1)(z(p−s)−z(s−p))

.

3.3. Multi-parameter quantum tori. Let Y = Z[Y ±1
i,r | (i, r) ∈ Î], be the Laurent

polynomial ring generated by a collection of commutative variables Yi,r. In [H1] the second

author constructed, starting from Ỹ∞, a one-parameter deformation of the ring Y . We
consider here deformations with an arbitrary number of parameters.

Given R ∈ U we can rewrite (cfr. [H1, Lemma 3.7])

tR = t(∑
m≥−MR

Rmzm
) =

∏

m≥−MR

(
tzm
)Rm .

For any r ∈ Z we have the coefficient map πr : U −→ 1
2Z, so that

P =
∑

r≥−R

πr(P )zr for any P ∈ U.

By definition, πr(C̃i,j(z)) = C̃i,j(r).
Let us use the shorthand tm for tzm , m ∈ Z. As the Yi,r are algebraically independent,

Ỹ∞ can be presented ([H1, Lemma 3.9]) as the Z[tR | R ∈ U]-algebra with the generators

Y ±1
i,r , (i, r) ∈ Î, and quasi-commutation relations

(10) Yi,p ∗ Yj,s =

(
∏

a∈Z

ta
Na(i,p;j,s)

)
Yj,s ∗ Yi,p,

where the map Na : Î × Î −→ Z is given by 1

Na(i, p; j, s) = πa

(
C̃j,i(z)(z − z−1)(zs−p − zp−s)

)
.

This is a quantum torus of infinite rank.
We can compute the value of Na(i, p; j, s) explicitly and obtain

(11)

Na(i, p; j, s) =
∑

r∈Z

C̃j,i(r)
(
δs−p+r+1,a − δp−s+r+1,a − δs−p+r−1,a + δp−s+r−1,a

)

= C̃j,i(p − s− 1 + a)− C̃j,i(s− p− 1 + a)− C̃j,i(p− s+ 1 + a) + C̃j,i(s− p+ 1 + a).

Note that the map Na : Î × Î −→ Z is clearly skew-symmetric, namely

Na(i, p; j, s) = −Na(j, s; i, p).

Moreover, it only depends on the difference s−p. Thus, Na(i, p; j, s) = Na(i, 0; j, s−p) and
Na(i, p; j, p) = 0 for any p ∈ Z, hence the variables Yi,p and Yj,p commute for any i, j ∈ I.

1This is obtained from the quasi-commutation relation in (9), but with a sign change, so that it agrees
with the formula in [HL2] corresponding to the case a = 0.
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Remark 3.2. (1) It follows from (11) that N−a(i, 0; j, a) = δi,j (a > 0), and Na(i, p; j, s) =
0 for a < − | s − p |. Hence, for any pair Yi,p, Yj,s, in the RHS of (10) there is a
minimum a so that the parameter ta occurs, while such a maximum a does not exist
in general.

(2) We want to remark that even though in the RHS of Equation (10) we allow an
infinite product of tR’s, in practice we will always consider only a finite number of

parameters. In fact, thanks to (11) and the periodicity condition C̃i,j(m + 2h) =

C̃i,j(m) for m ≥ 1, we obtain that Na+2h(i, 0; j, s) = Na(i, 0; j, s) for a ≥ s+ 2.

The following constructions are analogous to the corresponding ones for the one-parameter
deformation.

Given a family of integers ui,p, (i, p) ∈ Î, with finitely many nonzero components we have
the commutative monomial

∏

(i,p)∈Î

Y
ui,p

i,p =
∏

a∈Z

ta
1
2

∑
(i,p)<(j,s) ui,puj,sNa(j,s;i,p) −→

∗ (i,p)∈Î Y
ui,p

i,p ,

where the arrow means that the product is ordered according to a certain ordering of Î,

arbitrarily chosen. It follows that given m1 =
∏

(i,p)∈Î Y
ui,p(m1)
i,p and m2 =

∏
(j,s)∈Î Y

uj,s(m2)
j,s

commutative monomials, their non-commutative ∗-product in Ỹ∞ is

(12) m1 ∗m2 =
∏

a∈Z

ta
1
2
Da(m1,m2)m1m2 ,

where Da(m1,m2) =
∑

(i,p),(j,s)∈Î

ui,p(m1)uj,s(m2)Na(i, p; j, s) .

We say that a commutative m =
∏

(i,p)∈Î Y
ui,p(m)
i,p is dominant if ui,p(m) ≥ 0 for all (i, p) ∈ Î.

For (i, r) ∈ Î, let us denote by the same symbolAi,r the commutative monomial associated
to the formal power series Ai,r defined above :

(13) Ai,r = Yi,r−1Yi,r+1

( ∏

j|Cji=−1

Y −1
j,r

)
.

Remark 3.3. The one-parameter deformation of the Laurent ring Y described in [H1]

is obtained as a particular case, when we consider the quotient Yt of Ỹ∞ obtained by the
relations ta = 1 if a 6= 0. We set t = t0 and by [H1, Theorem 3.11], Yt is the Z[t±1]-algebra

with generators the variables Y ±1
i,r , (i, r) ∈ Î, and commutation relations

(14) Yi,p ∗ Yj,s = tN (i,p;j,s)Yj,s ∗ Yi,p,

where N (i, p; j, s) coincides (up to a sign2) with the exponent N0(i, p; j, s) defined above.

2Here, we are using the same product as in [HL2], which differs from the one in [H1] by replacing t with
t−1. This change amounts to a sign change in the RHS of the formulas for Na(i, p; j, s).
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3.4. Finite rank multi-parameter quantum tori. Let us give several examples of finite
rank multi-parameter quantum tori which will appear in the following when we will study
monoidal subcategories of finite-dimensional representations of quantum affine algebras.

Let Q be an orientation of the Dynkin diagram of the Lie algebra g. A height function
ξ : I −→ Z on Q is a function satisfying ξj = ξi − 1 whenever there is an arrow i → j
between the nodes i, j ∈ Q. As Q is connected, we can fix a height function ξ and any two
height functions would differ by a constant.

Example 1 : we suppose the orientation is bipartite, that is every vertex of Q is a sink or

a source. We assume ξi = 1 for any i ∈ I source. Then Ỹ∞,1 is the Z[tR | R ∈ U]-subalgebra

of Ỹ∞ generated by the variables Y ±1
i,p , where i ∈ I, p = ξi, ξi + 2. This is a quantum torus

of rank 2n. Ỹ∞,1 is the corresponding extended torus.
Example 2 : we suppose g be of type An and the orientation of Q is linear with ξi = i.

Then Ỹ∞,ob is the Z[tR | R ∈ U]-subalgebra of Ỹ∞ generated by the variables Y ±1
i,p , where

1 ≤ i ≤ n and p = i−1, i+1. This is a quantum torus of rank 2n. Ỹ∞,ob is the corresponding
extended torus.

Example 3 : for an arbitrary orientation of Q, we set

Îξ := {(i, p) ∈ I × Z | p− ξi ∈ 2Z},

and ∆̂ := ∆× Z, which gives a labeling for the infinite repetition quiver Q̂ attached to Q.
There is a bijection ϕ : Îξ → ∆̂ (see [HL2] for details). Define

ÎQ := ϕ−1(∆+ × {0}) ⊂ Îξ,

and let Ỹ∞,Q be the Z[tR | R ∈ U]-subalgebra of Ỹ∞ generated by the Y ±1
i,p for (i, p) ∈ ÎQ.

This is a quantum torus of rank |∆+|. Ỹ∞,Q is the corresponding extended torus.

4. Finite-dimensional representations of quantum affine algebras

We give a brief review on finite-dimensional representations of quantum affine algebras
(the reader may refer to [CP, CH] and references therein for more details).

Recall that q is a non-zero complex number which is not a root of unity. Let Uq(g)
be the quantum affine algebra associated with the affine Kac-Moody algebra g, which is
a q-deformation of the universal enveloping algebra of g. Let C be the category of finite-
dimensional Uq(g)-modules of type 1, namely the category of modules whose eigenvalues for
the elements ki (i ∈ I) are of the form qm for some m ∈ Z. Since Uq(g) is a Hopf algebra
the category C has a tensor structure. However it is not semisimple and not braided.

Chari and Pressley [CP] proved that the simple objects L of C are parametrized by I-
tuples of polynomials in one indeterminate, with coefficients in C and constant term 1, the
so-called Drinfeld polynomials PL = (Pi,L(u) , i ∈ I). Some distinguished objects of C are
the fundamental modules Vi(a) (i ∈ I, a ∈ C∗) whose Drinfeld polynomials are of the form

Pj,Vi(a)(u) =

{
1− au, if i = j

1, otherwise.
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Another family of distinguished (simple) objects of C is given by the Kirillov-Reshetikhin

modules W
(i)
k,a (i ∈ I, k ∈ N∗ and a ∈ C∗) whose Drinfeld polynomials are of the form

P
j,W

(i)
k,a

(u) =

{
(1− au)(1− aq2u) · · · (1− aq2k−2u), if i = j

1, otherwise.

Clearly, W
(i)
1,a coincides with the fundamental module Vi(a) while W

(i)
0,a is by convention the

trivial representation, for every i and every a.
The affine analogue of the usual weights for g-modules are called ℓ-weights, and every

simple Uq(g)-module L is uniquely characterized by a highest ℓ-weight γ similarly to what
happens for simple g-modules.

Given an element V ∈ Ob(C ), it can be decomposed as direct sum of its ℓ-weight spaces,
namely the affine analogues of the weight spaces. Frenkel and Reshetikhin [FR2], have
attached to V a certain element of Z[Y ±1

i,a | i ∈ I, a ∈ C∗] with positive coefficients, which

we call its q-character χq(V ). This is the generating series of the ℓ-weight spaces of V . If
V is a simple module, it is determined up to isomorphism by its q-character.

To any ℓ-weight γ of a Uq(g)-module V we can attach a certain Laurent monomial mγ ∈
Z[Y ±1

i,a | i ∈ I, a ∈ C∗]. In particular, for any simple Uq(g)-module L with highest ℓ-weight
γ, the corresponding monomial mγ is dominant, i.e. it does only contain positive powers
of the variables Yi,a. In this case we denote L = L(mγ). Dominant monomials give an
equivalent classification of the simple objects in C , up to isomorphism.

Let K (C ) denote the Grothendieck ring of C . Although C is not braided, its Grothendieck
ring K (C ) is commutative. It is known [FR2, Cor. 2] that the classes of the fundamental
modules are algebraically independent and that K (C ) is isomorphic to the polynomial ring
in these classes.

Let us focus on certain monoidal subcategories.
Following [HL1], let CZ the subcategory of the category of finite-dimensional Uq(g)-

modules (of type 1) whose simple constituents have highest monomial in Yξ := Z[Y ±1
i,qr |

(i, r) ∈ Îξ], where ξ is a height function. Then CZ is a tensor subcategory of C and its
Grothendieck ring is the subring of K (C ) generated by the classes of the fundamental

modules of the form Vi(q
r), (i, r) ∈ Îξ. The q-character of an object in CZ is a Laurent

polynomial in Y = Z[Y ±1
i,qr | (i, r) ∈ Îξ]. In particular, the fundamental module Vi(q

r)

is associated to the dominant monomial Yi,qr , and the KR-module W
(i)
k,qr to the dominant

monomial m
(i)
k,r := Yi,qrYi,qr+2 · · ·Yi,qr+2k−2 . For i ∈ I and r ∈ Z we use a simplification of

notation : Yi,r = Yi,qr , and W
(i)
k,r := W

(i)
k,qr .

This category has interesting monoidal subcategories corresponding to the sub-tori dis-
cussed in the last section.

Example 1 Let C1 be the full subcategory of CZ of objects whose simple constituents

are indexed by dominant commutative monomials in Ỹ∞,1.

Example 2 In type A, let C ob
1 be the full subcategory of CZ of objects whose simple

constituents are indexed by dominant commutative monomials in Ỹ∞,ob.
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Example 3 Let CQ be the full subcategory of CZ of objects whose simple constituents

are indexed by dominant commutative monomials in Ỹ∞,Q.

These categories C1, C ob
1 , CQ are monoidal (see [HL1, HL3, HL2], respectively). Note

that the choice of an arbitrary sub-torus does not lead necessarily to a monoidal category,
see comments in the proof of [HL2, Lemma 5.8].

5. Toroidal Grothendieck rings

Let C ′ ⊂ C be one of the subcategories considered above, that is CZ, C1, C ob
1 or CQ. We

introduce multi-parameter deformations of the Grothendieck ring K (C ′) of the category
C ′ (see Definition 5.3).

One parameter quantum deformations of the quantum Grothendieck ring appeared in
the work of Nakajima [N1] and Varagnolo-Vasserot [VV] in type ADE, with a geometric
construction based on categories of perverse sheaves on quiver varieties. An alternative
algebraic construction was given by the second author [H1] for all types. We will follow this
approach, but in addition to the technical points addressed in [H1], we have to overcome
new difficulties related to the flatness of the deformation. We introduce a specific quotient
of a multi-parameter quantum torus (Definition 5.3) in which we construct the toroidal
Grothendieck rings (Definition 5.7). The flatness is proved in Theorem 5.8.

We also define classes of fundamental representations which provide a generating family
of the toroidal Grothendieck ring (Proposition 5.11).

5.1. Quantum Grothendieck rings. The constructions of quantum Grothendieck rings
Kt(C ) with one parameter are based on t-deformations of Frenkel and Reshetikhin q-
character, the (q, t)-characters. They belong to a t-deformed version Yt of the quantum
torus Y (cfr. Remark 3.3). Let us recall the following main properties (see [HL2] for a
complete review):

(1) Kt(C ) is defined as the intersection of subrings Ki,t, i ∈ I, of Yt. The definition of
these subrings mimics what should be the definition in the sl2-case for each node i. This is
a reminiscence of the Weyl group invariance of usual characters.

(2) Kt(C ) has a Z[t±
1
2 ]-basis of elements denoted by Ft(m). Each Ft(m) has a unique

dominant monomial m and its multiplicity is 1. In particular, each non-zero element in
Kt(C ) has at least a dominant monomial and is characterized by the multiplicity of its
dominant monomials. The Ft(m) are obtained by an explicit algorithm and are deformations
of analogs F (m) which form a basis of K (C ). We get a flat deformation of the classical
Grothendieck ring K (C ). By a flat deformation of a commutative algebra A we mean an

algebra A that is a free module over a Laurent polynomial ring Z[t
± 1

2
λ | λ ∈ Λ] such that

A/
∑

λ∈Λ(t
1
2
λ −1)A is isomorphic to A. The quantum Grothendieck ring Kt(C ) satisfies this

property since the ordered products of classes of fundamental modules provide a basis both
of the classical and of the quantum Grothendieck ring.

(3) The (q, t)-character of the fundamental module Vi(a) is Ft(Yi,a). The (q, t)-characters

of fundamental modules generate Kt(C ) as a Z[t±
1
2 ]-algebra.

(4) Each category C ′ has a quantum Grothendieck ring Kt(C
′) generated by the (q, t)-

characters of the fundamental modules in this category.
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(5) For the subcategories C1, C ob
1 , CQ, the (q, t)-character of fundamental modules may

contain monomials which do not belong to the underlying quantum subtorus. This brings to
the introduction of truncated (q, t)-characters, obtained by discarding all such monomials;

we denote it by χ̃q,t(L) (the specialization at t = 1 is the truncated q-character χ̃q(L)).
They generate a different subring of the quantum torus Yt isomorphic to Kt(C

′) (see for
instance [HL1, Prop 6.1], [HL4, Prop 3.10]). The properties (2) above are also satisfied
as for a simple object L in C ′, all dominant monomials occurring in χq,t(L) also occur in

χ̃q,t(L).

5.2. Naive construction in the toroidal case. We first highlight the issues concerning
the flatness of deformations. For simplicity, let us consider the case when all the fundamental
representations in C ′ are thin, namely their q-characters are multiplicity free (we discuss
the general case later). Note that all fundamental representations are thin for types A, B,
C and G2 (see [H2]).

In fact, when fundamental representations are thin, we know (see for instance [HL2])
that their (q, t)-characters coincide with the usual q-characters. We follow this approach to
define what we call the (q,∞)-character of any fundamental module Vi(a) ∈ Ob(C ′) :

[Vi(a)]q,∞ := χq,t(Vi(a)) = χq(Vi(a)) = F (Yi,a),

where we identify commutative monomials, inside the quantum torus Ỹ∞.
As a first naive definition, we can define the (generalized) toroidal Grothendieck ring of

the category C ′ as the subring of the ring of Laurent polynomials Ỹ∞ generated by the

(q,∞)-characters of the fundamental modules. We denote this by K̃∞(C ′).
The issue with this definition of toroidal Grothendieck ring is that it might be too big, and

therefore fail to be a flat deformation of the Grothendieck ring K (C ′) (see (2) in Section
5.1). Namely, since we know that the ordered products of classes of fundamental modules
provide a basis of the Grothendieck ring K (C ′), we would like that (ordered) product of

the same classes, when considered in the quantum torus Ỹ∞, to provide a basis of K̃∞(C ′).
We illustrate with an example what happens when we try to do so.

5.3. An example. Let g = sl3 and C ′ = CQ. The category CQ has a basis given by the
fundamental modules V1(1), V1(q

2) and V2(q) (with height function ξ1 = 0, ξ2 = 1). By
definition, the (q,∞)-characters of these fundamental representations are

(15)

[V1(1)]q,∞ = χq,t(V1(1)) = Y1,0 + Y −1
1,2 Y2,1 + Y −1

2,3

[V1(q
2)]q,∞ = χq,t(V1(q

2)) = Y1,2 + Y −1
1,4 Y2,3 + Y −1

2,5

[V2(q)]q,∞ = χq,t(V2(q)) = Y2,1 + Y1,2Y
−1
2,3 + Y −1

1,4 .

The quantum Cartan matrix for sl3 is

C(z) =

(
z + z−1 −1

−1 z + z−1

)
,
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and we can compute its inverse C̃(z) = (C̃ij(z))ij∈I , whose entries have the form (5). By

[HL2, Cor. 2.3] we have C̃ij(m) = C̃ij(m+ 6) for i, j ∈ I and m ≥ 1, and in particular

(16)
C̃11(z) = C̃22(z) = z − z5 + z7 − z11 + . . .

C̃12(z) = C̃21(z) = z2 − z4 + z8 − z10 + . . . .

According to (10), we can compute

(17)
[V1(1)]q,∞ ∗ [V1(q

2)]q,∞ =
∏

a∈Z

t
Na(1,0,1,2)

2
a

(
Y1,0Y1,2 + Y −1

2,3 Y
−1
2,5 + Y −1

1,2 Y
−1
1,4 Y2,1Y2,3

+ t
− 1

2
−4 t

1
2
−2t

1
2
2 t

− 1
2

4

(
Y1,0Y

−1
1,4 Y2,3 + Y1,0Y

−1
2,5 + Y −1

1,2 Y2,1Y
−1
2,5

)
+ t

− 1
2

−2 t0t
− 1

2
2 [V2(q)]q,∞

)
,

(18)

[V1(1)]q,∞ ∗ [V2(q)]q,∞ =
∏

a∈Z

t
Na(1,0,2,1)

2
a

(
Y1,0Y2,1 + Y1,0Y1,2Y

−1
2,3 + Y −1

1,2 Y
2
2,1 + Y1,2Y

−2
2,3

+ Y −1
1,2 Y

−1
1,4 Y2,1 + Y −1

1,4 Y
−1
2,3 + t

− 1
2

−4 t
1
2
−2t

1
2
2 t

− 1
2

4 Y1,1Y
−1
1,q4

+
(
t
− 1

2
−2 t0t

− 1
2

2 + t
1
2
−2t

−1
0 t

1
2
2

)
Y2,1Y

−1
2,3

)
,

(19)

[V1(q
2)]q,∞ ∗ [V2(q)]q,∞ =

∏

a∈Z

t
−Na(1,0,2,1)

2
a

(
Y1,2Y2,1 + Y 2

1,2Y
−1
2,3 + Y −1

1,4 Y2,1Y2,3 + Y −2
1,4 Y2,3

+ Y1,2Y
−1
2,3 Y

−1
2,5 + Y −1

1,4 Y
−1
2,5 + t

1
2
−4t

− 1
2

−2 t
− 1

2
2 t

1
2
4 Y2,1Y

−1
2,5 +

(
t
− 1

2
−2 t0t

− 1
2

2 + t
1
2
−2t

−1
0 t

1
2
2

)
Y1,2Y

−1
1,4

)
,

∏

a∈Z

tNa(1,0,1,2)
a = t−2t

−1
0 t−2

2 t34
∏

k≥1

t−3
6k+2t

3
6k+4 ,

∏

a∈Z

tNa(1,0,2,1)
a = t0t

−3
2 t34

∏

k≥1

t−3
6k+2t

3
6k+4 .

Combining the corresponding products in the opposite order, we obtain

(20)

[V1(1)]q,∞ ∗ [V1(q
2)]q,∞ −

∏

a∈Z

tNa(1,0,1,2)
a [V1(q

2)]q,∞ ∗ [V1(1)]q,∞

=
(
1− t−4t

−1
−2t

−1
2 t4

)(
Y1,0 ∗ Y

−1
1,4 Y2,3 + Y1,0 ∗ Y

−1
2,5 + Y −1

1,2 Y2,1 ∗ Y
−1
2,5

)

+
(
1− t−2t

−2
0 t2

)∏

a∈Z

t
Na(1,0,2,1)

2
a [V2(q)]q,∞ ,

(21)

[V1(1)]q,∞ ∗ [V2(q)]q,∞ −
∏

a∈Z

tNa(1,0,2,1)
a [V2(q)]q,∞ ∗ [V1(1)]q,∞

=
(
1− t−4t

−1
−2t

−1
2 t4

)
Y1,0 ∗ Y

−1
1,4 ,

(22)

[V1(q
2)]q,∞ ∗ [V2(q)]q,∞ −

∏

a∈Z

t−Na(1,0,2,1)
a [V2(q)]q,∞ ∗ [V1(q

2)]q,∞

=
(
1− t−1

−4t−2t2t
−1
4

)
Y −1
2,5 ∗ Y2,1 .
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The RHS of equations (20), (21) and (22), should provide elements of K̃∞(CQ). However,
no dominant monomial occur in these elements (except for [V2(q)]q,∞ in the RHS of (20)), as
we should expect if we had a basis of ordered product of fundamental classes (cfr. Section
5.1, property (2)). Therefore, we need to impose some additional relations between the

parameters t
± 1

2
a in order for K̃∞(CQ) to be a flat deformation of K (CQ).

If we quotient the quantum torus Ỹ∞ by the relation

1 = t
1
2
−4t

− 1
2

−2 t
− 1

2
2 t

1
2
4

and we take K∞(CQ) to be the subring of this quotient quantum torus Y∞ generated by
the (images of the) classes of the fundamental modules V1(1), V1(q

2) and V2(q), it descends
from the relations above that the result is a genuine flat deformation of K (CQ). As a
consequence, we can also uniquely define the following classes of simple modules:

(23)

[L(Y1,0Y1,2)]q,∞ := χq,t(L(Y1,0Y1,2)) ,

[L(Y1,0Y2,1)]q,∞ := Y1,0Y2,1 + Y1,0Y1,2Y
−1
2,3 + Y −1

1,2 Y
2
2,1 + Y −1

1,2 Y
−1
1,4 Y2,1

+ Y1,2Y
−2
2,3 + Y −1

1,4 Y
−1
2,3 + Y1,0Y

−1
1,4 +

(
t
− 1

2
−2 t0t

− 1
2

2 + t
1
2
−2t

−1
0 t

1
2
2

)
Y2,1Y

−1
2,3 ,

[L(Y1,2Y2,1)]q,∞ := Y1,2Y2,1 + Y 2
1,2Y

−1
2,3 + Y −1

1,4 Y2,1Y2,3 + Y −2
1,4 Y2,3

+ Y1,2Y
−1
2,3 Y

−1
2,5 + Y −1

1,4 Y
−1
2,5 + Y2,1Y

−1
2,5 +

(
t
− 1

2
−2 t0t

− 1
2

2 + t
1
2
−2t

−1
0 t

1
2
2

)
Y1,2Y

−1
1,4 .

5.4. Idea of the general construction. In general, our strategy is to define a new quan-

tum torus Y∞ as the quotient of Ỹ∞ by all the relations which appear as coefficients leading
to elements in the toroidal Grothendieck ring without dominant monomials.

Let us now give the precise construction.

5.5. Toroidal Grothendieck ring for the category CZ. We follow the idea of one
parameter quantum Grothendieck rings explained at the beginning of this section. We
introduce for each i ∈ I a subring mimicking the construction in the sl2-case and then the
toroidal Grothendieck ring will be defined as the intersection of these subrings.

For i ∈ I, let K̃i,∞ be the Z[tR | R ∈ U]-subalgebra of Ỹ∞ generated by the elements

(24)

{
Yi,r + Yi,rA

−1
i,r+1,

Yj,r, j 6= i,

where for i ∈ I, r ∈ Z. Note that Yi,rA
−1
i,r+1 = Y −1

i,r+2

∏
j∼i Yj,r+1.

Let i ∈ I. A monomial m =
∏

(j,r)∈Î Y
uj,r(m)
j,r is said to be i-dominant if the powers

uj,r(m) of the Yj,r are all positive for j = i. Then one can define

Ei,∞(m) :=
→
∗ r∈Z

((
Yi,r + Yi,rA

−1
i,r+1

)ui,r(m)
∗j 6=i Y

uj,r(m)
j,r

)
∈ K̃i,∞,

where the arrow above the product sign means that the product is ordered increasingly in

the index r (i.e.
→∏

r∈ZUr = . . . U−1U0U1U2 . . .).
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Analogously to the one-parameter case in [H1], we would like to prove that for every i ∈ I

the elements Ei,∞(m) provide a Z[tR | R ∈ U]-basis of K̃i,∞. This family is linearly free.

So, it would be sufficient to show that every non-ordered product in K̃i,∞ can be written
as a linear combination of the elements Ei,∞(m).

By (14) the variables Yj,r for a fixed r ∈ Z mutually commute, and moreover it is possible
to show (analogously to the one-parameter case in [H1]) that for any j 6= i and fixed r ∈ Z
the two generators Yi,r + Yi,rA

−1
i,r+1 and Yj,r commute. Therefore it suffices to consider the

product of two generators as Yi,r + Yi,rA
−1
i,r+1 and Yi,r′ + Yi,r′A

−1
i,r′+1 (r 6= r′) in both orders.

The following Proposition thus shows how the Ei,∞(m) fail to generate the whole K̃i,∞.

Proposition 5.1. Let k ≥ 1, and consider the family αs(k) ∈
1
2Z defined by

Yi,r ∗ Yi,r+2k =
(∏

s∈Z

tαs(k)
s

)
Yi,r+2k ∗ Yi,r.

Then in the quantum torus Ỹ∞ the following holds

(25)

(
Yi,r + Yi,rA

−1
i,r+1

)
∗
(
Yi,r+2k + Yi,r+2kA

−1
i,r+2k+1

)

−
(∏

s∈Z

tαs(k)
s

)(
Yi,r+2k + Yi,r+2kA

−1
i,r+2k+1

)
∗
(
Yi,r + Yi,rA

−1
i,r+1

)

=
(
1− t−2k−2t

−1
−2kt

−1
2k t2k+2

)(∏

s∈Z

tβs(k)
s

)
Yi,rYi,r+2kA

−1
i,r+2k+1

+
(
1− t−2kt

−1
−2k+2t

−1
2k−2t2k

)(∏

s∈Z

tγs(k)s

)
Yi,rA

−1
i,r+1Yi,r+2k ,

for some βs(k), γs(k) ∈
1
2Z.

Proof. For s ∈ Z, let βs(k), γs(k), δs(k) ∈
1
2Z such that

Yi,r ∗ Yi,r+2kA
−1
i,r+2k+1 =

(∏

s∈Z

t2βs(k)
s

)
Yi,r+2kA

−1
i,r+2k+1 ∗ Yi,r ,

Yi,rA
−1
i,r+1 ∗ Yi,r+2k =

(∏

s∈Z

t2γs(k)s

)
Yi,r+2k ∗ Yi,rA

−1
i,r+1 ,

Yi,rA
−1
i,r+1 ∗ Yi,r+2kA

−1
i,r+2k+1 =

(∏

s∈Z

t2δs(k)s

)
Yi,r+2kA

−1
i,r+2k+1 ∗ Yi,rA

−1
i,r+1 .

By substituting these commutation relations, the LHS of (25) equals
(26)(

1−
∏

s∈Z

tαs(k)−2βs(k)
s

)
Yi,r ∗ Yi,r+2kA

−1
i,r+2k+1 +

(
1−

∏

s∈Z

tαs(k)−2γs(k)
s

)
Yi,rA

−1
i,r+1 ∗ Yi,r+2k

+
(
1−

∏

s∈Z

tαs(k)−2δs(k)
s

)
Yi,rA

−1
i,r+1 ∗ Yi,r+2kA

−1
i,r+2k+1 .
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By (12), and by the properties of the inverse of the quantum Cartan matrix we can
compute explicitly the exponents αs(k), βs(k), γs(k), δs(k) (s ∈ Z) and obtain:

αs(k) = Ns(i, 0; i, 2k) = C̃ii(−2k − 1 + s)− C̃ii(2k − 1 + s)− C̃ii(−2k + 1 + s) + C̃ii(2k + 1 + s) ,

2βs(k) = −Ns(i, 0; i, 2k + 2) +
∑

j∼i

Ns(i, 0; j, 2k + 1) = −δs,−2k−2 + δs,−2k + δs,2k − δs,2k+2

+C̃ii(−2k − 1 + s)− C̃ii(−2k + 1 + s)− C̃ii(2k − 1 + s) + C̃ii(2k + 1 + s) ,

2γs(k) = −Ns(i, 0; i, 2k − 2) +
∑

j∼i

Ns(i, 0; j, 2k − 1) = −δs,−2k + δs,−2k+2 + δs,2k−2 − δs,2k

+C̃ii(−2k − 1 + s)− C̃ii(−2k + 1 + s)− C̃ii(2k − 1 + s) + C̃ii(2k + 1 + s) ,

2δs(k) = Ns(i, 0; i, 2k)−
∑

j∼i

Ns(i, 0; j, 2k−1)−
∑

j∼i

Ns(i, 0; j, 2k+1)+
∑

j,h∼i

Ns(j, 0;h, 2k)

= Ns(i, 0; i, 2k) .

As a consequence, for any k ≥ 1, we have αs(k)− 2δs(k) = 0, whereas

αs(k) − 2βs(k) = δs,−2k−2 − δs,−2k − δs,2k + δs,2k+2 ,

αs(k)− 2γs(k) = δs,−2k − δs,−2k+2 − δs,2k−2 + δs,2k .

To conclude, substituting the values of αs(k) − 2βs(k), αs(k) − 2γs(k) and αs(k) − 2δs(k)
in (26), we obtain exactly equation (25). �

Remark 5.2. For s = 0 the exponents α0(k), β0(k), γ0(k), δ0(k) in Proposition 5.1 coincide
with the corresponding powers of t0 = t in the one-parameter case (cfr. [H1, Cor. 4.11]).

By definition Yi,rA
−1
i,r+1Yi,r+2 ∈ Z[Yj,s]j 6=i,s∈Z, thus the monomial Yi,rA

−1
i,r+1Yi,r+2k ∈ K̃i,∞

if and only if k = 1. The monomial Yi,rYi,r+2kA
−1
i,r+2k+1 /∈ K̃i,∞, for any k ≥ 1.

Therefore, equation (25) shows that the elements Ei,∞(m) do not form a basis of K̃i,∞.
However, as explained above, we will instead consider a particular quotient of the quantum

torus Ỹ∞, and define particular subalgebras Ki,∞ therein such that (the images of) the
elements Ei,∞(m) now have the desired properties. The relations to define the new quantum
tori naturally appeared in the Proposition 5.1 above.

Definition 5.3. Let Y∞ be the quotient of the quantum torus Ỹ∞ by the relations

Rk : 1 = t
− 1

2
−2k−2t

1
2
−2kt

1
2
2kt

− 1
2

2k+2, k ≥ 1.

Let moreover Ki,∞ be the image of K̃i,∞ in Y∞.
In the following, by basis of a submodules of Y∞ we mean a basis over the ring

Z[tR | R ∈ U]/
(
Rk

)
k≥1

.

Proposition 5.4. The images of the Ei,∞(m) in Ki,∞ form a basis.

We will still denote Ei,∞(m) its image in Ki,∞ and the product by ∗.
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Proof. From Proposition 5.1, inside the quantum torus Y∞ we have (for k > 1) :

(27)

(
Yi,r + Yi,rA

−1
i,r+1

)
∗
(
Yi,r+2 + Yi,r+2A

−1
i,r+3

)

−
(∏

s∈Z

tαs(1)
s

)(
Yi,r+2 + Yi,r+2A

−1
i,r+3

)
∗
(
Yi,r + Yi,rA

−1
i,r+1

)

∈ Z[tR | R ∈ U][Yi,rA
−1
i,r+1Yi,r+2] ,

(28)

(
Yi,r + Yi,rA

−1
i,r+1

)
∗
(
Yi,r+2k + Yi,r+2kA

−1
i,r+2k+1

)

−
(∏

s∈Z

tαs(k)
s

)(
Yi,r+2k + Yi,r+2kA

−1
i,r+2k+1

)
∗
(
Yi,r + Yi,rA

−1
i,r+1

)
= 0 .

Hence the same arguments as in [H1] for the quantum case also work in the toroidal case. �

Remark 5.5. The Rk (k ≥ 1) is a minimal set of relations so that the last result holds.

Remark 5.6. Given variables Yi,2r+ξi, Yj,2s+ξj ,
(
(i, r), (j, s) ∈ Î

)
, we have

Yi,2r+ξi ∗ Yj,2s+ξj =
∏

a∈Z

t
Na(i,2r+ξi;j,2s+ξj)
a Yj,2s+ξj ∗ Yi,2r+ξi .

By [HL1, Prop. 2.1], for any m ≥ 1, the entry C̃i,j(m) of C̃(z) vanishes unless m+ ξi − ξj
is odd. We thus conclude that Na(i, 2r + ξi; j, 2s + ξj) = 0 for all a ∈ 2Z + 1. As a
consequence, only parameter with even indices, that is the parameters t−2k, may appear in

the quasi-commutation relations of any two monomials of Ỹ∞ or of Y∞.

Definition 5.7. We define the toroidal Grothendieck ring to be the intersection

K∞

(
= K∞(CZ)

)
:=
⋂

i∈I

Ki,∞.

One obtains that every non-zero element of K∞ has at least one dominant monomial.
The argument is the same as in the one-parameter case (cfr. [H1, Lemma 5.7]), and is based
on the classical result of Frenkel and Reshetikhin [FR2]. Let us sum up the argument. One
first observes that to each monomial in the Y ±1

i,r can be associated a weight, as follows:

m =
∏

(i,r)∈Î

Y
ui,r(m)
i,r 7→

∑

i

(∏

r

ui,r(m)
)
ωi .

For instance, the weight of the monomial Yi,r is the fundamental weight ωi and the weight
of the element Ai,r is the simple root αi. The Nakajima ordering is a partial ordering on

monomials in the variables Y ±1
i,r which is a refinement of the usual ordering on weights :

m ≤ m′ if and only if m′m−1 is a product of Ai,r .

Then, one argues that an element χ in K∞ contains a monomial M maximal with respect
to the order ≤. For each i ∈ I, χ is a linear combination of various Ei,∞(m) with the m
i-dominant. This implies that M is equal to one of these m for each i. So M is dominant.

Next, we need to show that K∞ is non-zero and has the correct size. As explained above,
it is easier if the fundamental representations are thin. The general statement is also true.
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Theorem 5.8. For any dominant monomial m, there is a unique F∞(m) ∈ K∞ so that m
is the unique dominant monomial occurring in F∞(m) and its multiplicity is 1. The F∞(m)
form a basis of K∞ which is a flat deformation of K (C ).

Proof. Thanks to the discussion above, we can now follow [H1, Theorem 5.11] and the
recursive algorithm therein. The proof is the same, in particular the fact that the algorithm
used to construct F∞(m) never produces conflicting results. For this, it is sufficient to
check the cases of Lie algebras of rank 2, which is handled as in the one-parameter case.
We also point out that, although in [H1] some completion of both the quantum torus and
the deformed Grothendieck ring are introduced in order to carry out the argument, this is
not necessary, as it is pointed out in [HO] (see also [H2, Subsection 7.3]). For the last point,
the Z-basis F (m) of K (C ) gets deformed into a basis of K∞. �

Definition 5.9. For a fundamental module Vi(q
r), r ∈ Z, we define its (q,∞)-character

(or its class in K∞) as

[Vi(q
r)]q,∞ := F∞(Yi,r) .

Remark 5.10. The definition [Vi(q
r)]q,∞ is consistent with the definition [Vi(q

r)]q,∞ =
χq,t(Vi(q

r)) in the case when the fundamental module Vi(q
r) is thin. This is clear in this

case as the three algorithms used to construct F (Yi,r), Ft(Yi,r) and F∞(Yi,r) give the same
result (this is analog to [HL2, Corollary 5.3]).

The following is obtained as in the one-parameter case.

Proposition 5.11. The [Vi(q
r)]q,∞ generate K∞ as a Z[tR | R ∈ U]-algebra.

5.6. Subcategories and truncations. Let C ′ be one of the monoidal subcategories C1 ,C
ob
1

or CQ. The toroidal Grothendieck ring K∞(C ′) is defined as the subalgebra of K∞ gener-
ated by the (q,∞)-characters of fundamental representations which are in C ′.

Note that the number of parameters which actually play a role in the structure of K∞(C ′),
that is that occur in the relations among the (q,∞)-characters of fundamental representa-
tions, is lower than for the whole K∞ in general (we will see several examples in the rest of
this paper).

We obtain also a natural definition of truncated (q,∞)-character of fundamental repre-
sentations as a truncation of F∞(Yi,r), as for (q, t)-characters in Section 5.1, point (5). It

will be denoted by [̃L]q,∞ for a fundamental representation L. As for (q, t)-characters, they

generate a subring of the quantum torus Y∞ different but isomorphic to K∞(C ′). Indeed,
as we proved K∞ is a flat deformation of the classical Grothendieck ring, its structure is
governed by the multiplicities of dominant monomials. All of them occur in the truncated
(q,∞)-characters by construction.

Remark 5.12. As a generalization of Remark 5.10, if the truncated q-character of a repre-
sentation L has a unique dominant monomial and all the monomials of the truncation have
multiplicity 1, then it lies in the subring of truncated (q,∞)-characters. Then the truncated
(q,∞)-character of L can be defined as a sum of commutative monomials.
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5.7. The case of sl2. In the case of g = sl2, the quantum Cartan matrix is C(z) = (z+z−1)
and its inverse is (cfr. (7))

C̃(z) = (z − z3)
∑

n≥0

z4n = z − z3 + z5 − z7 + z9 + . . . .

In particular, the periodicity property reads C̃(m) = C̃(m + 4), and moreover C̃(m) =

−C̃(m+ 2) for m ≥ 1.
By the results of the previous section, the toroidal Grothendieck ring K∞ is the subalge-

bra of the quantum torus Y∞ generated by the (images of the) classes of the fundamental
modules

[V (q2r)]q,∞ := χq,t(V (q2r)) = Y2r + Y −1
2r+2 , r ∈ Z .

In particular, the simple modules are indexed by dominant commutative monomials in the
variables Y2r, r ∈ Z, and it is possible to check that (assuming p < s)

Na(1, 2p; 1, 2s) = 0 for a > 2(s− p) , and N2(s−p)(1, 2p; 1, 2s) = 1 .

The relations Rk give, for each k, t
1
2
−2k−2t

1
2
2k+2 = t

1
2
−2kt

1
2
2k = . . . = t

1
2
−2t

1
2
2 . Let us denote this

quantity by s. For h ≥ 1, we can compute,

(29) [V (q2r)]q,∞ ∗ [V (q2r+2h)]q,∞ = α(h)[L(Y2rY2r+2h)]q,∞ + δh,1 ,

where [L(Y2rY2r+2h)]q,∞ := Y2rY2r+2h+Y −1
2r+2Y

−1
2r+2h+2+Y2rY

−1
2r+2h+2+δh>1Y

−1
2r+2Y2r+2h and

α(h) = t0
(−1)hs−(−1)h . We obtain the commutation relations

(30)
[V (q2r)]q,∞ ∗ [V (q2r+2)]q,∞ − t−2

0 s2[V (q2r+2)]q,∞ ∗ [V (q2r)]q,∞ = 1− t−2
0 s2 ,

[V (q2r)]q,∞ ∗ [V (q2r+2h)]q,∞ = α(h)2[V (q2r+2h)]q,∞ ∗ [V (q2r)]q,∞ , for h > 1 .

By [HL2, Theorem 7.3, Example 7.4], the t-deformed quantum Grothendieck ring for sl2
has a presentation given by generators χq,t(V (2r)), r ∈ Z, and relations

(31)
χq,t(V (q2r)) ∗ χq,t(V (q2r+2)) = t−2χq,t(V (q2r+2)) ∗ χq,t(V (q2r)) + 1− t−2 ,

χq,t(V (q2r)) ∗ χq,t(V (q2r
′
)) = t2(−1)r

′−r

χq,t(V (q2r
′
)) ∗ χq,t(V (q2r)) , if r′ > r + 1 .

As K∞ is generated as a Z[tR | R ∈ U]-algebra by the classes of fundamental modules
[V (2r)]q,∞, r ∈ Z, equation (30) provides a surjective homomorphism

Kt(CZ) −→ K∞ ,

χq,t(V (q2r)) 7→ [V (q2r)]q,∞ , t 7→ t0s
−1 .

Since K∞ is a flat deformation of Kt(CZ) this map is in fact an isomorphism. Hence, in the
sl2-case, we just get the quantum deformed Grothendieck ring Kt(CZ) with an extension of
scalars. Even if not providing a genuine toroidal structure, this example works as a warmup
for the general case. It is moreover useful to get an idea for the issues and the general
strategy needed in order to define toroidal T -systems, as shown below.
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We recall that ([N2], [HL1, Prop 5.6]), given p ∈ 2Z and k ≥ 1, the (q, t)-characters of
the Kirillov-Reshetikhin modules Wk,p := L(mk,p) satisfy the following quantum T -system:

(32) χq,t(Wk,p) ∗ χq,t(Wk,p+2) = t−1χq,t(Wk−1,p+2) ∗ χq,t(Wk+1,p) + 1 .

See [KNS] for a general review on T -systems.

Definition 5.13. For p ∈ 2Z, k ≥ 1, we define the (q,∞)-character of the KR-module :

(33) [Wk,p]q,∞ := F∞(Yp · · ·Yp+2(k−1)) =

k∑

i=0

Yp · · ·Yp+2(i−1)Y
−1
p+2(i+1) · · · Y

−1
p+2k ∈ K∞ .

We remark that the classes [Wk,p]q,∞ a priori live inside the quantum torus Y∞, and we
should prove that they belong to the toroidal Grothendieck ring K∞. One way to do so is
to give a recursive formula which expresses each [Wk,p]q,∞ as a polynomial in the classes of
fundamental modules [V (qp)]q,∞ = [W1,p]q,∞, as in Proposition 5.15 below.

An argument analogous to that of [HL2, Prop 5.6] proves the following deformed version
of the quantum T -system (32) for the classes [Wk,p]q,∞.

Proposition 5.14. Let p ∈ 2Z and k ≥ 1. Then, the classes [Wk,p]q,∞ satisfy :

(34) [Wk,p]q,∞ ∗ [Wk,p+2]q,∞ = t−1
0 s[Wk−1,p+2]q,∞ ∗ [Wk+1,p]q,∞ + 1 .

Note that equation (29) with h = 1 is an instance of (34) in the case of k = 1.

Proposition 5.15. Let p ∈ 2Z, ℓ ≥ 1. Set a(ℓ) = δℓ/∈2Z. We have :

(35) [Wℓ,p]q,∞ = t0s
−1
((

t0s
−1
)−a(ℓ)

[W1,p]q,∞ ∗ [Wℓ−1,p+2]q,∞ − [Wℓ−2,p+4]q,∞

)
.

Proof. We work by induction on ℓ. For ℓ = 2, it is the T -system (34) for k = ℓ− 1 = 1. As
we need a two-step induction, we shall also consider the case ℓ = 3. The T -system (34) for
k = ℓ− 1 = 2 can be rewritten as

(36) [W3,p]q,∞ = t0s
−1[W1,p+2]

−1
q,∞ ∗

(
[W2,p]q,∞ ∗ [W2,p+2]q,∞ − 1

)
.

By the bar-invariance of [Wk,p]q,∞, we also have

(37) [W2,p]q,∞ = t−1
0 s
(
[W1,p+2]q,∞ ∗ [W1,p]q,∞ − 1

)
.

Substituting, we obtain the claim

(38) [W3,p]q,∞ = t0s
−1
(
[W1,p]q,∞ ∗ t−1

0 s[W2,p+2]q,∞ − [W1,p+4]q,∞

)
.

Next, let us assume that ℓ > 3 and that (35) holds for all values ℓ′ strictly smaller than ℓ.
By the bar-invariance of [Wk,p]q,∞ this amounts to assume that the identity

(39) [Wℓ′,p]q,∞ = t−1
0 s
((

t0s
−1
)a(ℓ′)

[Wℓ′−1,p+2]q,∞ ∗ [W1,p]q,∞ − [Wℓ′−2,p+4]q,∞

)
,

holds for all ℓ′ < ℓ as well. Let us consider the toroidal T -system (34) for k = ℓ − 1. By
substituting the recursive formulas (39) for [Wℓ−1,p]q,∞ and (35) for [Wℓ−1,p+2]q,∞, the LHS
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of (34) becomes
(40)((

t0s
−1
)a(ℓ−1)

[Wℓ−2,p+2]q,∞ ∗ [W1,p]q,∞ − [Wℓ−3,p+4]q,∞

)

∗
((

t−1
0 s
)a(ℓ−1)

[W1,p+2]q,∞ ∗ [Wℓ−2,p+4]q,∞ − [Wℓ−3,p+6]q,∞

)

= [Wℓ−2,p+2]q,∞ ∗ [W1,p]q,∞ ∗ [W1,p+2]q,∞ ∗ [Wℓ−2,p+4]q,∞

−
(
t0s

−1
)a(ℓ−1)

[Wℓ−2,p+2]q,∞ ∗ [W1,p]q,∞ ∗ [Wℓ−3,p+6]q,∞

−
(
t−1
0 s
)a(ℓ−1)

[Wℓ−3,p+4]q,∞ ∗ [W1,p+2]q,∞ ∗ [Wℓ−2,p+4]q,∞

+ t−1
0 s[Wℓ−4,p+6]q,∞ ∗ [Wℓ−2,p+4]q,∞ + 1

= [Wℓ−2,p+2]q,∞ ∗
(
[W1,p]q,∞ ∗

(
[W1,p+2]q,∞ ∗ [Wℓ−2,p+4]q,∞ −

(
t0s

−1
)a(ℓ−1)

[Wℓ−3,p+6]q,∞

)

− [Wℓ−2,p+4]q,∞

)
+ 1

= t−1
0 s[Wℓ−2,p+2]q,∞ ∗

((
t−1
0 s
)a(ℓ)−1

[W1,p]q,∞ ∗ [Wℓ−1,p+2]q,∞ − t0s
−1[Wℓ−2,p+4]q,∞

)
+ 1 .

where the first equality is given by the T -system (34) with k := ℓ − 3 and p := p + 4, the
second equality is given by (39) with ℓ′ := ℓ− 2 and p := p+ 2 together with the fact that
a(k) + a(k + 1) = 1. The last equality is given by (35) with ℓ := ℓ − 1 and p := p + 2.
Comparing with the RHS of (29) we can conclude. �

Remark 5.16. A version of a (classical) T -system in type A is given in [KNS, Sec. 2],

and a closed formula for its solution T
(a)
m (u) is given in terms of a certain determinant in

[KNS, Theorem 6.2]. For quantum or toroidal T -systems we similarly conjecture that we
can express the class of a Kirillov-Reshetikhin module [Wℓ,p+2]q,∞ as a polynomial in the
classes of the fundamental modules by computing a particular row-determinant. However
its dependance on the quantum parameter is not clear yet.

6. Toroidal cluster algebra structure

In this section we see how toroidal Grothendieck rings provide examples of toroidal cluster
algebras. The categories C1 in ADE-types discussed above are the first monoidal categories
which were related to cluster algebras in [HL1]. In the main result (Theorem 6.10) we
establish that toroidal Grothendieck rings of these categories C1 are toroidal cluster algebras.

6.1. Monoidal categorications. We recall (see [HL1]) that a monoidal category M is
said to be a monoidal categorification of a (classical) cluster algebra A if there exists a ring
isomorphism

A
∼
−→ K (M )

so that cluster variables are certain classes of simple modules L in the Grothendieck ring
of M . In particular, the cluster monomials of A (namely, monomials composed of cluster
variables in the same seed) correspond to classes of real (i.e. such that L⊗L is still simple)
simple objects of K (M ).

Various examples of monoidal categorification appeared as categories of finite-dimensional
Uq(g)-modules [HL1, HL3, HL4, BC]. Other examples of monoidal categorification of cluster
algebras can be given for instance by perverse sheaves on quiver varieties, representations of
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quiver-Hecke algebras, or equivariant perverse coherent sheaves on the affine Grassmannian
(see [N3, Q, KKKO, CW] or [H3] for a review) In [HL1] Hernandez and Leclerc conjectured
(Conjecture 4.6) that the category C1 is a monoidal categorification of a classical cluster
algebra A with the same Dynkin type as g, and they proved this conjecture for g of type An

and D4. In [N3] the conjecture was later proved in type ADE, using the geometry of quiver
varieties. Again through a geometric approach [Q] proved the conjecture in type ADE for
more larger categories Cℓ, ℓ ≥ 1, introduced by Hernandez-Leclerc. In type An and Dn the
same authors [HL3] proved that the category C ob

1 also provides a monoidal categorification
of cluster algebras of the same type. The proof is similar to [HL1], but the main calculations
are in this case simpler.

For the category CQ it is proved in [HL2, Theorem 6.1] that the t-deformed quantum
Grothendieck ring Kt(CQ) is isomorphic to At(n), the quantum coordinate ring of the
unipotent group N associated with the Lie subalgebra n ⊂ g, and it was proved in [GLS1]
that the latter possesses a quantum cluster algebra structure (see also [F1, F2] for very
recent advances on the structure of these categories).

We study the possibility of producing examples of toroidal cluster algebras by using the
toroidal Grothendieck rings K∞(C ′) for C ′ one of the categories of the previous section.
One of our main results is the proof for the categories C1. This gives an incarnation of a
toroidal cluster algebra for each finite cluster type. Before proving the result, let us show
an instance of this phenomenon for the categories CQ and C ob

1 .

6.2. First examples.

Example 6.1. Let g = sl3 and C ′ = CQ. Let

X1 = [V1(1)]q,∞ , X2 = [V2(q)]q,∞
X3 = [L(Y1,0Y1,2)]q,∞ , X ′

1 = [V1(q
2)]q,∞ .

By comparing with Example 5.3, it is easily seen that the toroidal cluster algebra structure
of type A1 with two parameters in the example of Section 2.2 is the structure obtained from
K∞(CQ) when we denote3

(41) t(1) :=
∏

a∈Z

tNa(1,0,2,1)
a , and t(2) :=

∏

a∈Z

t−Na(1,0,1,2)−Na(1,0,2,1)
a .

In fact, in addition to the quasi-commutation relations (20), (21) and (22), we can use
the explicit expression of [L(Y1,0Y1,2)]q,∞ at the end of Example 5.3 and conclude that all
quasi-commutation relations between the classes [V1(1)]q,∞, [V2(q)]q,∞, [L(Y1,0Y1,2)]q,∞ and
[V1(q

2)]q,∞ coincide with the quasi-commutation relations between the toroidal cluster vari-
ables X1, X2, X3 and X ′

1, under the reparametrization (41).

Example 6.2. Let g = sl3 and C ′ = C ob
1 . Following [HL3], let

X1 = ˜[V1(q2)]q,∞ = Y1,2 , X2 = ˜[V2(q3)]q,∞ = Y2,3 ,

X3 = ˜[L(Y1,0Y1,2)]q,∞ = Y1,0Y1,2 , X4 = ˜[L(Y2,1Y2,3)]q,∞ = Y2,1Y2,3 .

3Note that in the example of Section 2.2 the parameters are actually denoted by t1 and t2 respectively,
following the notation introduced in that section.
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If we let t1 and t2 be defined as in (41), we obtain a toroidal cluster algebra structure on
the toroidal Grothendieck ring K∞(C ob

1 ) with initial toroidal seed

S := (X1,X2,X3,X4, B̃),

with two coefficients (X3,X4), and with

B̃T =

(
0 −1 −1 1
1 0 0 −1

)
.

The quasi-commutative structure on S is given by

Xi ∗Xj = t1
Λ1(i,j)t2

Λ2(i,j)Xj ∗Xi

where

Λ1 =




0 1 1 0
−1 0 1 1
−1 −1 0 −1
0 −1 1 0


 , Λ2 =




0 0 1 0
0 0 1 1
−1 −1 0 −1
0 −1 1 0


 .

Since B̃TΛ1 =
(
2 Id2 | 0

)
and B̃TΛ2 =

(
Id2 | 0

)
, both pairs (B̃,Λ1) and (B̃,Λ2) are compat-

ible. By Proposition 2.3 all mutated pairs (µk(B̃), µk(Λa)) (a = 1, 2) are still compatible.
We can mutate the initial toroidal seed S in direction 1 or 2, corresponding to the ex-

changeable variables. The result of all possible iterated mutations is encoded in the exchange

graph below. At each step, the matrix B̃ mutates according to the usual rule (1), and the
quasi-commutation matrices Λ1 ,Λ2 mutate according to (3).

S

S1 = (X ′
1,X2,X3,X4, µ1(B̃)) S2 = (X1,X

•
2 ,X3,X4, µ2(B̃))

S1,2 = (X ′
1,X

′
2,X3,X4, µ2(µ1(B̃))) S2,1 = (X•

1 ,X
•
2 ,X3,X4, µ1(µ2(B̃)))

S1,2,1

X1∗X′
1=X4+t1t

1
2
2 X2X3 X2∗X•

2=t
− 1

2
1 X1+(t1t2)

1
2 X4

X2∗X′
2=1+t1(t2)

1
2X′

1 X1∗X•
1=t

− 1
2

1 X•
2+(t1t2)

1
2 X3

X′
1∗X

′′
1 =X3+t1t

1
2
2 X′

2X4

,

where the last toroidal seed is S1,2,1 = (X ′′
1 ,X

′
2,X3,X4, µ1(µ2(µ1(B̃)))), which we will see

coincides with S2,1. The toroidal exchange graph is therefore finite (see Theorem 2.8).
In fact, by computing the corresponding quasi-commutation relations inside the toroidal
Grothendieck ring K∞(C ob

1 ) we obtain the identification

X ′
1 =

˜[L(Y1,0Y2,3)]q,∞ = Y1,0Y2,3 + Y −1
1,2 Y2,1Y2,3 , X•

2 = X ′′
1 = ˜[V2(q)]q,∞ = Y2,1 + Y1,2Y

−1
2,3 ,

X•
1 = X ′

2 = ˜[V1(1)]q,∞ = Y1,0 + Y −1
1,2 Y2,1 + Y −1

2,3
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Thus, by swapping X•
2 and X•

1 we can identify the seeds S1,2,1 and S2,1, while their corre-
sponding exchange matrices and quasi-commutation matrices coincide up to a reordering of
the first two rows and columns. We obtain a structure of toroidal cluster algebra of type A2

with two quantum parameters.
By combining the exchange relations between the seeds S1 7→ S1,2 and S 7→ S1, we can

write X•
1 as

X•
1 = X−1

2 +X−1
1 X−1

2 X4 +X−1
1 X3 ,

which is an instance of the Laurent phenomenon for toroidal cluster algebras.

6.3. Grothendieck rings as cluster algebras for the category C1. Let ξ : I −→ {0, 1}
be a height function associated to a bipartite quiver of Dynkin type ADE. We can attach
to g a finite quiver Q1 whose vertex set is given by

Vξ,1 := {(i, r) ∈ Î | r = ξi − 1, ξi + 1},

and arrows

((i, r) → (j, s)) ↔ (Ci,j 6= 0 and s = r + Ci,j).

This amount to assuming that ξi = 1 whenever i is a source, the vertices of the Dynkin
diagram corresponding to the vertices (i, ξi + 1) in Vξ,1. This quiver corresponds to (a
shifted version of) the full subquiver described in [HL4], which is built from one of the two

isomorphic connected components of the infinite quiver Q̃. Let z1 := {z(i,r) | (i, r) ∈ Vξ,1}
be a set of commuting variables, and let A(Q1) ⊂ Q(z1) be the classical cluster algebra with
initial seed (z1,Q1), where the variables z(i,r) with r = ξi − 1 are considered as coefficients.
For (i, r) ∈ Vξ,1, let mi,r := max{k | r + 2k ≤ 2} + 1. On the other hand, recall that the
simple modules in C1 are indexed by dominant commutative monomials in the variables
Yi,p, where i ∈ I and p ∈ {ξi, ξi + 2}. Note that in this section we will thus often use the
notation L(Yi,r) for the fundamental module Vi(q

r). Then

Theorem 6.3. [HL4] The assignment

(42) z(i,r) 7→ χq

(
W

(i)
mi,r ,r+1

)
,

extends to a ring isomorphism i1 : A(Q1)
∼

−→ K (C1).

We recall that W
(i)
mi,r ,r+1 = L(m

(i)
mi,r ,r+1). It follows from the definition of the vertex set

Vξ,1 that mi,ξi+1 = 1 and mi,ξi−1 = 2. Thus, (42) reads

z(i,ξi+1) 7→ χq

(
W

(i)
1,ξi+2

)
= χq

(
L(Yi,ξi+2)

)
, z(i,ξi−1) 7→ χq

(
W

(i)
2,ξi

)
= χq

(
L(Yi,ξiYi,ξi+2)

)
.

Remark 6.4. In [HL1], the cluster algebra was constructed starting from a different initial
seed attached to the quiver Q′ (see [HL1, Example 4.1] for instance). It is obtained from a
copy of the Dynkin diagram of g with a bipartite orientation, associated to the same height
function ξ : I −→ {0, 1}, but with arrows i → j whenever Ci,j = −1 and ξi = 0. To
each vertex i ∈ I we then attach a new vertex i′ corresponding to a coefficient, together
with an arrow i′ → i (resp. i → i′ ) if ξi = 0 (resp. ξi = 1). The quivers Q1 and
Q′ are mutation equivalent, as Q1 can be obtained from Q′ by performing the sequence of
(commuting) mutations along all vertices i ∈ I such that ξi = 1.
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For example, when g is of type A3, with height function ξ1 = ξ3 = 0, ξ2 = 1, the initial
seed constructed in [HL1] can be depicted as

χq(V1(q
2)) // χq(V2(q))

��

χq(V3(q
2))oo

χq(L(Y1,0Y1,2))

OO

χq(L(Y2,1Y2,3)) χq(L(Y3,0Y3,2))

OO

By mutating in direction 2 we obtain a new cluster variable with exchange relation

χq(V2(q))χq(V2(q))
′ = χq(V1(q

2))χq(V3(q
2)) + χq(L(Y2,1Y2,3)) ,

and direct computation shows that χq(V2(q))
′ = χq(V2(q

3)). Thus, the mutated quiver is

χq(V1(q
2))

))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

χq(V2(q
3))oo // χq(V3(q

2))

vv❧❧❧❧
❧❧
❧❧
❧❧
❧❧
❧

χq(L(Y1,0Y1,2))

OO

χq(L(Y2,1Y2,3))

OO

χq(L(Y3,0Y3,2))

OO

which coincides with the initial seed obtained through the quiver Q1 and the assignment
(42).

We study the toroidal Grothendieck ring K∞(C1) in the same spirit.

Remark 6.5. In the quantum case, a similar approach is followed by Bittmann [Bi], who on
the other hand used quantum cluster algebras in order to construct quantum Grothendieck
rings of a larger category O of representations of the quantum Borel subalgebra Uq(b).

6.4. A toroidal equivalent.

6.4.1. The toroidal Grothendieck ring K∞(C1). By [HL1, Example 6.4], the q-truncated
character of the fundamental modules L(Yi,ξi+2) and of the Kirillov-Reshetikhin modules
L(Yi,ξiYi,ξi+2) only consists of one dominant monomial, namely

˜χq(L(Yi,ξi+2)) = Yi,ξi+2 , ˜χq(L(Yi,ξiYi,ξi+2)) = Yi,ξiYi,ξi+2.

Moreover, the truncated q-characters for the fundamental modules L(Yi,ξi) are multiplicity-
free. Therefore, following Section 5.6, we define the truncated (q,∞)-characters to coincide
with the truncated q-characters in [HL1, Example 6.4]:

˜[L(Yi,ξi+2)]q,∞ := Yi,ξi+2 , ˜[L(Yi,ξiYi,ξi+2)]q,∞ := Yi,ξiYi,ξi+2 ,

and

˜[L(Yi,ξi)]q,∞ :=

{
Yi,0(1 +A−1

i,1

∏
j∼i(1 +A−1

j,2)) , if ξi = 0

Yi,1(1 +A−1
i,2 ) , if ξi = 1

.

As the only variables appearing in the expressions above are Y ±1
i,ξi

, Y ±1
i,ξi+2, we can deduce that

the relations between the truncated (q,∞)-characters only involve three kind of exponents:
Ns(i, 0; k, 2) where ξi = ξk, Ns(i, 0; j, 1) and Ns(i, 0; j, 3) where ξi = ξj ± 1 (s ∈ Z).

By Remark 3.2, all these exponents vanishes for s ≤ −4. This implies that the parameters
ts, with s ≤ −4, do not occur in the relations describing the quantum toroidal ring of C1.



TOROIDAL GROTHENDIECK RINGS AND CLUSTER ALGEBRAS 31

Moreover, thanks to the explicit form of the relations Rk in Definition 5.3, this implies that
the specializations

(43) t
1
2
a 7→ 1 for all a > 0 ,

are well-defined (under these specializations, the relations just imply that t−2s = t−2 for
s ≥ 2, but the parameters t−2s do not occur). Note that in general, by performing these
specializations we lose some information (see Example 6.6), but we still have an interesting
toroidal structure with two independent deformation parameters t0, t−2. In the rest of this
Section, we assume these specializations.

Example 6.6. Let g be of type A4, and consider the height function ξ : {1, 2, 3, 4} −→ {0, 1}

given by ξ1 = ξ3 = 1 and ξ2 = ξ4 = 0. Then the subring of Ỹ∞ of the truncated (q,∞)-
characters is generated by

Y ±1
1,1 , Y

±1
1,3 , Y

±1
2,0 , Y

±1
2,2 , Y

±1
3,1 , Y

±1
3,3 , Y

±1
4,0 , Y

±1
4,2 .

Let us consider the fundamental modules W
(1)
1,3 and W

(4)
1,3 , whose truncated (q,∞)-characters

are given by
˜
[W

(1)
1,3 ]q,∞ = Y1,3 and

˜
[W

(4)
1,3 ]q,∞ = Y4,3. Following (10) we have

Y1,3 ∗ Y4,2 =
(∏

k≥0

t−1
2+10kt

3
4+10kt

−3
6+10kt8+10k

)
Y4,2 ∗ Y1,3 .

As the first quantum parameter which appears in this quasi-commutation relation is t2, the

classes of the fundamental modules W
(1)
1,3 and W

(4)
1,3 commute with each other under the

specialization (43), although they do not commute in Ỹ∞.

With abuse of notation, we keep the same notation Ỹ∞ (the quantum torus after special-
ization) and K∞(C1) (the ring generated by the truncated (q,∞)-characters, see Section
5.6), for simplicity. Thus we have (still denoting the product by ∗)

(44) Yi,p ∗ Yj,s = t
N−2(i,p;j,s)
−2 t

N0(i,p;j,s)
0 Yj,s ∗ Yi,p .

Let Λa, a = −2, 0, be the 2n × 2n-matrix whose rows and columns are indexed by the
set Vξ,1 and whose ((i, p), (j, s))-th entry Λa

(
(i, p), (j, s)

)
is given by the power of ta in the

∗-product between the monomials m
(i)
mi,p,p+1 and m

(j)
mj,s,s+1 in Ỹ∞. By (44) we have:

(45)

Λa

(
(i, ξi + 1), (j, ξj + 1)

)
= Na(i, 0; j, ξj − ξi) ,

Λa

(
(i, ξi + 1), (j, ξj − 1)

)
= Na(i, 0; j, ξj − ξi − 2) +Na(i, 0; j, ξj − ξi) ,

Λa

(
(i, ξi − 1), (j, ξj − 1)

)
= 2Na(i, 0; j, ξj − ξi) +Na(i, 0; j, ξj − ξi − 2) +Na(i, 0; j, ξj − ξi + 2) .

Remark 6.7. We chose the following ordering on the set Vξ,1:

(1, ξ1 + 1) < (2, ξ2 + 1) < . . . < (n, ξn + 1) < (1, ξ1 − 1) < (2, ξ2 − 1) < . . . < (n, ξn − 1) .
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6.4.2. The toroidal cluster algebra Ator(Q1). We want to construct a toroidal cluster algebra
structure with 2 deformation parameters t−2, t0 whose specialization ta 7→ 1 (a = −2, 0)
recovers the cluster algebra A(Q1). We consider the same set of variables z1 as before, but
we impose the quasi-commutation relations given by the matrices Λ−2, Λ0 above. We claim
that the resulting quantum torus is compatible with the cluster algebra structure encoded
in the quiver Q1, thus providing a toroidal cluster algebra that we denote by Ator(Q1).

Indeed, attached to the quiver Q1 there is a 2n× n-matrix B̃, with rows indexed by the
set Vξ,1 and columns indexed by its subset V ξ,1 = {(i, ξi + 1) | i ∈ I}. It can be described
explicitly as follows:

(46) B̃(i,r),(j,s) =

{
1 , if i = j, s = r + 2, or i ∼ j, s = r − 1

−1 , if i ∼ j, s = r + 1.

We have

Proposition 6.8. The pairs (B̃,Λ0) and (B̃,Λ−2) are compatible pairs.

Proof. Let us consider a generic entry of the product B̃TΛa, (a = −2, 0). For (i, r) ∈ V ξ,1,
(j, s) ∈ Vξ,1 we have

(
B̃TΛa

)
(i,r),(j,s)

=
∑

(k,t)∈Vξ,1

B̃(k,t),(i,r)Λa

(
(k, t), (j, s)

)

= Λa

(
(i, r − 2), (j, s)

)
+
∑

k∼i

(
Λa

(
(k, r + 1), (j, s)

)
− Λa

(
(k, r − 1), (j, s)

))
,

where the last equation follows from the expression (46) for the entries of B̃. We shall now

analyze separately the cases (j, s) = (j, ξj+1) (the left block in B̃TΛa) and (j, s) = (j, ξj−1)
(the right block). By (45), we obtain the following expression for the left block:
(47)(

B̃TΛa

)
(i,ξi+1),(j,ξj+1)

= Λa

(
(i, ξi − 1), (j, ξj + 1)

)
+
∑

k∼i

(
Λa

(
(k, ξi + 2), (j, ξj + 1)

)
− Λa

(
(k, ξi), (j, ξj + 1)

))

= −Na(i, 0, j, ξi − ξj − 2)−Na(i, 0, j, ξi − ξj)−
∑

k∼i

Na(k, 0, j, ξj − ξi + 1) ,

The last equality is obtained by observing that for k ∼ i we have

Λa

(
(k, ξi + 2), (j, ξj + 1)

)
− Λa

(
(k, ξi), (j, ξj + 1)

)
= δξi,0

(
Λa

(
(k, ξk + 1), (j, ξj + 1)

)

−Λa

(
(k, ξk − 1), (j, ξj + 1)

))
− δξi,1Λa

(
(k, ξk + 1), (j, ξj + 1)

)
,

and then by using (45) and the skew-symmetry of Na(i, p; j, s).
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By (11), equation (47) can be rewritten as

(48)

(
B̃TΛa

)
(i,ξi+1),(j,ξj+1)

= C̃i,j(ξi − ξj + a− 3) + C̃i,j(−ξi + ξj + a+ 3)

− C̃i,j(−ξi + ξj + a− 1)− C̃i,j(ξi − ξj + a+ 1)−
∑

k∼i

(
C̃k,j(−ξj + ξi + a− 2)

− C̃k,j(ξj − ξi + a)− C̃k,j(−ξj + ξi + a) + C̃k,j(ξj − ξi + a+ 2)
)
,

Since | ξi − ξj |≤ 1, and C̃i,j(m) = 0 whenever m ≤ 0 (1 ≤ i, j ≤ n), for a = 0 we obtain
(
B̃TΛ0

)
(i,ξi+1),(j,ξj+1)

= C̃i,j(−ξi + ξj + 3)− C̃i,j(ξi − ξj + 1)

−
∑

k∼i

(
− C̃k,j(ξj − ξi)− C̃k,j(−ξj + ξi) + C̃k,j(ξj − ξi + 2)

)
.

This expression vanishes in the case when ξj − ξi = −1, 1 (in the former case the terms
mutually cancel, and in the latter by application of the induction relation (6)), and it is
equal to −2δij when ξi = ξj. On the other hand, for a = −2 we obtain

(
B̃TΛ−2

)
(i,ξi+1),(j,ξj+1)

= C̃i,j(ξj − ξi + 1)−
∑

k∼i

C̃k,j(ξj − ξi) .

Again, this expression vanishes in the case when ξj − ξi = −1, 1 (in the former case because
each summand vanishes, in the latter by application of the induction relation (6)), and it
is equal to δij in the case when ξi = ξj .

Next, by (45) we obtain the following expression for the right block of B̃TΛa:

(49)

(
B̃TΛa

)
(i,ξi+1),(j,ξj−1)

= C̃i,j(ξi − ξj + a− 1)− C̃i,j(−ξi + ξj + a− 1)

− C̃i,j(ξi − ξj + a+ 1) + C̃i,j(−ξi + ξj + a+ 1) + C̃i,j(ξi − ξj + a− 3)

+ C̃i,j(−ξi + ξj + a+ 3)− C̃i,j(−ξi + ξj + a− 3)− C̃i,j(ξi − ξj + a+ 3)

−
∑

k∼i

(
− C̃k,j(−ξi + ξj + a− 2)− C̃k,j(ξi − ξj + a+ 2)

+ C̃k,j(−ξi + ξj + a+ 2) + C̃k,j(ξi − ξj + a− 2)
)
.

The RHS of (49) coincides with the difference
(
B̃TΛa

)
(i,ξi+1),(j,ξj+1)

−
(
B̃TΛa

)
(j,ξj+1),(i,ξi+1)

,

which clearly vanishes.

In particular, we obtain
(
B̃TΛ0

)
=
(
−2 Id2 | 0

)
and

(
B̃TΛ−2

)
=
(
Id2 | 0

)
. �

Remark 6.9. (1) The matrices Λ−2 and Λ0 are linearly independent when the Lie al-
gebra g is of rank n ≥ 2. In fact, it is immediate from (45) that the top-left block of
size n× n in Λ−2 is constantly zero, while this is not the case for Λ0.

(2) When considering all the parameters ta inside the quantum torus Ỹ∞ without spe-
cializing any quantum parameter, we can analogously build matrices Λa for any

a ∈ Z. A similar argument shows that the pair (B̃,Λ2) is compatible (but it is in
some examples obtained as a linear combination of Λ−2 and Λ0). However, it fol-

lows from the expressions (48) and (49) that all other pairs (B̃,Λa) for a 6= −2, 0, 2
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are not. In particular, since |ξi − ξj | ≤ 1 whenever a > 4 the arguments in each
summand in both (48) and (49) are greater than 0, and hence by repeated application
of induction relation (6) the whole expression vanishes. Moreover, by the properties

of C̃(z), each summand in the RHS of both (48) and (49) vanishes for a ≤ −4.

6.4.3. A toroidal isomorphism. We can finally prove the main Theorem of this section.

Theorem 6.10. The assignment

(50) z(i,r) 7→
˜[

W
(i)
mi,r ,r+1

]
q,∞

,

extends to a ring isomorphism

it−2,t0,1 : Ator(Q1)
∼
−→ K∞(C1) .

Besides, the classes of fundamental modules are toroidal cluster variables.

Proof. First note that (50) is explicitly given by

(51)
z(i,ξi+1) 7→

˜[
W

(i)
1,ξi+2

]
q,∞

=
˜[

L(Yi,ξi+2)
]
q,∞

= Yi,ξi+2 ,

z(i,ξi−1) 7→
˜[
W

(i)
2,ξi

]
q,∞

=
˜[

L(Yi,ξiYi,ξi+2)
]
q,∞

= Yi,ξiYi,ξi+2.

This makes sense, as the classes
˜[

L(Yi,ξi+2)
]
q,∞

,
˜[

L(Yi,ξiYi,ξi+2)
]
q,∞

consist of a monomial

which are algebraically independent.
By construction, both algebras K∞(C1) and Ator(Q1) live inside the same quantum torus

Y∞. Moreover, they both provide deformations of their classical counterparts A (Q1) and
K (C1), which are isomorphic by Theorem 6.3.

Next, let us prove the inclusion K∞(C1) ⊂ Ator(Q1). As K∞(C1) is generated by the
truncated classes of its fundamental modules, we need to prove that all these classes can be

obtained as toroidal cluster variables. For the classes ˜[L(Yi,ξi+2)]q,∞, it is clear by (51) that

they belong to the initial toroidal cluster seed for Ator(Q1). Thus, we are left to consider

the classes ˜[L(Yi,ξi)]q,∞.

Using the explicit formulas for the truncated (q,∞)-characters at the beginning of Section
6.4.1, we can compute the associated toroidal T -system (already known in the case t−2 = 1)
and obtain,

(52)

˜[L(Yk,ξk+2)]q,∞ ∗ ˜[L(Yk,ξk)]q,∞ =
∏

a=0,−2

t
−Na(k,0;k,2)

2
a

˜[L(Yk,ξkYk,ξk+2)]q,∞

+
∏

a=0,−2

t
−
∑

i∼k
Na(i,0;k,1)

2
a

(
∗i∼k

˜[L(Yi,ξk+1)]q,∞

)
.

It can be easily checked that the product of the classes ˜[L(Yi,ξk+1)]q,∞, for k ∼ i does not

depend on the order, and it is in fact bar-invariant, hence the expression makes sense.
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Note that equation (52) always corresponds to an exchange mutation in the toroidal
cluster algebra Ator(Q1), however it is a one-step mutation only in the case when ξk = 1
where, according to the toroidal mutation rule (2) (cfr. [BZ, Prop. 4.9]), we obtain
(53)

z(k,2) ∗ z
′
(k,2) =

∏

a=0,−2

t
− 1

2
Λa((k,0),(k,2))

a z(k,0) +
∏

a=0,−2

t
1
2

∑
i∼k Λa((k,2),(i,1))

a

(
∗i∼k z(i,1)

)
.

Since Λa((k, 0), (k, 2)) = Na(k, 0; k, 2) and Λa((k, 2), (i, 1)) = −Na(k, 0; i, 1), the map (51),

gives an identification of the truncated class ˜[L(Yk,1)]q,∞ with the mutated cluster variable

z′(k,2) inside Ator(Q1).

On the other hand, when k is such that ξk = 0, the first-step mutation for the variable
z(k,1) does not coincide with the corresponding toroidal T -system (52) (see Remark 6.11).
However, we know from the classical theory that after performing the sequence of mutations
S := µis ◦ · ◦ µi1 on the quiver Q1 (where i1, . . . , is are all the indices in I such that ξi1 =

· · · = ξis = 1), we obtain a new quiver Q′
1 where the exchange relations z(k,1)∗z

(S )
(k,1) coincide

with the image of the toroidal T -system (52) for the product ˜[L(Yk,2)]q,∞∗ ˜[L(Yk,0)]q,∞, under

the specialization ta 7→ 1. This identifies the class of the fundamental module L(Yk,0) with

the mutated toroidal variable z
(S )
(k,1) in the classical case.

By Theorem 2.8 it is therefore sufficient to check that this choice of parameters makes
(52) a toroidal cluster algebra exchange relation, namely that we obtain a bar-invariant

expression for ˜[L(Yk,0)]q,∞. Since both summands

∏

a=0,−2

t
−Na(k,0;k,2)

2
a

˜[L(Yk,ξk+2)]
−1

q,∞ ∗ ˜[L(Yk,ξkYk,ξk+2)]q,∞

and ∏

a=0,−2

t
−
∑

i∼k
Na(i,0;k,1)

2
a

˜[L(Yk,ξk+2)]
−1

q,∞ ∗
(
∗i∼k

˜[L(Yi,ξk+1)]q,∞

)

are bar-invariant, the claim follows. Thus, K∞(C1) ⊂ Ator(Q1).
Let us prove the other inclusion. For any a, b ∈ Z, let us consider the specialization

(t−2, t0) 7→ (ta, tb) as in the Proof of Theorem 2.7. This gives a quantum cluster algebra
Ata,tb(Q1), generated by the fundamental cluster variables, i.e. the images of the classes of
the fundamental modules in C1. Indeed, this is true for the classical cluster algebra, and then
the quantum counter-part of this statement follows from [GLS2]. As the cluster algebras are
of finite-type, this also follows simply by explicit description of finite-type quantum cluster
algebras (as pointed out to the authors by Bernard Leclerc). An analog explicit description
would also work in the toroidal case, but let us discuss another argument. By Theorem 2.6,
we can expand an element X ∈ Ator(Q1) as

X =
∑

M∈L

PM (t−2, t0)M where PM (t−2, t0) ∈ Z[t
± 1

2
−2 , t

± 1
2

0 ]

and L is a finite set of bar-invariant Laurent monomials in the toroidal variables of the initial
seed z1. Specializing (t−2, t0) 7→ (ta, tb) with a, b distinct prime numbers, we are reduced
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to a quantum cluster algebra discussed above and there is a finite set M of monomials in
the fundamental cluster variables so that

X(t−2,t0)7→(ta,tb) =
∑

M∈L

PM (ta, tb)M =
∑

m∈M

Qm,a,b(t)m with Qm,a,b(t) ∈ Z[t±1/2].

Each element m ∈ M, now seen in Ator(Q1), can be expanded as

m =
∑

M∈L

RM,m(t−2, t0)M.

(L is enlarged with a finite number of bar-invariant Laurent monomials in the initial toroidal

variables). As M is free over Q(t
1
2
−2, t

1
2
0 ), there are SM,m(t−2, t0) ∈ Q(t

1
2
−2, t

1
2
0 ) so that

∑

M∈L

SM,m′(t−2, t0)RM,m(t−2, t0) = δm,m′ for any m,m′ ∈ M.

They can be specialized at (t−2, t0) 7→ (ta, tb) for all distinct primes a, b large enough. Let

Qm(t−2, t0) =
∑

M∈L

SM,m(t−2, t0)PM (t−2, t0).

So PM (ta, tb) =
∑

m∈MQm,a,b(t)RM,m(ta, tb) and we obtain

Qm(ta, tb) =
∑

M∈L

SM,m(ta, tb)
∑

m′∈M

Qm′,a,b(t)RM,m′(ta, tb) = Qm,a,b(t) ∈ Z[t±1/2],

whose number of terms is bounded independently of a, b (as above, from explicit description
of finite-type quantum cluster algebras). As this is true for all distinct prime numbers a, b
large enough, this implies that Qm(t−2, t0) is a Laurent polynomial. Indeed, consider the
development as a Laurent formal power series

Qm(t−2, t0) = tA−2t
B
0

∑

α,β≥0

λα,βt
α
2
−2t

β
2
0 ∈ C((t

1
2
−2, t

1
2
0 )).

Fix (α, β) so that t
α
2
−2t

β
2
0 occurs and consider (α′, β′) so that aα + bβ = aα′ + bβ′. Then

a(α − α′) = b(β′ − β) and, as a 6= b are distinct prime numbers, there is µ ∈ Z so that
α−α′ = bµ and β − β′ = −aµ. We get −β/a ≤ µ ≤ α/b. Then µ depends on a, b but is an

integer, so for a, b large enough, we obtain µ = 0, and (α, β) = (α′, β′). Hence λα,βt
α
2
−2t

β
2
0

in the only term contributing to the coefficient of t
αa+βb

2 in Qm,a,b(t). And so if λα,β 6= 0,

then t
αa+βb

2 occurs in Qm,a,b(t). As the number of monomials in Qm,a,b(t) is bounded as
explained above, this implies that only a finite number of terms occur in the development
of Qm(t−2, t0).

Now X and
∑

m∈M Qm(t−2, t0)m coincide after specialization for infinitely many primes
a, b, hence they coincide as in the Proof of Theorem 2.7. This proves the other inclusion. �
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Remark 6.11. When ξk = 0, the exchange relations for the initial seed of Ator(Q1) are
(54)

z(k,1) ∗ z
′
(k,1) =

∏

a=0,−2

t
− 1

2

[
Λa((k,−1),(k,1))−

∑
i∼k Λa((k,1),(i,2))

]

a

(∏

i∼k

z(i,2)

)
z(k,−1) +

∏

i∼k

z(i,0) .

This identifies the mutated variable z′(k,1) with the class of the minimal affinization module

˜[
L(Yi,0

∏
j∼i Yj,3)

]
q,∞

in K∞(C1). In fact, following Section 5.6, by the formulas for the

truncated q-characters in [HL1, Prop 6.7] we have

˜
[L(Yi,0

∏

j∼i

Yj,3)]

q,∞

:=
˜

χq(L(Yi,0

∏

j∼i

Yj,3)) = Yi,0

∏

j∼i

Yj,3

(
1 +A−1

i,1

)
.

Thus, ˜[L(Yi,2)
]
q,∞

∗ ˜[
L(Yi,0

∏
j∼i Yj,3)

]
q,∞

coincides with the RHS of (54), under the iden-

tification (51).

7. A− Y Poisson brackets

In this section we discuss similarities between the various quantum tori used in this paper
as well as relations to the Poisson structures introduced by Frenkel-Reshetikhin in [FR1].

Let us study the quasi-commutation relations between the monomials Ai,r and Yj,s inside

the quantum torus Ỹ∞ for i, j ∈ I, r, s ∈ Z, r− s+ ξi − ξj ∈ 1+ 2Z. From Equation (9) we
obtain 4

Ai,r ∗ Yj,s =
∏

a∈Z

tNa(i,r;j,s)
a Yj,s ∗ Ai,r

where
Na(i, r; j, s) = δi,j

(
δa,r−s−1 − δa,r−s+1 − δa,s−r−1 + δa,s−r+1

)
,

and therefore

Ai,r ∗ Yj,s = t
δij
r−s−1t

−δij
r−s+1t

−δij
s−r−1t

δij
s−r+1Yj,s ∗ Ai,r .

When we consider the ∗-product between the (images of the) same elements in the quo-
tient quantum torus Y∞, we observe that because of the relations Rk (Definition 5.3), the
elements Ai,r, Yj,s commute whenever |s− r| > 1, while

Ai,r ∗ Yj,s = (t−2t
−2
0 t2)

δi,j(δs−r,1−δr−s,1)Yj,s ∗ Ai,r .

The quasi-commutation relations between the monomials Ai,r and Yj,s only depends on the

one parameter t := t−2t
−2
0 t2. It coincides with the relation between the same elements

(possibly up to a power t 7→ t−1) obtained in [N1], [VV], [H1]. These quasi-commutation
relations are the same in these papers although the quasi-commutation relations between
Y -variables are different (see also [HL2, Remark 3.1]). These relations correspond to the
following Poisson brackets :

{Ai,r, Yj,s} = δi,j(δs−r,1 − δr−s,1)Ai,rYj,s

4Again, under a sign change. Here, with the purpose that the result is compatible with the quasi-
commutation product between the variables Y ±1

i,p .
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which is to be fundamental in this picture. In fact, they can also be derived from the earlier
work of Frenkel and Reshetikhin [FR1]. They introduced certain elements Ai(z) and Yj(z)
as generating series for a Heisenberg algebra depending on two parameters Hq,t, which does
not coincide with our H but from which the construction in [H1] was inspired.

When considering the limit for t 7→ 1, the Heisenberg algebra Hq,t admits a Poisson
structure. Here, up to a power of q, we obtain the following identity relating the series
Ai(z) and Yj(z) (cfr. (13)):

Ai(z) = Yi(zq
−1)Yi(zq)

∏

j∼i

Yj(z)
−1 .

By the formulas in [FR1, Appendix A], we then obtain that the Poisson bracket between
Ai,r := Ai(zq

r) and Yj,s := Yj(zq
s) in the limit Hq,1, coincides (up to a power t 7→ t±2)

with all the Poisson brackets considered above.
We can therefore deduce that the Poisson bracket between the Ai,r and the Yj,s is some-

how extremely rigid, despite the Poisson bracket between the variables Yi,p, Yj,s depending
strongly on the deformation.

Remark 7.1. Note that it is already known that the quotient group Pq/Qq, where Pq is
the free abelian group generated by the Yi,a (i ∈ I, a ∈ C∗) and Qq is the subgroup of Pq

generated by the Ai,a, plays an important role in the study of these categories (see [CM]).

One of the original motivations to study quantum Grothendieck rings is the existence of
analogs of Kazhdan-Lusztig polynomials introduced by Nakajima [N1] as coefficients of the
transition matrix between the standard and canonical classes (see [HL2] for a review). These
polynomials depend up to a factor only on the quasi-commutation relations between the A
and Y -variables as explained in [HL2, Section 5.9]. That is why in our toroidal context,
although the structure of the toroidal Grothendieck rings depends on various parameters, we
obtain polynomial depending only on one parameter (or a fractional power of) t = t−2t

−2
0 t2.

Example 7.2. Let g = sl3 and C ′ = CQ. Let X1, X2, X3 and X ′
1 as in Example 6.1. By

(4) (or, equivalently, (17)) we have

X ′
1
2
∗X2

1 = (t1t2)
2
(
X2

3 + (s−1 + s−3)X2X3 + s−4X2
2

)
,

X ′
1
3
∗X3

1 = (t1t2)
9
2
(
X3

3 + (s−1 + s−3 + s−5)X2X
2
3 + (s−4 + s−6 + s−8)X2

2X3 + s−9X3
2

)
,

and

X ′
1
4
∗X4

1 = (t1t2)
8
(
X4

3 + (s−1 + s−3 + s−5 + s−7)X2X
3
3 + (s−4 + s−6 + 2s−8

+s−10 + s−12)X2
2X

2
3 + (s−9 + s−11 + s−13 + s−15)X3

2X3 + s−16X4
2

)
,

where s = t1t
1
2
2 = t

− 1
2

−2 t0t
1
2
2 by (41).

8. Further possible developments

We discuss various questions arising from the main results of this paper: the analogs
of our result for non ADE-types, the existence of toroidal T -systems, the toroidal cluster
structure for larger categories and the interpretation of toroidal cluster monomials.
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8.1. Beyond ADE types. It would be interesting to study what happens for g of non
simply-laced type. In this case, some technical adjustments are required, and the construc-
tion is more complicated for the lack of symmetry of the (quantum) Cartan matrix. For
instance, the relations (Rk)k≥1 would be modified in a form depending on i ∈ I, the defi-
nition and properties of truncated (q,∞)-characters (as in Section 5.6) would be modified,
and, more importantly, it is now known that cluster algebra structures arising from the
representation theory of quantum affine algebras are controlled by simply-laced quivers,
even when the type of the underlying Lie algebra is non simply-laced (see [HL4]).

However, we have some results for g of type B2. Here, the Cartan matrix associated to

g is

(
2 −2
−1 2

)
, which is symmetrizable with symmetrizing matrix D = (diδij)1≤i,j≤2 =

diag(1, 2). As a consequence, the corresponding quantum Cartan matrix is

C(z) =

(
z + z−1 −z − z−1

−1 z2 + z−2

)
,

which is invertible with inverse (cfr. [HO, Example 4.1], or [GTL, Appendix A])

C̃(z) =
1

z3 + z−3

(
z2 + z−2 z + z−1

1 z + z−1

)
.

We can expand each entry C̃i,j(z) as a formal power series C̃i,j(z) =
∑

m≥1 C̃i,j(z)z
m , and

(55)

C̃1,1(z) = z + z5 − z7 − z11 + z13 + z17 ± . . .

C̃2,1(z) = z3 − z9 + z15 ± . . .

C̃2,2(z) = C̃1,2(z) = z2 + z4 − z8 − z10 + z14 + z16 ± . . . .

The counterpart to the properties in (6) are proved for type Bn in [HO]. In the case n = 2,
they provide the periodicity condition

C̃i,j(m+ 6) = −C̃i,j(m)

for i, j ∈ I and m ≥ 1, together with the condition C̃j,i(dj) = δij and the induction relation

C̃2,i(m− 2) + C̃2,i(m+ 2)− C̃1,i(m) = 0 , m ≥ 1 .

The (extended) quantum torus Ỹ∞(B2) is defined, as in Section 3.3, as the Z[t±1
a | a ∈ Z]-

algebra with generators Y ±1
i,r , (i, r) ∈ {1, 2}×Z =: Î (we denote Y ±1

i,r := Y ±1
i,qr), and relations5

(56) Yi,p ∗ Yj,s =

(
∏

a∈Z

ta
Na(i,p;j,s)

)
Yj,s ∗ Yi,p,

5Note that in [HO] the authors consider the same quantum torus up to a minus sign. Moreover, the

quantum Cartan matrices coincides up to a swap of rows (resp. columns) 1 and 2, and its inverse C̃(z) is
expanded for negative z.
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where the formula for Na : Î × Î −→ Z here generalizes the one for the simply-laced case:

(57)
Na(i, p; j, s) = C̃j,i(p − s− dj + a)− C̃j,i(s− p− dj + a)

− C̃j,i(p− s+ dj + a) + C̃j,i(s− p+ dj + a).

As before, let C be the category of finite-dimensional representations of Uq(g) of type
1. Analogues of the subcategories CQ for type B are the categories CQ♭ introduced in
[OS], and exploited in [HO] in order to prove an analogue isomorphism with a quantized
coordinate algebra. It is remarkable that the t-deformed quantum Grothendieck ring of the
category CQ♭ in type Bn is isomorphic to a quantized coordinate algebra of type A2n−1.
As a consequence of this isomorphism, the quantum Grothendieck ring Kt(CQ♭) possesses
a quantum cluster algebra structure. Moreover, there is an isomorphism of t-deformed
quantum Grothendieck rings Kt(CQ♭,Bn

)
∼

−→ Kt(CQ,A2n−1).
Our purpose is therefore to see if and to what extent these results can be extended to

the toroidal setting, in particular in the case n = 2. The construction of the category CQ♭

is described in [HO], and it depends on some twist of a quiver of type A2 and of a certain
choice ♭ ∈ {<,>}. Here, we will assume ♭ =>.

Following the construction in [HO, Section 3], CQ♭ can be described as the full subcategory

of C whose simple components are indexed by dominant commutative monomials Y♭ =
{Y1,r, Y2,r+1 | r = 0, 2, 4}. It is a monoidal subcategory [HO, Lemma 3.26].

As all Kirillov-Reshetikhin (and hence fundamental) modules are thin for g of type B2,

we can define the (generalized) toroidal Grothendieck ring K̃∞(CQ♭) as the Z[t±1
a | a ∈ Z]-

subalgebra of the quantum torus Ỹ∞(B2) generated by the (q,∞)-classes of the fundamental

modules indexed by the set Y♭, with product ∗ (see Remark 5.10):

[Vi(q
r)]q,∞ := χq,t(Vi(q

r)) = χq(Vi(q
r)) .

We may use the truncated (q,∞)-characters as in Section 5.6. Following [H1, Appendix],
we have:

˜[V1(1)]q,∞ = Y1,0 + Y −1
1,2 Y2,1 + Y −1

2,5 Y1,4 , ˜[V1(q2)]q,∞ = Y1,2 + Y −1
1,4 Y2,3 , ˜[V1(q4)]q,∞ = Y1,4 ,

˜[V2(q)]q,∞ = Y2,1 + Y −1
2,5 Y1,2Y1,4 , ˜[V2(q3)]q,∞ = Y2,3 , ˜[V2(q5)]q,∞ = Y2,5 .

However, the issue of constructing a flat deformation again forces us to impose additional

relations among the parameters t
± 1

2
a in the quantum torus Ỹ∞(B2), and to modify our

definition of toroidal Grothendieck ring. An instance of this phenomenon appears when

computing the ∗-product between the classes ˜[V1(1)]q,∞ and ˜[V1(q2)]q,∞ (or equivalently

between the classes ˜[V1(1)]q,∞ and ˜[V1(q4)]q,∞). In fact, according to (56), we obtain

˜[V1(1)]q,∞ ∗ ˜[V1(q2)]q,∞ =
∏

a∈Z

t
Na(1,0;1,2)

2
a

(
Y1,0Y1,2 + Y2,3Y

−1
2,5 + Y −1

1,2 Y
−1
1,4 Y2,1Y2,3

+
∏

a∈Z

t
2Na(1,0;1,2)−Na(2,0;2,4)+Na(1,0;2,1)

2
a Y1,0Y

−1
1,4 Y2,3

)
+
∏

a∈Z

t
Na(1,0;2,1)

2
a

˜[V2(q)]q,∞ ,
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where ∏

a∈Z

tNa(1,0;1,2)
a = t−2t

−1
0 t−1

4 t8t10
∏

k≥2

t6k+2
−(−1)k t6k+4

−(−1)k ,

∏

a∈Z

tNa(1,0;2,1)
a = t0t

−1
2 t−1

4 t8t10
∏

k≥2

t6k+2
−(−1)k t6k+4

−(−1)k ,

∏

a∈Z

tNa(2,0;2,4)
a = t−4t−2t

−1
0 t−2

2 t−2
4 t38t

3
10

∏

k≥2

t6k+2
−3(−1)k t6k+4

−3(−1)k .

Therefore, when combining with the product of the same classes in the opposite order, there
appears a term not indexed by a dominant monomial:

˜[V1(1)]q,∞ ∗ ˜[V1(q2)]q,∞ −
∏

a∈Z

tNa(1,0;1,2)
a

˜[V1(q2)]q,∞ ∗ ˜[V1(1)]q,∞

=
(
1− t−2t

−2
0 t2

)∏

a∈Z

t
Na(1,0;2,1)

2
a

˜[V2(q)]q,∞

+
(
1− t−4t

−1
−2t

−1
2 t4

)∏

a∈Z

t
3Na(1,0;1,2)−Na(2,0;2,4)+Na(1,0;2,1)

2
a Y1,0Y

−1
1,4 Y2,3 .

Thus, we let Y∞(B2) be the quotient of the quantum torus Ỹ∞(B2) by the relation

t
1
2
−4t

− 1
2

−2 t
− 1

2
2 t

1
2
4 = 1,

and we let K∞(CQ♭) be the subring of this quotient quantum torus generated by the images

of the same fundamental classes ˜[V1(qr)]q,∞, ˜[V2(qr+1)]q,∞ for r = 0, 2, 4. This also provides

a consistent definition of the (q,∞)-character of the simple modules

˜[L(Y1,0Y1,2)]q,∞ = Y1,0Y1,2 + Y −1
1,2 Y

−1
1,4 Y2,1Y2,3 + Y2,3Y

−1
2,5 + Y1,0Y

−1
1,4 Y2,3 ,

˜[L(Y1,0Y1,4)]q,∞ = Y1,0Y1,4 + Y −1
1,2 Y1,4Y2,1 + Y 2

1,4Y
−1
2,5 ,

˜[L(Y1,0Y2,1)]q,∞ = Y1,0Y2,1 + Y −1
1,2 Y

2
2,1 + Y1,2Y

2
1,4Y

−2
2,5 + Y1,0Y1,2Y1,4Y

−1
2,5

+
(∏

a∈Z t
Na(1,0;1,2)−Na(1,0;2,1)

2
a +

∏
a∈Z t

−Na(1,0;1,2)+Na(1,0;2,1)
2

a

)
Y1,4Y2,1Y

−1
2,5 .

The truncated (q,∞)-characters of the other simple modules which arise by computing the ∗-
product between the fundamental modules can be defined to coincide with the corresponding
truncated q-characters.

We prove K∞(CQ♭) possesses a toroidal cluster algebra structure with initial seed

Σ = (X1,X2,X3,X4,X5,X6, B̃) ,

X1 = ˜[V2(q5)]q,∞ , X2 = ˜[L(Y1,0Y2,5)]q,∞ = Y1,0Y2,5 + Y −1
1,2 Y2,1Y2,5 , X3 = ˜[V1(q4)]q,∞ ,

X4 = ˜[L(Y2,1Y2,5)]q,∞ = Y2,1Y2,5 , X5 = ˜[L(Y1,0Y1,2Y1,4)]q,∞ = Y1,0Y1,2Y1,4 , X6 = ˜[V2(q3)]q,∞ ,

the last three variables being coefficients, and

B̃T =




0 −1 1 0 0 0
1 0 −1 −1 1 0
−1 1 0 0 −1 1


 .
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We exploit the quantum cluster algebra structure of Kt(CQ,A3) and the correspondence
between (q, t)-characters of simple modules described in [HO, Theorem 12.9].

If we choose the parametrization given by

t(1) :=
∏

a∈Z

tNa(1,0;2,1)
a , t(2) :=

∏

a∈Z

tNa(1,0;1,2)+Na(1,0;2,1)
a

the relations between the variables of the initial seed can be encoded in the matrices

Λ1 =




0 1 −1 1 0 −1
−1 0 0 1 0 −1
1 0 0 1 0 −1
−1 −1 −1 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0




, Λ2 =




0 −1 0 −2 −2 −1
1 0 0 −1 −1 0
0 0 0 −1 −1 0
2 1 1 0 −1 0
2 1 1 1 0 1
1 0 0 0 −1 0




.

As B̃TΛ1 =
(
2 Id | 0

)
and B̃TΛ2 =

(
− Id | 0

)
, Λ1, Λ2 are compatible with B̃.

The class of ˜[V1(1)]q,∞ is obtained as a first-step mutation in direction 1 :

˜[V2(q5)]q,∞ ∗ ˜[V1(1)]q,∞ = t
1
2

(1)t
− 1

2

(2)
˜[L(Y1,0Y2,5)]q,∞ + t

− 1
2

(1)
˜[V1(q4)]q,∞ .

We can recover the classes of the other fundamental modules as follows. First perform the
mutation in direction 2. We obtain a new cluster variable X ′

2

X2 ∗X
′
2 = t

− 1
2

(1)X1X5 + t
1
2

(1)t
− 1

2

(2)X3X4 .

A direct computation shows that this provides the identification X ′
2 = ˜[L(Y1,2Y1,4)]q,∞ =

Y1,2Y1,4. The mutated exchange matrix B̃′ is

B̃T =




0 1 0 −1 0 0
−1 0 1 1 −1 0
0 −1 0 0 0 1


 .

Now, we know that for the underlying classical cluster algebra, the mutation in direction 1
produces a new cluster variable X ′′

1 which corresponds to the q-character of the fundamental
module V2(1). On the other hand, performing the mutation in direction 3 (of the same seed
obtained after the first mutation in direction 2), we obtain a new cluster variable X ′′

3 which
corresponds to the q-character of V1(2). We can compute the ∗-product between the (q,∞)-
characters associated to the same modules:

(58)
˜[V2(q5)]q,∞ ∗ ˜[V2(q)]q,∞ = t

1
2

(1)t
−1
(2)

˜[L(Y2,1Y2,5)]q,∞ +
(
t(1)t(2)

)− 1
2 ˜[L(Y1,2Y1,4)]q,∞

˜[V1(q4)]q,∞ ∗ ˜[V1(q2)]q,∞ = t
1
2

(1)t
− 1

2

(2)
˜[L(Y1,2Y1,4)]q,∞ + t

− 1
2

(1)
˜[V2(q3)]q,∞ .

As we can check that both equations in (58) give bar-invariant expressions for the classes
˜[V2(q)]q,∞ and ˜[V1(q2)]q,∞, we can conclude they are genuine toroidal exchange relations.

Hence, we get an inclusion of the toroidal Grothendieck ring K∞(CQ♭) in the toroidal cluster
algebra of type A3 with two parameters.
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Note moreover that the identities in (58) are instances of the quantum T -system in type
B, for k = 1, as in [HO, Theorem 9.6] (up to a swap of the indices 1, 2 ∈ I).

Remark 8.1. This parametrization coincides with the one given by the parameters t0, t−2

above. In particular, for the quantum tori which encode the commutation relations in the
initial seed, we have Λ0 = Λ1 and Λ−2 = Λ2.

8.2. Toroidal T -systems. In the proof of Theorem 6.10 we have written a toroidal ver-
sion of certain T -system relations in types ADE, using truncated (q,∞)-characters in the
category C1. We would like to give a general formulation of toroidal T -systems for all
simply-laced Lie algebras, in the toroidal Grothendieck ring K∞. The case of g = sl2 has
been analyzed in Section 5.7.

More generally, in type A, we would like to define the (q,∞)-characters

[W
(i)
k,p]q,∞ := χq(W

(i)
k,p) ∈ Y∞ , i ∈ I , k ≥ 1 , p ∈ 2Z+ ξi .

One difficulty lies in proving that these classes actually lie in the toroidal Grothendieck
ring, by establishing analogs of the recursive formula in Proposition 5.15. If true, we can
use the same argument of [HL2, Prop 5.6] to prove

(59)

[W
(i)
k,p]q,∞ ∗ [W

(i)
k,p+2]q,∞ =

∏

s∈Z

tαs(i,k)
s [W

(i)
k−1,p+2]q,∞ ∗ [W

(i)
k+1,p]q,∞

+ ∗j∼i

∏

s∈Z

tγs(i,k)s [W
(j)
k,p+1]q,∞ ,

where αs(i, k) and γs(i, k) can be computed explicitly. We expect an analog picture to hold
for general simply-laced types and we plan to come back to this in another publication.

8.3. Larger categories and toroidal cluster monomials. As recalled in Section 6.1,
for larger monoidal subcategories of finite-dimensional representations of quantum affine
algebras, such as the categories CQ or the categories Cℓ, (ℓ ≥ 1), it is known that their
Grothendieck ring has a natural cluster algebra structure (see [HL5] for a recent review).
Hence, in the view of our main result for the toroidal Grothendieck ring of the category
C1 (Theorem 6.10) and from our general flatness result (Theorem 5.8), we expect that the
toroidal Grothendieck ring of the categories CQ and of the categories Cℓ have a natural
structure of a toroidal cluster algebras (with at least 2 independent parameters). Moreover,
in the case of the category CQ, we expect to recover multi-parameter quantum groups, as
explained above in the case of sl3.

In this paper we focused on the structure of the various toroidal rings, which is much more
involved than for the classical structure (for instance, the non-deformed Grothendieck rings
are just polynomial rings in the fundamental representations). But one of the salient feature
of cluster theory is the existence of the cluster monomials. In the context of monoidal cate-
gorification of cluster algebras, they correspond to certain classes of simple representations
in the Grothendieck ring (see Section 6.1). Toroidal cluster monomials can be defined in a
toroidal cluster algebras exactly as in the classical setting : these are monomials of toroidal
cluster variables which belong to a same toroidal cluster. When the toroidal Grothendieck
ring of a monoidal category has a toroidal cluster algebra structure, it is natural to wonder
how the cluster monomials can be interpreted, or written in terms of a standard basis (that
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is ordered product of classes of fundamental representations). We expect they belong to a
certain canonical basis, as for the quantum case ([N1, HL2]).
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