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INTRODUCTION

This paper is devoted to the study of conditions guaranteeing the removability of singular set for solutions of nonlinear elliptic equations with Neumann boundary conditions of the form:

-div A (x, u, ∇u) + a (x, u) + g(x, u) = 0 in Ω, A (x, u, ∇u) • ν + b(x, u) + h(x, u) = 0 on ∂Ω.

(1.1)

Throughout the whole article Ω is a bounded open set in R n , n ≥ 2, with Lipschitz boundary ∂Ω, and Γ ⊂ ∂Ω is a compact set. We always equip ∂Ω with the (n -1)-dimensional Hausdorff measure. We assume that A : Ω×R×R n → R n , a : Ω×R → R, g : Ω×R → R, b, h : ∂Ω×R → R are measurable functions, g and h are locally bounded. Furthermore, there exists µ > 0 such that the following conditions are satisfied almost everywhere:

A(x, u, η), η ≥ µ|η| p 1 (x) , (1.2) 
|A(x, u, η)| ≤ µ -1 |η| p 1 (x)-1 + |u| p 1 (x)-1 + 1 , (1.3)

|a(x, u)| ≤ µ -1 |u| p 1 (x)-1 + 1 , (1.4) 
g(x, u) sign u ≥ µ|u| p 2 (x) -µ -1 , (1.5)

|b(x, u)| ≤ µ -1 |u| q 1 (x)-1 + 1 , (1.6) 
h(x, u) sign u ≥ µ|u| q 2 (x) -µ -1 , (

A(x, u, -η) = -A(x, u, η),

where p 1 , p 2 : Ω → R, q 1 , q 2 : ∂Ω → R are measurable functions satisfying

p - 1 , p + 1 ∈ (1, n), q - 1 > 1, min p - 2 , q - 2 -max p + 1 , q + 1 + 1 > 0.
(1.9) Also, for some d ≥ 0,

ess sup Ω p 1 p 2 p 2 -p 1 + 1 < n -d, (1.10) 
where p - i = ess inf Ω p i , p + i = ess sup Ω p i , q - i = ess inf ∂Ω q i and q + i = ess sup ∂Ω q i ; i = 1, 2. Concerning the singular set Γ ⊂ ∂Ω, we suppose that |Γ| = 0, and there is a small enough r 0 ∈ (0, 1) so that U = {x ∈ Ω | dist(x, Γ) < 2r 0 } is an open set with Lipschitz boundary ∂U, {x ∈ Ω | dist(x, Γ) = 2r 0 } = ∅, and for a suitable positive constant C > 0:

|{|dist (•, Γ) -| < r}| ≤ Cr n-d , |{dist (•, Γ) = r}| ≤ Cr n-d-1 and |∂Ω ∩ {|dist (•, Γ) -| < r}| ≤ Cr n-d-1 , (1.11) 
where 0 < r ≤ < r 0 .

The main result of this paper is the following theorem. Ω\Γ ∩L ∞ loc Ω\Γ be a solution of equation (1.1) in Ω\Γ. Then, the singularity of u at Γ is removable.

We follow the same lines as in [START_REF] Fu | On the removability of isolated singular points for elliptic equations involving variable exponent[END_REF] and [START_REF] Farman | On the removability of isolated singular points for degenerating nonlinear elliptic equations[END_REF]; which handle the case when the singular set is an interior point of Ω, and the solution of an elliptic equation u has no boundary conditions.

PRELIMINARIES

We first recall some facts on spaces L p(•) (Ω) and W 1,p(•) (Ω). Denote by P (Ω) the set of all Lebesgue measurable functions p : Ω → [1, ∞]. For the details see [START_REF] Fan | On the spaces L p(x) (Ω) and W m,p(x) (Ω)[END_REF][START_REF] Kováčik | On spaces L p(x) and W k,p(x)[END_REF][START_REF] Samko | Convolution type operators in L p(x)[END_REF][START_REF] Diening | Lebesgue and Sobolev Spaces with Variable Exponents[END_REF]. Let p ∈ P (Ω), we define the functional

ρ p (u) = Ω\Ω∞ |u| p dx + ess sup Ω∞ |u|,
where

Ω ∞ = {x ∈ Ω | p(x) = ∞}.
The variable exponent Lebesgue space L p(•) (Ω) is the class of all functions u such that ρ p (tu) < ∞, for some t > 0. L p(•) (Ω) is a Banach space equipped with the norm

u L p(•) (Ω) = inf λ > 0 | ρ p u λ ≤ 1 ; see [6, Theorem 2.5]. Proposition 2.1. (see [6, Theorem 2.1].) Let p ∈ P(Ω). If u ∈ L p(•) (Ω) and v ∈ L p (•) (Ω), then Ω |uv|dx ≤ 2 u L p(•) (Ω) v L p (•) (Ω) ,
where

p (x) =          ∞ if p(x) = 1, 1 if p(x) = ∞, p(x) p(x) -1 if p(x) = 1 and p(x) = ∞. Proposition 2.2. (see [4, Theorem 1.3].) Let p ∈ P(Ω) with p + < ∞. For any u ∈ L p(•) (Ω), we have (1) if u L p(•) (Ω) ≥ 1, then u p - L p(•) (Ω) ≤ Ω |u| p dx ≤ u p + L p(•) (Ω) , (2) if u L p(•) (Ω) < 1, then u p + L p(•) (Ω) ≤ Ω |u| p dx ≤ u p - L p(•) (Ω) .
The variable exponent Sobolev space W 1,p(•) (Ω) is the class of all functions u ∈ L p(•) (Ω) which have the property |∇u| ∈ L p(•) (Ω). The space W 1,p(•) (Ω) is a Banach space equipped with the norm

u W 1,p(•) (Ω) = u L p(•) (Ω) + ∇u L p(•) (Ω) .
More precisely, we have

Proposition 2.3. (see [6, Theorem 3.1].) Let p ∈ P (Ω). The space W 1,p(•) (Ω) is a Banach space, which is separable if p ∈ L ∞ (Ω) and reflexive if 1 < p -≤ p + < ∞.
Next we will see the definitions that we use in this work. Firstly we will make some observations regarding to the trace. Let p ∈ P (Ω). Obviously W 1,p(•) (Ω) ⊂ W 1,1 (Ω) because p -≥ 1. From W 1,1 (Ω) → L 1 (∂Ω) we know that for all u ∈ W 1,p(•) (Ω) there already holds u| ∂Ω ∈ L 1 (∂Ω). Thus for W 1,p(•) (Ω), the trace u| ∂Ω has definite meaning; see [3, p. 1398].

Define

L p(•) loc Ω\Γ := {u : Ω → R | u ∈ L p(•) (U ) for all open subset U ⊂ Ω with Ū ∩ Γ = ∅} and W 1,p(•) loc Ω\Γ := {u : Ω → R | u ∈ W 1,p(•) (U ) for all open subset U ⊂ Ω with Ū ∩ Γ = ∅}.
Similarly we define L ∞ loc Ω\Γ . Let v : Ω → R be a function, we call supp v = {x ∈ Ω | v(x) = 0} the support of v. For E ⊂ R n and x ∈ R n , we denote by d(x, E) the Euclidean distance from x to E. Definition 2.4. We will say that u ∈ W

1,p 1 (•) loc Ω\Γ ∩ L ∞ loc Ω\Γ is a (weak) solution of equation (1.1) in Ω\Γ if Ω A(•, u, ∇u), ∇ϕ + a(•, u)ϕ + g(•, u)ϕdx + ∂Ω b(•, u)ϕ + h(•, u)ϕdσ = 0 (2.12) for all ϕ ∈ W 1,p 1 (•) loc Ω\Γ ∩ L ∞ loc Ω\Γ , with supp ϕ ⊂ Ω\Γ.
Let us observe that the trace of u ∈ W 1,p 1 (•) loc

( Ω\Γ) ∩ L ∞ loc Ω\Γ possibly is not defined on ∂Ω, however it is defined on {x ∈ ∂Ω | d(x, Γ) > r}, and is essentially bounded, for small enough values r > 0.

Definition 2.5. We will say that the solution u of equation (1.1) in Ω\Γ has a removable singularity at Γ:

if u ∈ W 1,p 1 (•) loc Ω\Γ ∩L ∞ loc Ω\Γ implies u ∈ W 1,p 1 (•) (Ω) ∩L ∞ (Ω) and the equality (2.12) is fulfilled for all ϕ ∈ W 1,p 1 (•) (Ω) ∩ L ∞ (Ω).

THE BEHAVIOR OF SOLUTIONS NEAR THE SINGULAR SET

The main result of this section is Theorem 3.4, which will be used in the proof of Theorem 1.1. We begin with the following results.

Lemma 3.1. (see [2, p. 1004]). Let 0 < θ < 1, σ > 0, ξ(h) be a nonnegative function on the interval [1/2, 1], and let ξ(k) ≤ C 0 (h -k) -σ (ξ(h)) θ , 1/2 ≤ k < h ≤ 1,
for some positive constant C 0 . Then, there exists

C 1 (σ, θ) > 0 such that ξ (1/2) ≤ C 1 C 1 1-θ 0 . Lemma 3.2. If p ∈ (1, n), u ∈ W 1,p (U) and u = 0 on {x ∈ Ω | d(x, Γ) = 2r 0 }, then U |u| q dx 1 q ≤ C U |∇u| p dx 1 p (3.13) for each q ∈ p, np n-p , where C = C(n, p, q, U) is a positive constant.
Proof. The proof is by contradiction, considering that W 1,p (U) is compactly embedded in L q (U).

We define,

V ,r = {x ∈ Ω | |d (x, Γ) -| < r} .
Proposition 3.3. Assume that the conditions (1.2) -(1.7), (1.9) and (1.11) are satisfied. Suppose that u ∈ W

1,p 1 (•) loc ( Ω\ Γ) ∩L ∞ loc Ω\Γ satisfies Ω A(•, u, ∇u), ∇ϕ + a(•, u)ϕ+g(•, u)ϕdx + ∂Ω b(•, u)ϕ + h(•, u)ϕdσ ≤ 0, (3.14) 
for all ϕ ∈ W 1,p 1 (•) loc Ω\Γ ∩ L ∞ loc Ω\Γ , ϕ ≥ 0, with supp ϕ ⊂ Ω\Γ. Then, if 0 < r < < r 0 we have the estimate max{u, 0} L ∞ (V ,r/2 ) ≤ Cr -τ , (3.15) 
where

C = C (n, µ, p 1 , p 2 , q 1 , q 2 , U) > 0 and τ = τ (n, µ, p 1 , p 2 , q 1 , q 2 , U) > max{p + 1 ,q + 1 } min{p - 2 ,q - 2 }-max{p + 1 ,q + 1 }+1 . Proof. 1. Let u = C * w, where C * > 1 is a number that will be determined below. We assume that |{x ∈ V ,r/2 | w(x) > 0}| = 0, otherwise, (3.15) is immediate. Set Ω = {x ∈ V ,r | w(x) > 0}. Take m t = ess sup w(x) | x ∈ V ,tr ∩ Ω , 1/2 ≤ t ≤ 1. Let 1/2 ≤ s < t ≤ 1. Define the functions z : Ω → R, z k : Ω → R by z(x) = w(x) -m t ξ (|d(x, Γ) -|) , z k (x) = max {w(x) -m t ξ (|d(x, Γ) -|) -k, 0} if x ∈ V ,tr , 0 if x ∈ Ω\V ,tr ,
where 0 ≤ k ≤ ess sup Ω z, and ξ : R → R is a smooth function satisfying:

ξ ≡ 0 on (-∞, sr], ξ ≡ 1 on s+t 2 r, ∞ , 0 ≤ ξ ≤ 1 and ξ ≤ C 1 r(t -s) on R,
where C 1 is a suitable positive constant. Observe that

z k ∈ W 1,p 1 (•) loc Ω\Γ ∩ L ∞ loc Ω\Γ and supp z k ⊂ Ω ∩ {|d(•, Γ) -| ≤ tr} ⊂ Ω\Γ. It is assumed that m 1/2 > 1.
The conclusion is obviously right for the case of 0 < m 1/2 ≤ 1. For simplicity we write ξ

(|d(x, Γ) -|) = ξ(x) and ξ (|d(x, Γ) -|) = ξ (x). Take k ∈ [0, K), where K = sup{k ∈ [0, ess sup Ω z] | |{x ∈ V ,tr | z k (x) > 0}| = 0}. Observe that K ≥ m s ≥ m 1/2 > 1. Substituting ϕ = z k into (3.14), we obtain Ω A(•, u, ∇u), ∇z k + a(•, u)z k + g(•, u)z k dx + ∂Ω b(•, u)z k + h(•, u)z k dσ ≤ 0. Denote Ω k = {x ∈ V ,tr | z k (x) > 0}. Then, Ω k A (•, C * w, C * ∇w) , ∇w -m t ξ d(•, Γ) - |d(•, Γ) -| ∇d(•, Γ) dx + Ω k g(•, u)z k dx + ∂Ω k ∩∂Ω h(•, u)z k dσ ≤ Ω k |a(•, u)|z k dx + ∂Ω k ∩∂Ω |b(•, u)|z k dσ.
By (1.2) -(1.7), we have

Ω k µC p 1 -1 * |∇w| p 1 dx - Ω k µ -1 C 1 m t r(t -s) |C * ∇w| p 1 -1 + |C * w| p 1 -1 + 1 dx + Ω k µ|C * w| p 2 -µ -1 z k dx + ∂Ω k ∩∂Ω µ|C * w| q 2 -µ -1 z k dσ ≤ Ω k µ -1 |C * w| p 1 -1 + 1 z k dx + ∂Ω k ∩∂Ω µ -1 |C * w| q 1 -1 + 1 z k dσ.
Since m t > 1, C * > 1, and observing that w ≥ k and m t ≥ w ≥ z k on Ω k , we have

Ω k C p 1 -1 * |∇w| p 1 dx + Ω k C p 2 * k p 2 z k dx + ∂Ω k ∩∂Ω C q 2 * k q 2 z k dσ ≤ C 2 (µ) Ω k m t C p 1 -1 * r(t -s) |∇w| p 1 -1 dx + C 2 C max{p + 1 ,q + 1 }-1 * m t r(t -s) max{p + 1 ,q + 1 } (|Ω k | + |∂Ω k ∩ ∂Ω|) .
(3.16)

On other hand, using Young's inequality,

Ω k m t C p 1 -1 * r(t -s) |∇w| p 1 -1 dx ≤ Ω k C p 1 -1 * C 3 (ε 1 , p 1 ) m t r(t -s) p 1 + ε 1 |∇w| p 1 dx.
(3.17)

Take ε 1 = 1 2C 2 .
Then, by (3.16) and (3.17),

1 2 Ω k C p 1 -1 * |∇w| p 1 dx + Ω k C p 2 * k p 2 z k dx + ∂Ω k ∩∂Ω C q 2 * k q 2 z k dσ ≤ C 4 (µ, p 1 ) C max{p + 1 ,q + 1 }-1 * m t r(t -s) max{p + 1 ,q + 1 } (|Ω k | + |∂Ω k ∩ ∂Ω|) . Note that ∇z k = ∇w -m t ξ d(•,Γ)- |d(•,Γ)-| ∇d(•, Γ) in Ω k , therefore 1 2 Ω k C p 1 -1 * 1 2 p 1 -1 |∇z k | p 1 -m p 1 t ξ p 1 dx + Ω k C p 2 * k p 2 z k dx + ∂Ω k ∩∂Ω C q 2 * k q 2 z k dσ ≤ C 4 C max{p + 1 ,q + 1 }-1 * m t r(t -s) max{p + 1 ,q + 1 } (|Ω k | + |∂Ω k ∩ ∂Ω|) .
(3.18)

We have

|∇z k | p - 1 ≤ 1 + |∇z k | p 1 . (3.19)
Then, from (3.18) and (3.19),

1 2 p + 1 Ω k C p 1 -1 * |∇z k | p - 1 -1 dx + Ω k C p 2 * k p 2 z k dx + ∂Ω k ∩∂Ω C q 2 * k q 2 z k dσ ≤ C 5 (µ, p 1 ) C max{p + 1 ,q + 1 }-1 * m t r(t -s) max{p + 1 ,q + 1 } (|Ω k | + |∂Ω k ∩ ∂Ω|) .
(3.20)

On the other hand, let γ ∈ p - 1 ,

(n-1)p - 

W 1,p - 1 (U) → L γ (∂U) is continuous, V ,tr z α k dx 1 α + ∂V ,tr ∩∂Ω z α k dσ 1 α ≤ C 6 r (n-d-1)(γ-α) γα V ,tr |∇z k | p - 1 dx 1 p - 1 , (3.21) 
where C 6 = C 6 (n, µ, p 1 , γ, U) > 0. Using Hölder's inequality, we get

V ,tr z k dx ≤ V ,tr z α k dx 1 α |Ω k | α-1 α , (3.22) ∂V ,tr ∩∂Ω z k dσ ≤ ∂V ,tr ∩∂Ω z α k dσ 1 α |∂Ω k ∩ ∂Ω| α-1 α . (3.23) From (3.20) -(3.23), we have C p - 1 -1 * 2 p + 1 C -1 6 (|Ω k | + |∂Ω k ∩ ∂Ω|) -α-1 α r - (n-d-1)(γ-α) γα V ,tr z k dx + ∂V ,tr ∩∂Ω z k dσ p - 1 + C min{p - 2 ,q - 2 } * min k p - 2 , k p + 2 , , k q - 2 , k q + 2 V ,tr z k dx + ∂V ,tr ∩∂Ω z k dσ ≤ C 5 C max{p + 1 ,q + 1 }-1 * m t r(t -s) max{p + 1 ,q + 1 } (|Ω k | + |∂Ω k ∩ ∂Ω|) + C p + 1 -1 * 2 p + 1 |Ω k | . (3.24)
2. Take ε ∈ (0, 1). Then, (3.24) implies

εC p - 1 -1 * V ,tr z k dx + ∂V ,tr ∩∂Ω z k dσ p - 1 r -p - 1 (n-d-1)(γ-α) γα + (1 -ε)C min{p - 2 ,q - 2 } * min k p - 2 , k p + 2 , , k q - 2 , k q + 2 • (|Ω k | + |∂Ω k ∩ ∂Ω|) p - 1 α-1 α V ,tr z k dx + ∂V ,tr ∩∂Ω z k dσ ≤ C 7 C max{p + 1 ,q + 1 }-1 * m t r(t -s) max{p + 1 ,q + 1 } + 1 (|Ω k | + |∂Ω k ∩ ∂Ω|) 1+p - 1 α-1 α , (3.25) 
where C 7 = C 7 (C 5 , C 6 , µ, p 1 ) > 0. Applying Young's inequality a ε b 1-ε ≤ εa + (1 -ε)b in the left-hand side of (3.25), we obtain

min k p - 2 (1-ε) , k p + 2 (1-ε) , k q - 2 (1-ε) , k q + 2 (1-ε) C (p - 1 -1)ε+min{p - 2 ,q - 2 }(1-ε) * • r -p - 1 (n-d-1)(γ-α) γα ε V ,tr z k dx + ∂V ,tr ∩∂Ω z k dσ p - 1 ε+1-ε ≤ C 7 C max{p + 1 ,q + 1 }-1 * m t r(t -s) max{p + 1 ,q + 1 } + 1 (|Ω k | + |∂Ω k ∩ ∂Ω|) 1+p - 1 α-1 α ε .
Therefore,

min k p - 2 (1-ε) β , k p + 2 (1-ε) β , k q - 2 (1-ε) β , k q + 2 (1-ε) β C min { p - 2 ,q - 2 } -max { p + 1 ,q + 1 } +1-( min { p - 2 ,q - 2 } -p - 1 +1 ) ε β * ≤ (2C 7 ) 1 β Ω k z k dx + ∂Ω k ∩∂Ω z k dσ - p - 1 ε+1-ε β r p - 1 (n-d-1)(γ-α) γα ε β m t r(t -s) max { p + 1 ,q + 1 } β (|Ω k | + |∂Ω k ∩ ∂Ω|) , (3.26) where β = 1 + p - 1 α-1 α ε. 3. Integrating (3.26) with respect to k, C min { p - 2 ,q - 2 } -max { p + 1 ,q + 1 } +1-( min { p - 2 ,q - 2 } -p - 1 +1 ) ε β * K 0 min k p - 2 (1-ε) β , k p + 2 (1-ε) β , k q - 2 (1-ε) β , k q + 2 (1-ε) β dk ≤ (2C 7 ) 1 β r p - 1 (n-d-1)(γ-α) γα ε β m t r(t -s) max { p + 1 ,q + 1 } β • K 0 Ω k z k dx + ∂Ω k ∩∂Ω z k dσ - p - 1 ε+1-ε β (|Ω k | + |∂Ω k ∩ ∂Ω|) dk.
Let us consider the equalities d dk

Ω k z k dx = -|Ω k | and d dk ∂Ω k ∩∂Ω z k dσ = -|∂Ω k ∩ ∂Ω| . Since 1 - p - 1 ε+1-ε β > 0 and K > 1, K 1+ min { p - 2 ,q - 2 } (1-ε) β C min { p - 2 ,q - 2 } -max { p + 1 ,q + 1 } +1-( min { p - 2 ,q - 2 } -p - 1 +1 ) ε β * ≤ ε -1 C 8 r p - 1 (n-d-1)(γ-α) γα ε β m t r(t -s) max { p + 1 ,q + 1 } β Ω 0 z 0 dx + ∂Ω 0 ∩∂Ω z 0 dσ 1- p - 1 ε+1-ε β , where C 8 = C 8 (n, µ, α, γ, p 1 , p 2 , q 2 , U) > 0. We note K ≥ m s . Apply the estimates Ω 0 z 0 dx ≤ m t |V ,r | and ∂Ω 0 ∩∂Ω z 0 dσ ≤ m t |∂V ,r ∩ ∂Ω| , we have m 1+ min { p - 2 ,q - 2 } (1-ε) β s C min { p - 2 ,q - 2 } -max { p + 1 ,q + 1 } +1-( min { p - 2 ,q - 2 } -p - 1 +1 ) ε β * ≤ C 9 r p - 1 (n-d-1)(γ-α) γα ε β m t r(t -s) max { p + 1 ,q + 1 } β m 1- p - 1 ε+1-ε β t r (n-d-1) 1- p - 1 ε+1-ε β , where C 9 = C 9 (n, µ, ε, α, γ, p 1 , p 2 , q 2 , U) > 0. Now we take C * > 0 such that C min { p - 2 ,q - 2 } -max { p + 1 ,q + 1 } +1-( min { p - 2 ,q - 2 } -p - 1 +1 ) ε β * = r p - 1 (n-d-1)(γ-α) γα ε β - max { p + 1 ,q + 1 } β +(n-d-1) 1- p - 1 ε+1-ε β
.

Hence C * = r -τ , where

τ = -p - 1 (n -d -1)(γ -α) γα ε β - max p + 1 , q + 1 β + (n -d -1) 1 - p - 1 ε + 1 -ε β • min p - 2 , q - 2 -max p + 1 , q + 1 + 1 -min p - 2 , q - 2 -p - 1 + 1 ε β -1 > max p + 1 , q + 1 min p - 2 , q - 2 -max p + 1 , q + 1 + 1 > 0, if 1 > (n -d -1) 1 - p - 1 γ and ε ∈ 0, min{p - 2 ,q - 2 }-max{p + 1 ,q + 1 }+1 min{p - 2 ,q - 2 }-p - 1 +1
.

On the other hand,

m s ≤ C β max { p + 1 ,q + 1 } σ 9 m θ t (t -s) σ , where θ = max p + 1 , q + 1 β + 1 - p - 1 ε + 1 -ε β 1 + min p - 2 , q - 2 (1 -ε) β -1 < 1, σ = max p + 1 , q + 1 β 1 + min p - 2 , q - 2 (1 -ε) β -1
.

By virtue of Lemma 3.1, we derive m 1/2 ≤ C 10 (n, µ, p 1 , p 2 , q 1 , q 2 , U) . From the substitution u = C * w we obtain

ess sup u(x) | x ∈ V ,r/2 ∩ Ω = C * m 1/2 ≤ C 10 C * = C 10 r -τ .
Therefore, we conclude the proof of the Proposition 3. where C = C (n, µ, p 1 , p 2 , q 1 , q 2 , U) > 0 and τ = τ (n, µ, p 1 , p 2 , q 1 , q 2 , U) >

max{p + 1 ,q + 1 } min{p - 2 ,q - 2 }-max{p + 1 ,q + 1 }+1
.

Proceeding in the same way as in the Proposition 3.3 and Theorem 3.4, we have the following results.

Proposition 3.5. Suppose that the conditions (1.2) -(1.5) and (1.11) are satisfied, additionally

p - 2 -p + 1 + 1 > 0. (3.28) Assume that u ∈ W 1,p 1 (•) loc Ω\Γ ∩L ∞ loc Ω\Γ satisfies Ω A(•, u, ∇u), ∇ϕ + a(•, u)ϕ + g(•, u)ϕdx ≤ 0, (3.29) 
for all ϕ ∈ W 

Ω µψ p + 1 r |u| p 2 +1 dx + ∂Ω µψ p + 1 r |u| q 2 +1 dσ ≤ Ω µ -1 p + 1 ψ p + 1 -1 r ψ r |u| |∇u| p 1 -1 + |u| p 1 -1 + 1 dx + Ω µ -1 |u| p 1 -1 + 1 ψ p + 1 r |u| + µ -1 ψ p + 1 r |u|dx + ∂Ω µ -1 |u| q 1 -1 + 1 ψ p + 1 r |u| + µ -1 ψ p + 1 r |u|dσ. Since |u| p 1 ≤ max u p + 1 L ∞ (Ω) , u p - 1 L ∞ (Ω) and |u| q 1 ≤ max u q + 1 L ∞ (∂Ω) , u q - 1 L ∞ (∂Ω) , Ω |∇u| p 1 ψ p + 1 r dx ≤ µ -2 p + 1 Ω C 1 (ε 1 , p 1 ) ψ r |u|ψ p + 1 -1- p + 1 (p 1 -1) p 1 r p 1 + ε 1 |∇u| p 1 -1 ψ p + 1 (p 1 -1) p 1 r p 1 p 1 -1 dx + C 2 r n-d-1 , where C 2 is a positive constant independent of r. Choosing ε 1 = µ 2 2p + 1 , Ω∩{r≤d(•,Γ)≤2r} |∇u| p 1 dx ≤ C 3 r n-d-p + 1 ,
where C 3 is a positive constant independent of r. Therefore,

Ω∩{d(•,Γ)≤2r} |∇u| p 1 dx = ∞ i=0 Ω∩{2 -i r≤d(•,Γ)≤2 -i+1 r} |∇u| p 1 dx ≤ C 3 ∞ i=0 r 2 i n-d-p + 1 < ∞.
So |∇u| ∈ L p 1 (•) (Ω), and thus we have proved that u ∈ W 1,p 1 (•) (Ω) ∩ L ∞ (Ω).

2. Now, we will show that u is a solution of equation (1.1) in the domain Ω. For r ∈ (0, r 0 ), let ξ r : R → R be a smooth function such that When r → 0 + , for all ϕ ∈ W 1,p 1 (•) (Ω) ∩ L ∞ (Ω), the equality (4.31) implies (2.12). Indeed, we have → 0 as r → 0, where C i , i = 4, . . . , 8, are positive constants independents of r. So, we have obtained that equality (2.12) is fulfilled for all ϕ ∈ W 1,p 1 (•) (Ω) ∩ L ∞ (Ω). Therefore, the singular set Γ is removable for solutions of equation (1.1).

ξ r (t) = 1 if |t| ≤ r, 0 if 2r ≤ |t|, 0 ≤ ξ ≤ 1 and |ξ r | ≤ C/r, where C is a suitable positive constant. For simplicity we write ξ r = ξ r • d(•, Γ) and ξ r = ξ r • d(•, Γ). Let ϕ ∈ W 1,p 1 (•) (Ω) ∩ L ∞ (Ω). We have (1 -ξ r • d(•, Γ)) ϕ ∈ W 1,p 1 (•) loc Ω\Γ ∩ L ∞ loc Ω\Γ , with supp ϕ ⊂ Ω\Γ. Then, (2.12) yields Ω A(•, u, ∇u), (1 -ξ r ) ∇ϕ -ϕξ r ∇d(•, Γ) + a(•, u) (1 -ξ r ) ϕ + g(•, u) (1 -ξ r ) ϕdx + ∂Ω b(•, u) (1 -ξ r ) ϕ + h(•, u) (1 -ξ r ) ϕdσ = 0.
Similarly as in the Lemma 4.1 and in the Theorem 1.1 we have the following results. 

1 n-p - 1 and α ∈ p - 1 ,

 111 γ be arbitrary. Observe that supp z k ∩ Ω ⊂ Ω ∩ {|d(•, Γ) -| ≤ tr} ⊂ U. By (3.13), and since the trace

3 . 3 . 3 . 4 .

 3334 The next theorem follows easily from the Proposition 3.Theorem Suppose that the conditions (1.2) -(1.9) and (1.11) are satisfied. Let u ∈ W 1,p 1 (•) loc Ω\Γ ∩L ∞ loc Ω\Γ be a solution of equation (1.1) in Ω\Γ. Then, in {x ∈ Ω | 0 < d(x, Γ) < r 0 }, the following inequality holds almost everywhere: |u(x)| ≤ Cd(x, Γ) -τ , (3.27)

1,p 1 6 .

 16 (•) loc Ω\Γ ∩ L ∞ loc Ω\Γ , ϕ ≥ 0, with supp ϕ ⊂ Ω\Γ. Then, if 0 < r < < r 0 we have the estimate max{u, 0} L ∞ (V ,r/2 ) ≤ Cr -τ , where C = C (n, µ, p 1 , p 2 , U) > 0 and τ = τ (n, µ, p 1 , p 2 , U) >Suppose that the conditions (1.2) -(1.5), (1.8), (1.11) and (3.28) are satisfied. Let u ∈ W 1,p 1 (•) loc Ω\Γ ∩L ∞ loc Ω\Γ be a solution of equation (1.1) in Ω\Γ, with b ≡ h ≡ 0. Then, in {x ∈ Ω | 0 < d(x, Γ) < r 0 }, the following inequality holds almost everywhere: |u(x)| ≤ Cd(x, Γ) -τ , where C = C (n, µ, p 1 , p 2 , U) > 0 and τ = τ (n, µ, p 1 , p 2 , U) >

4 r 5 rC 6 r |∇u| p 1 - 1 L p 1 p 1 - 1 (

 4511111 lim r→0 Ω A(•, u, ∇u), (1 -ξ r ) ∇ϕ + a(•, u) (1 -ξ r ) ϕ + g(•, u) (1 -ξ r ) ϕdx + ∂Ω b(•, u) (1 -ξ r ) ϕ + h(•, u) (1 -ξ r ) ϕdσ = Ω A(•, u, ∇u), ∇ϕ + a(•, u)ϕ + g(•, u)ϕdx + ∂Ω b(•, u)ϕ + h(•, u)ϕdσ.Additionally, by (1.3), Proposition 2.1 and 2.2:Ω A(•, u, ∇u), ϕξ r ∇d(•, Γ) dx ≤ C Ω∩{r≤d(•,Γ)≤2r} |∇u| p 1 -1 + |u| p 1 -1 + 1 ϕdx ≤ C Ω∩{r≤d(•,Γ)≤2r} |∇u| p 1 -1 + |u| p 1 -1 + 1dx ≤ Ω∩{r≤d(•,Γ)≤2r})1 L p 1 (Ω∩{r≤d(•,Γ)≤2r}) + C 6 r n-d-1

Lemma 4 . 2 .

 42 Suppose that the conditions (1.2) -(1.5), (1.9) -(1.11) and (3.28) are satisfied. If u ∈ W 1,p 1 (•) loc Ω\Γ ∩L ∞ loc Ω\Γ satisfies (3.29), then max{u, 0} ∈ L ∞ (Ω).

Theorem 4 . 3 .

 43 Suppose that the conditions (1.2) -(1.5), (1.8) -(1.11) and (3.28) are satisfied. Let u ∈ W 1,p 1 (•) loc Ω\Γ ∩L ∞ loc Ω\Γ be a solution of equation (1.1) in Ω\Γ, with b ≡ h ≡ 0. Then, the singularity of u at Γ is removable.

+1 .
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THE REMOVABILITY OF SINGULAR SET

Next, we prove the main theorem of this paper. Before, we start with the following Lemma 4.1. Suppose that the conditions (1.2) -(1.7), (1.9) -(1.11) are satisfied. If u ∈ W 1,p 1 (•) loc Ω\Γ ∩L ∞ loc Ω\Γ satisfies (3.14), then max{u, 0} ∈ L ∞ (Ω).

Proof. We proceed by contradiction. For r ∈ 0, r 2 0 , we denote Λ(r) = ess sup max{u(x), 0} | r ≤ d(x, Γ) ≤ r 2 0 , x ∈ Ω . We have lim r→0 + Λ(r) = ∞. For sufficiently small values r we define the function ψ r : R → R as follows:

where γ = ess sup Ω

Denote

Since u > Λ(δ) > 1 in Ω δ , and by virtue of the conditions (1.2) -(1.7), we have

We can assume that

where

Additionally, let us consider

Choose ε 4 = 1 2C 3 . By (4.30),

We can assume that 1 < ln

Using (3.27), we see

, where C i = C i (n, τ, µ, γ, ε 3 , p 1 , p 2 , q 1 , q 2 , U) > 0, i = 6, 7. Since lim r→0 + 1/r = ∞, we can assume that (ln 1/r)

Hence, u(x) = Λ(δ) almost every in Ω δ . Thus, we have a contradiction, and proves the Lemma 4.1.

Now we are ready to prove the main Theorem 1.1.

Next, for r < 2r 0 /5, let ψ r : R → R be a smooth function such that

We have ϕ ∈ W