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ARTICLE

Atmospheric dryness reduces photosynthesis
along a large range of soil water deficits
Zheng Fu 1✉, Philippe Ciais 1, I. Colin Prentice 2,3,4, Pierre Gentine 5, David Makowski 6,

Ana Bastos 7, Xiangzhong Luo 8, Julia K. Green 1, Paul C. Stoy9, Hui Yang1 & Tomohiro Hajima10

Both low soil water content (SWC) and high atmospheric dryness (vapor pressure deficit,

VPD) can negatively affect terrestrial gross primary production (GPP). The sensitivity of GPP

to soil versus atmospheric dryness is difficult to disentangle, however, because of their

covariation. Using global eddy-covariance observations, here we show that a decrease in

SWC is not universally associated with GPP reduction. GPP increases in response to

decreasing SWC when SWC is high and decreases only when SWC is below a threshold. By

contrast, the sensitivity of GPP to an increase of VPD is always negative across the full SWC

range. We further find canopy conductance decreases with increasing VPD (irrespective of

SWC), and with decreasing SWC on drier soils. Maximum photosynthetic assimilation rate

has negative sensitivity to VPD, and a positive sensitivity to decreasing SWC when SWC is

high. Earth System Models underestimate the negative effect of VPD and the positive effect

of SWC on GPP such that they should underestimate the GPP reduction due to increasing

VPD in future climates.
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Drought poses an increasing threat to people and ecosys-
tems around the world1,2. Both decreased soil water
content (SWC) and increased atmospheric water demand

(vapor pressure deficit, VPD) can negatively affect terrestrial
gross primary production (GPP)3–8. Plants regulate stomatal
conductance to maximize carbon gains while reducing water loss
in response to high VPD9. Decreased SWC below a critical stress
level further reinforces stomatal closure and impairs the hydraulic
transfer from soils to leaves10. Recent studies evaluating the
importance of VPD and SWC in controlling GPP or canopy
conductance (Gc) have produced conflicting results regarding the
relative roles of these two drivers3–8, leaving it unclear how
a changing water cycle will impact the carbon cycle. The key
difficulty is that VPD and SWC covary due to land-atmosphere
feedbacks11,12. Here, we use an Artificial Neural Network
(ANN)13 to separate the sensitivities of GPP, stomatal behavior
and photosynthetic rates to SWC and VPD, based on daily data
from flux tower observations with global coverage and a new
European dataset that captures a recent extreme drought. Our
aims are (1) to assess under what SWC and VPD conditions is
GPP most negatively affected by droughts, (2) to test the
hypothesis that GPP reduction induced by partial stomatal clo-
sure in response to decreasing SWC is partly compensated by
increased photosynthetic rates to maintain carbon fixation, and
(3) to evaluate whether Earth System Models (ESMs) capture the
relative influence of VPD and SWC on GPP. The third aim is
important because future projections of the land carbon sink
depend on how models capture the response of GPP to atmo-
spheric and soil droughts: increased exposure of plants to higher
VPD from warming and drier continental relative humidity is
inevitable and widespread14, whereas changes in rainfall leading
to SWC deficits vary across regions15.

The mega-drought in the summer of 2018 over Europe was
monitored by the Integrated Carbon Observation System (ICOS)
network of eddy-covariance (EC) observations16, providing an
opportunity to study how GPP reacted to extremely low SWC
and extremely high VPD, unobserved previously at these loca-
tions. Thus, we first analyzed time series including and excluding
the year 2018 to prove the existence of nonlinear responses of
GPP. Then, ANNs were trained on daily observations from EC
flux towers worldwide to quantify the nonlinear sensitivities of
GPP to VPD and SWC, accounting for temperature and radiation
effects (Methods). To parse the observed GPP response, the same
approach was then used on observation-derived canopy con-
ductance, maximum assimilation rate and maximum carboxyla-
tion rate (Methods), and also applied to the output of ESMs
participating in the Coupled Model Inter-comparison Project
Phase 6 (CMIP6). We used five ESMs that reported daily output,
with GPP, VPD, SWC, temperature and incoming shortwave
radiation simulated by each model.

Results and discussion
Response of GPP to SWC and VPD. The summer of 2018 saw
the most severe summertime drought recorded in Europe during
the past two decades17. Data from 15 EC sites with observations
during 2014–2018 (Supplementary Table 1) confirmed the pre-
valence of exceptionally low SWC and exceptionally high VPD in
2018 (Fig. 1a, Supplementary Fig. 1). The summer average SWC
was 25 (±5)% (±standard error, n= 15 sites) lower than in
2014–2018 and the summer average VPD was 22 (±4)% larger
(Fig. 1a, Supplementary Fig. 1b), resulting in a summer GPP in
2018 that was 15 (±5)% lower than average. Low SWC conditions
were often associated with high VPD (Fig. 1a). At the daily scale,
there were more days with low SWC anomalies (Fig. 1b) and high
VPD anomalies (Fig. 1c) during 2014–2018 than 2014–2017. We

first examined the sensitivity of daily GPP anomalies (z-scores) to
SWC and VPD anomalies across 2014–2018 and 2014–2017
using multiple linear regression, accounting for SWC and VPD
and their interactions at each site (Methods). Across all sites, we
found a mean linear regression slope of −0.22 (−0.14 to −0.31:
95% confidence intervals) of GPP for a unit (one standard
deviation) reduction of SWC during 2014–2018 (Fig. 1d). When
removing the extreme drought of 2018, however, the negative
mean linear regression slope with respect to SWC was reduced
to −0.14 (−0.06 to −0.23). For VPD, in contrast, the linear
regression slope was not significantly different whether 2018 was
included (−0.45, −0.32 to −0.58) or not (−0.49, −0.37 to −0.60,
Fig. 1e), emphasizing a more stable response to VPD than to
SWC during extreme droughts. The positive linear regression
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Fig. 1 Response of gross primary production to soil water content and
vapor pressure deficit. a The response of the relative changes of summer
gross primary production (GPP) to the relative changes of summer soil
water content (SWC) and vapor pressure deficit (VPD) during 2014–2018.
The observations from 2018 are distributed in the highlighted boxes with
red borders while the 2014–2017 are mainly distributed in the other boxes
(see also Supplementary Fig. 1). The number indicates the number of sites
in each bin. b–c Histogram with a distribution fit of the number of site-days
for daily SWC (b) and VPD (c) anomalies during the summer across
2014–2018 and 2014–2017. d–e Probability distributions across all sites for
the linear regression slope of daily GPP anomalies to SWC (d) and VPD
anomalies (e) during the summer across 2014–2018 and 2014–2017. The
negative sign for the slope between GPP and SWC means that GPP is
reduced when soil becomes drier, while the negative sign for the slope
between GPP and VPD means that GPP is reduced when VPD increases.
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slope between GPP and air temperature was slightly lower in
2014–2018 than in 2014–2017 while they were similar for
incoming shortwave radiation (Supplementary Fig. 2).

This illustrative analysis with a linear model revealed a
nonlinear sensitivity of GPP to SWC, with a disproportionate
negative effect of decreasing SWC under very dry soils conditions,
and a more constant sensitivity of GPP to VPD. Thus, nonlinear
analysis must be used. Yet, it is not clear if different sensitivities to
SWC and VPD under dry and wet soils prevail globally. To test
whether this response pattern is generalizable, we combined the
ICOS European EC data with the global FLUXNET2015 dataset,
and calculated the sensitivities of GPP to SWC and VPD using
the nonlinear ANN models13. To illustrate this, we gave an
example and showed the ANN outputs obtained at the FR-LBr
site (Supplementary Fig. 3). Results showed that predicted GPP
from ANNs tracked the observed GPP well for training, testing,
and validation (Supplementary Fig. 3a, b, c). At this site, the
negative sensitivity of GPP to SWC deficits increases when soils
get drier, whereas the negative sensitivity to high VPD prevails
across the full range of SWC (Supplementary Fig. 3e, f). Next, we
systematically calculated the sensitivities of GPP to SWC and
VPD using ANNs at each site in the ICOS European EC data and
the global FLUXNET2015 dataset; the median values were used
for each bin across all sites (Methods). Consistent with evidence
from the mega-drought of 2018 in Europe, we found that drought
significantly increased the negative sensitivity of GPP to SWC
when SWC hits its lower percentiles (<70th percentiles), whereas
the sensitivity to VPD was rather insensitive to the percentile of
background SWC upon which a VPD increase occurs (Fig. 2a, d).
To further test the robustness of our results, we performed the
same analysis separately for different plant functional types,
which consistently yielded similar results (Supplementary Fig. 5).
We also repeated our analysis using the SWC measurements from
deep soil layers instead of the first layer (Methods). The patterns

of GPP sensitivity to SWC and VPD using deep SWC are similar
with the first layer, but we also found that there were greater
negative sensitivities of GPP to both SWC decreases at dry soils
and VPD increases at wet soils using the SWC in the deepest layer
than in other layers (Supplementary Fig. 6). This suggests that it
could cause more GPP reduction if the drought happens in
deeper soil layers.

Uncertainty in GPP data mainly arises from net ecosystem CO2

exchange (NEE) processing and flux partitioning methods18,19. For
the uncertainty of partitioning methods, we repeated our analysis
using GPP from the daytime partitioning method20, and compared
the results obtained in our main analysis using GPP from the
nighttime partitioning method21 (Methods). The patterns of GPP
sensitivity to SWC and VPD were found to be consistent between
methods (Supplementary Fig. 7a–d). Across all bins, the differences
in GPP sensitivity values based on the two partitioning methods
mostly fell in the range from−0.1 to 0.1 (Supplementary Fig. 7e, f),
indicating that flux partitioning uncertainties had minor effects on
our results. Concerning NEE processing, we repeated our analysis
using the quartile ranges of GPP from the nighttime partitioning
method (GPP_NT_VUT_25 and GPP_NT_VUT_75, Methods),
and found that the differences of GPP sensitivity values obtained
between the two quartile GPPs were pretty small in most bins
(Supplementary Fig. 8). Thus, our results provide robust evidence
that the negative sensitivity of GPP to SWC deficits increases when
soils get drier, whereas the negative sensitivity to VPD increase
prevails across the full range of SWC.

Response of canopy conductance and photosynthetic rates to
SWC and VPD. GPP changes during droughts depend on sto-
matal and non-stomatal (maximum photosynthetic rate) adjust-
ments. We thus derived canopy conductance (Gc) and maximum
photosynthetic assimilation rate (Amax) from eddy covariance

Fig. 2 The sensitivity of gross primary production, canopy conductance and maximum photosynthetic assimilation rate to soil water content and vapor
pressure deficit. a–c The sensitivity of gross primary production (GPP), canopy conductance (Gc) and maximum photosynthetic assimilation rate (Amax) to
soil water content (SWC). d–f The sensitivity of GPP, Gc and Amax to vapor pressure deficit (VPD). The percentiles are the values of 10th, 20th, …, and 90th
percentile of SWC or VPD. Negative signs for the sensitivities to SWC mean GPP, Gc or Amax are reduced when SWC becomes drier while positive signs
mean GPP, Gc or Amax increases when SWC becomes drier. Negative signs for the sensitivities to VPD mean GPP, Gc or Amax are reduced when VPD
increases. ‘*’ represents the sensitivities are significantly different from zero by t-tests (p < 0.05) across all sites for each bin. The number of sites in each
bin were shown in the Supplementary Fig. 4.
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measurements (Methods) and calculated their sensitivities to
SWC and VPD using ANNs. We found that the pattern of the
GPP sensitivities to SWC follows that of Amax (Fig. 2a, c), with a
decrease in response to SWC dryness anomalies at low SWC
conditions and an increase at high SWC (>70th percentiles). The
increase of Amax reported in relatively high SWC conditions
explains why a decrease of SWC results in enhanced GPP when
SWC is high. In contrast, the pattern of GPP sensitivities to VPD
was similar to that of Gc and Amax (Fig. 2d–f), with greater
negative sensitivity at lower VPD. Amax can be related to the
maximum carboxylation rate (Vcmax). To evaluate the response of
Vcmax to SWC and VPD, we calculated the leaf-internal CO2

concentration (ci) during the middle of the day at the flux towers
and then derived Vcmax (Methods). We found that the patterns
of Vcmax sensitivity to SWC and VPD are similar to those of Amax

and GPP (Supplementary Fig. 10). GPP, Amax and Vcmax sensi-
tivities to SWC thus all become more negative as SWC decreases
and VPD increases, but they are positive at high SWC (Fig. 2a, c,
Supplementary Fig. 10).

The above analysis shows that when soils are wet, moderate soil
drying is in fact accompanied by an increase in GPP. Indeed,
moderate soil drying of wet soils might help increase photosyn-
thetic biochemical activity and nitrogen uptake22. Experimental
studies at the species level have documented that waterlogging
decreased the rate of photosynthesis23,24, the activity of Rubisco25,
and chlorophyll fluorescence26. Waterlogging could also decrease
nitrogen availability due to leaching or denitrification, and increase
exposure to toxic compounds and disease organisms22,27,28,
reducing photosynthesis. Global meta-analysis has also shown
that moderate soil drying increases foliar and root nitrogen
concentrations, with upregulation of root primary metabolism29.
Here we found that, under high SWC conditions, plants also
increase their carboxylation capacity in response to moderate soil
drying, compensating for partial stomatal closure, allowing them to
continue to assimilate CO2 at high rates. Consistent with previous
studies at the species level30,31, our results indicate that there is a
strong positive coupling between Gc and Amax (or Vcmax) at low
SWC at the canopy scale, and at short time scales. However, we
also found that this coupling is reduced for wet soils. Such behavior
is consistent with an observed trade-off between Gc and Vcmax

across climate gradients30,31. For example, Wright, Reich31 found
that species from low-rainfall environments operate (on long time
scales) with substantially enhanced leaf N per unit leaf area (Narea);
the higher Narea is associated with a greater drawdown of ci, such
that low-rainfall species achieve higher photosynthetic rates at a
given stomatal conductance. We also noted that the sensitivity of
Gc to decreasing SWC under wet-soil conditions is insignificant
(Fig. 2c). There are two possible reasons for this. First, decreasing
SWC in wet soils has negligible effect on canopy water potential
so that there is no significant impact on Gc

32. Second, species-
specific effects may be involved. For example, Rasheed-Depardieu,
Parelle24 reported that waterlogging in Quercus petraea and
Quercus robur decreased stomatal conductance while Yordanova
and Popova25 showed that there were no significant changes in
stomatal conductance for maize plants.

Both GPP and Gc have negative sensitivity to increasing VPD
across the full range of VPD and SWC (Fig. 2d, e) while their
negative sensitivity to decreasing SWC mainly occurs in a
restricted range of low SWC values (Fig. 2a, b). These results are
consistent with stomatal closure responses documented at leaf
scale, and with plant hydraulic theory32,33. Stomatal closure limits
decreases in water potential in the plant, ensuring that water
demand from the leaves does not exceed the supply capacity of
the hydraulic system—which could lead to embolism of the
vascular system and even, potentially, complete desiccation of the
plant. Stomatal closure responds tightly and early to leaf/canopy

water potential33, thus increasing VPD triggers stomatal closure
for the full range—as it affects water potential directly through
transpiration. However, SWC only acts at relatively low values,
i.e., below a threshold, given the nonlinear relationship between
SWC and soil and plant water potential32.

Our analysis considering different plant functional types
consistently supports our global results (Supplementary Figs. 5,
11–12). Grasslands and savannas show a more negative sensitivity
of GPP to decreasing SWC than broadleaved deciduous forests
(DBF) and evergreen needle-leaved forests (ENF, Supplementary
Fig. 5), which may be because forests can access to moisture in
deeper soils and therefore have stronger resistance to drought34–36.
In DBF and ENF, both GPP and Amax sensitivities to decreasing
SWC are positive when SWC is intermediate to high, but in
grasslands and savannas, positive GPP and Amax sensitivities to
decreasing SWC occur only during wet-soil conditions (Supple-
mentary Figs. 5, 12). This difference suggests that the SWC
threshold for investment in high carboxylation rates may differ
between forest and non-forest ecosystems. We also noted that Amax

had negative sensitivities to SWC in some high SWC bins
(Supplementary Fig. 12), though most of these negative values
were not statistically significant. Uncertainties in the sensitivity of
GPP, Gc and Amax to water stress can be caused by species-specific
trade-offs between transpiration and vulnerability to hydraulic
failure34,37.

To further consider and estimate the uncertainties of our
results, we quantified the uncertainties of GPP, Gc, Amax and
Vcmax sensitivities to SWC and VPD, respectively, by calculating
the standard errors of sensitivities for each bin across all sites
(Methods). We found that in most bins, the standard errors
of GPP, Gc, Amax and Vcmax sensitivities to SWC or VPD were
<0.1 (Supplementary Fig. 14). In a few cases, standard errors
were higher (0.15–0.2), mainly in the bins with simultaneously
high or low SWC and VPD (80–100th percentiles or 0–20th
percentiles, Supplementary Fig. 14), where there were fewer data
points (Supplementary Fig. 4).

Across all sites, the sensitivity of Gc to SWC becomes more
negative as SWC decreases (Fig. 2b) and is also negative under
low VPD and low SWC. Combining our diagnostics of the
sensitivities of Gc and GPP to VPD and SWC, we calculated how
ecosystem intrinsic water use efficiency (iWUE, defined by the
ratio of GPP to Gc) changes with SWC and VPD (Supplementary
Fig. 16). The positive sensitivity of iWUE to decreasing SWC is
general, indicating that iWUE is enhanced when soil becomes
dry. The sensitivity of iWUE to SWC is more positive under high
VPD values while its sensitivity to decreasing VPD is more
negative under low VPD values. These results shed light on
conflicting observations at the site-scale38,39 and confirms
findings from atmospheric carbon isotopes at a large continental
scale, showing that drought tends to increases iWUE40.

Relative roles of SWC and VPD. Regarding the relative roles of
SWC and VPD, we demonstrated that VPD dominates dryness
stress on ecosystem production while SWC becomes important
under dry soils. The mean linear regression slope (the standar-
dized partial regression coefficient as all predictors were stan-
dardized) across all sites in Europe showed that VPD (−0.45 and
−0.49, across 2014–2018 and 2014–2017, respectively) had larger
negative effects on GPP than SWC (−0.22 and −0.14, Fig. 1d, e).
Consistent with the linear model analysis in Europe, ANNs
analysis found that VPD always dominates dryness stress on GPP
as long as the SWC is not low, while the negative effects of
decreasing SWC on GPP are larger than that of VPD under the
low SWC conditions (<30th percentiles, Fig. 3a). Among different
VPD gradients, the VPD effects are also always more negative
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than that of SWC, although the negative effects of SWC tend to
increase along with VPD increases (Fig. 3b). These results
reconcile previous conflicting assessments on the roles of VPD
versus SWC3–8, because the relative importance of VPD and
SWC depends on soil water conditions. In the future, warmer
temperatures and lower relative humidity will further increase the
relative importance of VPD in limiting ecosystem production
globally7,41.

Our findings differ from a recent global assessment of a
predominant SWC stress on GPP using global solar-induced
chlorophyll fluorescence (SIF) satellite observations and re-
analysis climate data5. To investigate the possible reasons for
this discrepancy, we reproduce the approach from ref. 5 at each
site, and find that, while our observations indicate that low SWC
reduces GPP, high VPD is more important than low SWC across
all sites when we removed the radiation effects (Fig. 3c). Once
neglecting the radiation effects, the negative effects of low SWC
are larger than that of high VPD (Fig. 3c). We therefore suggest
that the role of VPD in previous studies that neglected the strong
VPD-radiation coupling should be re-visited. It is also worth
noting that SIF satellite sensor passes over each land pixel just
once per day (typically in the morning when VPD is relatively
low)5,42. SIF is also less sensitive to stomatal regulation than
GPP43, which could help to explain why ref. 5 did not find
significant VPD effects. The above analysis with three lines of
evidence from linear, nonlinear (ANNs) model and the approach
of ref. 5 consistently showes the dominant role of VPD in leading
to drought limitation on vegetation productivity.

Comparison with ESM simulations. Last, we diagnosed the
sensitivities of daily GPP to SWC and VPD from five CMIP6

ESMs (ACCESS-ESM1-5, CMCC-CM2-SR5, IPSL-CM6A-LR,
NorESM2-LM and NorESM2-MM, Supplementary Table. 3), all
of which provided daily outputs. We found that each of these
ESMs were aligned with our observational finding that the
negative sensitivity of GPP to VPD is general (Fig. 4f–j and
Fig. 2). In addition, three models that used the Community Land
Model captured the negative sensitivity of GPP in response to
SWC dryness anomalies at low SWC conditions and a positive
sensitivity at high SWC (CMCC-CM2-SR5, NorESM2-LM and
NorESM2-MM, Fig. 4a–e and Fig. 2). However, all ESMs
underestimated both the negative sensitivity of GPP to increasing
VPD (0.19 ± 0.12, median across five ESMs ± standard error) and
its positive sensitivity to decreasing SWC (−0.20 ± 0.07) at high
SWC (>80th percentiles) (Fig. 4k–t). In other words, the models
showed a compensation in their GPP sensitivities to VPD and
SWC and provided a reasonable overall response of GPP to
droughts, but not necessarily for the right reasons. Continued
warming is likely to lead to different trajectories of VPD and
SWC (ref. 7), potentially leading to incorrect projections of ter-
restrial changes in GPP as VPD and SWC changes diverge. These
results emphasize that model evaluation should carefully address
covarying factors, especially during extremes. The ESMs could
not account for the response found in this study by which plants
increase their carboxylation capacity with moderate soil drying at
high SWC, compensating for partial stomatal closure, and thus
allowing CO2 assimilation to continue at a high rate. This defi-
ciency in part explains why all the ESMs underestimated the
positive sensitivity of GPP to SWC decrease under wet-soil
conditions. Our results also suggest that the implementation
of plant hydraulics in ESMs should allow both effects (VPD
and SWC) to be better represented, because plant hydraulics

Fig. 3 Disentangling soil water content and vapor pressure deficit limitation effects. a The sensitivity of gross primary production (GPP) to soil water
content (SWC) or vapor pressure deficit (VPD) at each SWC bin. b The sensitivity of GPP to SWC or VPD at each VPD bin. The solid lines indicate the
median values and the uncertainty bounds refer to the range from 25th to 75th percentiles. c Effect of low SWC and high VPD on GPP using the
approaches of Liu, Gudmundsson5 across all sites. The terms are defined following Liu, Gudmundsson5. ΔGPP (VPD|SWC): VPD limitation on GPP without
SWC-VPD coupling; ΔGPP(SWC|VPD): SWC limitation on GPP without SWC-VPD coupling. GPPI means GPP is normalized by incoming (I) shortwave
radiation to remove the radiation effects. For each box plot, the ‘+’ indicates the mean; the box indicates the upper and lower quartiles and the whiskers
indicate the 5th and 95th percentiles of the data.
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play a critical role in leaf gas exchange by regulating stomatal
conductance.

Understanding and quantifying the distinct responses of
photosynthesis to soil and atmospheric dryness stress is essential
to reliably project terrestrial ecosystems carbon uptake in a
changing climate. In this study, we confirmed that low SWC and
high VPD strongly decrease GPP, and provided regional and
global evidence that the negative sensitivity of GPP to SWC
increases as soils get drier, while its negative sensitivity to high
VPD prevails across the full range of soil moisture, using both
linear and nonlinear models. Thus, even when soil moisture is
above the stress threshold, exposure to high VPD still causes a
reduction of GPP through stomatal closure. The implication is
that atmospheric drought that does not trigger SWC feedbacks
can still reduce GPP in the future, as VPD increases over
vegetated areas7,41. The pattern of GPP sensitivities to SWC
follows that of Amax while the pattern of the GPP sensitivities to
VPD follows that of Gc and Amax. The GPP, Amax and Vcmax

sensitivities to SWC become more negative as SWC decreases and
VPD increases but they are positive at high SWC values,
suggesting that ecosystems compensate their stomatal reduction
by higher carboxylation rates to continue to assimilate carbon
under moderate drought, consistent with optimality theory and
trade-offs between Gc and Vcmax along climate gradients. Under
soil moisture deficits, carboxylation rates increase and offset the
reduction of conductance, implying an increase of water use
efficiency. The same analysis broken down by different plant
functional types further supported our global results. Three lines
of evidence highlighted the different role of VPD and SWC on
ecosystem production and thus reconciled previous conflicting

assessments. The five state-of-the-art ESMs that we tested failed
to accurately reproduce the magnitudes of sensitivities, under-
estimating them by about 0.2 for both the negative sensitivity to
VPD and the positive sensitivity to SWC at high SWC levels. This
indicates that current models will not accurately project the
response of carbon uptake and transpiration to future droughts.
Together, these results suggest that atmospheric dryness reduces
photosynthesis along a large range of soil water deficits, and they
highlight the importance of correctly evaluating the ecosystem-
scale response to the under-appreciated exposure to atmospheric
dryness as both soil and atmospheric dryness will increase with
climate change.

Methods
Eddy-covariance observations. We used half-hourly or hourly GPP, air tem-
perature, VPD, SWC and incoming shortwave radiation from the recently released
ICOS (Integrated Carbon Observation System)44 and the FLUXNET2015 dataset of
energy, water, and carbon fluxes and meteorological data, both of which have
undergone a standardized set of quality control and gap filling19. Data were already
processed following a consistent and uniform processing pipeline19. This data
processing pipeline mainly included: (1) thorough data quality control checks; (2)
calculation of a range of friction velocity thresholds; (3) gap-filling of meteor-
ological and flux measurements; (4) partitioning of CO2 fluxes into respiration and
photosynthesis components; and (5) calculation of a correction factor for energy
fluxes19. All the corrections listed were already applied to the available product19.
We used incoming shortwave radiation, temperature, VPD, and SWC that were
gap-filled using the marginal distribution method21. The GPP estimates from the
night-time partitioning method were used for the analysis (GPP_NT_VUT_REF).
SWC was measured as volumetric SWC (percentage) at different depths, varying
across sites. We mainly used the surface SWC observations but deeper SWC
measurements were also used when available. Data were quality controlled so that
only measured and good-quality gap filled data (QC= 0 or 1) were used.
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Fig. 4 The sensitivity of gross primary production to soil water content and vapor pressure deficit using five Earth System Models. a–j The sensitivity
of gross primary production (GPP) to soil water content (SWC) and vapor pressure deficit (VPD) using five Earth System Models. k–t The differences
(modeled sensitivity minus observation-based sensitivity) for GPP to SWC (k–o) and VPD (p–t).
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Analysis of the extreme summer drought in 2018 in Europe to prove non-
linearity. To analyze the effect of summer drought in 2018 on GPP in Europe, we
selected 15 sites with measurements during 2014–2018 from the ICOS dataset,
representing the major ecosystems across Europe (Supplementary Table 1).
Croplands were excluded due to the effect of management on the seasonal timing
of ecosystem fluxes, both from crop rotation that change from year to year and
from the variable timing of planting and harvesting. In croplands, the changes of
GPP anomalies across different growing season could be mainly depend on crop
varieties and management activities. Information of crop varieties, growing times
yearly and other management data for each cropland site should be collected in
future in order to fully consider and disentangle the impacts of SWC and VPD on
its photosynthesis. Wetland sites were also removed because they are influenced
by upstream organic matter and nutrient input, as well as fluctuating water tables.
Daytime half-hourly data (7 am to 19 pm) were aggregated to daily values. At
each site, the relative changes (4X) of summer (June–July–August) GPP, SWC
and VPD during 2014–2018 refer to the summer average of 2014–2018 were
calculated for each year. For example, the calculation of the relative change in
2018 is shown in Eq. (1):

4X ¼ X2018 � Xaverage of 2014�2018

Xaverage of 2014�2018
´ 100% ð1Þ

where X2018 is the mean of the daily values of X (GPP, SWC, or VPD) during the
summer of 2018, and Xaverage of 2014–2018 is the mean of the daily values of X over
all the summers of the 2014–2018 period. The average 4X across a certain
number of sites at each bin were used for the results in Fig. 1a.

Daily time series of GPP, SWC and VPD during summer for each site were
normalized (z-scores) to derive the standardized sensitivity of GPP to SWC and
VPD. For each variable, the mean value across the summer of 2014–2018 was
subtracted for each day at each site and then normalized by its standard deviation.
At each site, we used a multiple linear regression (Eq. 2) to estimate daily GPP
anomalies sensitivities to SWC and VPD anomalies across 2014–2018 and
2014–2017, respectively:

GPP ¼ β1 SWC þ β2 VPDþ β3 SWC ´VPDþ β4 Ta þ β5RADþ bþ ε ð2Þ
where βi is the standardized sensitivity of GPP to each variable; Ta represents the
air temperature; RAD represents the incoming shortwave radiation; b represents
the intercept; and ε is the random error term. We compared estimated
sensitivities with and without 2018 data to quantify the impacts of extreme
drought in 2018 on GPP sensitivity to SWC (Fig. 1d) and VPD (Fig. 1e). The
slope was calculated at each site and then the distribution of slopes across sites
were plotted in Fig. 1d, e.

Global analysis of the sensitivities of GPP to SWC and VPD. For the global
analysis, instead of summer, we focused on the growing season and days when the
SWC and VPD effects were most likely to control ecosystem fluxes and screen out
days when other meteorological drivers were likely to have a larger influence on
fluxes. Following previous studies5,8,45, for each site, we restrict our analyses to the
days in which: (i) the daily average temperature >15 °C; (ii) sufficient evaporative
demand existed to drive water fluxes, constrained as daily average VPD > 0.5 kPa;
(iii) high solar radiation, constrained as daily average incoming shortwave radia-
tion >250Wm−2.

By combining ICOS and FLUXNET2015 data, at the global scale, we
evaluated 67 sites with at least 300 days observations over the growing seasons
for the years available (Supplementary Table 2). We excluded cropland and
wetland sites for the above-mentioned reasons. These 67 sites were used to
calculate the relative effects of low SWC and high VPD on GPP following the
approach of ref. 5 (see below sections). For 8 sites, the ANN results failed
performance criteria (the correlation between predicted GPP and observed GPP
is <0.5). The remaining 59 sites were used for ANNs and sensitivity analysis
(Supplementary Table 2). At each site, each variable was first normalized to
z-scores over the growing seasons for the years available, then we binned daily
SWC and VPD values into 10 × 10 percentile bins and assessed the sensitivities
for each bin using ANNs for each site. The median values of sensitivities across
all sites were used for the results.

Derivation of Gc, Amax and Vcmax from eddy covariance measurements. Gc

during the growing season was calculated using half-hourly data (removing rainy
days) by inverting the Penman–Monteith equation46 (Eq. 3):

Gc ¼ raγ=
4 Rn � G
� �þ ρcpra es Ta

� �� ea
� �

λE
� Δþ λð Þ

 !
ð3Þ

where Gc and ra are canopy stomatal conductance and aerodynamic
resistance respectively, γ is the psychrometric constant, Δ is the slope of the
water vapor deficit with respect to temperature, Rn and G are observed net
radiation and soil heat flux, ρ is air density, Cp is the specific heat capacity of dry
air, es and ea are saturated and actual vapor pressure, and λE is observed eva-
potranspiration. ra is calculated following Novick, Ficklin7 (Eq. 4), using the von
Kármán constant (k= 0.4), available wind speed data (ws), measurement height
(zm), momentum roughness length (z0= 0.1 h) and zero plane displacement

(zd= 0.67 h), both based on calculated canopy height (h) under near-neutral
conditions47 (Eq. 5).

ra ¼
ln zm�zd

z0

� �2
wsk

2
ð4Þ

h ¼ zm

0:6þ 0:1 ´ exp kws
u�

� � ð5Þ

In order to evaluate changes in biochemical processes, we derived daily Amax

from non-gap-filled Fc measurements using eddy covariance observations48. The
instantaneous rate of photosynthesis generally increases with incoming radiation
and saturates (at Amax) as illumination increases. The relationship between the
instantaneous rate of photosynthesis and incoming shortwave radiation has been
well documented using light response curves (LRCs)48,49. In the process of
partitioning Fc into an ecosystem photosynthesis and respiration term using the
daytime partitioning method20, a key step is to fit Fc with an LRC:

Fc ¼
αβRg

αRg þ β
þ γ ð6Þ

where α is the canopy-scale quantum yield; β is the maximum rate of CO2 uptake
of the canopy at saturating light, equivalent to Amax; Rg is the global radiation; and
γ is ecosystem respiration. The impact of VPD on β is considered by requiring that
β decreases exponentially with the increase of VPD when VPD exceeds a threshold
(VPD0):

β ¼ β0exp �k VPD� VPD0

� �� �
;VPD>VPD0

β0; VPD≤VPD0

(
ð7Þ

where β0 and k are fitted parameters and VPD0 is 1 kPa48. Following Luo
and Keenan48, we applied this method to a short time window (2–14 days) of Fc
depending on the availability of flux measurements and assumed that every
day in the same time window has the same daily Amax. We retrieved the daily
Amax by implementing Eqs. (6) and (7) using the REddyProc R package
(https://github.com/bgctw/REddyProc)20.

Vcmax represents the activity of the primary carboxylating enzyme ribulose 1,5-
bisphosphate carboxylase–oxygenase (Rubisco) as measured under light-saturated
conditions. To evaluate the responses of Vcmax to SWC and VPD, we first
calculated the daily internal leaf CO2 partial pressure (ci) in the middle of the day
(11:00–14:00) via Fick’s Law (Eq. 8), excluding periods with low incoming
shortwave radiation (<500Wm−2).

ci ¼ ca � GPP ´ ðrco2 þ raÞ ð8Þ
where ca is the atmospheric CO2 partial pressure, and rco2 is the ecosystem
resistance to CO2 (1.6/Gc). Then we derived Vcmax according to the standard
biochemical model (Eq. 9):

Amax ¼ Vcmax
ðCi � Γ�Þ
ðCi þ KÞ ð9Þ

where Γ* is the CO2 compensation point in the absence of mitochondrial
respiration and K is the effective Michaelis–Menten coefficient of Rubisco. Both Γ*
and K are temperature-dependent variables50. Values of Vcmax were standardized to
25 °C using the Arrhenius equation with activation energies from Bernacchi
et al.51,52.

Artificial neural networks and sensitivity analysis. ANN has been used with
eddy covariance datasets53–55 and remote sensing datasets13,42,56 in the Earth
sciences as predictive or analysis tool. We used the ANN to analyze the sensitivities
of GPP, Amax, Vcmax, Gc and iWUE to SWC and VPD. ANN was chosen for this
application because it has nonlinear activation functions, which can effectively
predict nonlinear effects13,54,57. We limited the ANN fit to the small number of
predictors that are known environmental drivers, in order to avoid over-fitting54.
Daily temperature, VPD, SWC and incoming shortwave radiation were used as
predictor variables while daily GPP (or Gc, Amax, Vcmax, iWUE) is used as a
response variable. Feed-forward ANN (one hidden layer) was trained using the
Matlab ‘Neural fitting toolbox’ and repeated five times. The number of nodes in the
hidden layer was sampled from 4 to 20 (step size 2), and 10 was selected because
the results from different nodes were very similar. 60% of the data were used for the
purpose of training the ANN while the remaining 40% of the data were used for
validation (20%) and testing (20%). Performance was assessed by correlations (r)
and root-mean-square errors. Results showed the r values were >0.7 at most sites.
During the training process, weight and bias values were optimized using the
Levenberg–Marquardt optimization58,59. The maximum number of epochs to train
is 1000. An example to demonstrate the ANN training at one site was shown in
Supplementary Fig. 3.

At each site, ANN was run and sensitivities were calculated for all data within
each SWC and VPD bin and the median value was used. For each of the five
trained ANNs, one of the predictor variables was perturbed by one standard
deviation (a value of 1 due to the initial input data normalization), and GPP was
predicted again using the existing ANN with the predictors including the perturbed

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28652-7 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:989 | https://doi.org/10.1038/s41467-022-28652-7 | www.nature.com/naturecommunications 7

https://github.com/bgctw/REddyProc
www.nature.com/naturecommunications
www.nature.com/naturecommunications


variable; this process was repeated for each predictor variable. The predicted values
of GPP obtained with and without perturbation were then compared to determine
the sensitivity values. The sample equation showing the calculation of the GPP
sensitivity to VPD is shown in Eq. (10).

SensitivityVPD ¼ median
GPP ANN VPDþstdev VPDð Þð Þ � GPP ANN all VARð Þ

stdev VPDð Þ

� �
ð10Þ

We repeated the ANN and sensitivity analyses five times and the median of
these were used at each site. Across all sites, significances of the sensitivities for
each bin were tested using t-tests (p < 0.05). The number of sites at each bin were
shown in the Supplementary Fig. 4. We defined the sensitivity sign following the
change of GPP: negative sensitivity means GPP decrease while positive sensitivity
means GPP increase. That is to say, negative signs for the sensitivities to SWC
mean GPP, Gc or Amax are reduced when SWC becomes drier while positive signs
mean GPP, Gc or Amax increases when SWC becomes drier; negative signs for the
sensitivities to VPD mean GPP, Gc or Amax are reduced when VPD increases.

The uncertainty of GPP used in this study mainly arises from net ecosystem
CO2 exchange (NEE) processing and flux partitioning methods18. Concerning
partitioning methods, we repeated the sensitivity analysis using GPP from the
daytime partitioning method (GPP_DT)20, and compared the results obtained in
our main analysis using GPP from the nighttime partitioning method (GPP_NT)21.
It should be noted that VPD is used as limiting factor for estimating GPP_DT, so it
was a good choice to use the GPP_NT. The uncertainty from these two different
partitioning methods were quantified by calculating the differences of their
sensitivities (e.g., GPP_NT sensitivity to SWC minus GPP_DT sensitivity to SWC)
for each bin (Eq. 11, Supplementary Fig. 7e, f). We also calculated the relative
uncertainty using the absolute value of differences of sensitivities divided by the
absolute value of mean sensitivities, indicating that the uncertainty represents how
many percent of the mean sensitivity (Eq. 12, Supplementary Fig. 7g, h). Please
note that the high levels of relative uncertainty occurred in the bins with
statistically insignificant sensitivity values (Supplementary Fig. 7a, c, g). Since these
sensitivity values are close to zero, a low absolute uncertainty leads to a high
relative uncertainty. For the uncertainty of NEE processing, we repeated our
analysis using the quartile ranges of GPP from the nighttime partitioning method
(GPP_NT_VUT_25 and GPP_NT_VUT_75), which were available for all the sites
in both the collections used and derived by the uncertainty in NEE. Similarly, the
absolute and relative uncertainties from these two quartile GPPs were also
quantified (Supplementary Fig. 8).

UncertaintySWC ¼ SensitivityGPP NT to SWC � SensitivityGPP DT to SWC ð11Þ

Relative uncertaintySWC ¼ 100% ´
UncertaintySWC

ðSensitivityGPP NT to SWC þ SensitivityGPP DT to SWCÞ=2

����
����

ð12Þ
To evaluate the effects of SWC in different depths on the sensitivity of GPP to

SWC and VPD, we repeated the sensitivity analysis using 31, 24, and 17 sites with
SWC measurements in the second (SWC_2), third (SWC_3), and fourth (SWC_4)
depths, respectively (2-4: increases with the depth, 4 is deepest). To test if the
phenological cycle affects our results, we repeated our analysis (1) using only peak
growing season, the 3-month period with the maximum mean GPP across the
available years, where seasonal variability is muted; (2) using anomalies by
removing the seasonal cycle, which was calculated by averaging all available years
of the data and smoothing the series with a 30‐day moving average as Feldman,
Short Gianotti60. Both analyses yield similar results (Supplementary Fig. 9).

The main sources of uncertainty for Gc is the latent heat flux uncertainty from
eddy covariance measurements. We used both the ‘LE’ and ‘LE.CORR’ variables
reported by the ICOS and FLUXNET2015 database for latent energy exchange.
LE.CORR is the “energy balance corrected” version of latent heat flux, based on the
assumption that Bowen ratio is correct. Our results were robust to either variable
(Supplementary Fig. 13). The differences in Gc sensitivity values based on the two
latent heat fluxes mostly fell in the range from−0.1 to 0.1 (Supplementary Fig. 13e, f).
The uncertainty of Amax was evaluated by Luo and Keenan48, who showed that the
values of Amax and A2000 (ecosystem photosynthesis at a photosynthetic photon flux
density of 2000 μmolm−2 s−1) were very consistent, indicating that the uncertainty in
Amax from this method is small. The effects of measurement uncertainties on Vcmax

are difficult to assess because of a lack of repetition of the measurements of the
variables used to derive Vcmax. However, this source of uncertainty should not hamper
our results because the measurements were done at high frequency and were
automatic for all flux towers, thus with random errors mainly, and limiting the risk
of bias.

In addition, to further consider and estimate the uncertainties of our results, we
quantified the uncertainties of GPP, Gc, Amax and Vcmax sensitivities to SWC and
VPD, respectively, by calculating the standard errors of sensitivities for each bin
across all sites (Supplementary Fig. 14). We also calculated the relative
uncertainties of GPP, Gc, Amax and Vcmax sensitivities to SWC and VPD,
respectively, using the standard errors divided by the absolute value of median
sensitivities (Supplementary Fig. 15).

Approach of ref. 5 to disentangle the relative role of SWC and VPD on GPP. In
a recent paper, Liu et al.5 performed a global analysis using SIF and re-analysis

climate data. They estimated the difference between SIF at the highest VPD bin and
lowest VPD bin in each SWC bin to derive the ΔSIF(VPD|SWC). Similarly, SWC
limitation on SIF without SWC-VPD coupling, termed ΔSIF (SWC|VPD), was
derived from the changes in SIF from high SWC to low SWC at each VPD bin.
Applying this approach to daily GPP and GPPI (GPP normalized by incoming
shortwave radiation (I) to limit the impact of radiation) respectively, we derived the
ΔGPP (VPD|SWC), ΔGPP(SWC|VPD), ΔGPPI (VPD|SWC) and ΔGPPI (SWC|
VPD) at each site (Supplementary Table 2).

CMIP6 ESM simulations. Five ESMs (ACCESS-ESM1-561, CMCC-CM2-SR562,
IPSL-CM6A-LR63, NorESM2-LM64 and NorESM2-MM64) in CMIP6 provide daily
GPP; most models provide only monthly GPP outputs (Supplementary Table 3).
Daily GPP, air temperature, incoming shortwave radiation, surface soil moisture,
and calculated VPD (from temperature and relative humidity) estimations from
historical runs (1995–2014) were extracted from each model according to the site
locations. Following the observational analysis, the same analysis was carried out
for the five CMIP6 models. Each variable was first normalized using z-scores for
each site over the growing season, and an ANN was created at each site for each
model. Similar to the observational analysis, ANN and sensitivity analyses were
performed five times and the median of these were used. At each site, sensitivities
were calculated for all data within each SWC and VPD bin and each bin was
summarized by its median value. The median values of sensitivities across all sites
for each bin were used for the results. To evaluate the sensitivity performance in
ESMs, we calculated the difference between modeled and observed sensitivities
(Fig. 4).

Data availability
The data used in this study are openly available in the following databases: The eddy
covariance measurements are obtained from the ICOS (https://www.icos-cp.eu/data-
products/YVR0-4898) and FLUXNET2015 datasets (https://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/). The CMIP6 data were downloaded from https://esgf-data.dkrz.de/
search/cmip6-dkrz/.

Code availability
The code used to calculate the Gc, Amax and Vcmax is publicly available at https://
github.com/fueco/GcAmaxVcmax.
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