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This paper aims to establish a central limit theorem for Markov processes conditioned not to be absorbed under a very general assumption on quasi-stationarity for the underlying process. To do so, a central limit theorem has been established for ergodic Markov processes. The conditional central limit theorem is then obtained by applying the central limit theorem to the Q-process.

Notation

• M1(E): Set of the probability measures defined on E.

• For any µ ∈ M1(E) and measurable function f such that E f (x)µ(dx) is well-defined, µ(f ) := E f (x)µ(dx).

• For a given positive function ψ, L ∞ (ψ) is the set of functions f such that f /ψ is bounded, endowed with the norm

f L ∞ (ψ) := f /ψ ∞.
• For any positive measurable function ψ, for any µ, ν ∈ M1(E),

µ -ν ψ := sup f L ∞ (ψ) ≤1 |µ(f ) -ν(f )|.
• For any nonnegative measurable function f and µ ∈ M1(E) such that µ(f ) ∈ (0, +∞),

f • µ(dx) := f (x)µ(dx) µ(f ) .
• Kolmogorov distance: For any µ, ν ∈ M1(R),

d Kolm (µ, ν) := sup x∈R |µ((-∞, x]) -ν((-∞, x])|.
1 Introduction

Introduction to quasi-stationarity

Let (Xt) t≥0 be a time-homogeneous continuous-time Markov process living on a state space (E ∪ {∂}, E), where ∂ ∈ E is an absorbing state for the process X, which means that Xt = ∂ conditioned to {Xs = ∂} for all s ≤ t, and E is a σ-field associated to the state space E 1 . Denote by τ ∂ the hitting time of ∂ by the process X. We associate to the process X a family of probability measure (Px) x∈E∪{∂} such that Px[X0 = x] = 1 for any x ∈ E ∪ {∂}. For any probability measure µ ∈ M1(E ∪ {∂}), define Pµ := E∪{∂} µ(dx)Px, and denote Ex and

Eµ the associated expectations. Moreover, denote by (Ft) t≥0 the natural filtration of the process X.

In this paper, we assume that the process X admits a quasi-stationary distribution, defined as a probability measure α ∈ M1(E) such that, for all t ≥ 0,

Pα[Xt ∈ •|τ ∂ > t] = α. ( 1 
)
Such a probability measure is also a quasi-limiting distribution, defined as a probability measure such that there exists a subset D(α) ⊂ M1(E), called domain of attraction of α, such that, for all µ ∈ D(α) and A ∈ E,

Pµ[Xt ∈ A|τ ∂ > t] -→ t→∞ α(A).
In particular, if α is a quasi-stationary distribution, α ∈ D(α) by [START_REF] Basel | A central limit theorem for absorbing Markov chains with r absorbing states[END_REF]. Conversely, we can show that any quasi-limiting distributions for X satisfy (1) for all t ≥ 0 (see [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF]Proposition 1]). In other terms, quasi-stationary and quasi-limiting distributions are equivalent notions. Denote by λ0 := -log(Pα[τ ∂ > 1]). Then, it is well-known (see [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF]Proposition 2] for example) that, for all t ≥ 0,

Pα[τ ∂ > t] = e -λ 0 t , ∀t ≥ 0.
A consequence of this property coupled with [START_REF] Basel | A central limit theorem for absorbing Markov chains with r absorbing states[END_REF] is that, for all t ≥ 0, Pα[Xt ∈ •, τ ∂ > t] = e -λ 0 t α(•).

(
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Conversely, if a probability measure α satisfies (2) for a given λ0 > 0, then α is a quasistationary distribution for the process X. In that respect, the quasi-stationary distributions for X are exactly the probability left eigenmeasures for the semigroup (Pt) t≥0 defined by

Ptf (x) := Ex(f (Xt)1τ ∂ >t),
for all t ≥ 0, f belonging to a Banach space and x ∈ E. In what follows, we will use the notation

µPt := Pµ(Xt ∈ •, τ ∂ > t).
Also, we assume that the process X admits a nonnegative function η defined on E, vanishing at ∂ and satisfying α(η) = 1, such that, for all x ∈ E and t ≥ 0,

Ex[η(Xt)1τ ∂ >t] = e -λ 0 t η(x).
η is therefore a right eigenfunction for the semigroup (Pt) t≥0 , associated to the eigenvalues (e -λ 0 t ) t≥0 .

The main assumption and the Q-process

The main assumption on this process is the following. Assumption 1. There exists a function ψ1 : E → [1, +∞), such that α(ψ1) < +∞ and η ∈ L ∞ (ψ1), as well as two constants C, γ > 0 such that, for any µ ∈ M1(E) and t ≥ 0,

e λ 0 t µPt -µ(η)α ψ 1 ≤ Cµ(ψ1)e -γt .
(
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This assumption is satisfied under the general criteria Assumption (F) of [START_REF] Champagnat | General criteria for the study of quasistationarity[END_REF]. In particular, it is shown in [START_REF] Champagnat | General criteria for the study of quasistationarity[END_REF] that Assumption 1 is satisfied for a lot of processes such as multidimensional elliptic diffusion processes or processes defined in discrete state space. In particular, we refer the reader to [START_REF] Champagnat | General criteria for the study of quasistationarity[END_REF]Sections 4 and 5] for examples for which Assumption 1 holds true. Assumption 1 is also satisfied for general strongly Feller processes, as shown in [START_REF] Guillin | Quasi-stationary distribution for strongly Feller Markov processes by Lyapunov functions and applications to hypoelliptic hamiltonian systems[END_REF], and for some degenerate diffusion processes, as studied in [START_REF] Benaïm | Degenerate processes killed at the boundary of a domain[END_REF][START_REF] Lelièvre | Quasi-stationary distribution for the Langevin process in cylindrical domains, part I: existence, uniqueness and longtime convergence[END_REF]. We refer the reader to [START_REF] Champagnat | Exponential convergence to quasistationary distribution and Q-process[END_REF][START_REF] Ferré | More on the long time stability of Feynman-Kac semigroups[END_REF][START_REF] Velleret | Unique quasi-stationary distribution, with a possibly stabilizing extinction[END_REF][START_REF] Bansaye | A nonconservative harris ergodic theorem[END_REF][START_REF] Oçafrain | Convergence to quasi-stationarity through Poincaré inequalities and Bakry-Emery criteria[END_REF] for alternative criteria ensuring Assumption 1.

We can show (a short proof is provided later in the appendix of this paper) that Assumption 1 implies the following one.

Assumption 2.

i) Denoting E := {x ∈ E : η(x) > 0}, the family of probability measures (Qx) x∈E defined by

Qx(Γ) := lim T →∞ Px(Γ|τ ∂ > T ), ∀t ≥ 0, ∀Γ ∈ Ft, is well-defined.
ii) Under (Qx) x∈E , X is a Markov process on E admitting β(dx) := η(x)α(dx) as an invariant probability measure. Moreover, denoting

ψ(x) := ψ1(x) η(x) ,
β(ψ) < +∞ and, for all t ≥ 0 and x ∈ E ,

Qx(Xt ∈ •) -β ψ ≤ Cψ(x)e -γt , ( 4 
)
where C, γ > 0 are the same constants as in [START_REF] Benaïm | Degenerate processes killed at the boundary of a domain[END_REF].

Since the process X under (Qx) x∈E is a Markov process, the family of operators (Qt) t≥0 defined by

Qtf (x) := E Q x (f (Xt)), ∀t ≥ 0, ∀x ∈ E , ∀f ∈ L ∞ (ψ1/η),
where E Q x is the expectation associated to Qx, is a semigroup. In the literature (see for example [START_REF] Champagnat | General criteria for the study of quasistationarity[END_REF]Theorem 2.7]), the Markov process associated to this semigroup is called the Q-process.

Independently on the satisfaction of Assumption 1, (4) is satisfied when the Q-process satisfies the assumptions 1 and 2 in [START_REF] Hairer | Yet another look at Harris' ergodic theorem for Markov chains[END_REF]. Moreover, the inequality (4) implies, since η ∈ L ∞ (ψ1), that, for all x ∈ E and t ≥ 0,

δxQt -β T V ≤ C η L ∞ (ψ 1 ) ψ1(x) η(x) e -γt ,
where • T V denotes the total variation norm.

The main result

A consequence of Assumption 1 is that the probability measure β is a quasi-ergodic distribution for the process X. That is, for all bounded measurable function f and µ ∈ M1(E) satisfying µ(ψ1) < +∞ and µ(η) > 0, the convergence

Eµ 1 t t 0 f (Xs)ds τ ∂ > t -→ t→∞ β(f ) (5) 
holds true. This property is a consequence of the following lemma, whose the proof is postponed to the appendix of this paper.

Lemma 1. For all x ∈ E , t ≥ 0 and Γ ∈ Ft,

Qx(Γ) = e λ 0 t Pt[η1 Γ ](x) η(x) . ( 6 
)
Moreover, there exists a constant C > 0 such that, for all µ ∈ M1(E), 0 ≤ t ≤ T and

Γ ∈ Ft, |Qη•µ(Γ) -Pµ(Γ|τ ∂ > T )| ≤ C µ(ψ1) µ(η) e -γ(T -t) . ( 7 
)
In particular, the property ( 7) implies (5) as shown in [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF]. More precisely, we can show that the previous lemma implies the corollary below: Corollary 1. For all µ ∈ M1(E) such that µ(ψ1) < +∞ and µ(η) > 0, for all f bounded,

Eµ 1 t t 0 f (Xs)ds -β(f ) 2 τ ∂ > t -→ t→∞ 0,
implying [START_REF] Cattiaux | Central limit theorems for additive functionals of ergodic Markov diffusions processes[END_REF] and that, for all µ ∈ M1(E) and f bounded, for all > 0,

Pµ 1 t t 0 f (Xs)ds -β(f ) ≥ τ ∂ > t -→ t→∞ 0.
Provided Lemma 1, a short proof can be obtained adapting the proofs in [START_REF] Oçafrain | Ergodic theorem for asymptotically periodic time-inhomogeneous markov processes, with application to quasi-stationarity with moving boundaries[END_REF] or [START_REF] He | Exponential mixing property for absorbing markov processes[END_REF], providing even 1/t as speed of convergence.

The aim of this paper is to prove a central limit theorem for processes satisfying Assumption 1, conditioned not to be absorbed up to the time t. Existing results stating a conditional central limit theorem for absorbing discrete-time Markov chains can be found in [START_REF] Collet | Quasi-stationary distributions[END_REF][START_REF] Matthews | A central limit theorem for absorbing Markov chains[END_REF][START_REF] Basel | A central limit theorem for absorbing Markov chains with r absorbing states[END_REF][START_REF] Szubarga | Functional random central limit theorems for random walks conditioned to stay positive[END_REF][START_REF] Bolthausen | On a functional central limit theorem for random walks conditioned to stay positive[END_REF][START_REF] Donald | Functional central limit theorems for random walks conditioned to stay positive[END_REF]. In particular, in [START_REF] Collet | Quasi-stationary distributions[END_REF]Section 3.6], it is stated that, for any Markov chain (Xn) n∈Z + defined on a finite state space E ∪ {∂} (absorbed at ∂) whose matrix (Pi(X1 = j))i,j∈E is irreducible and aperiodic, one has that, for all function f such that β(f ) = 0, the limit

θ 2 := lim n→∞ 1 n Eα n k=0 f (X k ) 2 τ ∂ > n is well-defined. If moreover θ 2 = 0, one obtains lim n→∞ Pα 1 √ n n k=0 f (X k ) ≤ y τ ∂ > n = y -∞ 1 √ 2πθ 2 e -x 2 2θ 2 dx,
for all y ∈ R. This result is extended to all initial distributions in [START_REF] Matthews | A central limit theorem for absorbing Markov chains[END_REF], where it is also claimed that the limiting Gaussian distribution is the same as the one obtained in the central limit theorem applied to the Q-process (i.e. same limiting variance).

The main result of this paper is then the following.

Theorem 1. Assume that the process (Xt) t≥0 satisfies Assumption 1.

Then, for all f ∈ L ∞ (1E) such that σ 2 f > 0 and µ ∈ M1(E) such that µ(ψ1) < +∞ and µ(η) > 0,

Pµ √ t 1 t t 0 f (Xs)ds -β(f ) ∈ • τ ∂ > t w -→ t→+∞ N (0, σ 2 f ),
where w refers to the weak convergence of measures, where N (0, σ 2 f ) refers to the centered Gaussian variable of variance

σ 2 f := 2 ∞ 0 Cov Q β (f (X0), f (Xs))ds, ( 8 
)
where Cov Q β refers to the covariance with respect to the probability measure Q β := E β(dx)Qx. In particular, (4) implies that σ 2 f < +∞ for any f bounded by 1, since, assuming without loss of generality that β(f ) = 0, for all k ≥ 0,

|E Q β (f (X0)f (X k ))| = |E Q β (f (X0)E Q X 0 (f (X k ))| ≤ Cβ(ψ1/η)e -γk . ( 9 
)
This paper is only interested in processes conditioned not to be absorbed by absorbing states. Nevertheless, the following proofs can be adapted to general non-conservative semigroups satisfying Assumption 1. Some examples of such semigroups have been studied in [START_REF] Ferré | More on the long time stability of Feynman-Kac semigroups[END_REF][START_REF] Bansaye | A nonconservative harris ergodic theorem[END_REF][START_REF] Champagnat | Practical criteria for R-positive recurrence of unbounded semigroups[END_REF][START_REF] Villemonais | A quasi-stationary approach to the long-term asymptotics of the growth-fragmentation equation[END_REF]. Theorem 1 will be proved at the third section. To prove it, we first need to show a central limit theorem for the Q-process satisfying (4). In particular, up to my knowledge, the papers dealing with central limit theorems for Markov processes require stronger hypotheses than (4) (see the references provided in Section 2). That is why the second section aims to prove a central limit theorem for general ergodic Markov processes, which could be interesting and useful beyond the framework of quasi-stationarity.

To conclude, the paper ends with an appendix showing the implication Assumption 1 ⇒ Assumption 2 and Lemma 1 stated above. In particular, even if the existence of a quasiergodic distribution is quite classical assuming that Lemma 1 holds true (see for example [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF] for a simple proof of this statement), the lemma itself is not clearly stated in the literature for processes satisfying Assumption 1 ( [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF], for example, states it under stronger conditions). This is why a short proof is provided in this appendix.

Central limit theorem for Markov processes

This section aims to establish a central limit theorem for Markov processes satisfying the condition (4). In the literature, central limit theorems for continuous-time Markov processes have, among others, been established in [START_REF] Komorowski | Central limit theorem for Markov processes with spectral gap in the Wasserstein metric[END_REF][START_REF] Cattiaux | Central limit theorems for additive functionals of ergodic Markov diffusions processes[END_REF][START_REF] Lezaud | Chernoff and Berry-Esséen inequalities for Markov processes[END_REF]. In particular, the papers [START_REF] Komorowski | Central limit theorem for Markov processes with spectral gap in the Wasserstein metric[END_REF][START_REF] Cattiaux | Central limit theorems for additive functionals of ergodic Markov diffusions processes[END_REF] made use of central limit theorems for martingales; the paper [START_REF] Lezaud | Chernoff and Berry-Esséen inequalities for Markov processes[END_REF] used Kato's theory applied to analytically perturbed operators.

In this paper, a central limit theorem will be proved for Markov processes studying the convergence of the moments of 1 √ t t 0 f (Xs)ds, for bounded functions f such that β(f ) = 0 and σ 2 f > 0. Up to my knowledge, this method to establish a central limit theorem for (non-stationary) Markov processes is new. However, this method is difficult to apply for discrete-time processes; we refer to [START_REF] Roland L Dobrushin | Central limit theorem for nonstationary Markov chains[END_REF][START_REF] Derriennic | The central limit theorem for Markov chains started at a point[END_REF][START_REF] Thomas | The central limit theorem for Markov chains[END_REF][START_REF] Häggström | On the central limit theorem for geometrically ergodic Markov chains[END_REF][START_REF] Cuny | Pointwise ergodic theorems with rate and application to the CLT for Markov chains[END_REF] for central limit theorems for discretetime Markov chains.

In all this section, we deal with a general Markov process (Xt) t≥0 defined on a state space E . We denote by (Qx) x∈E a family of probability measure such that, for all x ∈ E , Qx(X0 = x) = 1, for all probability measure µ ∈ M1(E ), Qµ := E Qxµ(dx). We denote by E Q

• and Cov Q • the expectation and the covariance associated to the probability measure Q•, respectively. We emphasize that this section can be read independently on the rest of the paper. In particular, (Xt) has no link with the Q-process with this section.

In all what follows, we denote by B1(E ) the set of the bounded by 1 measurable functions defined over E .

We introduce now the only assumption used all along this section:

Assumption 3. The process (Xt) t≥0 admits an invariant measure β, and there exists a function ψ : E → [c, +∞) (c > 0) and two constants C, γ > 0 such that, for all x ∈ E and t ≥ 0, Qx(Xt ∈ •) -β ψ ≤ Ce -γt ψ(x). In accordance with the introduction, we introduce, for all bounded function f , the variance

σ 2 f := 2 ∞ 0 Cov Q β (f (X0), f (Xs))ds.

Convergence of the moments of

1 √ t t 0 f (X s )ds
In this subsection, the following theorem will be proved.

Theorem 2. Assume that (Xt) t≥0 satisfies Assumption 3. Then there exist a positive constants C1 and a sequence of positive constant

(D k ) k∈N such that, for all k ∈ Z+, µ ∈ M1(E ) such that µ(ψ) < +∞, f ∈ B1(E ) such that β(f ) = 0 and t > 0, E Q µ 1 t k t 0 f (Xs)ds 2k - (2k)! k! σ 2k f 2 k ≤ (2k)!D k C1 k (k -1)! µ(ψ) t ( 10 
)
and

lim t→∞ E Q µ 1 t k √ t t 0 f (Xs)ds 2k+1 = 0.
In particular, for all µ ∈ M1(E ) such that µ(ψ) < +∞ and f ∈ B1(E ) such that β(f ) = 0 and σ 2 f > 0,

Qµ 1 √ t t 0 f (Xs)ds ∈ • w -→ t→∞ N (0, σ 2 f ).
Moreover, a suitable sequence (D k ) k∈N satisfying the inequalities [START_REF] Collet | Quasi-stationary distributions[END_REF] is the one defined as:

D k := C γ (1 + β(ψ) c ) k-1 ∨ 1 × C 2 c ∨ Cβ(ψ) c 2 γ , ∀k ∈ N.
Before proving Theorem 2, we need to prove two lemmata.

Lemma 2. There exists a sequence of positive constants

(D k ) k∈N such that, for all f ∈ B1(E ) such that β(f ) = 0 and σ 2 f > 0, for all k ∈ N, µ ∈ M1(E ) and s2 ≤ . . . ≤ s 2k , E Q µ s 2 0 f (Xs 1 )ds1 f (Xs 2 ) . . . s 2k s 2k-2 f (Xs 2k-1 )ds 2k-1 f (Xs 2k ) - σ 2k f 2 k ≤ D k µ(ψ) k-1 i=0 (s 2(i+1) -s2i + 1)e -γ(s 2(i+1) -s 2i ) , ( 11 
)
where s0 = 0 by convention.

Proof. We prove it by induction on k. We begin by showing the case k = 1. For all µ ∈ M1(E ) and f ∈ B1(E ) and t ≥ 0,

E Q µ t 0 f (Xs)ds f (Xt) = t 0 E Q µ (f (Xs)f (Xt))ds = t 0 E Q µQ t-s (f (X0)f (Xs))ds, (12) 
where we denote by (Qt) t≥0 the semigroup for the process (Xt) t≥0 . By Assumption 3, for all x ∈ E and f ∈ B1(E ) such that β(f ) = 0,

|E Q x (f (X0)f (Xs))| ≤ E Q x (|E Q X 0 (f (Xs))|) ≤ C c ψ(x)e -γs . ( 13 
)
Hence, by [START_REF] Derriennic | The central limit theorem for Markov chains started at a point[END_REF], Assumption 3 and this last inequality, for all t ≥ 0, µ ∈ M1(E ) such that µ(ψ) < +∞ and f ∈ B1(E ) such that β(f ) = 0,

E Q µ t 0 f (Xs)ds f (Xt) - t 0 E Q β (f (X0)f (Xs))ds ≤ Cµ(ψ) t 0 e -γ(t-s) E Q • (f (X0)f (Xs)) L ∞ (ψ) ds ≤ Cµ(ψ) t 0 e -γ(t-s) C c e -γs ds ≤ C 2 c µ(ψ)te -γt . ( 14 
)
Moreover, since β(f ) = 0, by [START_REF] Roland L Dobrushin | Central limit theorem for nonstationary Markov chains[END_REF], for all t ≥ 0,

∞ t E Q β (f (X0)f (Xs))ds ≤ ∞ t C c β(ψ)e -γs ds ≤ Cβ(ψ) cγ e -γt ≤ Cβ(ψ) c 2 γ µ(ψ)e -γt . ( 15 
)
Hence, by definition of σ 2 f , there exists D1 > 0 such that

E Q µ t 0 f (Xs)ds f (Xt) - σ 2 f 2 ≤ D1µ(ψ)(t + 1)e -γt .
In particular, one can choose here D1 := C 2 c ∨ Cβ(ψ) c 2 γ . This concludes the base case. Let k -1 ∈ N be such that the hypothesis of induction is satisfied. Then, by the Markov property,

E Q µ s 2 0 f (Xs 1 )ds1f (Xs 2 ) . . . s 2k s 2k-2 f (Xs 2k-1 )ds 2k-1 f (Xs 2k ) = E Q µ s 2 0 f (Xs 1 )ds1f (Xs 2 )E Q Xs 2 s 4 s 2 f (Xs 3 -s 2 )ds3f (Xs 4 -s 2 ) . . . s 2k s 2k-2 f (Xs 2k-1 -s 2 )ds 2k-1 f (Xs 2k -s 2 ) = E Q µ s 2 0 f (Xs 1 )ds1f (Xs 2 )E Q Xs 2 s 4 -s 2 0 f (Xs 3 )ds3f (Xs 4 -s 2 ) . . . s 2k -s 2 s 2k-2 -s 2 f (Xs 2k-1 )ds 2k-1 f (Xs 2k -s 2 ) . ( 16 
)
By hypothesis, for all s2 ≤ s4 . . . ≤ s 2k ,

E Q Xs 2 s 4 -s 2 0 f (Xs 3 -s 2 )ds3f (Xs 4 -s 2 ) . . . s 2k -s 2 s 2k-2 -s 2 f (Xs 2k-1 )ds 2k-1 f (Xs 2k -s 2 ) - σ 2k-2 f 2 k-1 ≤ D k-1 ψ(Xs 2 ) k-1 i=1 (s 2(i+1) -s2i + 1)e -γ(s 2(i+1) -s 2i ) . ( 17 
)
Moreover, since β(f ) = 0, for all µ ∈ M1(E ), for all s2 ≥ 0, for all h ∈ L ∞ (ψ),

E Q µ s 2 0 f (Xs)dsf (Xs 2 )h(Xs 2 ) ≤ C γ (1 + β(ψ) c )µ(ψ) h L ∞ (ψ) , ( 18 
)
where C is the constant implied in Assumption 3. Indeed, for all t ≥ 0, µ ∈ M1(E ) and f, g ∈ L ∞ (ψ),

t 0 E Q µ [f (Xs)g(Xt)] ds = t 0 E Q µ [f (Xs)EX s (g(Xt-s))] ds.
Thus, by Assumption 3, for all t ≥ 0, µ ∈ M1(E ), f ∈ B1(E ) and g ∈ L ∞ (ψ),

t 0 E Q µ [f (Xs)g(Xt)] ds - t 0 E Q µ [f (Xs)] β(g)ds ≤ C g L ∞ (ψ) t 0 µ(ψ)e -γ(t-s) ds ≤ C γ g L ∞ (ψ) µ(ψ).
Moreover, again by Assumption 3, for all t ≥ 0, µ ∈ M1(E ) and f ∈ B1(E ) such that

β(f ) = 0, t 0 E Q µ [f (Xs)] ds ≤ C c µ(ψ) t 0 e -γs ds ≤ C cγ µ(ψ).
These two last inequalities applied to g = f × h imply [START_REF] Hairer | Yet another look at Harris' ergodic theorem for Markov chains[END_REF]. Now, denote

h : x → E Q x s 4 -s 2 0 f (Xs 3 -s 2 )ds3f (Xs 4 -s 2 ) . . . s 2k -s 2 s 2k-2 -s 2 f (Xs 2k-1 )ds 2k-1 f (Xs 2k -s 2 ) - σ 2k-2 f 2 k-1 .
Then, by [START_REF] Häggström | On the central limit theorem for geometrically ergodic Markov chains[END_REF], h ∈ L ∞ (ψ) and

h L ∞ (ψ) ≤ D k-1 k-1 i=1
(s 2(i+1) -s2i + 1)e -γ(s 2(i+1) -s 2i ) .

Hence, by ( 16), [START_REF] Hairer | Yet another look at Harris' ergodic theorem for Markov chains[END_REF] and this last inequality,

E Q µ s 2 0 f (Xs 1 )ds1f (Xs 2 ) . . . s 2k s 2k-2 f (X 2k-1 )ds 2k-1 f (Xs 2k ) - σ 2(k-1) f 2 k-1 E Q µ s 2 0 f (Xs 1 )ds1f (Xs 2 ) ≤ C γ (1+ β(ψ) c )µ(ψ) h L ∞ (ψ) ≤ C γ (1+ β(ψ) c )µ(ψ)D k-1 k-1 i=1 (s 2(i+1) -s2i+1)e -γ(s 2(i+1) -s 2i ) .
This and the case k = 1 conclude the induction setting

D k := D k-1 × C γ (1 + β(ψ) c ) ∨ D1.
We need also the following lemma.

Lemma 3. For all k ∈ Z+, there exists C k ∈ (0, +∞) such that, for t ≥ 1,

0≤s 2 ...≤s 2k ≤t k-1 i=0 (s 2(i+1) -s2i + 1)e -γ(s 2(i+1) -s 2i ) ds2 . . . ds 2k ≤ C k t k-1 . ( 19 
)
Proof. We prove [START_REF] He | Exponential mixing property for absorbing markov processes[END_REF] by induction on k. The case k = 1 can easily be obtained by the reader for a given constant C1 > 0. Now, assume that (19) holds true for k -1 ∈ N. For all t ≥ 0,

k-1 i=0 0≤s 2 ≤...≤s 2k ≤t (s 2(i+1) -s2i + 1)e -γ(s 2(i+1) -s 2i ) ds2 . . . ds 2k = 0≤s 2 ≤...≤s 2k ≤t k-2 i=0 (s 2(i+1) -s2i + 1)e -γ(s 2(i+1) -s 2i ) ds2 . . . ds 2k + 0≤s 2 ≤...≤s 2k ≤t (s 2k -s 2(k-1) + 1)e -γ(s 2k -s 2(k-1) ) ds2 . . . ds 2k = t 0 0≤s 2 ≤...≤s 2(k-1) ≤s 2k k-2 i=0 (s 2(i+1) -s2i + 1)e -γ(s 2(i+1) -s 2i ) ds2 . . . ds 2(i-1) ds 2k + 0≤s 2 ≤...≤s 2k ≤t (s 2k -s 2(k-1) + 1)e -γ(s 2k -s 2(k-1) ) ds2 . . . ds 2k . ( 20 
)
By hypothesis, for all t ≥ 0,

t 0 0≤s 2 ≤...≤s 2(k-1) ≤s 2k k-2 i=0 (s 2(i+1) -s2i)e -γ(s 2(i+1) -s 2i ) ds2 . . . ds 2(i-1) ds 2k ≤ t 0 C k-1 s k-2 2k ds 2k = C k-1 t k-1 k -1 .
For all t ≥ 0, the second term of ( 20) is equal to

0≤s 2(k-1) ≤s 2k ≤t (s 2k -s 2(k-1) + 1)e -γ(s 2k -s 2(k-1) ) 0≤s 2 ≤...≤s 2k-1 ds2 . . . ds 2(k-2) ds 2(k-1) ds 2k = 0≤r≤s≤t (s -r + 1)e -γ(s-r) r k-2 (k -2)! drds = t 0 t r (s -r + 1)e -γ(s-r) ds r k-2 (k -2)! dr = t 0 t-r 0 (u + 1)e -γu du r k-2 (k -2)! dr ≤ C1 (k -1)! t k-1 ,
where C1 < +∞ is exactly the same constant as for the case k = 1. Hence, ( 19) is proved with C k satisfying the relation

C k = C k-1 k-1 + C 1 (k-1)! . By induction, for all k ≥ 2, C k = C1 (k -1)! + C1 (k -2)! .
We can now prove Theorem 2.

Proof of Theorem 2. We begin with the convergence of the even moment. For all µ ∈ M1(E ), t ≥ 0, f ∈ B1(E ) and k ∈ Z+,

E Q µ t 0 f (Xs)ds 2k = (2k)! 0≤s 2 ≤...≤s 2k ≤t s 2 0 s 4 s 2 • • • s 2k s 2k-2 E Q µ (f (Xs 1 )f (Xs 2 ) . . . f (Xs 2k-1 )f (Xs 2k ))ds1 . . . ds 2k . ( 21 
)
Then, assuming moreover that β(f ) = 0, by ( 21),( 11) and ( 19),

E Q µ t 0 f (Xs)ds 2k - (2k)! k! t k σ 2k f 2 k ≤ (2k)!D k µ(ψ) × C k t k-1 , ( 22 
)
which implies [START_REF] Collet | Quasi-stationary distributions[END_REF]. Now, for all µ ∈ M1(E ), t ≥ 0, k ∈ Z+ and f ∈ B1(E ) such that β(f ) = 0,

E Q µ t 0 f (Xs)ds 2k+1 = (2k + 1)! t 0 E Q µ f (Xs)E Q Xs 0≤s 2 ≤...≤s 2k+1 ≤t-s f (Xs 2 ) . . . f (Xs 2k+1 )ds2 . . . ds 2k+1 ds = (2k + 1) t 0 E Q µ f (Xs)E Q Xs t-s 0 f (Xu)du 2k ds = (2k + 1) t 0 E Q µ f (Xt-s)E Q X t-s s 0 f (Xu)du 2k ds.
By [START_REF] Thomas | The central limit theorem for Markov chains[END_REF] and using that

E Q µ [ψ(Xt-s)] ≤ ( β(ψ) c
+ C)µ(ψ) for all µ ∈ M1(E ) and s ≤ t (this is a consequence of Assumption (3)), there exists Ĉ > 0 such that

E Q µ t 0 f (Xs)ds 2k+1 - (2k + 1)! k! σ 2k f 2 k t 0 s k E Q µ (f (Xt-s)) ds ≤ D k Ĉ k(2k + 1) (k -1)! µ(ψ) t k k .
(23) Since β(f ) = 0, by Assumption 3, for all µ ∈ M1(E ) and s ≤ t,

|E Q µ [f (Xt-s)]| ≤ Cµ(ψ)e -γ(t-s) . ( 24 
)
For all t > 0 and k ∈ Z+,

1 t k+ 1 2 t 0 s k e -γ(t-s) ds = e -γt t k+1/2 t 0 s k e γs ds ≤ e -γt √ t t 0 e γs ds ≤ 1 γ √ t . ( 25 
)
We deduce from ( 23), ( 24) and ( 25) that there exists Ĉ > 0 (different from the previous one) such that, for all µ ∈ M1(E ) such that µ(ψ) < +∞ and f ∈ B1(E ) such that β(f ) = 0,

1 t k+1/2 E Q µ t 0 f (Xs)ds 2k+1 ≤ D k × Ĉ (2k + 1)! 2 k k! + 2k + 1 (k -1)! µ(ψ) √ t . ( 26 
)
The central limit theorem is deduced from the method of moments. Now, concerning a suitable candidate for the sequence (D k ) k∈N , as proven in Lemma 1, a suitable candidate is the sequence defined recursively by

D1 := C 2 c ∨ Cβ(ψ) c 2 γ , D k := D k-1 × C γ (1 + β(ψ) c ) ∨ D1, ∀k ≥ 2,
in other words the sequence defined in Theorem 2.

A quantitative uniform CLT

The aim of this subsection is to prove the following result, which can be seen as an improved central limit theorem for (Xt) t≥0 .

Theorem 3. Assume that (Xt) t≥0 satisfies Assumption 3. Then, for all µ ∈ M1(E

) such that µ(ψ) < ∞, f ∈ B1(E ) such that β(f ) = 0 and σ 2 f > 0, and ω ∈ R, lim t→∞ sup g∈L ∞ (ψ): g L ∞ (ψ) ≤1 E Q µ e iω √ t t 0 f (Xs)ds g(Xt) -β(g)e - σ 2 f ω 2 2 = 0. ( 27 
)
Moreover, for all t > 0 and µ ∈ M1(E ), one has

sup g∈L ∞ (ψ): g L ∞ (ψ) ≤1 E Q µ e iω √ t t 0 f (Xs)ds g(Xt) -β(g)E Q µ (e iω √ t t 0 f (Xs)ds ) ≤ Cµ(ψ)e -γt + C|ω| √ t β(ψ) + Cµ(ψ) γ . Proof of Theorem 3. For all µ ∈ M1(E ), f ∈ B(E ) such that β(f ) = 0, t ≥ 0, k ∈ Z+ and g ∈ L ∞ (ψ), E Q µ t 0 f (Xs)ds k g(Xt) = k t 0 E Q µ s 0 f (Xu)du k-1 f (Xs)g(Xt) ds = k t 0 E Q µ s 0 f (Xu)du k-1 f (Xs)E Q Xs (g(Xt-s)) ds.
Hence, for all µ ∈ M1(E

), t ≥ 0, f ∈ B1(E ) such that β(f ) = 0, k ∈ Z+ and g ∈ L ∞ (ψ), E Q µ t 0 f (Xs)ds k g(Xt) -β(g)E Q µ t 0 f (Xs)ds k = k t 0 E Q µ s 0 f (Xu)du k-1 f (Xs)[E Q Xs (g(Xt-s)) -β(g)] ds.
Thus, using that e

iω √ t t 0 f (Xs)ds = ∞ k=0 i k ω k t k/2 k! ( t 0 f (Xs)ds
) k for all t ≥ 0, ω ∈ R, and f ∈ B1(E ) such that β(f ) = 0, then, using the above equality, for all µ ∈ M1(E ) and

g ∈ L ∞ (ψ), E Q µ e iω √ t t 0 f (Xs)ds g(Xt) -β(g)E Q µ e iω √ t t 0 f (Xs)ds = ∞ k=0 iω √ t k 1 k! E Q µ t 0 f (Xs)ds k g(Xt) -β(g)E Q µ t 0 f (Xs)ds k = E Q µ (g(Xt))-β(g)+ ∞ k=1 iω √ t k 1 k! E Q µ t 0 f (Xs)ds k g(Xt) -β(g)E Q µ t 0 f (Xs)ds k = E Q µ (g(Xt)) -β(g) + iω √ t t 0 E Q µ e iω √ s s 0 f (Xu)du f (Xs)[E Q Xs (g(Xt-s)) -β(g)] ds.
By Assumption 3 one has, for all µ ∈ M1(E ), Qµ-almost surely and for all s ≤ t and

g ∈ L ∞ (ψ), |E Q Xs (g(Xt-s)) -β(g)| ≤ C g L ∞ (ψ) ψ(Xs)e -γ(t-s) . Thus, for all µ ∈ M1(E ), t > 0, ω ∈ R, g ∈ L ∞ (ψ) and f ∈ B1(E ) such that β(f ) = 0, E Q µ e iω √ t t 0 f (Xs)ds g(Xt) -β(g)E Q µ e iω √ t t 0 f (Xs)ds ≤ Cµ(ψ) g L ∞ (ψ) e -γt + C g L ∞ (ψ) |ω| √ t t 0 e -γ(t-s) E Q µ (ψ(Xs))ds. Since |E Q µ (ψ(Xs)) -β(ψ)| ≤ Cµ(ψ)e -γs for all s ≥ 0, one has that sup t≥0 t 0 e -γ(t-s) E Q µ (ψ(Xs))ds ≤ sup t≥0 t 0 e -γ(t-s) [β(ψ) + Cµ(ψ)e -γs ]ds ≤ β(ψ) + Cµ(ψ) γ .
These two last inequalities and Theorem 2 imply [START_REF] Oçafrain | Ergodic theorem for asymptotically periodic time-inhomogeneous markov processes, with application to quasi-stationarity with moving boundaries[END_REF] and conclude the proof.

Proof of Theorem 1

In this section, (Xt) t≥0 refers again to the process living in E ∪ {∂} and absorbed at ∂. We now prove Theorem 1, divided in three steps.

Step 1. For all µ ∈ M1(E), t ≥ 0 and f ∈ B1(E), g ∈ L ∞ (ψ1) and k ∈ Z+,

Eµ t 0 f (Xs)ds k g(Xt) τ ∂ > t = k! 0≤s 1 ≤...≤s k ≤t Eµ(f (Xs 1 )f (Xs 2 ) . . . f (Xs k )g(Xt)|τ ∂ > t)ds1 . . . ds k = k! t 0 Eµ 0≤s 1 ≤...≤s k-1 ≤s f (Xs 1 ) . . . f (Xs k-1 )ds1 . . . ds k-1 f (Xs)g(Xt) τ ∂ > t ds = k t 0 Eµ s 0 f (Xu)du k-1 f (Xs)g(Xt) τ ∂ > t ds = k t 0 1 Pµ(τ ∂ > t) Eµ s 0 f (Xu)du k-1 f (Xs)EX s (g(Xt-s)1τ ∂ >t-s)1τ ∂ >s ds.
For all s ≤ t, µ ∈ M1(E), g ∈ L ∞ (ψ1) and x ∈ E, denote Cµ,g(s, t, x) := µ(η) e λ 0 s e γ(t-s) Ex(g(Xt-s)1τ ∂ >t-s) Pµ(τ ∂ > t)

e λ 0 s η(x)α(g) µ(η) .

Thus, for all µ ∈ M1(E), f ∈ B1(E) such that β(f ) = 0, g ∈ L ∞ (ψ1), k ∈ Z+ and t ≥ 0,

Eµ t 0 f (Xs)ds k g(Xt) τ ∂ > t -α(g)E Q η•µ t 0 f (Xs)ds k = k × e -γt t 0 e γs E Q η•µ s 0 f (Xu)du k-1 f (Xs)Cµ,g(s, t, Xs) η(Xs) ds.
Similarly to the proof of Theorem 3, for all t > 0, ω ∈ R, µ ∈ M1(E) and f such that

β(f ) = 0, Eµ e iω √ t t 0 f (Xs)ds τ ∂ > t -E Q η•µ e iω √ t t 0 f (Xs)ds = ∞ k=1 iω √ t k 1 k! Eµ t 0 f (Xs)ds k τ ∂ > t -E Q η•µ t 0 f (Xs)ds k = ∞ k=1 i k ω k t k/2 1 (k -1)! e -γt t 0 e γs E Q η•µ s 0 f (Xu)du k-1 f (Xs)Cµ,1 E (s, t, Xs) η(Xs) ds = e -γt t 0 e γs iω √ t E Q η•µ e iω √ s s 0 f (Xu)du f (Xs)Cµ,1 E (s, t, Xs) η(Xs) ds. ( 28 
)
Step 2. By triangular inequality, for all s ≤ t and x ∈ E,

|Cµ,g(s, t, x)| ≤ µ(η) e λ 0 s e γ(t-s) Ex[g(Xt-s)1τ ∂ >t-s] Pµ(τ ∂ > t) - e -λ 0 (t-s) η(x)α(g) Pµ(τ ∂ > t) + e -λ 0 (t-s) η(x)α(g) Pµ(τ ∂ > t) - e λ 0 s η(x)α(g) µ(η) . (29) 
By [START_REF] Benaïm | Degenerate processes killed at the boundary of a domain[END_REF],

µ(η) e λ 0 s e γ(t-s) Ex[g(Xt-s)1τ ∂ >t-s] Pµ(τ ∂ > t)
e -λ 0 (t-s) η(x)α(g)

Pµ(τ ∂ > t) ≤ C g L ∞ (ψ 1 ) ψ1(x)µ(η) e -λ 0 t Pµ(τ ∂ > t)
.

Again by ( 3),

e λ 0 t Pµ(τ ∂ > t) ≥ µ(η) -Cµ(ψ1)e -γt .
Hence, for all t ≥ 1 γ log 2Cµ(ψ 1 )

µ(η) , µ(η) e λ 0 t Pµ(τ ∂ > t) ≤ 1 1 -C µ(ψ 1 ) µ(η) e -γt ≤ 1 + 2C µ(ψ1) µ(η) e -γt ≤ 2.
For the second part of the right-hand side of the inequality [START_REF] Szubarga | Functional random central limit theorems for random walks conditioned to stay positive[END_REF],

µ(η) e λ 0 s e γ(t-s) e -λ 0 (t-s) η(x)α(g) Pµ(τ ∂ > t) - e λ 0 s η(x)α(g) µ(η) = η(x)|α(g)|e γ(t-s) µ(η) e λ 0 t Pµ(τ ∂ > t) -1 ≤ Cη(x)|α(g)|e -γs Cµ(ψ1) e λ 0 t Pµ(τ ∂ > t) ≤ Cη(x)|α(g)|2C µ(ψ1) µ(η) .
Hence, these inequalities, the fact that |α(g)| ≤ g L ∞ (ψ 1 ) α(ψ1) and ( 29) imply the existence of a constant C > 0 such that, for all s ≤ t such that t ≥ 1 γ log 2Cµ(ψ 1 ) µ(η)

and x ∈ E, |Cµ,g(s, t, x)| ≤ C g L ∞ (ψ 1 ) ψ1(x) + µ(ψ1) µ(η) η(x) . ( 30 
)
Last step. By using this last inequality ( 30) in [START_REF] Oçafrain | Convergence to quasi-stationarity through Poincaré inequalities and Bakry-Emery criteria[END_REF], one obtains that, for all f ∈ B(E)

such that β(f ) = 0, ω ∈ R and t ≥ 1 γ log 2Cµ(ψ 1 ) µ(η) , Eµ e iω √ t t 0 f (Xs)ds τ ∂ > t -E Q η•µ e iω √ t t 0 f (Xs)ds ≤ e -γt t 0 e γs |ω| √ t E Q η•µ |Cµ,1 E (s, t, Xs)| η(Xs) ds ≤ C 1E L ∞ (ψ 1 ) e -γt t 0 e γs |ω| √ t E Q η•µ (ψ(Xs)) + µ(ψ1) µ(η) ds ≤ C |ω| √ t µ(ψ1) µ(η) , ( 31 
)
where C > 0. This, combined with Theorem 2, proves Theorem 1.

Remark 1. The presence of 1/ √ t in the last inequality suggests the idea that a Berry-Esseen inequality holds true for Markov processes conditioned not to be absorbed satisfying Assumption 1. In reality, this last upper-bound does not allow directly to deduce such a result.

As a matter of fact, an approach would be to consider the inequality (from [START_REF] Feller | An introduction to probability theory and its applications[END_REF]),

d Kolm Pµ( 1 √ t t 0 f (Xs)ds ∈ •|τ ∂ > t), Qη∈µ( 1 √ t t 0 f (Xs)ds ∈ •) ≤ W -W Eµ e iω √ t t 0 f (Xs)ds τ ∂ > t -E Q η•µ e iω √ t t 0 f (Xs)ds |ω| dω + C W , ( 32 
)
where C > 0, holding true for all W > 0. In particular, it is visible that the inequality [START_REF] Villemonais | A quasi-stationary approach to the long-term asymptotics of the growth-fragmentation equation[END_REF] and Theorem 3 are not enough to deduce a Berry-Esseen theorem. The inequality (32) is in particular used in [START_REF] Lezaud | Chernoff and Berry-Esséen inequalities for Markov processes[END_REF] to state a Berry-Esseen theorem for reversible Markov processes, using spectral arguments applied to perturbated operators. This approach could certainly be adapted to prove a similar result in the quasi-stationary framework.

Appendix: Proof of Lemma 1 and Assumption 1 ⇒ Assumption 2.

This little section is devoted to the proof of Lemma 1, needed to justify the existence of a quasi-ergodic distribution and the convergence [START_REF] Cattiaux | Central limit theorems for additive functionals of ergodic Markov diffusions processes[END_REF]. The implication Assumption 1 ⇒ Assumption 2 will also be proved in this short proof.

Proof of Lemma 1. Assume Assumption 1. Let t ≥ 0 and Γ ∈ Ft. Then, for all T ≥ t and x ∈ E,

e λ 0 T Px(Γ, τ ∂ > T ) = e λ 0 T Ex(1 Γ,τ ∂ >t PX t (τ ∂ > T -t)) = e λ 0 t Ex(1 Γ,τ ∂ >t e λ 0 (T -t) PX t (τ ∂ > T -t)).
By Assumption 1, since ψ1 ≥ 1, for all T ≥ t and x ∈ E, Since the previous inequality holds true for Γ = 1E and t = 0, we deduce that, for all x ∈ E , proving therefore the equality [START_REF] Champagnat | Exponential convergence to quasistationary distribution and Q-process[END_REF]. By definition of η and α, it is easy to check that β is an invariant measure for the Q-process. Moreover, by Assumption 1, for all f ∈ L ∞ (ψ) and

|e λ 0 T Px(Γ, τ ∂ > T ) -e λ 0 t Ex(1
x ∈ E ,

|E Q x (f (Xt)) -β(f )| = |e λ 0 t Pt(f η)(x) -η(x)α(f η)| η(x) ≤ Cψ(x)e -γt f L ∞ (ψ) ,
which confirms therefore the implication Assumption 1 ⇒ Assumption 2. It remains therefore to show the exponential convergence of the function T → Pµ(Γ|τ ∂ > T ) to Qη•µ(Γ), for all µ ∈ M1(E) such that µ(η) > 0 and µ(ψ1) < +∞. To do so, fix such a probability measure µ. Integrating the inequality (33) over µ(dx), for all T ≥ 1 γ log(2Cµ(ψ1)/µ(η)), e λ 0 t Eµ(1 Γ,τ ∂ >t η(Xt)) -Ce λ 0 t µPtψ1e -γ(T -t) µ(η) + Cµ(ψ1)e -γT ≤ Pµ(Γ|τ ∂ > T ) ≤ e λ 0 t Eµ(1 Γ,τ ∂ >t η(Xt)) + Ce λ 0 t µPtψ1e -γ(T -t) µ(η) -Cµ(ψ1)e -γT .

Since 1/(1 -x) ≤ 1 + 2x for all x ∈ (0, 1/2], for all T ≥ log 2Cµ(ψ where we used (34). In the same vein, there exists a constant C > 0 such that, for all T ≥ 1 γ log(2Cµ(ψ1)/µ(η)), e λ 0 t Eµ(1 Γ,τ ∂ >t η(Xt)) -Ce λ 0 t µPtψ1e -γ(T -t) µ(η) + Ce λ 0 t µPtψ1e -γ(T -t) ≥ e λ 0 t Eµ(1 Γ,τ ∂ >t η(Xt)) µ(η) -C µ(ψ1)e -γ(T -t) µ(η) .

In conclusion, there exists a constant C > 0 such that, for all µ ∈ M1(E) such that µ(ψ1) < +∞ and µ(η) > 0, t ≥ 0, Γ ∈ Ft and T ≥ t ∨ 1 γ log(2Cµ(ψ1)/µ(η)),

|Pµ(Γ|τ ∂ > T ) -Qη•µ(Γ)| ≤ C µ(ψ1)e -γ(T -t) µ

(η) .

To generalize this inequality for all T ≥ t, it is enough to remark that, if t ≤ T and T ≤ 1 γ log(2Cµ(ψ1)/µ(η)), then for all Γ ∈ Ft,

|Pµ(Γ|τ ∂ > t) -Qη•µ(Γ)| ≤ 2 ≤ 2 × 2C µ(ψ1) µ(η) × e -γ(T -t) ,
which concludes the proof.

  ∂ > T ) = e λ 0 t Ex(η(Xt)1 Γ,τ ∂ >t ) η(x) ,which proves the first point of Assumption 2 setting, for all x ∈ E and Γ ∈ Ft,Qx(Γ) := Ex(e λ 0 t η(Xt)1 Γ,τ ∂ >t )/η(x),

  Γ,τ ∂ >t η(Xt))| ≤ Ce λ 0 t Ptψ1(x) ≤ α(ψ1) + Cψ1(x)e -γt < +∞, (34)so that the previous inequality entails that, for all x ∈ E, Px(Γ, τ ∂ > T ) = e λ 0 t Ex(1 Γ,τ ∂ >t η(Xt)).

	Assumption 1 implies that	
	e λ 0 t lim e λ 0 T	
	T →∞	
	Ex(ψ1(Xt)1τ ∂ >t)e -γ(T -t) .	(33)