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Abstract
This paper aims to establish a central limit and Berry-Esseen-like theorem for Markov

processes conditioned not to be absorbed. First, we prove that a central limit theorem
holds true for the Q-process, under general criteria on its exponential ergodicity. Then, we
prove that the Kolmogorov distance between the conditional distribution of the renormalized
centered empirical mean for the absorbed process and the one for the Q-process decays as
1/
√
t.
Key words: Quasi-stationary distribution; Quasi-stationarity; Quasi-ergodic distribution;

Central limit theorem; Berry-Esseen theorem; Q-process.

Notation
• M1(E): Set of the probability measures defined on E.
• For any µ ∈M1(E) and measurable function f such that

∫
E
f(x)µ(dx) is well-defined,

µ(f) :=
∫
E

f(x)µ(dx).

• For a given positive function ψ, L∞(ψ) is the set of functions f such that f/ψ is
bounded, endowed with the norm

‖f‖L∞(ψ) := ‖f/ψ‖∞.

• For any positive measurable function ψ, for any µ, ν ∈M1(E),

‖µ− ν‖ψ := sup
‖f‖L∞(ψ)≤1

|µ(f)− ν(f)|.

• For any nonnegative measurable function f and µ ∈M1(E) such that µ(f) ∈ (0,+∞),

f ◦ µ(dx) := f(x)µ(dx)
µ(f) .

• Kolmogorov distance: For any µ, ν ∈M1(R),

dKolm(µ, ν) := sup
x∈R
|µ((−∞, x])− ν((−∞, x])|.

∗Université de Lorraine, CNRS, Inria, IECL, F-54000, Nancy, France. Email : w.ocafrain@hotmail.fr
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1 Introduction
1.1 Introduction to quasi-stationarity
Let (Xt)t≥0 be a continuous-time Markov process living on a state space (E∪{∂}, E), where
∂ 6∈ E is an absorbing state for the process X, which means that Xt = ∂ conditioned to
{Xs = ∂} for all s ≤ t, and E is a σ-field associated to the state space E. Denote by
τ∂ the hitting time of ∂ by the process X. We associate to the process X a family of
probability measure (Px)x∈E∪{∂} such that Px[X0 = x] = 1 for any x ∈ E ∪ {∂}. For any
probability measure µ ∈ M1(E ∪ {∂}), define Pµ :=

∫
E∪{∂} µ(dx)Px, and denote Ex and

Eµ the associated expectations. Moreover, denote by (Ft)t≥0 the natural filtration of the
process X.

In this paper, we assume that the process X admits a quasi-stationary distribution,
defined as a probability measure α ∈M1(E) such that, for all t ≥ 0,

Pα[Xt ∈ ·|τ∂ > t] = α. (1)

Such a probability measure is also a quasi-limiting distribution, defined as a probability
measure such that there exists a subset D(α) ⊂ M1(E), called domain of attraction of α,
such that, for all µ ∈ D(α) and A ∈ E ,

Pµ[Xt ∈ A|τ∂ > t] −→
t→∞

α(A).

In particular, if α is a quasi-stationary distribution, α ∈ D(α) by (1). Conversely, we can
show that any quasi-limiting distributions for X satisfy (1) for all t ≥ 0 (see [25, Proposition
1]). In other terms, quasi-stationary and quasi-limiting distributions are equivalent notions.

Denote by λ0 := − log(Pα[τ∂ > 1]). Then, it is well-known (see [25, Proposition 2] for
example) that, for all t ≥ 0,

Pα[τ∂ > t] = e−λ0t, ∀t ≥ 0.

A consequence of this property coupled with (1) is that, for all t ≥ 0,

Pα[Xt ∈ ·, τ∂ > t] = e−λ0tα(·). (2)

Conversely, if a probability measure α satisfies (2) for a given λ0 > 0, then α is a quasi-
stationary distribution for the process X. In that respect, the quasi-stationary distributions
for X are exactly the probability left eigenmeasures for the semigroup (Pt)t≥0 defined by

Ptf(x) := Ex(f(Xt)1τ∂>t),

for all t ≥ 0, f belonging to a Banach space and x ∈ E. In what follows, we will use the
notation

µPt := Pµ(Xt ∈ ·, τ∂ > t).
Also, we assume that the process X admits a nonnegative function η defined on E,

vanishing at ∂ and satisfying α(η) = 1, such that, for all x ∈ E and t ≥ 0,

Ex[η(Xt)1τ∂>t] = e−λ0tη(x).

η is therefore a right eigenfunction for the semigroup (Pt)t≥0, associated to the eigenvalues
(e−λ0t)t≥0.
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1.2 The main assumption and the Q-process
The main assumption on this process is the following.
Assumption 1. There exists a function ψ1 : E → [1,+∞), such that α(ψ1) < +∞ and
η ∈ L∞(ψ1), as well as two constants C, γ > 0 such that, for any µ ∈M1(E) and t ≥ 0,

‖eλ0tµPt − µ(η)α‖ψ1 ≤ Cµ(ψ1)e−γt. (3)

This assumption is satisfied under the general criteria Assumption (F) of [8] or Assump-
tion (G) of [10]. In particular, it is shown in [8] that Assumption 1 is satisfied for a lot of
processes such as multidimensional elliptic diffusion processes or processes defined in dis-
crete state space. In particular, we refer the reader to [8, Sections 4 and 5] for examples for
which Assumption 1 holds true. Assumption 1 is also satisfied for general strongly Feller
processes, as shown in [15], and for some degenerate diffusion processes, as studied in [3, 22].
We refer the reader to [7, 14, 29, 2, 27] for alternative criteria ensuring Assumption 1.

We can show that Assumption 1 is equivalent to the following one.
Assumption 2. Denoting E′ := {x ∈ E : η(x) > 0}, the family of probability measures
(Qx)x∈E′ defined by

Qx(Γ) := lim
T→∞

Px(Γ|τ∂ > T ), ∀t ≥ 0, ∀Γ ∈ Ft,

is well-defined. Moreover, for all x ∈ E′, t ≥ 0 and Γ ∈ Ft,

Qx(Γ) = Ex
(
1Γ,τ∂>te

λ0t η(Xt)
η(x)

)
.

Under (Qx)x∈E′ , X is a Markov process on E′ admitting β(dx) := η(x)α(dx) as an invariant
probability measure and, for all t ≥ 0 and x ∈ E′,

‖Qx(Xt ∈ ·)− β‖ψ1
η

≤ Cψ1(x)
η(x) e

−γt, (4)

where C, γ > 0 are the same constants as in (3). Moreover, for all x ∈ E′, t ≥ 0, T ≥ t and
Γ ∈ Ft,

|Qx(Γ)− Px(Γ|τ∂ > T )| ≤ Cψ1(x)
η(x) e

−γ(T−t). (5)

Moreover, β(ψ1/η) < +∞.
Since the process X under (Qx)x∈E′ is a Markov process, the family of operators (Qt)t≥0

defined by
Qtf(x) := EQ

x(f(Xt)), ∀t ≥ 0, ∀x ∈ E′, ∀f ∈ L∞(ψ1/η),
where EQ

x is the expectation associated to Qx, is a semigroup. In the literature (see for
example [8, Theorem 2.7]), the Markov process associated to this semigroup is called the
Q-process.

One has more precisely that Assumption 1 implies Assumption 2 and that the property
(4) implies Assumption 1. In particular, Assumption 1 (equivalently Assumption 2) is sat-
isfied when the Q-process satisfies the assumptions 1 and 2 in [17]. Moreover, the inequality
(4) implies, since η ∈ L∞(ψ1), the existence of a constant C > 0 such that, for all x ∈ E′
and t ≥ 0,

‖δxQt − β‖TV ≤ C
ψ1(x)
η(x) e

−γt, (6)

where ‖ · ‖TV denotes the total variation norm.
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1.3 The main result
A consequence of (5) (see for example [9] for a proof of this statement) is that

Eµ
[

1
t

∫ t

0
f(Xs)ds

∣∣∣∣τ∂ > t

]
−→
t→∞

β(f), (7)

for all bounded measurable function f and µ ∈M1(E) satisfying µ(ψ1) < +∞ and µ(η) > 0.
A probability measure β satisfying (7) is called a quasi-ergodic distribution.

The aim of this paper is to prove a central limit and Berry-Esseen-like theorem for
processes satisfying Assumption 1, conditioned not to be absorbed up to the time t. Existing
results stating a conditional central limit theorem for absorbing discrete-time Markov chains
can be found in [11, 24, 1, 28, 4, 18]. In particular, in [11, Section 3.6], it is stated that, for
any Markov chain (Xn)n∈Z+ defined on a finite state space E ∪ {∂} (absorbed at ∂) whose
the matrix (Pi(X1 = j))i,j∈E is irreducible and aperiodic, one has that, for all function f
such that β(f) = 0, the limit

θ2 := lim
n→∞

1
n
Eα

((
n∑
k=0

f(Xk)

)2∣∣∣∣∣τ∂ > n

)

is well-defined. If moreover θ2 6= 0, one obtains

lim
n→∞

Pα

[
1√
n

n∑
k=0

f(Xk) ≤ y

∣∣∣∣∣τ∂ > n

]
=
∫ y

−∞

1√
2πθ2

e
− x2

2θ2 dx,

for all y ∈ R. Up to my knowledge, there does not exist any results on a Berry-Esseen-like
theorem associated to these conditional central limit theorems.

The main result of this paper is then the following.
Theorem 1. Assume that the process (Xt)t≥0 satisfies Assumption 1 (or equivalently As-
sumption 2).

Then,
• for all f ∈ L∞(1E) such that σ2

f > 0 and µ ∈ M1(E) such that µ(ψ1) < +∞ and
µ(η) > 0,

Pµ
(√

t

[
1
t

∫ t

0
f(Xs)ds− β(f)

]
∈ ·
∣∣∣∣τ∂ > t

)
w−→

t→+∞
N (0, σ2

f ),

where w refers to the weak convergence of measures, where N (0, σ2
f ) refers to the

centered Gaussian variable of variance

σ2
f := 2

∫ ∞
0

CovQ
β(f(X0)f(Xs))ds, (8)

where CovQ
β refers to the covariance with respect to the probability measure Qβ :=∫

E′
β(dx)Qx.

• Moreover, there exists C > 0 (different from the constant stated in Assumptions 1 and
2) such that, for all f ∈ L∞(1E) such that β(f) = 0, t > 0 and µ ∈ M1(E) such that
µ(ψ1) < +∞ and µ(η) > 0,

dKolm

(
Pµ
(

1√
t

∫ t

0
f(Xs)ds ∈ ·

∣∣∣∣τ∂ > t

)
,Qη◦µ

(
1√
t

∫ t

0
f(Xs)ds

))
≤ Cµ(ψ1)/µ(η)√

t
.

(9)
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In particular, (4) implies that σ2
f < +∞ for any f bounded by 1, since, assuming without

loss of generality that β(f) = 0, for all k ≥ 0,

|EQ
β(f(X0)f(Xk))| = |EQ

β(f(X0)EQ
X0

(f(Xk))| ≤ Cβ(ψ/η)e−γk. (10)

Hence, by (9), there exists a Berry-Esseen theorem for the conditional probability meas-
ure Pµ

(
1√
t

∫ t
0 f(Xs)ds ∈ ·

∣∣∣τ∂ > t
)
if and only if a Berry-Esseen theorem holds true for the

Q-process. However, the technique of the moments, which is used in this paper, does not
allow to prove a Berry-Esseen theorem for the Q-process satisfying Assumption 2. We refer
then the reader to [23, 19, 5, 26] for Berry-Esseen-like theorems on discrete or continuous-
time Markov processes. In particular, Theorem 1 and [23, Theorem 1.5] imply the following
corollary.
Corollary 1. Assume that the process (Xt)t≥0 satisfies Assumption 1 (or equivalently As-
sumption 2) and that the Q-process is reversible and admits a spectral gap.

Then there exists C > 0 such that, for all f ∈ L∞(1E) such that β(f) = 0 and σ2
f > 0,

t > 0 and µ� α such that µ(ψ1) < +∞, µ(η) > 0 and
∫
E

(
dµ
dα

(x)
)2
η(x)α(dx) < +∞,

dKolm

(
Pµ
(

1√
t

∫ t

0
f(Xs)ds ∈ ·

∣∣∣∣τ∂ > t

)
,N (0, σ2

f )
)

≤ C√
t

(
µ(ψ1)
µ(η) + 1

µ(η)

√∫
E

(
dµ

dα
(x)
)2
η(x)α(dx)‖f‖∞

σf

)
.

This paper is only interested in processes conditioned not to be absorbed by absorbing
states. Nevertheless, the following proofs can be adapted to general non-conservative semig-
roups satisfying Assumption 1. Some examples of such semigroups have been studied in
[14, 2, 10, 30].

Theorem 1 will be proved at the last section. To prove it, we first need to show a central
limit theorem for the Q-process satisfying (4). In particular, up to my knowledge, the papers
dealing with central limit theorems for Markov processes require stronger hypotheses than
(4). This central limit theorem allows then to conclude to a useful lemma, stated and proved
in Section 3.

2 Central limit theorem for the Q-process
This first section aims to establish a central limit theorem for theQ-process. In the literature,
central limit theorems for continuous-time Markov processes have been established in [20,
6, 23]. In particular, the papers [20, 6] made use of central limit theorems for martingales;
the paper [23] used the Kato’s theory applied to analytically perturbed operators.

In this paper, a central limit theorem will be proved for the Q-process studying the
convergence of the moments of 1√

t

∫ t
0 f(Xs)ds, for bounded functions f such that β(f) = 0

and σ2
f > 0. Up to my knowledge, this method to establish a central limit theorem for

Markov processes is new and allows to weaken the needed assumptions on the ergodicity
of the Q-process. In particular, we will show that the only hypothesis (4) allows to obtain
a central limit theorem for the Q-process. However, this method is difficult to apply for
discrete-time processes; we refer to [13, 12, 21, 16] for central limit theorems for discrete-
time Markov chains.

In all what follows, for simplicity, we denote B1(E) the set of the bounded by 1 measurable
functions defined over E, and we define for all x ∈ E′

ψ(x) := ψ1(x)
η(x) .

In this section, the following theorem will be proved.
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Theorem 2. Under Assumption 1 (or equivalenty Assumption 2), there exists two positive
constants C̃ and C1 such that, for all k ∈ Z+, µ ∈M1(E′) such that µ(ψ) < +∞, f ∈ B1(E′)
such that β(f) = 0 and t > 0,∣∣∣∣∣EQ

µ

(
1
tk

(∫ t

0
f(Xs)ds

)2k
)
− (2k)!

k!
σ2k
f

2k

∣∣∣∣∣ ≤ C̃kC1
k

(k − 1)!
µ(ψ)
t

(11)

and

lim
t→∞

EQ
µ

(
1

tk
√
t

(∫ t

0
f(Xs)ds

)2k+1
)

= 0.

In particular, for all µ ∈M1(E′) such that µ(ψ) < +∞ and f ∈ B1(E′) such that β(f) = 0
and σ2

f > 0,

Qµ
(

1√
t

∫ t

0
f(Xs)ds ∈ ·

)
w−→

t→∞
N (0, σ2

f ).

Before proving Theorem 2, we need to prove the following lemmata.
Lemma 1. Denoting

C̃ := 2Cβ(ψ)
γ

∨ 2C
γ

[Cγ ∨ 1 + β(ψ)],

where C and γ are the constants implied in (4), for all f ∈ B1(E′) such that β(f) = 0 and
σ2
f > 0, for all k ∈ N, µ ∈M1(E′) and s2 ≤ . . . ≤ s2k,∣∣∣∣∣EQ

µ

([∫ s2

0
f(Xs1 )ds1

]
f(Xs2 ) . . .

[∫ s2k

s2k−2

f(Xs2k−1 )ds2k−1

]
f(Xs2k )

)
−
σ2k
f

2k

∣∣∣∣∣
≤ C̃kµ(ψ)

k−1∑
i=0

(s2(i+1) − s2i + 1)e−γ(s2(i+1)−s2i), (12)

where s0 = 0 by convention.

Proof. We prove it by induction on k. We begin by showing the case k = 1. For all
µ ∈M1(E′) and f ∈ B1(E′) and t ≥ 0,

EQ
µ

([∫ t

0
f(Xs)ds

]
f(Xt)

)
=
∫ t

0
EQ
µ(f(Xs)f(Xt))ds

=
∫ t

0
EQ
µQt−s

(f(X0)f(Xs))ds, (13)

where we recall that (Qt)t≥0 is the semigroup for the Q-process. By (6), for all x ∈ E′ and
f ∈ B1(E′) such that β(f) = 0,

|EQ
x(f(X0)f(Xs))| ≤ EQ

x(|EQ
X0

(f(Xs))|) ≤ Cψ(x)e−γs.

Hence, by (13), (4) and this last inequality, for all t ≥ 0, µ ∈M1(E′) such that µ(ψ) < +∞
and f ∈ B1(E′) such that β(f) = 0,∣∣∣∣EQ
µ

([∫ t

0
f(Xs)ds

]
f(Xt)

)
−
∫ t

0
EQ
β(f(X0)f(Xs))ds

∣∣∣∣ ≤ Cµ(ψ)
∫ t

0
e−γ(t−s)‖EQ

· (f(X0)f(Xs))‖L∞(ψ)ds

≤ Cµ(ψ)
∫ t

0
e−γ(t−s)Ce−γsds

≤ C2µ(ψ)te−γt. (14)
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Moreover, since β(f) = 0, by (10), for all t ≥ 0,∣∣∣∣∫ ∞
t

EQ
β(f(X0)f(Xs))ds

∣∣∣∣ ≤ ∫ ∞
t

Cβ(ψ)e−γsds ≤ Cβ(ψ)
γ

e−γt. (15)

Hence, by the definition of C̃ > 0 in the statement of the lemma,∣∣∣∣EQ
µ

([∫ t

0
f(Xs)ds

]
f(Xt)

)
−
σ2
f

2

∣∣∣∣ ≤ C̃µ(ψ)(t+ 1)e−γt.

This concludes the base case.
Let k− 1 ∈ N be such that the hypothesis of induction is satisfied. Then, by the Markov

property,

EQ
µ

(∫ s2

0
f(Xs1 )ds1f(Xs2 ) . . .

∫ s2k

s2k−2

f(Xs2k−1 )ds2k−1f(Xs2k )

)

= EQ
µ

(∫ s2

0
f(Xs1 )ds1f(Xs2 )EQ

Xs2

(∫ s4

s2

f(Xs3−s2 )ds3f(Xs4−s2 ) . . .
∫ s2k

s2k−2

f(Xs2k−1−s2 )ds2k−1f(Xs2k−s2 )

))

= EQ
µ

(∫ s2

0
f(Xs1 )ds1f(Xs2 )EQ

Xs2

(∫ s4−s2

0
f(Xs3 )ds3f(Xs4−s2 ) . . .

∫ s2k−s2

s2k−2−s2

f(Xs2k−1 )ds2k−1f(Xs2k−s2 )

))
.

(16)

By hypothesis, for all s2 ≤ s4 . . . ≤ s2k,∣∣∣∣∣EQ
Xs2

(∫ s4−s2

0
f(Xs3−s2 )ds3f(Xs4−s2 ) . . .

∫ s2k−s2

s2k−2−s2

f(Xs2k−1 )ds2k−1f(Xs2k−s2 )

)
−
σ2k−2
f

2k−1

∣∣∣∣∣
≤ C̃k−1ψ(Xs2 )

k−1∑
i=1

s2(s2(i+1) − s2i + 1)e−γ(s2(i+1)−s2i). (17)

Moreover, since β(f) = 0, for all µ ∈M1(E′), for all s2 ≥ 0,∣∣∣∣EQ
µ

(∫ s2

0
f(Xs)dsf(Xs2 )ψ(Xs2 )

)∣∣∣∣ ≤ C

γ
(1 + β(ψ))µ(ψ), (18)

where C is the constant implied in (4). As a matter of fact, for all t ≥ 0, µ ∈ M1(E′) and
f, g ∈ L∞(ψ), ∫ t

0
EQ
µ [f(Xs)g(Xt)] ds =

∫ t

0
EQ
µ [f(Xs)EXs(g(Xt−s))] ds.

Thus, by (4), for all t ≥ 0, µ ∈M1(E′), f ∈ B1(E′) and g ∈ L∞(ψ),∣∣∣∣∫ t

0
EQ
µ [f(Xs)g(Xt)] ds−

∫ t

0
EQ
µ [f(Xs)]β(g)ds

∣∣∣∣ ≤ C‖g‖L∞(ψ)

∫ t

0
µ(ψ)e−γ(t−s)ds

≤ C

γ
‖g‖L∞(ψ)µ(ψ).

Moreover, again by (4), for all t ≥ 0, µ ∈M1(E′) and f ∈ B1(E′) such that β(f) = 0,∣∣∣∣∫ t

0
EQ
µ [f(Xs)] ds

∣∣∣∣ ≤ Cµ(ψ)
∫ t

0
e−γsds ≤ C

γ
µ(ψ).
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These two last inequalities applied to g = f × ψ imply (18).
Hence, by (16), (17) and (18),∣∣∣∣∣EQ
µ

(∫ s2

0
f(Xs1 )ds1f(Xs2 ) . . .

∫ s2k

s2k−2

f(X2k−1)ds2k−1f(Xs2k )

)
−
σ

2(k−1)
f

2k−1 EQ
µ

(∫ s2

0
f(Xs1 )ds1f(Xs2 )

)∣∣∣∣∣
≤ C̃k−1

k−1∑
i=1

(s2(i+1) − s2i + 1)e−γ(s2(i+1)−s2i)EQ
µ

(∫ s2

0
f(Xs)dsf(Xs2 )ψ(Xs2 )

)

≤ C̃k−1C

γ
(1 + β(ψ))µ(ψ)

k−1∑
i=1

(s2(i+1) − s2i + 1)e−γ(s2(i+1)−s2i).

This and the case k = 1 conclude the induction.

We need also the following lemma.
Lemma 2. For all k ∈ N, there exists Ck ∈ (0,+∞) such that, for t ≥ 1,∫

0≤s2...≤s2k≤t

k−1∑
i=0

(s2(i+1) − s2i + 1)e−γ(s2(i+1)−s2i)ds2 . . . ds2k ≤ Cktk−1. (19)

Proof. We prove (19) by induction on k. The case k = 1 can easily be obtained by the
reader for a given constant C1 > 0. Now, assume that (19) holds true for k− 1 ∈ N. For all
t ≥ 0,

k−1∑
i=0

∫
0≤s2≤...≤s2k≤t

(s2(i+1) − s2i + 1)e−γ(s2(i+1)−s2i)ds2 . . . ds2k

=
∫

0≤s2≤...≤s2k≤t

k−2∑
i=0

(s2(i+1) − s2i + 1)e−γ(s2(i+1)−s2i)ds2 . . . ds2k

+
∫

0≤s2≤...≤s2k≤t
(s2k − s2k−1 + 1)e−γ(s2k−s2k−1)ds2 . . . ds2k

=
∫ t

0

[∫
0≤s2≤...≤s2(k−1)≤s2k

k−2∑
i=0

(s2(i+1) − s2i + 1)e−γ(s2(i+1)−s2i)ds2 . . . ds2(i−1)

]
ds2k

+
∫

0≤s2≤...≤s2k≤t
(s2k − s2(k−1) + 1)e−γ(s2k−s2(k−1))ds2 . . . ds2k. (20)

By hypothesis, for all t ≥ 0,∫ t

0

[∫
0≤s2≤...≤s2(k−1)≤s2k

k−2∑
i=0

(s2(i+1) − s2i)e−γ(s2(i+1)−s2i)ds2 . . . ds2(i−1)

]
ds2k ≤

∫ t

0
Ck−1s

k−2
2k ds2k = Ck−1

tk−1

k − 1 .

For all t ≥ 0, the second term of (20) is equal to∫
0≤s2(k−1)≤s2k≤t

(s2k − s2(k−1) + 1)e−γ(s2k−s2(k−1))

[∫
0≤s2≤...≤s2k−1

ds2 . . . ds2(k−2)

]
ds2k−1ds2k

=
∫

0≤r≤s≤t
(s− r + 1)e−γ(s−r) rk−2

(k − 2)!drds

=
∫ t

0

[∫ t

r

(s− r + 1)e−γ(s−r)ds

]
rk−2

(k − 2)!dr

=
∫ t

0

(∫ t−r

0
(u+ 1)e−γudu

)
rk−2

(k − 2)!dr ≤
C1

(k − 1)! t
k−1,

8



where C1 < +∞ is exactly the same constant as for the case k = 1. Hence, (19) is proved
with Ck satisfying the relation Ck = Ck−1

k−1 + C1
(k−1)! . By induction, for all k ≥ 2,

Ck = C1

(k − 1)! + C1

(k − 2)! .

We can now prove Theorem 2.

Proof of Theorem 2. We begin by the convergence of the even moment. For all µ ∈M1(E′),
t ≥ 0, f ∈ B1(E′) and k ∈ N,

EQ
µ

((∫ t

0
f(Xs)ds

)2k
)

= (2k)!
∫

0≤s2≤...≤s2k≤t

∫ s2

0

∫ s4

s2

· · ·
∫ s2k

s2k−2

EQ
µ(f(Xs1 )f(Xs2 ) . . . f(Xs2k−1 )f(X2k))ds1 . . . ds2k.

(21)

Then, assuming moreover that β(f) = 0, by (21),(12) and (19),∣∣∣∣∣EQ
µ

((∫ t

0
f(Xs)ds

)2k
)
− (2k)!

k! tk
σ2k
f

2k

∣∣∣∣∣ ≤ C̃kµ(ψ)× Cktk−1, (22)

which implies (11). Now, for all µ ∈ M1(E′), t ≥ 0, k ∈ Z+ and f ∈ B1(E′) such that
β(f) = 0,

EQ
µ

((∫ t

0
f(Xs)ds

)2k+1
)

= (2k + 1)!
∫ t

0
EQ
µ

(
f(Xs)EQ

Xs

[∫
0≤s2≤...≤s2k+1≤t−s

f(Xs2 ) . . . f(Xs2k+1 )ds2 . . . ds2k+1

])
ds

= (2k + 1)
∫ t

0
EQ
µ

(
f(Xs)EQ

Xs

((∫ t−s

0
f(Xu)du

)2k
))

ds

= (2k + 1)
∫ t

0
EQ
µ

(
f(Xt−s)EQ

Xt−s

((∫ s

0
f(Xu)du

)2k
))

ds.

By (22) and using that EQ
µ[ψ(Xt−s)] ≤ (β(ψ)‖η‖L∞(ψ1) + C)µ(ψ) for all µ ∈ M1(E′) and

s ≤ t (this is a consequence of (4)), there exists Ĉ > 0 such that∣∣∣∣∣EQ
µ

((∫ t

0
f(Xs)ds

)2k+1
)
− (2k + 1)!

k!
σ2k
f

2k

∫ t

0
skEQ

µ (f(Xt−s)) ds

∣∣∣∣∣ ≤ C̃kĈ k(2k + 1)
(k − 1)! µ(ψ) t

k

k
.

(23)
Since β(f) = 0, by (4), for all µ ∈M1(E′) and s ≤ t,

|EQ
µ[f(Xt−s)]| ≤ Cµ(ψ)e−γ(t−s). (24)

For all t > 0 and k ∈ Z+,

1
tk+ 1

2

∫ t

0
ske−γ(t−s)ds = e−γt

tk+1/2

∫ t

0
skeγsds ≤ e−γt√

t

∫ t

0
eγsds ≤ 1

γ
√
t
. (25)
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We deduce from (23), (24) and (25) that there exists Ĉ > 0 (different from the previous one)
such that, for all µ ∈M1(E′) such that µ(ψ) < +∞ and f ∈ B1(E′) such that β(f) = 0,∣∣∣∣∣ 1

tk+1/2 E
Q
µ

((∫ t

0
f(Xs)ds

)2k+1
)∣∣∣∣∣ ≤ C̃k × Ĉ

[
(2k + 1)!

2kk! + 2k + 1
(k − 1)!

]
µ(ψ)√
t
. (26)

The central limit theorem for the Q-process is deduced from Lévy’s continuity theorem.

3 A useful lemma for Theorem 1
The aim of this section is to prove the following result, which can be seen as an improved
central limit theorem for the Q-process.
Lemma 3. Assume Assumption 1 (or equivalently Assumption 2). Then, for all µ ∈
M1(E′) such that µ(ψ1/η) < ∞, f ∈ B1(E′) such that β(f) = 0 and σ2

f > 0 (as defined in
(8)), and ω ∈ R,

lim
t→∞

sup
g∈L∞(ψ):‖g‖L∞(ψ)≤1

∣∣∣∣∣EQ
µ

[
e
iω√
t

∫ t
0
f(Xs)ds

g(Xt)
]
− β(g)e−

σ2
f
ω2

2

∣∣∣∣∣ = 0, (27)

where we recall that, for all x ∈ E′,

ψ(x) = ψ1(x)
η(x) .

Proof of Lemma 3. For all µ ∈ M1(E′), f ∈ B(E′) such that β(f) = 0, t ≥ 0, k ∈ Z+ and
g ∈ L∞(ψ),

EQ
µ

((∫ t

0
f(Xs)ds

)k
g(Xt)

)
= k

∫ t

0
EQ
µ

([∫ s

0
f(Xu)du

]k−1

f(Xs)g(Xt)

)
ds

= k

∫ t

0
EQ
µ

([∫ s

0
f(Xu)du

]k−1

f(Xs)EQ
Xs

(g(Xt−s))

)
ds.

Hence, for all µ ∈M1(E′), t ≥ 0, f ∈ B1(E′) such that β(f) = 0, k ∈ Z+ and g ∈ L∞(ψ),

EQ
µ

((∫ t

0
f(Xs)ds

)k
g(Xt)

)
− β(g)EQ

µ

((∫ t

0
f(Xs)ds

)k)

= k

∫ t

0
EQ
µ

((∫ s

0
f(Xu)du

)k−1

f(Xs)[EQ
Xs

(g(Xt−s))− β(g)]

)
ds.

Thus, using that e
iω√
t

∫ t
0
f(Xs)ds =

∑∞
k=0

ikωk

tk/2 (
∫ t

0 f(Xs)ds)k for all t ≥ 0, ω ∈ R, and
f ∈ B1(E′) such that β(f) = 0, then, using the above equality, for all µ ∈ M1(E′) and

10



g ∈ L∞(ψ),

EQ
µ

(
e
iω√
t

∫ t
0
f(Xs)ds

g(Xt)
)
− β(g)EQ

µ

(
e
iω√
t

∫ t
0
f(Xs)ds

)
=
∞∑
k=0

(
iω√
t

)k 1
k!

{
EQ
µ

((∫ t

0
f(Xs)ds

)k
g(Xt)

)
− β(g)EQ

µ

((∫ t

0
f(Xs)ds

)k)}

= EQ
µ(g(Xt))−β(g)+

∞∑
k=1

(
iω√
t

)k 1
k!

{
EQ
µ

((∫ t

0
f(Xs)ds

)k
g(Xt)

)
− β(g)EQ

µ

((∫ t

0
f(Xs)ds

)k)}

= EQ
µ(g(Xt))− β(g) + iω√

t

∫ t

0
EQ
µ

(
e
iω√
t

∫ t
0
f(Xs)ds

f(Xs)[EQ
Xs

(g(Xt−s))− β(g)]
)
ds.

By (4) one has, for all µ ∈M1(E′), Qµ-almost surely and for all s ≤ t and g ∈ L∞(ψ),

|EQ
Xs

(g(Xt−s))− β(g)| ≤ C‖g‖L∞(ψ)
ψ1(Xs)
η(Xs)

e−γ(t−s).

Thus, for all µ ∈M1(E′), t > 0, ω ∈ R, g ∈ L∞(ψ) and f ∈ B1(E′) such that β(f) = 0,∣∣∣∣EQ
µ

(
e
iω√
t

∫ t
0
f(Xs)ds

g(Xt)
)
− β(g)EQ

µ

(
e
iω√
t

∫ t
0
f(Xs)ds

)∣∣∣∣
≤ Cµ(ψ)‖g‖L∞(ψ)e

−γt +
C‖g‖L∞(ψ)ω√

t

∫ t

0
Ce−γ(t−s)EQ

µ(ψ(Xs))ds.

This inequality and Theorem 2 implies (27) and concludes the proof.

4 Proof of Theorem 1
We can now prove Theorem 1. The first result presented in the statement of this theorem is
a natural consequence of (9) and Theorem 2. We focus therefore on proving the inequality
(9).

For all µ ∈M1(E), t > 0 and f ∈ B1(E), g ∈ L∞(ψ1) and k ∈ N,

Eµ

([∫ t

0
f(Xs)ds

]k
g(Xt)

∣∣∣∣∣τ∂ > t

)
= k!

∫
0≤s1≤...≤sk≤t

Eµ(f(Xs1 )f(Xs2 ) . . . f(Xsk )g(Xt)|τ∂ > t)ds1 . . . dsk

= k!
∫ t

0
Eµ

([∫
0≤s1≤...≤sk−1≤s

f(Xs1 ) . . . f(Xsk−1 )ds1 . . . dsk−1

]
f(Xs)g(Xt)

∣∣∣∣∣τ∂ > t

)
ds

= k

∫ t

0
Eµ

([∫ s

0
f(Xu)du

]k−1

f(Xs)g(Xt)

∣∣∣∣∣τ∂ > t

)
ds

= k

∫ t

0

1
Pµ(τ∂ > t)Eµ

([∫ s

0
f(Xu)du

]k−1

f(Xs)EXs(g(Xt−s)1τ∂>t−s)1τ∂>s

)
ds.

For all s ≤ t, µ ∈M1(E), g ∈ L∞(ψ1) and x ∈ E, denote

Cµ,g(s, t, x) := µ(η)
eλ0s

eγ(t−s)
{
Ex(g(Xt−s)1τ∂>t−s)

Pµ(τ∂ > t) − eλ0sη(x)α(g)
µ(η)

}
.

11



By triangular inequality, for all s ≤ t and x ∈ E,

|Cµ,g(s, t, x)| ≤ µ(η)
eλ0s

eγ(t−s)
{∣∣∣∣Ex[g(Xt−s)1τ∂>t−s]

Pµ(τ∂ > t) − e−λ0(t−s)η(x)α(g)
Pµ(τ∂ > t)

∣∣∣∣
+
∣∣∣∣e−λ0(t−s)η(x)α(g)

Pµ(τ∂ > t) − eλ0sη(x)α(g)
µ(η)

∣∣∣∣} . (28)

By (3),

µ(η)
eλ0s

eγ(t−s)
∣∣∣∣Ex[g(Xt−s)1τ∂>t−s]

Pµ(τ∂ > t) − e−λ0(t−s)η(x)α(g)
Pµ(τ∂ > t)

∣∣∣∣ ≤ C‖g‖L∞(ψ1)ψ1(x)µ(η) e−λ0t

Pµ(τ∂ > t) .

Again by (3),
eλ0tPµ(τ∂ > t) ≥ µ(η)− Cµ(ψ1)e−γt.

Hence, for all t ≥ 1
γ

log
(

2Cµ(ψ1)
µ(η)

)
,

µ(η)
eλ0tPµ(τ∂ > t) ≤

1
1− C µ(ψ1)

µ(η) e
−γt

≤ 1 + 2C µ(ψ1)
µ(η) e

−γt ≤ 2.

For the second part of the right-hand side of the inequality (28),

µ(η)
eλ0s

eγ(t−s)
∣∣∣∣e−λ0(t−s)η(x)α(g)

Pµ(τ∂ > t) − eλ0sη(x)α(g)
µ(η)

∣∣∣∣ = η(x)α(g)eγ(t−s)
∣∣∣∣ µ(η)
eλ0tPµ(τ∂ > t) − 1

∣∣∣∣
≤ Cη(x)α(g)e−γs Cµ(ψ1)

eλ0tPµ(τ∂ > t)

≤ Cη(x)α(g)2C µ(ψ1)
µ(η) .

Hence, these inequalities and (28) imply the existence of a constant C′ > 0 such that, for
all s ≤ t such that t ≥ 1

γ
log
(

2Cµ(ψ1)
µ(η)

)
and x ∈ E,

|Cµ,g(s, t, x)| ≤ C′‖g‖L∞(ψ1)

[
ψ1(x) + µ(ψ1)

µ(η) η(x)
]
. (29)

Thus, for all µ ∈M1(E), f ∈ B1(E) such that β(f) = 0, g ∈ L∞(ψ1), k ∈ N and t > 0,

Eµ

([∫ t

0
f(Xs)ds

]k
g(Xt)

∣∣∣∣∣τ∂ > t

)
− α(g)EQ

η◦µ

([∫ t

0
f(Xs)ds

]k)

= k × e−γt
∫ t

0
eγsEQ

η◦µ

((∫ s

0
f(Xu)du

)k−1
f(Xs)Cµ,g(s, t,Xs)

η(Xs)

)
ds.

By an inequality presented in [23, Section 3], for all µ ∈M1(E), t > 0, f ∈ B1(E) such that
β(f) = 0 and x ∈ R, and for W > 0,

∣∣∣∣Pµ( 1√
t

∫ t

0
f(Xs)ds ≤ x

∣∣∣∣τ∂ > t

)
−Qη◦µ

(
1√
t

∫ t

0
f(Xs)ds ≤ x

)∣∣∣∣
≤ 1
π

∫ W

−W

|Eµ(e
iω√
t

∫ t
0
f(Xs)ds|τ∂ > t)− EQ

η◦µ(e
iω√
t

∫ t
0
f(Xs)ds)|

|ω| dω + 24
π
√
πW

. (30)
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Similarly to the proof of Lemma 3, for all t ≥ 1
γ

log
(

2Cµ(ψ1)
µ(η)

)
, ω ∈ R, µ ∈ M1(E) and f

such that β(f) = 0,

Eµ
(
e
iω√
t

∫ t
0
f(Xs)ds

∣∣∣∣τ∂ > t

)
− EQ

η◦µ

[
e
iω√
t

∫ t
0
f(Xs)ds

]
=
∞∑
k=1

(
iω√
t

)k 1
k!

{
Eµ

([∫ t

0
f(Xs)ds

]k∣∣∣∣∣τ∂ > t

)
− EQ

η◦µ

([∫ t

0
f(Xs)ds

]k)}

=
∞∑
k=1

ikωk

tk/2
1

(k − 1)!e
−γt
∫ t

0
eγsEQ

η◦µ

((∫ s

0
f(Xu)du

)k−1
f(Xs)Cµ,1E (s, t,Xs)

η(Xs)

)
ds

= e−γt
∫ t

0
eγs

iω√
t
EQ
η◦µ

(
e
iω√
s

∫ s
0
f(Xu)du f(Xs)Cµ,1E (s, t,Xs)

η(Xs)

)
ds. (31)

By (29), the family of functions (f(·)Cµ,1E (s, t, ·)/η(·))
t≥ 1

γ
log
(

2Cµ(ψ1)
µ(η)

)
,s≤t

is uniformly

upper-bounded in L∞(ψ), as soon as µ(ψ1) < +∞ and µ(η) > 0. Under these conditions,
Theorem 3 implies that∣∣∣∣∣EQ

η◦µ

(
e
iω√
s

∫ s
0
f(Xu)du f(Xs)Cµ,1E (s, t,Xs)

η(Xs)

)
− α(f × Cµ,1E (s, t, ·))e−

σ2
f
ω2

2

∣∣∣∣∣ −→
s→∞,t≥s

0.

Moreover, by (29), one has for all s ≥ 0,

lim sup
t→∞

|α(f × Cµ,1E (s, t, ·))| ≤ C′α(ψ1) + C′
µ(ψ1)
µ(η) .

Thus, by triangular inequality,

lim sup
t→∞

∣∣∣∣e−γt ∫ t

0
eγsEQ

η◦µ

(
e
iω√
s

∫ s
0
f(Xu)du f(Xs)Cµ,1E (s, t,Xs)

η(Xs)

)
ds

∣∣∣∣
≤ lim sup

t→∞
e−γt

∫ t

0
eγs

∣∣∣∣∣α(f × Cµ,1E (s, t, ·))e−
σ2
f
ω2

2

∣∣∣∣∣ ds ≤ 1
γ

(
C′α(ψ1) + C′

µ(ψ1)
µ(η)

)
e−

σ2
f
ω2

2 .

(32)

Thus, using (30), (31) and (32),∣∣∣∣Pµ( 1√
t

∫ t

0
f(Xs)ds ≤ x

∣∣∣∣τ∂ > t

)
−Qη◦µ

(
1√
t

∫ t

0
f(Xs)ds ≤ x

)∣∣∣∣
≤ 1
γπ

∫ W

−W

C′α(ψ1) + C′ µ(ψ1)
µ(η)√

t
e−

σ2
f
ω2

2 dω + 24
π
√
πW

.

This proves Theorem 1.
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