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Abstract: For haptic applications, a user in a virtual environment needs to interact with proxies
attached to a robot. The device must be at the exact location defined in the virtual environment in time.
However, due to device limitations, delays are always unavoidable. One of the solutions to improve
device response is to infer human intended motion and move the robot at the earliest time possible to
the desired goal. This paper presents an experimental study to improve prediction time and reduce
the robot time to reach the desired position. We developed motion strategies based on the hand
motion and eye-gaze direction to determine the point of user interaction in a virtual environment. To
assess the performance of the strategies, we conducted a subject-based experiment using an exergame
for reach and grab tasks designed for upper limb rehabilitation training. Experimental results in this
study revealed that eye-gaze-based prediction significantly improved detection time by 37% and
the robot time to reach the target by 27%. Further analysis provided more insight on the effect of
eye-gaze window and the hand threshold on the device response for the experimental task.

Keywords: Haptic devices; response time; Human robot interaction; virtual reality; Eye gaze predic-
tion

1. Introduction

Haptic systems enable user interaction in virtual reality by automatically recreating
virtual scenes for dynamic interactions through haptic rendering, thus creating a link
between a virtual world and the real world. Haptic systems should allow a wide range of
physical interactions and manipulations throughout the user’s workspace, with physical
input that resembles reality. One promising approach to achieve this is the paradigm
of encountered-type haptics (EHDs) [1]. EHDs are devices that autonomously position
physical props for virtual objects in the real world at a target appropriately, thus allowing
users to reach out to the virtual objects physically, just like in the real world. However, it is
challenging for real-time interaction to organize physical props that accurately replicate the
virtual world due to practical constraints such as speed and workspace limits. In addition,
the virtual environments are always much more extensive and richer in variety than the
tracked physical space [2]. Speed limitations delay the device’s arrival to some targets,
creating discrepancies between what the user can see and what he feels. The resulting
position and orientation mismatch between the virtual object and haptic proxy and latency
negatively impact the user experience [3,4]. While these issues may be partly solved
by improving device hardware, factors such as cost, safety, and complexity often lead to
design decisions that make device workspace and speed constraints unavoidable. Control
approaches from state-of-the-art such as haptic-retargeting [2] and user motion prediction
have been employed to address speed and latency issues [5]. Our study addresses this
problem through motion prediction using the human eye gaze tracking and hand motion.
Previous studies have shown that the head movement facilitates subsequent gaze shifts
toward the future position of the hand to guide object manipulations [6,7]. Thus tracking
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eye movements is a natural way to learn about an intended reach target [8]. With eye-
gaze information, hand movements and the information in virtual environment, we can
predict the tasks that the user will perform. Eye-tracking systems have been found to play
an increasingly important role in assistive robotics as hand-free interaction interfaces for
motor-impaired people [9], social gaze control for humanoids[10], robotic guidance[11],
creating artistic drawings [12] and safe robot interaction in patients with speech and motor
impairments [13]. Eye-tracking combined with action observation tasks in a virtual reality
display has been used to monitor motor deficits derived from stroke and consequently for
rehabilitation of stroke patients [9,14].

This study aims to develop and evaluate motion prediction strategies by analyzing
the hand motion and eye-gaze of adults when selecting targets. The strategies are used
for upper limb training exercises to simulate activities of daily living tasks for people with
motor impairments.

The main contributions of this work are.

1. We introduce and compare three strategies to detect human intention using the eye
gaze and the hand motion to improve the human immersion.We use the eye gaze
detection rather than the eye gaze attention used in [2,15,16],

2. We introduce a framework to implement the strategies.
3. We implement a proof of concept that illustrates our proposed approach.
4. We study the effect of the eye gaze field of view and the threshold by comparing our

approach to state-of-the-art eye-gaze based robot control.

The remaining part of the paper is structured as follows. Section 2 discusses work
related to haptic displays and prediction strategies. Section 3 describes the context of
the study, the intention prediction strategies, the design and setup of the human-robot
interaction model to contextualize the contribution of this research, the evaluation criteria,
and the experimental design. Section 4 presents the results of analysis of the performance
of the strategies, section 5 discusses the results.

2. Related works

This section focuses on haptic display devices, and the options researchers seek to
improve surface rendering. Then the state of the art on human intention detection through
motion predicting algorithms is presented.

2.1. Haptic Displays

There is a significant amount of study on haptic devices in the literature. Our review
will focus on Encountered-Type Haptics, which employ a prop attached to a robot. The
earliest work, Mcneely [17] presented the concept of encounter type haptic device. The
system places a haptic device at the desired location in time and waits for the user’s
encounter. It has the extra benefit of allowing the user’s hand to move freely in open
space and the use of physical props attached to a robot to represent virtual objects with
varying sizes and shapes [18,19]. Other devices followed, such as the shape approximation
device [20], haptic simulation of the refrigerator door, [21], a robotic turret with switches
[22]. Surface rendering with texture and temperature characteristics [23] and new forms of
EHDs, including shape-changing displays [24], surrounding platforms [25], mobile robots
[26,27], and drones [28,29]. To enable smooth interactions, EHDs need to achieve a high
level of spatial-temporal consistency between the visual and haptic sensory inputs [1].
However, EHDs have limitations that lead to discrepancies between what the user can see
and what can be felt, including limited workspace volumes, positional inaccuracy, and low
speeds that may not support real-time interactions.

2.2. User Motion prediction

Motion prediction strategies to determine the next target the human would like to
reach and action to take can overcome timing constraints that affect most EHDs. This
section explores the prediction and intention detection in the literature. Mostly, machine
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learning techniques such as neural networks [30–32], Bayesian methods [32] [33], principal
component analysis [34], dynamic movement primitive [35], hidden Markov models [36]
have been used. Probabilistic principal component analysis was used for recognition
and prediction of human motion through motion onset detection by relying on a motion
detection database of various motion models and estimation of the execution speed of a
motion [34]. Li et al. used a Bayesian predictor for the motion trajectory of the human
arm in a reaching task by combining early partial trajectory classification and human
motion regression in addition to neural networks used to model the non-linearity and
uncertainty of human hand motion [32]. A combination of hidden Markov models and
probability density functions were used in [36] to model the human arm motion and predict
regions of the workspace occupied by the human using a 3D camera. In related work, a
Bayesian inference model [33] was used to infer the hand target and promptly allow the
robot to reach a position within the scene. Based on observations from a 3D camera sensor,
Ravichandar et al. [30] trained a neural network using a data set containing demonstrations
of a human reaching for predefined target locations in a given workspace to infer a goal
location for the human hand reach. However, all the above models require vast amounts
of training data. Furthermore, the performance of the models is dependent on the data
acquired. Therefore the performance is affected when new measurements are received due
to arm motion dynamics or different conditions of the human subjects. Other techniques
which do not use training data are based on a distance metric[37]. This method selects
an object closest to the user’s hand by calculating the distance of all objects of interest in
the scene from the hand and selecting the best. However, this method only detects the
next desired object only when the hand has crossed the midpoint or has gone beyond the
current minimum distance; therefore, if two objects are far apart, detecting the next one
will take a longer time.

Since the hand position is one of the most informative features in human manipulation
movement, the above works on intention inference based on hand motion. However,
based on assumptions from studies on human behaviour, for most tasks involving object
manipulation, humans reach to grasp an object and look at the target first. The gaze
direction is always in the direction of the hands, and the object manipulated [6,7]and
therefore can be used to determine targets for interaction.

The eyes are considered as a window into the human mind because they can reveal
information about human thoughts and intentions, as well as our emotional and mental
states and where we are paying attention [38]. Thus eye-gaze can be used as a direct
input to control robots and predict users’ targets. Gonzalez et al. [2] used gaze fixation to
predict an element of a virtual scene the user wants to reach. If the robot could not arrive
at that target in time, they remapped the virtual element to a physical point within the
EHD’s reachable space. Stolzenwald et al. [15] introduced a model which predicts users’
interaction location targets based on eye-gaze and task states using a hand-held robot. This
model derives intention from the combined information about the user’s gaze pattern and
task knowledge. Castellanos et al. used eye-gaze information to predict user target and
provided haptic assistance for people with physical disabilities[16].These works use gaze
fixation to select the desired target. To classify an object as the target, they wait for a time
ranging from 200ms to 4s when the eyes are fixated on an object. However, this approach
results in unnecessary delays and may not be practical for smaller objects.

Using additional data from the head-mounted display, we use the gaze direction and
only consider the points in the user-facing direction.The desired point is selected from a few
candidate points within a defined threshold distance from the hand and a user view cone.
In this approach, points that were not in the gaze direction or above the threshold were not
considered, even if they were close to the user’s hand. Our approach aims to pre-select
all objects the user view and then select the desired object in the eye-gaze direction. Our
method is designed to work with hand motions during real-world interaction and to give
participants the freedom to make their own decisions along the way.
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3. Methods
3.1. Context of study

We based this study on an exergame designed for upper limb rehabilitation training
for both the right and the left hand. The task aims to simulate reaching and grabbing balls
in a virtual space. The study is inspired by the work presented in [39] for upper-limb and
postural rehabilitation. Different balls are displayed to the player at different locations
at a given time instance. He/she has to reach and grasp a ball of choice and release it
above the virtual basket on the floor to gain points. The exergame is designed to record
the active range of the motion of the user’s hand using HTC Vive trackers. Then, the
data is used by a control algorithm to generate virtual objects within the patient’s comfort
zone initially and then gradually push them further out of the comfort zone. The virtual
world application allows the user to perform daily life activities while providing abundant
repetitive movements and giving the patient visual feedback. The game was developed
in collaboration with researchers and physiotherapists at the University of Genoa and
LS2N. In this scenario, the user sits in the real world on a chair for a visual virtual reality
experience and must reach out to pick balls with one of his or her hands. While the user is
attempting to interact with a virtual object in the environment, the robot must position a
ball to provide a tactical sense of touching the object [18,19]. A motion capture system based
on HTC Vive trackers is used to determine the position of the hand used for interaction
and the position of the chair and the robot. A tennis ball was attached to the robot’s flange,
as shown in Fig. 1. The robot was mounted on a 0.8m high table. The user is seated on a
seat, positioned 0.6m above the floor and 0.7m from the robot. The robot’s placement in
the scene was chosen to allow it to reach all of the locations where the user’s hand will
want to have haptic interaction with the robot’s prop, as shown in Figs. 2a and 2b. The
arrangement of the balls fixed in the environment is represented by a virtual model created
by the Unity© software.

Figure 1. The designed prop, a physical representation of the virtual objects presented to the user
during interaction.
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(a) (b)
Figure 2. Experimental setup with the robot, the balls and the user. (a) The side view (b) The Front
view

The main components for this study are:

1. An encountered-type haptic device which comprised of a grounded Universal Robots
UR5 robotic arm. A spherical prop was attached to give the sensation of touching a
ball using a dominant hand.

2. Motion capture system. The HTC Vive pro eye VR headset/head-mounted display
for eye-tracking, a Vive tracker and base stations for tracking users’ hand position,
and another Vive tracker at the robot’s base for robot positioning.

3. Virtual Environment: Virtual objects were rendered using the Unity software along
with the intention detection strategies. The Tobii XR SDK (Tobii Technology Inc,
Sweden) captured and processed gaze data.

4. Motion planning and obstacle avoidance. The algorithms for collision-free path and
execution of the desired trajectories were implemented in ROS by using MoveIt
function [40]. In the implementation, we ensured that the new objective is defined
only when the robot has stopped. To avoid the computation of collision-free path,
all trajectories used have been pre-computed, and no new trajectory is generated
during the experiments. The details of the implementation of the trajectory planning,
collision and obstacle avoidance algorithms are explained in [41]

3.2. Detection strategies

Since the user has many balls presented in a virtual 3D environment at a given time
instance, he has to choose one at a time. The robot’s task is to arrive at the desired position
in time. Different strategies were proposed to read the intention of the human in order to
predict which ball he/she may want to reach.

3.2.1. Strategy 1: The nearest neighbour approach

The most commonly used approach depends on finding the object closest to the hand.
Implementation was done by computing the distances from the hand to all points of interest
in search space as used in [37]. Alternatively, by searching through a k-d tree as used in
[5]. In this study, we used a k-d tree to store the positions of all objects in the scene. Using
hand location based on data from the tracker, we search for the nearest to the hand from
the k-d tree as shown in Fig. 3. The desired point is the closest to the hand, corresponding
to min(di, dN): in this case P2.

However, the main drawback is that the target is detected only when the human hand
has almost reached the point. Moreover, if two points are close, switching between two
points can occur.
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Figure 3. Pictorial representation of strategy 1

Algorithm 1 Strategy 1: Predictions with hand

Input: Hand position Ph ∈ R3.
Output: Best point P∗ in the set of Pi, i = 1...16.

1: Build a k-d tree for all points Pi in the scene.
2: function ST1(Ph)
3: Using hand pose as a query point q, return nearest point from the k-d tree.
4: return P∗
5: end function

3.2.2. Strategy 2: Hand position with threshold

To detect the next desired point, a threshold distance between the hand and the current
point of interaction was used to detect that the user intends to move his hand or is close to a
point. Once the distance between the hand and the current point is above the threshold, we
maintain the previous, and if the next point the hand approaches is within the threshold,
it is taken as the indented target. The threshold ensures that only points in close contact
are selected. In this way, we aim to reduce the detection of intermediate points and hence
reduce the number of erroneous points detected. In Fig. 4 the best point would be P1.

Figure 4. Pictorial representation of strategy 2

Algorithm 2 Strategy 2: Hand position with threshold

Input: Hand position Ph ∈ R3, threshold distance λd.
Output: Best point P∗ in the set of Pi, i = 1...16.

1: Build a k-d tree for all points Pi in the scene.
2: function ST2(Ph, Pprev)
3: Pnext ← best from k-d tree.
4: if ||(Pnext, Ph)|| < λd then
5: P∗ ← Pnext
6: else
7: P∗ ← Pprev
8: end if
9: Pprev ← P∗

10: return P
11: end function

3.2.3. Strategy 3: Using eye-gaze, prediction with eye gaze.

In addition to the hand position, strategy 3 uses eye-gaze direction to determine the
next point. The next target is the point closest to the ray from the midpoint of the eyes



7 of 20

in the gaze direction. As in previous works, the difference with this approach is that we
do not wait for the gaze fixation on a specific object. In this approach, the detection is
guaranteed to be fast. A threshold distance λd was added onto the hand to detect the user
intends to move. If the hand to the point distance is within a threshold, we assume that the
user is still interacting with the current point. The value of λd is chosen so that only one
point Pi can be inside. However, if the distance is above the threshold, the human wants to
move to the next point; therefore, a new target is selected based on the eye-gaze direction.
In this case, the threshold serves two roles. The first is to detect the intention of the user to
move and then to cut off the selection of the next point by the head gaze. The threshold
stops the robot from moving when the hand is near a point.

The search by gaze direction starts with only the points in the view frustum of the
HMD. We do this to limit the search space and improve the detection speed.

In addition, we added a limit α on the angle from the gaze line to restrict the points
selected by the eye gaze. The angle can be varied from 1% as was used in [2] for a visual
attention task. Another study [42] on visual attention perspective for social robotics model
the threshold as a cone model of 30o while [43] used a slightly wider aperture of 40◦.

If there is no point within the limit α, the previous point is maintained. The ray in the
gaze direction is then used to determine the next target. If the point to hand distance is
above the threshold λd, the point selected by the head gaze is taken as the desired target.
Otherwise, it is ignored, and robot motion is restricted to the point near the hand. As
shown in Fig. 5a the best point selected is P1.

We start by building a list of all points in the user view and then calculate the angle αi
using Eq. 1 for each point Pi ∈ P. The next target is the point with a minimal αi < α value.

αi = tan−1
(

li
Li

)
(1)

li is the projection of a point Pi on the ray in the gaze direction and Li is the distance of the
projection point to the center of the eyes.
The Algorithm is a two step process:

1. Case 1: The hand is very close to a point. Search for the best Pi using the strategy 1
If ||(Pi, Ph)|| < λd, then P∗ ← Pi.

2. Case 2: All points are very far. Next point is determined by head gaze as shown in
Fig. 5b P∗ ← Pnext from Eq. 1.

(a) Case 1: Point within λd (b) Case 2: All points outside λd
Figure 5. Strategy 3 prediction with eye gaze tracking.

3.3. Data flow and system integration

The data exchange for the above system components is shown in Fig. 6. The proposed
architecture describes the different interactions each system element has and provides an
insight into how the instances share the information and communicate to each other.
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Algorithm 3 Strategy 3: Predictions with head gaze and threshold on eye-gaze angle

Input: Hand position Ph ∈ R3, Gaze direction vector Gd ∈ R3, hand threshold λd, head
gaze threshold α.

Output: Best point P∗ in the set of Pi, i = 1...16.

function ST3(Ph, Gd, Pprev)
pbh ← best point position from the KD tree.
if (||((Pbh, Ph)|| < λd) then

4: P∗ ← Pbh
else

build a list of points P in the view frustum of HMD with αi < α.
if P = ∅ then

8: P∗ ← Pprev
else

pnext ← point with min(αi) from the list P.
P∗ ← Pnext

12: end if
end if
Pprev ← P∗

end function

The ROS component receives as input just the desired goal. Later based on this
information, the move_group can generate a plan for the robot to reach the desired positions
using pre-computed trajectories. Once the plan is generated, we communicate to the UR5
robot by using the "ur_modern_driver". [44]. With it, we can move the UR5 robot with ROS
control and send as output the current joint states of the robot for the Unity system to work
with.

Figure 6. Flowchart of software and hardware used

3.4. Experimental setup

The UR5 Universal Robot was used to implement the system. This robot was pro-
grammed to receive a desired position and orientation from Unity software and move
the prop. Participants used their right hand to touch the prop. For the training, the HTC
Vive tracking system was set up in a room without external disturbance, and the user was
positioned at a distance of 0.7m from the robot. A tracker was attached to the user’s hand
for motion capture in 3D space for interaction within game activities. The user held no
other devices.
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Figure 7. Virtual environment rendering of the scene.

Figure 8. The user performing the experimental task in unity wihout motion of the robot.

To ensure safety of the user, the workspace was divided by a safety plane into the
human workspace and the robot workspace. The safety plane was used to restrict the
motion of the robot to the robot workspace by using a motion planning algorithm described
in [41] . In this study, the plane was considered as a static obstacle to be avoided. In
addition,there was an emergency switch making it possible to cut off power to the whole
system by flicking a switch.

3.5. Experimental task

The task comprised of 16 tennis balls displayed in a virtual environment, located
at points P1 to P16 and spawned within the robot workspace as shown in Fig. 7. Three
volunteers participated in this experiment. They included 1 female and 2 male participants
with a mean age of 32 years. None of them had experience with eye tracking displays,
however 1 of them had used a VR display. All participants were right-handed and provided
written informed consent prior to the start of the experiment. Each participant was told to
move the dominant hand from a ball specified by a number to a target ball also specified
by a number.

The participants performed the task of reaching toward and grasping a ball with
a radius of 7cm and matching 3D virtual renderings as shown in Fig. 8. The physical
object was 3D printed thermoplastic. Participants wore a head-mounted display to provide
a 90-Hz virtual picture update frequency and scene sound effects while a tracker was
attached to the hand. They viewed green-coloured virtual renderings of these objects and a
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virtual rendering of the hand in a custom 3D immersive Virtual Environment designed in
UNITY (ver. 19.4.1f1, Unity Technologies, San Francisco, CA). The objects in the Virtual
Environment were placed at different locations corresponding to the length of the arm 1/3
length of the arm at 25 cm from the centre (near), 2/3 arm length (middle) at 50 cm from
the centre, full arm length at 75cm from the centre (far) each corresponding to a level of
difficulty. A computer with an Intel Core i7 processor and an NVIDIA gtx 2070 graphics
processor was used to create the Virtual Environment.

3.6. Design of the experiment

The main objective was to study the effect of the eye-gaze on the detection time of
the desired point, intermediate points, the taken by the robot to reach the desired point
and intermediate stops of the robot. For this, three strategies were compared. The nearest-
neighbour method [5,37] (Strategy 1) was used as the baseline. The null hypothesis was that
eye-gaze-based prediction had similar results as a selection with the hand alone strategies
for the detection time, intermediate points detected, robot time and intermediate points for
the robot. For the research objective, the following evaluation criteria were defined:

• Q1: The time taken by the strategy to detect the desired point.
• Q2: The number of intermediate points detected by the strategy before the desired

point was detected
• Q3: The time taken by the robot to reach the final point. It was the sum of the duration

of all the pre-computed trajectories plus the waiting time of the robot
• Q4: The total number of intermediate stopping points of the robot.

3.7. Data collection

We recorded the participant’s hand position, head position, and eye-gaze direction for
each point-to-point trajectory. Data for the following trajectories were recorded:

• long trajectories: P1 − P6, P1 − P16, P7 − P16, P1 − P7 and P4 − P16
• medium trajectories: P1 − P13, P7 − P15, P12 − P13 and P8 − P12
• short trajectories: P6 − P14, P6 − P9, P3 − P11, P13 − P16 and P14 − P16

4. Results

Out of the 39 recorded trajectories, one was discarded due to recording errors, and the
remaining 38 were used for analysis. We first present a detailed analysis of an individual
trajectory, then a summary of the results from 38 trajectories on Q1, Q2, Q3, and Q4, then an
analysis on the effect of the hand threshold, and finally the effect of the eye-gaze window.
It is important to note that for the analysis of the results, the values of λd = 0.15m and the
value on the eye-gaze threshold in strategy 3 was 60◦.

4.1. Analysis of the trajectory from P1 to P16

We took as an example one of the user’s motion trajectory from point P1 to P16 to
analyze the results of the three strategies proposed based on the four criteria Q1, Q2, Q3,
and Q4. A user view is shown in Fig. 9 using strategy 3. The robot motion corresponding to
each strategy is shown in Fig. 10and in Fig. 11. In Fig. 10 , we represent the hand trajectory
and the resultant robot motion for the different strategies. For P1, we only show when
the motion started. For the rest of the points, we indicate the time at which the hand was
closest to each point, and the time the robot stopped at any point. And a corresponding
video 1 of the motions is provided in the supplementary material.

1 https://youtu.be/FwSejn4eTjg
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Figure 9. User’s hand trail and selection by eye-gaze for motion from P1 to P16. The hand trail is
shown as a pink line. The ball selected by the eye-gaze direction is P13, indicated by a slim red line
from the camera, represented as an icon.

Figure 10. A representation of the actual hand motion and the resultant robot motion projected on
the y-z plane. The time the robot stops at a point is indicated for each strategy, and the time the hand
is closest to each point. For p1, the time at which the motion starts is indicated. For p8, p13, p16, the
time the robot stops is indicated. For p16, the time the hand stops is indicated. For p8, p13, the hand
is the closest is indicated.

Figure 11. Comparison of the strategies for the trajectory from P1 to P16. The dotted line indicates the
time the hand is at the start and the target point.

Table 1. Strategy results for the user’s hand trajectory from P1 to P16

Strategy Q1 Q2 Q3 Q4
1 4.86 2.0 6.08 2.0
2 5.34 0.0 7.87 0.0
3 4.12 1.0 5.35 1.0
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(a) Selected points using Strategy 1 along with
the robot and hand stops

(b) Strategy 2 points selection along with the
robot and hand stops.

(c) Strategy 3 selection along with the robot
and hand stops.
Figure 12. Results of individual strategies selection with the hand and robot motion for the trajectory
from P1 to P16 showing the points selected by the strategies, the robot, and the hand stops. The dotted
lines represent the motion of the hand and the robot. The graphs only show the points and the time
the hand and robot stop.

4.1.1. Strategy 1

With strategy 1 as illustrated in Figure 12a, the points detected were P1, P8, P13 and
P16. The desired point was detected at t = 4.86s. Two intermediate points were detected P8
and P13 Points 8 and 13 are along the path of the straight line. So each of them was detected
as the hand moved. The robot stopped at all the points detected as indicated by the green
line. The hand left from P1 at t = 0.6s .P8 was the first point to be detected by the strategy
and the robot received the point and moved towards it. However, before reaching P8, the
strategy detected P13. Since the trajectory from P1 to P8 was not yet completed, the robot
reached P8, stopped, and then started a new trajectory from P8 to P13. It then waited for
new information to go to P16.

4.1.2. Strategy 2

The motion of the hand, the robot, and the selection by strategy 2 is shown in Fig. 12b.
From P1, The strategy selected P16 at t = 5.34s. There were no intermediate points detected.
This was possible because the hand threshold limits the selection of a point until the
condition is met. This can be an advantage if the objective is to minimize the detection of
unwanted points. However, it comes with a cost of late detection of the desired point when
compared to other strategies, as shown in Fig. 11. The robot moves directly to the desired
point. However, it arrives after the hand has already reached the point.
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4.1.3. Strategy 3

Fig. 12c illustrates the progression of strategy 3. The strategy started with point P1 then
selected P13, the best point in the user eye-gaze direction shown in Fig. 9 by the red line on
the camera icon. Then finally P16. The robot started from point P1 then to the intermediate
point P13 where it waited for a new point and then to P16. As can be observed in the graph,
the robot arrived at the final point earlier than the hand and the other strategies.

4.2. Analysis for all trajectories

For all the objectives Q1, Q2, Q3 and Q4, the data distribution was checked for
normality using the Shapiro–Wilk test [45]. We used the strategies as a 3-level factor and
strategy 1 as the baseline for comparison. A one-way Analysis of Variance(ANOVA) model
was used to fit the data. Results showed that there were significant differences amongthe
strategies (p < 0.05) for all the objectives with Q1 (F(2, 111) = 10.66 and p = 0.000), Q2
(F(2, 111) = 19.21 and p = 0.000), Q3 (F(2, 111) = 10.77 and p = 0.0), Q4 (F(2, 111) = 30.62
and p = 0.000). Therefore, we reject the null hypothesis and conclude that mean detection
time, the number of intermediate points detected, robot arrival time, and the intermediate
points detected by the robot are different for all the strategies. The results indicated that
the effect of the eye gaze tracking was significant for all the objectives. A posthoc analysis
was done to find out the strategy-wise differences using the Bonferroni [46] and the Tukey
test [47].

Table 2. Mean and standard deviation of Q1, Q2, Q3, Q4 for different strategies

Q1 Q2 Q3 Q4
Strategy Mean SD Mean SD Mean SD Mean SD

1 2.47 1.34 2.63 1.62 4.18 1.36 1.84 1.13
2 2.82 1.36 0.50 0.86 4.89 2.06 0.42 0.68
3 1.54 0.99 2.32 2.12 3.23 1.14 0.58 0.72

(a) Q1: Time taken for each strategy to detect
the desired point.

Q3: The taken by the robot to reach the
desired point

(b) Q2: The number of intermediate points
detected by each strategy.

Q4: The number of intermediate stopping
points of the robot.

Figure 13. Results for each strategy.

The Tukey test showed that the time for detection in strategy 3 was significantly lower
than strategy 1 (p = 0.004) and strategy 2 (p = 0.000). Overall, strategy 3 was the best
with the lowest time as shown in Tab. 2 and Fig. 13a. Compared to the baseline, the time
difference was 0.92s, representing a 37% reduction. However, there were no significant
differences between the other strategies. These results indicate that the participants always
looked in the direction of the desired point before moving their hand. Mutasim et al. [48]
discovered similar results in a study of gaze movements in a VR hand-eye coordination
training system. They found that the target was detected on average 250 ms before touch
with eye-gaze. Therefore, the use of eye-gaze direction tracking significantly reduced the
detection time.

A posthoc analysis using the Tukey test showed that strategy 2 had a significantly
reduced number of intermediate points detected compared to strategy 1 (p = 0.000). The
results can be seen in Tab. 2 and Fig. 13b. The difference between Strategy 3 and Strategy 1
was insignificant, although strategy 3 had a lower number of intermediate points by 20%.
Due to the rapid eye movements (the saccades), eye gaze direction tracking can result in the
detection of intermediate points. However, the hand threshold prevented the selection of a
new target when the hand was close to a point hence reducing the number of intermediate
points in Strategy 3.
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Concerning the robot time, a posthoc analysis showed that the overall time taken
for strategy 3 was significantly lower than strategy 1 (p = 0.025) by 23%. and Strategy 2
(p = 0.000) as shown in Tab. 2 and Fig. 13a. The result indicates that eye gaze tracking
greatly improved the robot time. Even though the number of intermediate points detected
by strategy 1 and 3 was similar, the motion planning algorithm ignored many points due
to saccades, so they did not affect the results. In addition, strategy 3 improved the arrival
time for the robot because of a lower detection time.

The number of robot stops were significantly higher in strategy 1 than strategy 3
(p = 0.000) by 69% and strategy 2 (p = 0.05) by 77% as shown in Tab. 2 and Fig. 13b.
Although the difference in the number of intermediate points detected was insignificant
between Strategy 1 and Strategy 3. The robot did not stop for all intermediate points.
This implies that selections by strategy 3 due to saccades did not significantly affect the
robot motion. Thanks to the motion planning algorithm, which discarded new information
received before a trajectory finished execution.

4.3. Analysis of the effect of parameters on the performance of the strategies

The performance of strategy 3 depends on the values of the hand threshold param-
eter λd and the eye-gaze window parameter α. Therefore, we conducted experiments to
determine the effect of λd and α on Q1, Q2, Q3 and Q4.

4.4. The effect of the hand threshold

We experimented with different values of λd with λd = 5cm, as the baseline, compared
to λd = 10cm, 15cm, 20cm, 25cm, 30cm. The results based on a data set with 34 different
trajectories are presented below.

Table 3. Analysis of Q1, Q2, Q3, Q4 for different threshold values.

λd Q1 Q2 Q3 Q4
M SD M SD M SD M SD

5 cm 1.12 0.88 2.47 2.69 2.74 1.04 0.53 0.71
10 cm 1.22 0.79 2.06 2.33 2.98 1.06 0.53 0.66
15 cm 1.48 0.77 2.38 2.09 3.09 0.96 0.53 0.61
20 cm 1.86 1.00 2.65 2.17 3.58 0.92 1.24 0.78
25 cm 2.23 1.36 2.59 2.11 3.85 1.20 1.38 0.85
30 cm 2.31 1.32 2.47 1.93 3.97 1.21 1.59 0.99

(a) Q1: The time taken by the strategy to de-
tect the desired point.

Q3: The time taken by the robot to reach
the desired point.

(b) Q2: The number of intermediate points
detected by the strategy.

Q4: The total number of intermediate stop-
ping points of the robot.

Figure 14. Results for each value of the hand threshold.

A one-way ANOVA model revealed a significant effect of the λd on Q1 F(5, 198) =
8.099, p = 0.000. Post-hoc comparisons using the Tukey HSD test [49] indicated that the
mean time for λd = 5cm, was statistically lower than that for λd = 25cm (p = 0.000), by
1.11s and λd = 30cm (p = 0.000) by 1.19s. Specifically our results suggest that increasing
the value of the threshold generally increased the time to detect the final point. A small
threshold allows for the detection of the hand’s intention to move away from the current
point. This leads to early detection of the desired point by the eye-gaze. However,λd had
to be greater than 20cm to notice a significant effect. Details are shown in Tab. 3 and in
Fig. 14a.

A one way ANOVA revealed no significant effect of λd on Q2 with(F(5, 198) = 0.294,
p = 0.916). The results are shown in Tab. 3 and Fig. 14b. The difference was not significant
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because of the following reasons: First, a lower value of λd triggered selection by the
eye-gaze, which is affected by saccades as observed in [16] resulting in a high number
of the intermediate points. Increasing the threshold would reduce the saccades because
the target selection is by hand. However, this would mean that the strategy would tend
to behave like strategy 1, increasing the number of intermediate points. So selecting the
correct value for this criteria is a trade-off between selection by eye-gaze and selection by
user’s hand. The best balance was λd = 10cm or 15cm.

A one-way ANOVA model revealed a significant effect of λd on Q3 F(5, 198) = 7.486,
p = 0.000). Post hoc comparisons showed significant differences between λd = 5cm, 10cm,
15cm and λd = 25cm, 30cm. Overall, λd = 5cm had the least time as shown in Fig. 14a and
Tab. 3. The results show that the robot took a shorter time to reach the desired point for a
small threshold.

A one-way ANOVA test showed that the hand threshold had a significant effect on
Q4. F(5, 198 = 7.486), p = 0.0. Results are shown in Tab. 3 and in Fig. 14b. Post-hoc
comparisons revealed that λd = 5cm, was significantly different from λd = 25cm, 30cm,
however, not significantly different from, λd = 10cm, 15cm. The results show that a larger
threshold increased the number of intermediate points detected by the robot. The mean
values were similar for the lower values of λd = 5cm, 10cm, and 15cm. Then, the slope
of the graph changed with increasing values of λd. This pattern is different from the
results obtained from the number of intermediate points selected by the algorithm. The
algorithm selected a significant number of intermediate points for lower thresholds due to
the saccades in the eye-gaze tracking. Therefore, the robot discards most of them thanks
to a robust motion planning algorithm. On the contrary, as the threshold increases, the
selection of points is mainly by hand. In this way, the algorithm behaves like strategy 1,
which accounts for the increased number of intermediate points detected.

Overall, there was no significant difference between λd = 5cm, 10cm, and 15cm for all
the objectives Q1, Q2, Q3 and Q4. For this study, the best value selected was λd = 15cm
in accordance to the dimension of the environment. People hold a ball with a diameter of
7.5cm. The tracker is placed on the top of the hand, a distance of approximately 5cm from
the palm. So the total distance from the center of the ball to the tracker was about 8cm.

4.5. Eye-gaze window

Previous studies [2,10,42,43], have used different values of α ranging from 1◦, 30◦,
and 40◦ have been used for selecting objects in the gaze window. However, there was no
standard value for the appropriate gaze window size. Based on a data set with 37 different
trajectories, we present results of the effect of α by comparing α = 5◦, 10◦, 15◦, 20◦, 25◦, 30◦

and 60◦ to the baseline α = 1◦. Normality checks were carried out and the assumptions
met.

Table 4. Mean and standard deviation of Q1, Q2, Q3 and Q4 for different α

α Q1 Q2 Q3 Q4
M SD M SD M SD M SD

1◦ 2.19 1.07 0.65 1.01 4.23 1.69 0.41 0.69
5◦ 1.55 0.76 1.14 1.29 3.55 1.26 0.54 0.69

10◦ 1.53 1.01 1.92 1.67 3.25 1.09 0.54 0.65
15◦ 1.51 0.98 2.22 1.96 3.19 1.06 0.57 0.69
20◦ 1.51 0.98 2.22 2.06 3.18 1.10 0.54 0.69
25◦ 1.51 0.98 2.22 2.06 3.17 1.10 0.54 0.69
30◦ 1.51 0.98 2.22 2.06 3.17 1.10 0.54 0.69
60◦ 1.51 0.98 2.22 2.06 3.17 1.10 0.54 0.69
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(a) Q1: The time taken by strategy the to de-
tect the desired point.

Q3: The time taken by the robot to reach
the desired point.

(b) Q2: The number of intermediate points
detected by the strategy .

Q4: The total number of intermediate stop-
ping points of the robot.

Figure 15. Investigating the effect of the eye-gaze threshold using different values of α .

A one way ANOVA test showed that α had a significant change on Q1 with F(7, 288) =
2.230 and p = 0.032 as shown in Tab. 4 and Fig. 15a. Results from a post-hoc analysis
showed that α = 1◦ has a significantly longer detection time (p = 0.054) than α = 20◦,
α = 25◦, α = 30◦ and α = 60◦ with a difference of 0.68s. These results show that decreasing
α delayed the detection of a point because of the smaller selection. A point cannot be
selected not until it is within the gaze window. A threshold greater than 10◦ would give a
view cone greater than 20◦ which would be large enough to accommodate several points in
the user’s gaze direction.

A one-way ANOVA test showed that Q2 was significantly affected by α with F(7,288)=4.237
p=0.000. Most specifically, a post hoc analysis showed that α = 1◦ had the lowest number
of intermediate points , a value significantly lower than α = 10◦(p = 0.003), α = 15◦,
α = 20◦, α = 25◦, α = 30◦, α = 60◦(p = 0.000). The results are shown in Tab. 4 and
Fig. 15b. This suggests that when α was set to a value less than 10◦, the detection of
intermediate points decreased significantly. A small selection window will block out many
points while a large window gives room for saccades. This relationship is depicted in
Fig. 15b.

There were significant differences in the time taken by the robot to reach the desired
point: F(7, 288) = 5.451, p = 0.001. The time taken using α = 1◦ was significantly greater
than all the rest (p = 0.000).These results showed that reducing α to a value < 10◦

significantly delayed the robot. However, the difference was not noticeable between large
values as can be observed in Fig. 15a

There was no significant effect of α on Q4. Adjusting the threshold had no effect on
the intermediate stops of the robot as observed in Fig. 15b. These results follow a similar
pattern to the results from Q2. However, in this case, the number was lower thanks to the
robust motion planning algorithm.

5. Discussion

This study on the development and evaluation of strategies for user motion prediction
was motivated by the need to improve detection speeds and increase response time in
EHDs.

Most importantly, our solution relied on eye-gaze direction and hand position to de-
termine human motion intention and desired targets. We analyzed data from 3 participants
to determine the time taken by each strategy to detect the desired point, the number of
intermediate points detected, the time taken by the robot to reach the final point and the
total number of intermediate stopping points of the robot. Strategy 3 gave the best detection
time, robot time and fewer robot stops. These results showed that eye gaze significantly
improved the response time while minimizing the number of robot stops. Our results
were coherent with the literature on hand-eye coordination, and target selection, which has
identified that humans typically fix their gaze in the direction of the target, slightly before
or after the hand begins to move, as was shown in Fig. 9.

The results suggest that visual behaviour for target selection with a haptic system
is similar to behaviour when doing the task with the hands in everyday life. Thus, the
proposed system should work for people with motor impairments.

Prediction strategy based on eye-gaze direction demonstrated a pattern to detect
more intermediate points because of the saccadic movements. To minimize this behaviour,
recent studies [15] in which gaze direction is used to predict human intention utilized gaze
attention models. In such models, they wait for a window period ranging from 200ms to
4s when the gaze is fixated on an object to validate it as a target. Such models affect robot



17 of 20

arrival times and are applicable for large objects. In our case, the balls are not big. So we
used a threshold on the hand to limit the selection of the next point. The detection by the
eye gaze was cut off when the point-to-hand distance was less than a threshold. In addition,
the path planning algorithm of the robot was designed to complete a trajectory before
starting a new one. So rapid trajectory changes due to saccades were always discarded.
This implies that our model can be used for both small and large objects as long as a suitable
threshold on the hand is selected.

In this study, the hand threshold plays a vital role in detecting human motion intention.
In studies where the nearest point to the hand method is used [2,18], the target was detected
whenever the hand had crossed half the distance between any two points. However, when
coupled with the eye-gaze, a hand threshold was used to detect the user’s intention to move
to another point. In this way, the hand-to-point was below the threshold, the user intention
was interpreted as a desire to remain at a point. So the robot remained stationed at the
point. The threshold also served to restrict the detection of a new point. Thus a threshold
plays a significant role in determining the detection time of the target and the intermediate
points. Thus it affects the robot arrival time and the intermediate points detected along the
robot trajectory. We experimented with different threshold values on the hand to determine
a suitable threshold value. The analysis revealed that a lower threshold was associated with
a faster detection time. We attribute this to the fact that a lower threshold value indicated
earlier detection of the intention by the user to move to another point.

Due to the lack of clear agreement on the standard size of the gaze view window in
studies investigating eye-gaze and hand coordination patterns [2,10,42,43], we examined
the effect of the threshold on the eye gaze. Our results showed that a view angle greater than
20◦ as used in strategy 3 had similar results for all the research questions Q1, Q2, Q3 and
Q4. However, a reduced threshold ≤ 10◦ was associated with significantly increased time
for detection but reduced the number of intermediate points. A small threshold implied
that a few points would be selected at a time. Thus, it would take longer to have a valid
selection, which greatly increased the time to detect the desired point and consequently
delayed the robot. From the analysis, we discovered that the gaze fixation model as used in
[2] increased the detection time hence delaying the robot.

Previous studies [16,50] pointed out that visual gaze is full of rapid eye movements
between fixed points (saccades), and it was the primary reason why gaze fixation was the
widely used approach. However, we do not use gaze fixation because it takes longer to
detect a point. In addition, it is unsuitable for smaller objects. Instead, we used a threshold
on the hand to restrict robot motion when a point lies within the stated threshold. We
select the best point depending on the angle α and not the visual ray directly. By combining
the hand threshold and a good motion planning algorithm, saccadic movements do not
significantly affect the robot motion when a large threshold on the eye gaze is used. Thus
our approach is robust to saccades and highly responsive.

Our findings show that prediction based on eye-gaze improved response time for
the robot. However, optimizing detection time from human predictions comes at the
cost of increasing intermediate points detected. We observed this through an analysis of
the threshold values on the hand. A lower value resulted in a good detection time and
a higher value of intermediate points detected. Thus a compromise has to be made to
improve detection time and reduce the detection of the intermediate points. Therefore, we
recommend finding a suitable threshold on the hand and the eye-gaze window to suit the
task.

In addition, Our system only uses positions in a 3D space; it would be good to
extend the interaction to 6 DOF to study the implications of prediction and robot time in
haptic rendering systems where positions and orientations of virtual objects are essential.
Although VR hand-eye coordination significantly improved detection time, we observed
that participants spent some time searching for a target. Therefore, further research is
needed to minimize the time spent searching for the next target to increase the user’s
performance and the eye-hand coordination training system. Our work was preliminary
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on the proof of concept with a few healthy participants. It would be essential to evaluate
the haptic system with many people with motor disabilities.

Eye-gaze detection to predict targets for haptic devices is a promising solution to
improve intention detection and robot response. However, due to saccades during decision
making and target search, additional study is needed on methods to process gaze data.

6. Conclusions

Haptic systems enable physical user interaction with a virtual world by automatically
recreating virtual scenes for dynamic interactions through haptic rendering. However,
speed constraints present a challenge for the real-time interaction of such systems. We have
addressed this problem through motion prediction using eye-gaze direction and the user’s
hand. This study developed motion prediction strategies in a virtual environment for
reaching tasks. Based on data from three participants, our study confirms the principle that
eye-gaze precedes hand movement for reaching tasks. Furthermore, our results confirm
that the strategy using eye-gaze-based prediction significantly reduced the detection of the
desired point and reduced intermediate points. This significantly improved robot response
with fewer intermediate robot stops. More specifically, our approach showed better results
than the state-of-the-art, relying on gaze fixation. Therefore, this approach may be helpful
to communities using haptic systems for upper extremity rehabilitation training and tasks
for rapid prototyping in industrial design [51] to improve response time and device speed.
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