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emergence of global 
synchronization in directed 
excitatory networks of type i 
neurons
Abolfazl Ziaeemehr1, Mina Zarei1,2* & Aida Sheshbolouki3

the collective behaviour of neural networks depends on the cellular and synaptic properties of the 
neurons. the phase-response curve (pRc) is an experimentally obtainable measure of cellular properties 
that quantifies the shift in the next spike time of a neuron as a function of the phase at which stimulus 
is delivered to that neuron. The neuronal PRCs can be classified as having either purely positive 
values (type I) or distinct positive and negative regions (type II). Networks of type 1 PRCs tend not to 
synchronize via mutual excitatory synaptic connections. We study the synchronization properties of 
identical type i and type ii neurons, assuming unidirectional synapses. performing the linear stability 
analysis and the numerical simulation of the extended Kuramoto model, we show that feedforward 
loop motifs favour synchronization of type i excitatory and inhibitory neurons, while feedback loop 
motifs destroy their synchronization tendency. Moreover, large directed networks, either without 
feedback motifs or with many of them, have been constructed from the same undirected backbones, 
and a high synchronization level is observed for directed acyclic graphs with type i neurons. it has been 
shown that, the synchronizability of type i neurons depends on both the directionality of the network 
connectivity and the topology of its undirected backbone. the abundance of feedforward motifs 
enhances the synchronizability of the directed acyclic graphs.

For several decades, there has been a continuing research interest in the synchronization phenomenon due to 
its widespread application in natural and artificial systems ranging from neural dynamics1–3, cardiac pacemaker 
cells4, and power grid networks5 to social networks6. Particularly, synchronization plays a key role in the proper 
functionality of brain neurons. The synchronization of neuronal networks has been associated with many cogni-
tive processes including memory formation7, directed attention8,9, and the processing of sensory stimuli10.

Synchronization patterns mainly depend on the dynamical properties of individual oscillators as well as the 
underlying structural connectivity. It has been found that brain neurons have different types of intrinsic dynam-
ics that close to threshold, they may be grouped into two excitability classes: Type I and Type II. These two types 
of neurons are different in terms of the bifurcation structure observed during their transition to firing. Type 
I oscillations arise via a saddle-node-onto-limit-cycle bifurcation, whereas type II oscillations are initiated by 
Andronov-Hopf bifurcation. In addition, type I neurons exhibit a continuous frequency-current curve, whereas 
type II neurons show a discontinuous frequency-current curve11,12.

The aforementioned excitability type of a single neuron can be quantified by the phase response curve (PRC) 
which is an experimentally obtainable measure based on the transient change in the cycle period of the neuron in 
response to an external stimulus13. Different profiles of the neuronal phase response curve arise for different types 
of neurons in that in type I neurons, any excitatory perturbation causes an acceleration of the next spike, while in 
type II neurons, perturbations cause acceleration or delay of the next spike depending on the phase at which the 
perturbation is delivered to that neuron. These qualitatively different responses to stimulation lead to dramati-
cally different synchronization patterns in neural networks. Previous studies have shown that, type I cells exhibit 
relatively poor propensity for synchronization under excitatory couplings, while type II cells are synchronized 
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better11,14–16. Experimental results verify the neurons’ ability to switch between types as well as the coexistence of 
both cell types in the brain17–19. For instance, changes in the neocortical synchronization during sleep-wake cycle 
are often associated with excitability changes in the cortical neurons20,21.

Regarding the underlying network connectivity, Master Stability Function is a well-known formalism pro-
viding estimation of the synchronization stability in the networks of coupled identical oscillators22. According 
to this formalism, the spread of the eigenvalues of the Laplacian matrix is a synchronizability index. That is, the 
more compact the eigenvalues, the more likely the synchronous state will be stable. This index works well when 
comparing synchronizability of chaotic oscillators and identical Kuramoto oscillators. Using the index, it can be 
shown that complete graphs and directed acyclic graphs with identical node in-degrees are optimal networks 
provided that they embed an oriented spanning tree23,24.

An entirely different approach to explore the impact of network structure on synchronization is investigat-
ing important and dominant topological features of networks known as motifs25–28. Motifs are significantly over 
represented subgraphs that have been recognized as the building blocks of many real-world networks in various 
domains29. Therefore, it’s important to understand how the global dynamics are affected by the network motifs. 
For example, previous studies have shown that feedback loop motifs contribute to two phenomena: responses to 
noise and dynamical stability30,31.

In this paper, we investigate the role of network motifs in synchronization of directed neural networks with type I or 
type II neurons. Among various network motifs, we focus on two distinct categories: (I) feedback loops (FBL) and (II) 
feedforward loop motifs (FFL). These motifs are commonly highlighted features observed in real-world networks and 
have attracted a great deal of attention in the literature32,33. In order to study the dynamics of a large collection of such 
motifs, we generate two different directed graphs, with the same undirected skeleton, constructed only from FFLs or 
FBLs. These directed graphs are called directed acyclic graph (DAG) and balanced directed graph (BDG), respectively. 
Both analytical and simulation results show that type I excitatory and inhibitory neurons are synchronized in directed 
acyclic networks (i.e. networks without any feedback loops). However, these neurons fail to synchronize in undirected 
networks. In fact, feedback loops destroy synchronization of the networks with identical type I neurons.

Material and Methods
Structure of the networks. An orientation of an undirected graph is an assignment of a single direction to 
each of its edges, turning the initial graph into a directed graph. In this paper, using two different algorithms, we 
built different orientations of a graph such that the number of feedback loops (FBLs) is maximized in one orien-
tation and minimized in the other one. These algorithms are described bellow.

It has been shown that, the number of feedback loops increases by enhancing the correlation between the in- 
and out-degrees of the nodes34. Therefore, we start with an undirected graph, and try to assign each edge a single 
direction in such a way that the in-degree and the out-degree of any given node are almost the same. The Eulerian 
cycle in an undirected graph is a cycle that visits every link exactly once. An undirected graph has an Eulerian cycle 
if and only if every vertex has an even degree. Eulerian orientation of a graph is an orientation that directs the edges 
along the Eulerian path such that every vertex has the same number of incoming and outgoing edges. The resulting 
directed graph is called a balanced directed graph (BDG) and has maximum number of feedback loops. In a network 
in which some nodes are of odd degree, we can still build an orientation in a way that the resulting directed graph is 
almost balanced. To this end, a new fake node is added to the undirected graph and any existing node with an odd 
degree is connected to this new node. Since every undirected graph has an even number of nodes with odd degree, 
all the nodes in the new undirected graph have even degree and we can build the Eulerian orientation of the new 
graph. After orienting the graph, the fake node is removed with all its adjacent links. In this manner, the difference 
between in- and out-degree of each node is at most one and the oriented graph is almost balanced35.

Directed acyclic graphs (DAGs) are constructed by extending the residual degree gradient method36,37. At first, 
each node is labeled by a residual degree which determines the number of adjacent undirected links. The residual 
values drop as more adjacent links are assigned directions. Thus, initial and final residual values for each node 
equal to its degree and zero, respectively. In each iteration of assigning the directions, the node with the smallest 
residual degree is selected and all of its adjacent undirected links are assigned incoming directions. The residual 
values are updated afterwards and iterations are repeated until there are no undirected edges left in the network. 
Since each node will have incoming links only from the previously chosen nodes, the constructed graph will be 
acyclic. It is probable that this method gives rise to a disconnected DAG which in turn leads to an incomplete syn-
chronization. Therefore, to avoid drawing incorrect conclusions when comparing synchronizability of different 
graphs, we have considered just connected DAGs in our simulations.

It should be noted that, directed and undirected networks should have the same number of nodes and arcs (i.e. 
unidirectional links) to be comparable in terms of their synchronizability. To this end, we double the number of 
arcs while giving directions to the links of an undirected graph. Therefore, the adjacency matrix of an undirected 
graph is defined as =a 1ij , if nodes i and j are connected, and aij = 0, otherwise. Whereas, the adjacency matrix 
of a directed graph is defined as, =a 2ij , if a link is directed from node j to node i, and =a 0ij , otherwise.

phase response curve (pRc). The phase response curve (PRC) is an illustrative tool to determine the phase 
shift of an oscillating neuron in response to a brief current pulse delivered at various phases of the cell cycle15. It 
can be defined as, = − θPRC 1 T

T0
. Where T0 is the unperturbed cycle period of the neuron, and θT  is the cycle 

period when the neuron is perturbed at phase θ. Therefore, positive and negative values of PRC indicate phase 
advances and delays, respectively. As mentioned before, neurons are classified into two excitability classes: type I 
and type II. Type I neurons always respond to a small excitatory stimulus by advancing the next spike. Therefore, 
they have positive values of PRC for all phases. In contrast, type II neuron, can advance or delay the next spike 
depending on the phase at which the perturbation is delivered to them. Therefore, for type II neurons, the PRC 
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versus θ diagram, contains both positive and negative regions. Studies verify that the Hodgkin-Huxley neurons 
have PRC II excitability type, while the Wang-Buzsáki and Traub neurons have PRC I excitability type38.

Dynamics of the neurons. Neurons can be modeled using both phase oscillators and conductance-based 
models. Since phase models are simple enough to be mathematically tractable, the networks of coupled phase 
oscillators have been widely studied to model biological and physical systems including neuronal networks. On 
the other hand, the detailed investigation of the neuronal dynamics and systematic parameter variation is possi-
ble through the use of conductance-based models. Here, we choose the extended Kuramoto model (simulating 
dynamics of coupled phase oscillators) and Wang-Buzsáki and Traub neuron model (simulating the dynamics 
of coupled spiking neurons) to consider different aspects in the synchronization of neuronal networks. In the 
following, each model is explained with its corresponding synchronization order parameter.

Phase model. We use the extended Kuramoto model39,40 to analyse the dynamics of directed networks with type 
I or type II oscillators. This model assumes a network as a collection of N  coupled phase oscillators such that the 
evolution of the ith oscillator is given by: 

∑θ ω θ θ θ θ θ θ
θ θ

= + = − + −
− −

=



( )( ) ( ) ( ) ( )K
N
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 where θi is the phase of the ith oscillator and K  is the overall coupling strength. The adjacency matrix of the graph 
is given by =A a( )ij . Type I and type II oscillators are distinguished by =u 0i  and =u 1i , respectively. The func-
tion θG( ) corresponds to the phase response curve of the oscillator (see the Fig. S1). In our simulations, the initial 
values of θi are randomly drawn from a uniform distribution in the interval π[0, 2 ], and natural frequencies are 
identical. The degree of synchrony of the phase oscillators is quantified by the Kuramoto order parameters R, 
which is defined as = ∑ θ

=r t( ) e
N i

N i t1
1

( )i . Here, …  represents averaging over different network realizations and 
initial conditions. The magnitude is ≤ ≤r0 1. The extreme cases are =r 1 (coherent state) and =r 0 (inco-
herent state). The time average of r after achieving a steady state is symbolized by R.

Neuronal model. We used Wang-Buzsáki model to analyse the dynamics of the networks with type I inhibitory 
interneurons. The Wang-Buzsáki neuron model includes the following differential equation41: 
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where Cm is the capacitance of the neuron and v is the neuron’s membrane potential. h and n are time-varying activation 
variables that depend on voltage-dependent rate functions (αh, βh, αn, βn). s, α and β are activation variable and rate 
functions for synapses. φ is the control parameter which directly alters the time constants of sodium inactivation and 
potassium activation. F is a scaling factor which is given by θ= + − −F v v( ) 1/(1 exp( ( )/2))syn . Here, θsyn is a param-
eter which must be set high enough to have neurotransmitter release only when a spike has been emitted in the presyn-
aptic neuron. INa, IK, IL, Isyn, and Iapp represent sodium ( +Na ), delayed rectifier potassium ( +K ), leakage, synaptic and 
external currents, respectively. The currents are modeled by the following equations: 
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N
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where gL, gNa, gK, and gsyn are the maximal values of the conductances for leak, sodium, potassium and synaptic 
currents, respectively, and EL, ENa, EK, and Esyn are their respective reversal potentials. K  is the coupling strength 
and the summation in Isyn i,  occurs over all neighbours of the ith neuron. The steady state activation parameter of 
the sodium current is α=∞m m/ α β+( )m m . The parameters of the Wang-Buzsáki model41 are summarized in the 
Table S1. The rate functions are given by the following functions: 
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We have also used the the Traub pyramidal excitatory type I neuron model42. The equations describing the 
model is = − − − − +C I I I I Im

dv
dt Na K L syn app, where gating variables m n,  and h obey equations of the type 

α β= − −x v x v x( )(1 ) ( )x x . The rate functions are: 

α
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β
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v v
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0 32( 54)/(1 exp( ( 25)/4)),
0 128 ( ( 50)/18),
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0 5exp( ( 57)/40)
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 Synaptic gates satisfy α= −s s(1 )/ β+ − + −v s(1 exp( ( 10)/10)) , and synaptic current to the ith neuron is 
evaluated from = ∑ ∈I K g s V( )syn i j N syn res, i

, where Ni are neighbors of the ith neuron and Vres is resetting membrane 
potential. The parameters of the Traub neuron model, which corresponds to AMPA-receptor-mediated synapse, 
are summarized in the Table S2.

There are various measures to quantify the level of synchrony in a large population of neurons within a net-
work. Among the various metrics, we choose the interspike distance synchrony measure, denoted as B. As one 
would expect, the minimum interval between spikes of different neurons in synchronized state is less than that of 
asynchronous state. Based on this idea, the spike synchrony measure is defined as follows43: 

τ τ

τ
=
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−







τ τB
N

1 1

(2)

x x

x

2 2

 where, N  is the number of neurons in the network and τ = −+t tx x x1  denotes the interspike interval of the 
merged set of network spikes. Here, the inter-spike intervals are calculated between different neurons. … τ 
denotes the averaging over all intervals. It can be shown that B is bounded between 0 and 1, where =B 1 and 

=B 0 represent fully synchronized and asynchronous states, respectively. The voltage synchrony44 is another 
commonly used measure that has been investigated in the supplementary material.

Results
First, we studied the synchronization stability of the FBLs and FFLs connecting identical type I or type II phase 
oscillators analytically. For different motifs, we considered the reduced two-dimensional systems of the phase 
differences (the equations are provided in the supplementary material). As expected, we found stable (unstable) 
synchronous states for type II excitatory (inhibitory) FFLs and FBLs. On the other hand, we observed stable 
asynchronous state for type I excitatory and inhibitory FBLs, and stable synchronous state for type I excitatory 
and inhibitory FFLs. In fact, both eigenvalues of the Jacobian matrix, for the synchronous state of the type I FFL, 
are zero. Consequently, this fixed point is globally stable, but not asymptotically. It means that, if one perturbs 
the system and then leaves the system alone, the time dependence of the perturbation is milder than exponential. 
The phase portraits of the type I and type II excitatory and inhibitory oscillators situated in different motifs are 
plotted in the Fig. 1.

We also numerically investigated the synchronization stability of the type I and II identical excitatory phase 
oscillators including different motifs (detailed explanation of the method is found in the supplementary material 
and the article written by Wolf et al.45). The evolutions of the three Lyapunov exponents for the type I and the 
type II FBLs and FFLs are demonstrated in the first and the third rows of the Fig. 2. The steady Lyapunov expo-
nents versus coupling strengths are plotted at the second and the fourth rows of the Fig. 2. We can see that, as we 
expected from the analytical results, all the three Lyapunov exponents for the type I FFLs are zero. The bottom 
panels of the Fig. 2 illustrate the evolution of the stationary order parameter for the type I and II excitatory phase 
oscillators connected by FBLs and FFLs with various coupling strengths. As anticipated, the results display the 
stable synchronous state for the type II FBLs and FFLs, and the type I FFLs. Therefore, the feedforward loop motif 
is an optimal structure for synchronization of the identical excitatory type I phase oscillators. This is also correct 
for the identical inhibitory type I phase oscillators (see Fig. 1).

 Figure 3 shows the structural properties of the BDGs and DAGs constructed from the same undirected 
Watts-Strogatz small-world and Barabási-Albert scale-free networks46,47. The adjacency matrices have been 
exhibited in the first row. The adjacency matrix of a directed acyclic graph with a single source node (i.e. a node 
with zero in-degree) can be transformed into strictly lower triangular form by a permutation matrix. Therefore, 
as we can see, our orientation algorithm constructs DAGs correctly from different undirected graphs. The 
Laplacian matrix of directed network is defined as = −L D Ain , where Din is a diagonal matrix of in-degrees and 
A is the adjacency matrix. Real and imaginary parts of the eigenvalues of the Laplacian matrices are shown in the 
bottom panels. The real parts and the imaginary parts of the complex eigenvalues have their own information as 
the real parts reflect the undirected topology of the network and the imaginary parts reflect the effects of directed 
links and loops35,48. For example, since the eigenvalues of a lower triangular matrix are the same as its diagonal 
entries, the Laplacian eigenvalues of a DAG are real and equal to the in-degrees of its nodes. Therefore, as we 
expected DAGs do not have any FBL and their eigenvalues are real. On the other hand, we can see that the vari-
ance of the imaginary part of the small-world BDGs is higher than that of the scale-free BDGs. It is because of the 
fact that clustering coefficient of a small-world network is higher than clustering coefficient of scale-free networks 
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with the same number of nodes and arcs. Therefore, small-world BDGs have higher number of FBLs than 
scale-free BDGs. In addition, because of the hubs (i.e. large-degree nodes in the undirected graphs), the real parts 
of the eigenvalues of the scale-free BDGs are more spread out than small-world BDGs. On the other hand, the real 
parts of the eigenvalues of the scale-free DAGs are compacter than small-world DAGs, because they have nar-
rower in-degree distributions. Note that based on our orientation algorithm the source node would be a hub in a 
scale-free DAG. Now that we understood the structural differences between our directed networks, in the follow-
ing we will compare the synchronizability of type I and type II oscillators on these structures.

As mentioned, unlike FBLs, FFLs favour synchronization in networks of type I oscillators. However, in real 
world networks motifs are merged together to form more complex structures. In order to see the effects of FFLs 
and FBLs in the synchronization of the large networks, we constructed two different directed networks from the 
same undirected backbone. Balanced Directed Graphs (BDGs) with many FBLs, and Directed Acyclic Graphs 
(DAGs) without any FBL. The flow of information in the BDGs is similar to their undirected backbone, but the 
information flow in the DAGs is directed from the source node to the rest of the graph. Therefore, BDGs and 
DAGs are very different, even if they have the same undirected skeleton.

The synchronizability of the scale-free networks with different link-directionalities has been investigated in 
the Fig. 4. We can see that type II oscillators are synchronized on all the three network structures. However, type 
I excitatory oscillators can be synchronized only on DAGs. This proves that FBLs are harmful for synchronization 
of type I oscillators, while FFLs enhance their synchronization. In addition, we found similar synchronization 
level for BDGs and undirected graphs. This result is in agreement with previous finding that the synchronization 
condition for the symmetrized network guarantees synchronization in the asymmetrical network with node bal-
ance49. According to the plot of the Lyapunov exponents versus the coupling strengths, all the Lyapunov exponets 
of the type I DAG are small. Therefore, we considered very long time simulation to estimate the Lyapunov expo-
nents of type I DAG. The results confirm that the absolute values of all the exponents are smaller than −10 5 (see 
Fig. S2). Thus, the synchronous state for type I scale-free DAGs is globally stable but not asymptotically. This is 
similar to the synchronous stability of their building blocks, i.e. the FFL motifs (see Fig. 1). The type I inhibitory 
phase oscillators are also synchronized well on the DAG structures (see Fig. S3).

In order to better investigate the role of undirected topology of the DAGs on their synchronization, we con-
struct the DAGs from scale-free networks ( ∝ γ−p d d( ) ) with different scaling exponents (γ). As we know, 
increasing the scaling exponents leads to more degree-homogeneous networks. Figure 5 shows the synchroniza-
tion of the DAGs constructed from the mentioned scale-free networks. The result shows that increasing the 
scaling exponents, decreases the clustering coefficient and synchronizabilty of scale-free DAGs. The underlying 
reason is that, by reducing the scaling exponent in networks with power-law degree distributions, the source node 
(the node with zero in-degree where the information flow starts from) would be able to reach every other node in 
the network easier. This characteristic has been previously shown for synchronization of directed networks of 
type II oscillators30.

Figure 1. Phase plane portraits for reduced two-dimensional systems of type I and type II motifs. The phase 
plane portraits for reduced two-dimentional systems of (top row) type I and (bottom row) type II phase 
oscillators situated in a FBL, and FFL motifs. The plots on the left-hand side (right-hand side) of the figure 
correspond to the excitatory (inhibitory) oscillators. The stable and unstable (or saddle) fixed points have been 
distinguished by red and green colours, respectively. The Jacobian matrices of the fixed points coloured in blue 
have two zero eigenvalues.
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The effect of gradually adding feedback loops to the DAGs is also investigated. The results show that the syn-
chronizability of the directed network decreases nonlinearly with increasing the number of the feedback loops 
(see Fig. S4).

In reality inhibitory and excitatory neurons work together to perform complex tasks. It has been suggested 
that excitatory and inhibitory inputs of a neuron are balanced, and this balance is important for the highly irreg-
ular firing observed in the cortex50. Our results show that disconnected hybrid networks that are formed by 
feedforward motifs that their effective nodes (i.e. nodes which have outgoing edges) are purely inhibitory or 
excitatory, can provide balance networks with incoherent dynamics (see Fig. S5).

In the preceding parts, we investigated the synchronization of type I and type II phase oscillators, and we showed 
that type I excitatory and inhibitory oscillators which are connected by DAGs are synchronized. However, previous 
studies have shown that type I neurons are only synchronized with inhibitory synaptic connections41. To address this 
concern, we study the synchronizability of our oriented networks using conductance-based neuron models. First, we 
consider the type I Wang-Buzsáki inhibitory neurons connected by scale-free directed networks. The characteristics 
of the Wang-Buzsáki model neurons have been presented in the Supplementary Fig. S6. This model has been used 
to show that gamma rhythm (20–80 Hz), which is observed during behavioural arousal, can emerge in an undirected 
random network of interconnected inhibitory neurons41. However this rhythmic behaviour is only observed in the 
dense networks. Top panels of the Fig. 6 represent interspike distance synchrony level of the type I Wang-Buzsáki 
neurons connected via scale-free undirected (U), BDG, and DAG by inhibitory synapses in the Φ − Iapp parameter 

Figure 2. Synchronization stability of excitatory FBL and FFL motifs. (Top four rows) the Lyapunov exponents 
versus time (log-log scale) and the coupling for identical type I and type II excitatory phase oscillators 
connected by FBL (left column) and FFL loops (right column). The sign of Lyapunov exponents in the log-log 
plots are colour coded, where blue and red indicate negative and positive values, respectively. (Bottom row) The 
stationary order parameter versus coupling for identical type I and type II phase oscillators connected by FBL 
(left column) and FFL loops (right column).
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spaces. The results verify that type I Wang-Buzsáki neurons are not synchronized on the sparse undirected graph 
and BDG. In contrast, there exists a parameter region in which neurons can be synchronized in the scale-free DAGs. 
Moreover, it has been shown that synaptic time constants potentially play a role in the determination of network 
frequency, and our results confirm this. In fact larger time constant makes the overall decay slower. Therefore, 
increasing τsyn decreases the oscillation frequency for different values of the applied currents. In addition, we can see 
that the synchrony index displays a peak at the small values of the τsyn. This would mean that synchrony is high only 
within a restricted range of frequencies. These findings are consistent with the previous results obtained for dense 
undirected networks41. Here, the decay time constant of 10 ms that we used is consistent with GABAA receptor51. The 
parameter φ also affects the synchronization of the networks. In fact, decreasing φ reduces the firing rate by produc-

Figure 3. Structural properties of two different directed networks. Adjacency matrices (top) and the location 
of Laplacian eigenvalues in the complex plane (bottom), for small-world and scale-free BDGs and DAGs with 
200 nodes and average degree of 6. Schematic illustrations of BDGs and DAGs constructed from the same 
undirected backbone are shown at the right. The source node is highlighted with red colour.

Figure 4. Differences in the synchronization stability of excitatory scale-free networks with various 
directionalities and neuronal types. Lyapunov exponents versus coupling for (top row) identical type I and 
(middle row) type II phase oscillators situated on (left column) scale-free undirected graphs, (middle column) 
BDGs and (right column) DAGs, with N = 200 nodes are illustrated. The sign of the Lyapunov exponents 
is colour coded, where blue and red indicate negative and positive values, respectively. (Bottom row) The 
stationary order parameter versus the coupling strength of the scale-free networks with different link-
directionalities (i.e. U(Undirected), BDG and DAG) are illustrated.
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ing a deep afterhyperpolarization (see Fig. S7). In our simulation, a spike is detected when the voltage of membrane 
reaches a fixed threshold (−55 mV) from a lower value.

A similar behaviour is seen for the synchronization of the DAGs constructed by excitatory type I neurons 
by using Traub neuron model (see Figs. 7 and S8). However, for excitatory neurons the oscillation frequency 
increases as the time constant increases. The results on neuron models are also confirmed by using voltage syn-
chrony measure (see the Figs. S9 and S10).

Discussion
The observed complex spatiotemporal neural activity patterns reflect both the connectivity and dynamic properties 
of individual neurons. Two types of neuronal activities are found based on their different responses to the small 
depolarizing current pulses. Type I neurons only speed up the oscillation when they receive the stimulus, whereas 
type II neurons experience both phase advance and delay, depending on the timing of the perturbation. Previous 
studies have shown that, synchonizability of type II neurons is higher than type I neurons in excitatory networks, 
while inhibition is more stabilizing the synchrony of type I neurons52–56. Adaptation can stabilize the synchrony of 
excitatory type I neurons by changing their PRC14. But without adaptation, excitation is desynchronizing even for 
fully connected identical type I neurons beyond the weak coupling regime57. However, the master stability formal-
ism suggest that fully connected network is an optimal structure for the synchronization of identical type II neurons. 
Therefore, the master stability approach can not be applied to investigate the synchronizability of the networks 
of type I neurons. On the other hand, neurons are connected to each other through synapses which are mostly 

Figure 5. Comparison of synchronization of type I excitatory phase oscillators on excitatory scale-free DAGs 
with different exponents. (First Column) The degree distribution of the scale-free networks with different 
scaling exponents, 1024 nodes and average degree of 10. Dashed lines represent linear curve fittings to the 
probability distribution functions. (Second Column) The stationary order parameters of scale-free DAGs versus 
scaling exponents, for =K 3. (Third and fourth Columns) display the average clustering coefficient (C) of the 
undirected backbones and the average shortest path from the source node to other nodes (S), versus the scaling 
exponents. The results are averaged over 50 realizations.

Figure 6. Synchronization of Wang-Buzsáki inhibitory neurons coupled via scale-free undirected and directed 
graphs. (First three columns) Top panels display the interspike distance synchrony of the networks on φ−Iapp  
phase space. Bottom panels represent the raster plots and the sum of the synaptic gates ∑ si i for three network 
instances using the parameters specified by the arrows at the top plots. The synapse parameters are 
α β= = . = .− − g12 ms , 0 1 ms , 0 1 mS/cmsyn

1 1 2. (Right column) Top and bottom panels show the effects of 
synaptic time constant (τ β= 1/syn ) on synchrony and frequency of oscillation for different values of applied 
currents, respectively at = .K 1 25. The parameters of the networks are valued as =N 200, and γ = 3.
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unidirectional in passing signals. Based on the observations mentioned above, we studied synchronization prop-
erties of directed networks of identical type I or type II neurons, assuming excitatory and inhibitory interactions.

Motifs are significantly over-represented subgraphs of a complex network, and play important roles in shaping 
its emergent behaviours. Therefore, firstly we focused on the synchronization properties of two different motifs 
in directed networks: feedback loops and feedforward loop motifs. Performing the linear stability analysis and 
the numerical simulation, we showed that synchrony can emerge in the feedforward loops with identical type I 
oscillators and purely excitatory or inhibitory connections. In fact, this synchronous state is globally stable but 
not asymptotically. Therefore, a small perturbation to the synchronous state would cause the system to converge 
to the fixed point milder than exponentially. However, the asynchronous state turns out to be asymptotically 
stable for feedback loops constructed from identical type I phase oscillators with purely excitatory or inhibitory 
connections. The analytical results obtained are compared and found to comply with the results obtained by using 
the extended Kuramoto model simulation. Next, we studied the synchronization of various types of neurons 
coupled via large directed networks. To this end, we used different methods for assigning the link directions to 
construct two different directed networks from the same undirected backbone, referred to as balanced degree 
graph (BDG) and directed acyclic graph (DAG). Precisely, many feedback loops are merged together to construct 
a BDG and only feedforward loop motifs are combined to make a DAG. Both the linear stability analysis and 
the numerical simulation confirmed that identical type I neurons connected by DAGs via strictly excitatory or 
inhibitory synapses are fully synchronized, while they are not synchronized when they are connected by BDGs. 
We can see that the steady Lyapunov exponents of type I DAGs are zero. This is in agreement with the result we 
found for the synchronization of feedforward loops. Therefore, studying the dynamics of the motifs can provide 
an intermediate step to better understand the synchronization of the larger collections. Besides the directionality, 
we showed that the undirected topology of the graphs also affects the synchronization of directed networks. The 
DAGs constructed from undirected networks with higher clustering coefficients, have higher number of feedfor-
ward motifs and higher synchronizability. In fact, a DAG is more synchronizable when all of its nodes are easily 
reachable from the source node. The results are also verified using conductance-based Wang-Buzsáki and Traub 
neuron models. In reality inhibitory and excitatory neurons work together to perform complex tasks. In general, 
excitatory and inhibitory inputs of a neuron are said to be balanced, and this balance is important for the highly 
irregular firing observed in the cortex50. The global dynamic of motifs with hybrid effective nodes is very complex 
and directly related to the initial phase values. However, Our investigation suggests that excitatory-inhibitory 
balance and incoherent dynamics can be provided by merging inhibitory and excitatory feedforward motifs. 
Investigating the synchronization of neurons with different excitability types is important to understand the 
function of the diffuse modulatory cholinergic systems in the brain20. Our main result is that edge directionality 
significantly alter the synchronizability of the type I neurons with purely excitatory connections, and it can not be 
ignored. Further studies are clearly required to determine the interplay between neuronal excitability, frequency, 
edge directionality, and network synchronization.

Received: 19 August 2019; Accepted: 31 January 2020;
Published: xx xx xxxx

Figure 7. Synchronization of Traub neurons coupled via scale-free undirected and oriented graphs. (First three 
columns) Top panels show the spike synchrony of the networks on −I Kapp  phase space. Bottom panels exhibit 
the raster plots and the sum of the synaptic gates ∑ si i for three network instances using the parameters specified 
by the arrows at the top plots. The synapse parameters are α β= = . = .− − g12 ms , 0 5 ms , 0 01 mS/cmsyn

1 1 2. 
(Right column) Top and bottom panels represent the effects of synaptic time constant (τ β= 1/syn ) on spike 
synchrony and frequency of oscillation, respectively at = .K 0 3. The parameters of the network are valued as 

=N 200, and γ = 3.
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