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varying Loève-spectrum and the spatial time-varying dual-frequency coherence function under realistic
modeling assumptions. We construct confidence intervals for these parameters of interest using the Circu-
lar Block Bootstrap method and prove its consistency. We illustrate the application of our methodology
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1. Introduction

The paper is concerned with a class of spatiotemporal processes that are locally time-harmonizable, that is,
they possess a local two-dimensional spectrum. In order to introduce such a class of processes, we need first to
recall some basic facts concerning second order harmonizable processes that are due to [1]. A centered P -variate
discrete-time process {X} = {Xt, t ∈ Z} with the finite second order moments is called harmonizable if it
admits a Cramér’s representation of the following form:

Xt =

∫ π

−π

eitωdZ (ω) , (1.1)

where Xt = (X1,t, . . . , XP,t)
′ and the spectral process

{Z(ω)} = {Z(ω) = (Z1(ω), . . . , ZP (ω))
′, ω ∈ (−π, π]} is a zero-mean stochastic process. Here and hereafter the

symbol (·)′ denotes the transpose of a vector.
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The simplest example of processes admitting the representation (1.1) are stationary sequences. In that case,
the process {Z(ω)} has orthogonal and cross-orthogonal increments (see e.g., [2]). However, for the class of
harmonizable processes, {Z(ω)} has correlated increments. They form a broad class of processes that includes
many nonstationary ones, such as periodically correlated time series (see e.g. [3]). A very important feature of
harmonizable processes is that their covariance is a Fourier transform of a finite measure.

Harmonizable processes are particularly useful in modeling real-world data when the main interest is frequency
domain analysis. They are widely applied, for instance in signal theory, communications and mechanics (see
e.g. [4, 5, 6, 7]). Our approach was initially motivated by the analysis of ElectroEncephaloGraphy (EEG) data.
However, it can be applied to other types of problems with possibly some minor modifications.

In recent years, numerous studies of brain signals have explored networks of functional connections to reveal
subtle mechanisms of brain activity. Essentially, this involves measuring the relationships in the activity of
different brain regions. The analysis is often performed using coherence, which is a frequency domain equivalent
of correlation. It takes value in [0, 1], a value close to 1 indicates a strong synchronization. More specifically,
for a P -variate harmonizable process {X}, its Loève spectrum f =

(
fpq
)
1≤p,q≤P

is a P × P -matrix defined as

follows
Cov(dZ(ω1), dZ(ω2)) = f(ω1, ω2)dω1dω2. (1.2)

The dual-frequency coherence between a pair of processes ({Xp,t}, {Xq,t}) and a pair of frequencies (ω1, ω2) is
given by:

ρpq (ω1, ω2) :=
|Cov (dZp (ω1) , dZq (ω2))|2

Var (dZp (ω1))Var (dZq (ω2))

=
|fpq (ω1, ω2)|2

fpp (ω1, ω1) fqq (ω2, ω2)
. (1.3)

The dual-frequency coherence (1.3) allows capturing dependencies at two different frequencies. [8] developed
inference tools for the Loève spectrum for such a model, but the Loève spectrum of the harmonizable process
is constant in time and the model does not consider any spatial localization. Therefore, it cannot sufficiently
capture the complexity of the brain mechanisms. Consequently, these results needed to be extended accordingly.
This was achieved thanks to the recent and important contribution of [9]. The authors follow the approach of [10]
to introduce multivariate locally-harmonizable processes. They describe a windowed Fourier based estimation
procedure for the time-varying dual-frequency coherence. They derive exact confidence intervals for testing if the
coherence differs from zero under i.i.d. Gaussian assumptions, and also obtain asymptotic confidence intervals.

In this paper, we extend the existing results in several ways. First, we introduce new inference tools that take
into account both time and space (i.e. spatial location). We define the rescaled spatiotemporal local Loève
spectrum and the spatiotemporal coherence. In other words, we measure the time-evolving squared correlation
coefficient at different frequencies between any pairs of spatial locations. Our approach uses spatial correlations
to improve the estimation of these quantities by exploiting spatial location information in the spirit of the
[11] method. Second, we consider more realistic modeling assumptions. Third, in order to construct confidence
intervals for the spatiotemporal coherence, we adapt the Circular Block Bootstrap (CBB) method and show its
consistency.

The paper is organized as follows. In Section 2 we introduce a spatial locally time-harmonizable process model
along with an appropriate estimation procedure under realistic model assumptions. In Section 3 we discuss
asymptotic properties of our estimators. Moreover, we show consistency of the CBB approach. Finally, in
Section 4 we illustrate the application of our method on a real data set. All proofs and additional information
on the real data can be found in Section 6.

2. Rescaled spatiotemporal spectrum estimation

In this section, we generalize some of the ideas presented by [11] and [9]. For the sake of clarity, we start
by introducing the notion of spatial time-harmonizable process and the corresponding Loève spectrum. Next,
we introduce the spatial time-varying local Loève spectrum for a general spatial process. Then, we describe
our modeling assumptions, in particular the spatiotemporal rescaling. They ensure notably that the quantities
of interest lie on a bounded spatiotemporal domain and satisfy some smoothness conditions. We construct a
rescaled spectrum estimator that is based on replicated observations of the process, and give its asymptotic
properties. Finally, we adapt the CBB method to construct bootstrap confidence intervals and we prove the
bootstrap consistency.
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2.1. Spatiotemporal Loève spectrum

Let
{
XS

}
=
{
X

S
t , t ∈ Z

}
:=
{
X

S
s,t, t ∈ Z, s ∈ {1, . . . , S1} × {1, . . . , S2}

}
, S := (S1, S2) ∈ N∗2, be a family of

spatial time-harmonizable processes, i.e.,

X
S
t =

∫ π

−π

eiωtdZS (ω) ,

such that Cov
(
dZS(ω1), dZ

S(ω2)
)

= fS (ω1, ω2) dω1dω2, where fS :=
(
f
S
s1,s2

)
s1,s2∈{1,...,S1}×{1,...,S2}

is the

Loève spectrum. Then

CS(t1, t2) := Cov
(
X

S
t1 ,X

S
t2

)
=

∫ π

−π

∫ π

−π

fS(ω1, ω2) e
i(ω1t1−ω2t2)dω1dω2.

Here CS(t1, t2) and fS(ω1, ω2) are S1 × S2 × S1 × S2-matrices, N∗ := {1, 2, . . . }. Notice that the process is
defined for each spatial locations s1, s2 and each time points (t1, t2).
A sufficient condition for time-harmonizability and the existence of a two-dimensional spectral density for the
discrete-time spatial second order random processes

{
XS

}
is given by the following condition∑

(t1,t2)∈Z2

∣∣∣CS (t1, t2)
∣∣∣ < ∞,

where |·| is a matrix norm. Then the Loève spectrum is a continuous function and it coincides with

fS (ω1, ω2) =
1

4π2

∑
(t1,t2)∈Z2

CS (t1, t2) e
−i(ω1t1−ω2t2).

Remark that the above definition does not include the stationary case as the Loève spectrum is two-
dimensional while the spectrum of a stationary process is one-dimensional.

2.2. Localized Loève spectrum

For the purpose of our application, the notion of harmonizable processes is not sufficient. Therefore, in this
section, we generalize the previous considerations by introducing the notion of spectrum for a spatial second
order process {XS} that is not necessarily time-harmonizable. We also introduce its estimator.
We define the (spatiotemporal) localized Loève spectrum of the process {XS} as

(

f
S
t1,t2(ω1, ω2) :=

1

4π2

t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

CS(k1, k2)e
−i(ω1k1−ω2k2) (2.1)

using a local rectangular time window centered at (t1, t2) with size 2N .
For any t1 and t2 we obtain that

CS(t1, t2) =
π2

N2

N−1∑
j1=−N

N−1∑
j2=−N

(

f
S
t1,t2

(
ωN
j1 , ω

N
j2

)
ei
(
ωN

j1
t1−ωN

j2
t2

)
, (2.2)

where wN
j := jπ

N , j = −N, . . . , N − 1 are the Fourier frequencies of the local rectangular time window.

When {XS
t } is a family of spatial time-harmonizable processes with spectrum fS(ω1, ω2) one can easily

verify that

(

f
S
t1,t2(ω1, ω2)

=
1

4π2

∫ π

−π

∫ π

−π

DN (ω′
1)DN (ω′

2)e
i
(
ω′

1t1−ω′
2t2

)
fS
(
ω1 + ω′

1, ω2 + ω′
2

)
dω′

1dω
′
2,

where DN (0) = 2N and DN (ω) = 2i sin(ωN)
eiω−1 otherwise. Furthermore, if∑

(t1,t2)∈Z2

∣∣∣CS (t1, t2)
∣∣∣ < ∞,

for any k1 and k2, then

lim
N→∞

(

f
S
t1,t2(ω1, ω2) = fS(ω1, ω2).
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2.3. The observations

In the following, we consider replicates {XS,r}, r ∈ N∗, of a spatial zero-mean second order process {XS}.
This means that the processes {XS,r} have the same distribution as {XS}. Here the process is not necessarily
time-harmonizable. From now on, we assume that the replicates are dependent, more precisely, that the family
of processes {XS,r}, r ∈ N∗, is nonstationary with respect to t and stationary with respect to r. Consequently,
we denote

CS(t1, t2) := Cov
(
X

S,1
t1 ,X

S,1
t2

)
= Cov

(
X

S,r
t1 ,X

S,r
t2

)
(2.3)

for any positive integer r, and
(

f
S
t1,t2(ω1, ω2) :=

1

4π2

t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

CS(k1, k2) e
−i(ω1k1−ω2k2). (2.4)

Then

CS(t1, t2) =
π2

N2

N−1∑
j1=−N

N−1∑
j2=−N

(

f
S
t1,t2

(
ωN
j1 , ω

N
j2

)
ei
(
ωN

j1
t1−ωN

j2
t2

)
,

where wN
j := jπ

N , j = −N, . . . , N − 1.
The r-th replicate is observed at time instants 0, . . . , T − 1 and at S1 × S2 different spatial locations. Hence

{XS,r} = {XS,r
t , t = 0, . . . , T − 1}

=
{
X

S,r
s,t , t = 0, . . . , T − 1, s ∈ {1, . . . , S1} × {1, . . . , S2}

}
,

where S = (S1, S2) ∈ N∗2. For the sake of simplicity we set X
S,r
t = 0S1×S2

(the null S1 × S2-matrix) for
t /∈ {0, . . . , T − 1}.

In the following, we study the asymptotic behavior of the localized Loève spectrum

(

f
S
t1,t2 (ω1, ω2). For that

purpose we introduce the rescaled spatiotemporal spectrum and we construct its estimator. All asymptotic
results are obtained as S1, S2, T,R go to ∞. The time window size 2N can be fixed or going to ∞.

2.4. Assumptions

To obtain the asymptotic results we assume the following conditions.

(L) Rescaling conditions. There exists a function f : [0, 1]6 × (−π, π]2 → C and positive constants L and Q
such that ∣∣fu1,u2,τ1,τ2

(ω1, ω2)− fu3,u4,τ3,τ4
(ω1, ω2)

∣∣
≤ L (∥u1 − u3∥+ ∥u2 − u4∥+ |τ1 − τ3|+ |τ2 − τ4|) (2.5)

for any u1, u2, u3, u4,∈ [0, 1]2, τ1, τ2 ∈ [0, 1] and ω1, ω2 ∈ (−π, π] and∣∣∣ (

f
S
s1,s2,t1,t2

(ω1, ω2)− fs̈1,s̈2,ẗ1,ẗ2(ω1, ω2)
∣∣∣ ≤ Q

(
1

S1
+

1

S2
+

1

T

)
, (2.6)

where si := (si,1, si,2), s̈i := (si,1/S1, si,2/S2), ẗi := ti/T, i = 1, 2 for N ≤ t1, t2 ≤ T −N . Inequality (2.6)
is assumed to be true for all S1, S2 and T large enough, and for n fixed or sufficiently large, as the case
may be.
Hereafter, fu1,u2,τ1,τ2

(ω1, ω2) is called the rescaled Loève spectrum

(SR) The replications {XS,r}, r ∈ N∗ have the same distribution and are stationary with respect to r.
(MR) Mixing property for the replicates: The family {XS,r}, r ∈ N∗, S ∈ N∗2, is α-mixing with respect to r and

such that one of the following two conditions holds:

(i) supt,S

∣∣∣XS,1
t

∣∣∣ < C almost surely for some finite C > 0 and
∑

κ αX(κ) < ∞,

(ii) supt,S E
(∣∣∣XS,1

t

∣∣∣4+δ)
< ∞ and

∑
κ αX(κ)δ/(4+δ) < ∞ for some δ > 0.

The mixing coefficients are defined as follows

αX(κ) := sup
r

sup
S

sup
A∈Fr(S)

B∈Fr+κ(S)

∣∣P(A ∩B)− P(A)P(B)
∣∣,

where Fr(S) := σ
{
X

S,q
s,t : q ≤ r, t ∈ Z and all locations s

}
and

Fr+κ(S) := σ
{
X

S,q
s,t : q ≥ r + κ, t ∈ Z and all locations s

}
.
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In order to state the asymptotic covariance of our estimator we consider an additional rescaling assumption,
which is a generalization of the condition (L) to the four-dimensional spectrum. Denote t := (t1, t2, t3, t4) ∈ Z4,
τ := (τ1, τ2, τ3, τ4) ∈ [0, 1]4 and ω := (ω1, ω2, ω3, ω4) ∈ (−π, π]4. Moreover, for sj ∈ N∗2 and uj ∈ [0, 1]2,

j = 1, . . . , 4, let s := (s1, s2, s3, s4) ∈ N∗8 and u := (u1, u2, u3, u4) ∈ [0, 1]8 . Under the stationary condition (SR)
the covariance

C
S,κ
s,t := Cov

(
Xκ+r

s1,t1
Xκ+r

s2,t2
, Xr

s3,t3
Xr

s4,t4

)
does not depend on r ≥ max{0,−κ}, for any κ ∈ Z. Then define

(

f
S,κ
s,t (ω) :=

1

16π4

t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

t3+N−1∑
k3=t3−N

t4+N−1∑
k4=t4−N

C
S,κ
s,k e

−i(ω1k1−ω2k2−ω3k3+ω4k4).

The rescaling assumption is as follows.

(LR) Rescaling condition for the replicates. There exist functions fκ : [0, 1]12× (−π, π]4 → C, κ ∈ N∗, and some
positive constants L and Q such that for each ui ∈ [0, 1]8, τi ∈ [0, 1]4, ω ∈ (−π, π]4, i = 1, 2 and each
κ ∈ N∗, ∣∣fκ

u1,τ1
(ω)− fκ

u2,τ2
(ω)
∣∣ ≤ L

4∑
j=1

(
∥uj,1 − uj,2∥+ |τj,1 − τj,2|

)
(2.7)

and ∣∣∣ (

f
S,κ
s,t (ω)− fκ

s̈,ẗ
(ω)
∣∣∣ ≤ Q

(
1

S1
+

1

S2
+

1

T

)
, (2.8)

where sj = (sj,1, sj,2), s̈j = (sj,1/S1, sj,2/S2), ẗj = tj/T, j = 1, 2, 3, 4 and for N ≤ t1, t2, t3, t4 ≤ T −N .
Furthermore, assume that ∑

κ∈Z

∣∣∣fκ
u,τ (ω

M
l )
∣∣∣ < ∞, (2.9)

for the Fourier frequencies ωM
l = (ωM

l1
, . . . , ωM

l4
) and ωM

li
= liπ

M , li = −M, . . . ,M − 1}, i = 1, . . . , 4, where
the integer M > 0 is fixed and N = nM . Inequality (2.8) is assumed to be true for all S1, S2 and T
sufficiently large, and for n fixed or sufficiently large, as the case may be.

Remark 2.1.

1. Under conditions (L) and (LR) the functions fu1,u2,τ1,τ2
(ω1, ω2) and fκ

u,τ (ω) are L-Lipschitz-continuous in
space and time components uniformly with respect to the frequencies ω1, . . . , ω4 and the shift κ between
replicates.

2. Identifiability. In condition (L), relation (2.6) is assumed to be true for all S1, S2 and T sufficiently large.
Hence, if fu1,u2,τ1,τ2

(ω1, ω2) exists then it is unique. Similarly, under condition (LR) the function fκ
u,τ (ω)

is unique.
3. When we assume that N → ∞, then the rescaled Loève spectrum fu1,u2,τ1,τ2

(ω1, ω2) does not depend on
N . Of course, if N is assumed to be fixed then fu1,u2,τ1,τ2

(ω1, ω2) may depend on N .

4. Example for condition (L). Let {XS} be a spatial time-harmonizable process with the Loève spectrum of

the form f
S
s1,s2(ω1, ω2) = AS(s1, s2)ϕ(ω1, ω2), where the function ϕ(ω1, ω2) is bounded, say |ϕ(ω1, ω2)| ≤ c,

c > 0, and ∣∣AS(s1, s2)−A(s̈1, s̈2)
∣∣ ≤ Q

c

(
1

S1
+

1

S2

)
for some (L/c)-Lipschitz-continuous function A : [0, 1]4 → C. Then assumption (L) is fulfilled with
fs̈1,s̈2,ẗ1,ẗ2(ω1, ω2) = A(s̈1, s̈2)ϕ(ω1, ω2). (See also [11])

5. The α-mixing function αX is a weak dependence measure. Hence, replicated processes {XS,r1} and
{XS,r2} that are close to each other, i.e. such that the distance κ := |r1 − r2| between replications is
small, can be dependent, while when κ is large, they are almost independent. The replicates are M -
dependent, M ≥ 1, if and only if αX(κ) = 0 for any κ ≥ M . This generalizes the modeling assumptions in
[9], where the replicates are assumed to be independent, that is αX(κ) = 0 for any κ ̸= 0. For properties
and examples of other dependence measures, we refer the reader to [12].

6. Gaussian framework. For pedagogical purposes, we present the results for a Gaussian process in Section 6.1
in the appendix. In this case, we do not need the mixing condition, and we replace the condition (LR) by
(LGR). Then we give an expression for the four-dimensional rescaled spectrum fκ

u,τ

(
ω
)
in terms of the

two-dimensional rescaled spectrum. See relation (6.3).

In the following, we provide the results in two cases: N fixed and N → ∞, that is n fixed and n → ∞ for
M fixed with N = nM . The integer M being defined below according to the frequency resolution. The case
N → ∞ denotes that we consider infinitely many time points around each instant t.
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2.5. Estimator of the rescaled Loève spectrum

In this section we introduce an estimation procedure for the rescaled Loève spectrum fu1,u2,τ1,τ2
(ω1, ω2). For

that purpose, we first define two kernel functions that we use for rescaling in space and time. To simplify the
presentation, let us consider two non-negative functions w,W : R → [0,∞) and two positive numbers h and ℏ.
We define

wu(s) :=
1

S1S2h2
w

(
u1 − s1/S1

h

)
w

(
u2 − s2/S2

h

)
,

and

Wτ (t) :=
1

Tℏ
W

(
τ − t/T

ℏ

)
where u = (u1, u2) ∈ [0, 1]2, s = (s1, s2) ∈ {1, . . . , S1} × {1, . . . , S2}, τ ∈ [0, 1] and t ∈ N. Notice that the kernel
function wu(s) depends on S and h, and Wτ (t) depends on T and ℏ. In the following, we always assume the
following condition on W (·) and w(·).

(KS) The kernel functions w(·) : R → [0,∞) and W (·) : R → [0,∞) are symmetric nonnegative with support

contained in [−1, 1] and such that
∫ 1

−1
w(u)du =

∫ 1

−1
W (u)du = 1. Moreover, they are piecewise Lipschitz-

continuous in the sense that there exist k, k′ ∈ N∗, −1 = υ1 < · · · < υk = 1 and −1 = τ1 < · · · < τk′ = 1
such that w(·) and W (·) are Lipschitz-continuous on each interval (υj , υj+1), 1 ≤ j ≤ k−1 and (τj′ , τj′+1),
1 ≤ j′ ≤ k′ − 1, respectively.

Note that under the condition (KS) the kernel functions w(·) and W (·) are bounded. It holds for instance for
rectangular and triangular kernels.

Now we define the dual-frequency periodogram of the r-th replicate for the spatial locations s1, s2 and the
instants t1, t2 at frequencies ω1, ω2 and over a time window of size 2N as

Irs1,s2,t1,t2 (ω1, ω2) :=
1

4π2
drs1,t1 (ω1) drs2,t2 (ω2),

where

drs,t (ω) :=

t+N−1∑
k=t−N

X
S,r
s,k e

−iωk =

N−1∑
k=−N

X
S,r
s,k+te

−iω(k+t)

is the discrete Fourier transform of the r-th replicate for the spatial location s around the instant t. Recall that
we set Xr

s,k = 0 for k /∈ {0, . . . , T − 1}.
Then the estimator of the local Loève spectrum is defined as the average of the dual-frequency periodograms
of replicates i.e.,

f̂s1,s2,t1,t2 (ω1, ω2) :=
1

R

R∑
r=1

Irs1,s2,t1,t2 (ω1, ω2) .

Finally, the estimator of the rescaled Loève spectrum fu1,u2,τ1,τ2
(ω1, ω2) is given by

f̃u1,u2,τ1,τ2
(ω1, ω2)

:=
∑
t1

∑
t2

∑
s1

∑
s2

Wτ1(t1)Wτ2(t2)wu1
(s1)wu2

(s2)f̂s1,s2,t1,t2 (ω1, ω2) . (2.10)

The rescaled coherence is defined as

ρu1,u2,τ1,τ2
(ω1, ω2) :=

∣∣fu1,u2,τ1,τ2
(ω1, ω2)

∣∣2
fu1,u1,τ1,τ1

(ω1, ω1) fu2,u2,τ2,τ2
(ω2, ω2)

, (2.11)

and its estimator is given by

ρ̃u1,u2,τ1,τ2
(ω1, ω2) :=

∣∣∣f̃u1,u2,τ1,τ2
(ω1, ω2)

∣∣∣2
f̃u1,u1,τ1,τ1

(ω1, ω1) f̃u2,u2,τ2,τ2
(ω2, ω2)

. (2.12)

Due to the limitation of the frequency resolution capacity in the real life experiment, in the sequel we consider
the convergence of the estimator f̃u1,u2,τ1,τ2

(ω1, ω2) for a finite number of Fourier frequencies ωM
l := lπ

M , −M ≤
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l ≤ M − 1, where M > 1 is some fixed integer. Furthermore, in order to ensure the identifiability of the
frequencies, we take the window size 2N equal to an integer multiple of M : N = nM .

This choice of modeling allows us to derive a more accessible asymptotic theory presented in Section 3.
Moreover, it is motivated by our real data application for which we typically consider a finite number of frequency
bands of interest. In particular, we consider the sets of Fourier frequencies Ωi :=

{
ωM
j : Li ≤ j ≤ Li + li − 1

}
,

for some li ≥ 1, i = 1, 2. Then the estimator is computed as an average over the frequencies

f̃u1,u2,τ1,τ2
(Ω1,Ω2) :=

1

l1l2

L1+l1−1∑
j1=L1

L2+l2−1∑
j2=L2

f̃u1,u2,τ1,τ2

(
ωM
j1 , ω

M
j2

)
. (2.13)

3. Main results

Below we state some asymptotic properties of our estimation procedure like convergence in quadratic mean and
asymptotic normality. All the proofs are deferred to Section 6.2 in the appendix.
From now on, any complex number z is treated as a vector of its real and imaginary parts, i.e., z = (ℜz,ℑz)′.

Theorem 3.1. (Convergence in quadratic mean)
Let M ≥ 1, u1, u2 ∈ (0, 1)2 and τ1, τ2 ∈ (0, 1) be fixed. Assume that the assumptions (L) and (MR) hold. Then

lim
R→∞

f̃u1,u2,τ1,τ2

(
ωM
l1 , ω

M
l2

)
= fu1,u2,τ1,τ2

(
ωM
l1 , ω

M
l2

)
in quadratic mean,

for the Fourier frequencies ωM
li

= liπ
M , li = −M, . . . ,M − 1, i = 1, 2, provided that N = nM as well as

h2S1, h
2S2, ℏ2T → ∞ and n2(h+ ℏ), n4R−1 → 0 as T, S1, S2, R → ∞, h, ℏ → 0 independently of the behavior of

n ≥ 1.

Below we express the asymptotic covariance matrix of the estimator f̃u1,u2,τ1,τ2
.

Proposition 3.1. Let M ≥ 1, ui ∈ (0, 1)2, τi ∈ (0, 1) and the Fourier frequencies ωM
li

be fixed, i = 1, 2, 3, 4.
Assume that the assumptions (SR) and (LR) hold. Then

lim
R→∞

RCov
(
f̃u1,u2,τ1,τ2

(
ωM
l1 , ω

M
l2

)
, f̃u3,u4,τ3,τ4

(
ωM
l3 , ω

M
l4

))
=
∑
κ∈Z

fκ
u,τ

(
ωM

l

)
,

provided that N = nM as well as h2S1, h
2S2, ℏ2T → ∞ and n4(h + ℏ) → 0 as T, S1, S2, R → ∞, h, ℏ → 0

independently of the behavior of n ≥ 1.

Before we formulate the multivariate central limit theorem we introduce some additional notation. Let

f :=

((
fu1,1,u2,1,τ1,1,τ2,1

(ω1,1, ω2,1)
)′

, . . . ,
(
fu1,k,u2,k,τ1,k,τ2,k

(ω1,k, ω2,k)
)′)′

,

and

f̃ :=

((
f̃u1,1,u2,1,τ1,1,τ2,1

(ω1,1, ω2,1)
)′

, . . . ,
(
f̃u1,k,u2,k,τ1,k,τ2,k

(ω1,k, ω2,k)
)′)′

,

where k is some positive integer, ui,j ∈ (0, 1)2, τi,j ∈ (0, 1), ωi,j = ωM
li,j

=
li,jπ
M , i = 1, 2 and j = 1, . . . , k.

Now we state the asymptotic normality of the estimator.

Theorem 3.2. Assume that the assumptions (L), (SR), (MR) and (LR) hold. Then

lim
R→∞

L
(√

R
(
f̃ − f

))
= N2k (0,Σ2k) ,

provided that
(i) either N = nM is a constant, T, S1, S2, R → ∞, h, ℏ → 0 with Rh−4(S−2

1 +S−2
2 ), Rℏ−4T−2, R(h2+ℏ2) → 0;

(ii) or N = nM → ∞, T, S1, S2, R → ∞, h, ℏ → 0 with Rh−4(S−2
1 + S−2

2 ), Rℏ−4T−2, Rn4(h2 + ℏ2) → 0, and
the additional condition

n

Tℏ

T−1∑
t=0

∣∣∣XS,1
si,t

∣∣∣ ≤ C (3.1)

almost surely, or

n

Tℏ

T−1∑
t=0

E

(∣∣∣XS,1
si,t

∣∣∣4+δ
)1/(4+δ)

≤ C (3.2)

for some finite C > 0 which does not depend on the locations. The elements of the covariance (2k × 2k)-matrix
Σ2k can be calculated from Proposition 3.1.
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Remark 3.1. When N → ∞, conditions (3.1) and (3.2) can be replaced by more subtle assumptions. For
the sake of clarity, this technical remark is detailed in the annexe. See conditions (ii) in Proposition6.1 in the
annexe and to the subsequent remarks.

Theorem 3.2 is crucial to study the behavior of f̃u1,u2,τ1,τ2
(Ω1,Ω2) given by the equation (2.13).

Corollary 3.1. Under conditions of Theorem 3.2, the estimator ρ̃ of the rescaled spatiotemporal coherence ρ,
defined respectively by (2.12) is asymptotically normal i.e.,

lim
R→∞

L
(√

R
(
ρ̃u1,u2,τ1,τ2

(ω1, ω2)− ρu1,u2,τ1,τ2
(ω1, ω2)

))
= N (0, γ2), (3.3)

where the Fourier frequencies ωi = ωM
li

with li ∈ {M, . . . ,M−1}, i = 1, 2 and provided that fu1,u1,τ1,τ1
(ω1, ω1)×

fu2,u2,τ2,τ2
(ω2, ω2) ̸= 0.

Here γ2 = (∇(ω1,ω2)
u1,u2,τ1,τ2)Σ6(∇(ω1,ω2)

u1,u2,τ1,τ2)
′, where ∇ denotes the gradient operator. The covariance 6 × 6 matrix

Σ6 is given in Theorem 3.2 for k = 3, τ1,1 = τ2,1 = τ1,3 = τ1, τ1,2 = τ2,2 = τ2,3 = τ2, u1,1 = u2,1 = u1,3 = u1,
u1,2 = u2,2 = u2,3 = u2, ω1,1 = ω2,1 = ω1,3 = ω1, and ω1,2 = ω2,2 = ω2,3 = ω2. Moreover,

∇(ω1,ω2)
u1,u2,τ1,τ2

=

(
−
∣∣fu1,u2,τ1,τ2

(ω1, ω2)
∣∣2(

fu1,u1,τ1,τ1
(ω1, ω1)

)2
fu2,u2,τ2,τ2,

(ω2, ω2)
, 0 ,

−
∣∣fu1,u2,τ1,τ2

(ω1, ω2)
∣∣2

fu1,u1,τ1,τ1
(ω1, ω1)

(
fu2,u2,τ2,τ2

(ω2, ω2)
)2 ,

0 ,
2ℜfu1,u2,τ1,τ2

(ω1, ω2)

fu1,u1,τ1,τ1
(ω1, ω1) fu2,u2,τ2,τ2

(ω2, ω2)
,

2ℑfu1,u2,τ1,τ2
(ω1, ω2)

fu1,u1,τ1,τ1
(ω1, ω1) fu2,u2,τ2,τ2

(ω2, ω2)

)′

.

Bootstrap approach

Using Corollary 3.1 one may construct confidence interval for the spatiotemporal dual-frequency coherence
ρu1,u2,τ1,τ2

(ω1, ω2). However, since the asymptotic variance γ2 depends on unknown parameters, it is in prac-
tice very difficult to estimate. Thus, we present below a bootstrap approach that allows to obtain consistent
confidence intervals for ρτ1,τ2,u1,u2

(ω1, ω2).

Let us recall that we have R replicates {X(r)} = {XS,r
s,t , t ∈ Z, s ∈ {1, . . . , S1} × {1, . . . , S2}}, r = 1, . . . , R.

The process
{
X

S,r
s,t

}
is stationary in r and nonstationary in t. We will bootstrap our observations in replicates

not in time. For that purpose we use the CBB (see [13]). The CBB is a modification of the Moving Block
Bootstrap method [14, 15], which allows to reduce bias of the bootstrap estimator. Below we present how to
adapt the CBB algorithm to our problem.
Let Bi, i = 1, . . . , R be the block of replicates from our sample

(
X(1), . . . ,X(R)

)
, that starts with replicate X(i)

and has the length b ∈ N, i.e.
Bi :=

(
X(i), . . . ,X(i+b−1)

)
.

If i+ b− 1 > R then the missing part of the block is taken from the beginning of the sample and we get

Bi =
(
X(i), . . . ,X(R),X(1), . . . ,X(b−R+i−1)

)
for i = R− b+ 2, . . . , R.

CBB algorithm

1. Choose a block size b < R. Then our sample
(
X(1), . . . ,X(R)

)
can be divided into l blocks of length b and

the remaining part is of length r, i.e. R = lb+ r, R = 0, . . . , b− 1.
2. From the set {B1, . . . , BR} choose randomly with replacement l + 1 blocks.
3. Join the selected l+1 blocks (B∗

1 , . . . , B
∗
l+1) and take the first R observations to get the bootstrap sample(

X∗(1), . . . ,X∗(R)
)
of the same length as the original one.

We apply the CBB to get bootstrap estimators of fu1,u2,τ1,τ2
(ω1, ω2) and ρu1,u2,τ1,τ2

(ω1, ω2) and finally to
be able to construct confidence intervals for these characteristics. We use the bootstrap algorithm described
above. The bootstrap version of f̃u1,u2,τ1,τ2

(ω1, ω2) is given by

f̃∗
u1,u2,τ1,τ2

(ω1, ω2)

:=
∑
t1

∑
t2

∑
s1

∑
s2

Wτ1(t1)Wτ2(t2)wu1
(s1)wu2

(s2)f̂
∗
s1,s2,t1,t2

(ω1, ω2) , (3.4)
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where

f̂∗
s1,s2,t1,t2

(ω1, ω2) :=
1

R

R∑
r=1

I∗,rs1,s2,t1,t2
(ω1, ω2) ,

I∗,rs1,s2,t1,t2
(ω1, ω2) :=

1

4π2
d∗,rs1,t1

(ω1) d
∗,r
s2,t2

(ω2),

and

d∗,rs,t (ω) :=

t+N−1∑
k=t−N

X∗,r
s,ke

−iωk.

Below we state the consistency of our bootstrap approach for the spatial time-varying dual-frequency coher-
ence function. The bootstrap estimator of the spatial coherence is defined as

ρ̃∗u1,u2,τ1,τ2
(ω1, ω2) :=

∣∣∣f̃∗
u1,u2,τ1,τ2

(ω1, ω2)
∣∣∣2

f̃∗
u1,u1,τ1,τ1

(ω1, ω1) f̃∗
u2,u2τ2,τ2

(ω2, ω2)
.

Theorem 3.3. Under conditions of Theorem 3.2 and assuming that b−1 +R−1b = o(1) the CBB is consistent
i.e.,

sup
x∈R

∣∣∣∣∣∣∣P ∗

√
R

ρ̃∗u1,u2,τ1,τ2
(ω1, ω2)−

(
E∗ℜ

(
f̃∗
u1,u2,τ1,τ2

(ω1, ω2)
))2

+
(
E∗ℑ

(
f̃∗
u1,u2,τ1,τ2

(ω1, ω2)
))2

E∗
(
f̃∗
u1,u1,τ1,τ1

(ω1, ω1)
)
E∗

(
f̃∗
u2,u2,τ2,τ2

(ω2, ω2)
)

 ≤ x


−P

(√
R
(
ρ̃u1,u2,τ1,τ2 (ω1, ω2)

)
− ρu1,u2,τ1,τ2 (ω1, ω2) ≤ x

)∣∣∣ p−→ 0 as R −→ ∞ (3.5)

for Fourier frequencies ωi = ωM
li

with li ∈ {M, . . . ,M − 1}, i = 1, 2.

Centering of ρ̃∗u1,u2,τ1,τ2,
(ω1, ω2) may seem surprising. One could expect to use simply E∗(ρ̃∗u1,u2,τ1,τ2,

(ω1, ω2)).
But in fact the spatial time-varying dual-frequency coherence function is a function of the rescaled spatiotem-
poral Loève spectrum and therefore to show convergence (3.5), one needs first to obtain bootstrap consistency

for f̃u1,u2,τ1,τ2
(ω1, ω2), then to generalize this result to a multidimensional case and finally to apply the delta

method (see Propositions 6.2 and 6.3 in the annexe).
While applying block bootstrap a natural question that appears concerns the choice of the block length. In
the case of stationary sequences this problem is well investigated (see [16]). It is well known that for the CBB
the optimal block length obtained by minimization of the mean squared error of the bootstrap estimator is
b = O(R1/3) (see Theorem 5.4 in [16]).

4. Real data application

We illustrate the application of our method on a dataset derived from an experiment in neuropsychology. It
aims at improving our understanding of the brain mechanisms involved in Visual Working Memory performance.
After a brief description of the scientific context and data, we demonstrate the usage of our methodology by
providing a visualization of the estimated spatiotemporal dual-frequency coherence and an estimation of the
dual-frequency functional connectivity networks.

4.1. Scientific context

Working Memory (WM) is an essential cognitive resource because it is strongly correlated with general cognitive
abilities. Its function is to maintain access to relevant information during a brief time-span, which enables a
person to perform activities such as navigation, communication, problem solving. . . Over the past 20 years there
has been an explosion of more specific research on Visual Working Memory (VWM). Following [17], Visual
Working Memory is an ”active maintenance of visual information to serve the needs of ongoing tasks”. There
are key issues at stake in describing and identifying sources of VWM limitation and variability, particularly from
the perspective of brain connectivity [18]. Brain connectivity describes how localized activity can be statistically
dependent from one part of the brain to another. In the neuroscience community, this is referred to as functional
connectivity [19].
In our data example, the study of these brain mechanisms is based on the analysis of EEG signals. In brief,
electrical currents generated in the brain by ensembles of neurons firing in a synchronized manner propagate
through the cerebral cortex to the scalp, where they are recorded by spatially localized EEG electrodes. These
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electrodes measure electric potentials over time, which represent the oscillations of the brain waves. Hence, the
study of functional connectivity can be addressed using coherence analysis. It has already been proved useful
in order to reveal interesting facts about Working Memory [20]. A challenging aspect is that these dynamic
functional connections may involve brain waves oscillatory components of different frequencies [21, 22]. In other
terms, bursts of high frequencies in some area of the brain could occur preferentially during specific phases of
low frequency activity in other areas.
It is worth noticing that electrical currents at the scalp surface are spatiotemporal phenomenon sampled at the
specific localization of the electrodes. We showed that our method is an appropriate tool for modeling such a
phenomenon because it consistently estimates the corresponding spatio-spectral characteristics.
In fact, neuroscientists are interested in studying certain specific frequency bands that relate to different brain
states and that can be interpreted in a meaningful way. More specifically, in the sequel, we consider the so-called
theta, alpha and beta frequency bands ([4, 8]-Hz, [8, 12]-Hz and [12, 20]-Hz, respectively) denoted as Ωθ, Ωα and
Ωβ .

4.2. Experimental details

Our real data comes from an experiment that consists of the following consecutive steps (an illustration is
provided in Section 6.3 in the appendix:

• Memory set

– Memorize: the subject is placed in front of a computer screen. An arrow appears on the screen and
the subject has 2 seconds to memorize its orientation and color.

– Retain: a blank screen appears for 0.3 seconds, then, for the next 0.1 seconds, multiple arrows appear
to knock out the immediate memory. Finally, a blank screen appears again for 0.9 seconds.

• Memory test: using a joystick, the subject has 1.7 seconds to reproduce the orientation and the color of
the arrow.

Notice that the subject answers about the color he remembers by selecting it from a color scale wrapped on a
circle (see Section 6.3 in the Annexe). Henceforth, we compute the VWM errors for both orientation and color
as angles between the truth and the subject’s answers. This results as a set of two-dimensional VWM error
measures denoted hereafter as {y(r) ∈ [0, 2π)

2
; r = 1, . . . , R}.

While the subject is performing these tasks, EEG traces are recorded using a Hydrocel GSN equipment with 129
electrodes that are placed on the subject’s scalp at specific spatial locations. These electrodes record the electric
potential (in micro-volts) over time with a sampling rate of 500 Hz. The subject performs this experiment
R = 2400 times.
In the following, we denote the set of replicated spatially localized EEG traces as {XS,r

t , s ∈ M, r = 1, . . . , R},
where M is the set of electrode coordinates in the two-dimensional plane.

Remark 4.1. The EEG electrodes are spatially localized in 3d space over a template of the human head.
Standard practice is to use projected coordinates on the 2d plane. All the information and code to obtain the 2d
layout associated with the Hydrocel GSN can be obtained from [23].

Remark 4.2. We developed our method based on realistic modeling assumptions for such real data applications:

1. Since we are interested in studying EEG connectivity and there is empirical evidence for correlations
between oscillatory components of brain waves at different frequencies (see [22]), we considered modeling
these data as some kind of harmonizable processes.

2. Along the experiment, EEGs corresponds to the electrical activity of sequence of different brain states,
rapidly changing from one state to another. For example, the brain states related to visual information
acquisition, memorization, joystick usage. . . Piecewise stationary models have been proved useful in such
regime/state switching situation [24, 25].

3. EEG signals represent a sample of a process that is inherently spatial, which justifies a spatial approach.
4. The test subject repeats many times the same experiment. This experiment has a precisely timed per-

formance of different tasks. This is taken into account by our model considering the same distribution of
replicates. We additionally introduce short-term dependencies between replicates to account for fatigue and
the effect of training.

5. [26] shows that the Gaussian behavior of EEG is violated most of the time during mental tasks. Therefore,
we do not assume Gaussianity in the main results.

6. We use the assumptions of uniform Lipschitz continuity which we find to be mathematically convenient,
while at the same time not violating fundamental properties of our real data.
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4.3. Statistical analysis

To illustrate the application of our method to real data, we proceed in three steps. We have replicated time
series associated with two covariates: the orientation and the color errors. Since our estimators are computed on
replicated observations, we need to cluster our replicates into meaningful subgroups according to these variables.
All replicated time series in a given subgroup will be used to estimate the corresponding spectral quantities.
Therefore, the first step of the analysis consists of unsupervised clustering of replicates according to the WVM
scores. The second step consists of visualizing the data in order to compare the corresponding spatial time-
varying dual-frequency coherence functions within each cluster, and finally the third step is to compare the
dual-frequency connectivity networks.

4.3.1. Step 1: clustering with toroidal mixture

Figure 1 shows the bidimensional angular errors for all replicates. Note that both orientation and color errors
are well centered around (0, 0), meaning that on average the subject has an unbiased assessment of angle and
color. We observe a seemingly more precise quality of memorization for colors than for orientations.
Our first step is to model the joint distribution of errors. Using the R package ”BAMBI” [27, 28] and considering
the weighted AIC criterion, our best fit is obtained using a two-component mixture of bivariate von Mises
distributions. It gives a satisfactory clustering, as shown in Figure 1. The first subgroup of replicates (colored
in red) can be interpreted as ’poor’ memorization scores, the second subgroup (colored in blue) as ’good’
memorization scores. The first subgroup contains approximately 10% of the total number of replicates.

Fig 1. Angular errors associated with each replicate; x-axis: orientation error; y-axis: color error. Red and blue colors identify the
subgroup resulting from unsupervised clustering.

4.3.2. Step 2: estimation of the spatial time-varying dual-frequency coherence

We can now proceed to the estimation of the spatial time-varying dual-frequency coherence functions for each
cluster based on formula (2.13). In Figure (2) we present the estimated spatial dual-frequency coherence for
frequency bands (Ωθ,Ωα) in the group of poor VWM scores ρ̃τ,τ,u1,u2

(Ωθ,Ωα) at time τ = 1.2s. The graph on
the left shows the location of u1 ∈ M. It is specified by the user. The graph on the right contains the output
of our software, i.e. a topographic map of the spatial coherence

{
ρ̃τ,τ,u1,u2

(Ωθ,Ωα) , u2 ∈ [0, 1]2
}
.
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Fig 2. Estimated spatial (Ωθ,Ωα) dual-frequency coherence function associated with poor VWM scores. On the left-hand side:
location of u1 (user-specified); on the right-hand side: the estimated spatial coherence for all spatial locations u2.

Remark 4.3. In this analysis and after we consider a size of the Fourier window of 0.5 seconds. The time
window was chosen as a rule of thumb. It is an actual research question in this context to choose a proper length
for the time window. It should be chosen small enough to avoid bias due to the nonstationarity and large enough
to get a suitable frequency resolution.

4.3.3. Step 3: estimation of the dual-frequency functional connectivity networks

Neuroscientists are interested in interpreting significant and sufficiently large coherence values. Hereafter, we
consider that coherence values passing above 0.3 are of neurophysiological interest. We use our bootstrap
approach to check whether the coherence values are above this reference value by constructing 95% left-sided
bootstrap confidence intervals following Section 3. This is done for each pairs of spatial locations (here restricted
to a subset of spatial locations of electrodes of interest) and for each time blocks. The block length for the CBB is
taken as the integer part of the cubic root of the number of replicates. Next, we construct adjacency matrices of
dual-frequency connectivity that refer to different spatial locations at given time points. From these matrices, we
construct a dynamic visualization of the network. The resulting networks of (Ωα,Ωβ) dual-frequency functional
connectivity at a time point of interest is shown in Figure 3. The graphs present the connectivity estimated from
the set of replicates related to poor (left side) and good (right side) scores. Blue lines are drawn between spatial
locations for which the lower limit of the bootstrap confidence interval for dual-frequency coherence passes over
the predefined threshold value of 0.3.
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Fig 3. Statistically and neurophysiologically significant functional connections at (Ωα,Ωβ) frequency bands associated with poor
(left graph) and with good memorization scores (right graph).

4.3.4. Conclusions on real data analysis

VWM involves sophisticated functional connections within different areas of the brain, in particular the visual
cortex and the prefrontal cortex appear to play fundamental roles [29, 30, 31, 32], the latter being involved in
encoding task-relevant information ([33, 34]). Interestingly, by examining the dynamics of dual-frequency con-
nectivity during the experiment, our method reveals that brain mechanisms associated with good memorization
show a significant correlation between oscillatory components of moderate (alpha) and high frequencies (beta)
within the prefrontal cortex during the ”memory set stage” (see, Section 4.2). This is illustrated in Figure 3
which captures the connectivity at a specific time moment during the memory stage. This observation appears
to be consistent with the current state of understanding of these brain mechanisms, and it provides novel insight
that this connectivity is noticeably between the alpha and beta frequency bands.

5. Conclusions

In this paper, we introduce spectral analysis for a novel model for replicated spatiotemporal processes that are
locally time-harmonizable. We propose a consistent estimation procedure for the rescaled spatial time-varying
Loève spectrum and the spatial time varying dual frequency coherence. We model dependency across replicated
observations and we proved the consistency of the circular block bootstrap. This method allows to obtain valid
confidence interval for inference. As an application example, we consider the analysis of replicated measurements
of EEG signals in a neuropsychology experiment. We demonstrated the ability of our method to provide a novel
way to visualize topographic maps of EEG voltage and to describe the dynamic dual-frequency functional
connectivity.
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6. Appendix

In the first section (Section 6.1) of this appendix, we provide results in the Gaussian framework as mentioned in
the Remark (2.1). Then, in the Section 6.2 we prove all the results presented in Section 3 and 6.1. In Section 6.3
we provide additional information about the real data experiment.

6.1. Gaussian framework

In this section the spatiotemporal random family
{
XS,r : r = 1, . . . , R

}
is assumed to be Gaussian for any

S ∈ N∗2 and any R ∈ N∗. Under the stationarity condition (SR), we have

Cov
(
X

S,κ+r
t1 ,X

S,r
t2

)
= Cov

(
X

S,κ+r′

t1 ,X
S,r′

t2

)
for any κ ∈ Z and for any positive integers r and r′ > −κ. Denote

CS,κ(t1, t2) := Cov
(
X

S,κ+r
t1 ,X

S,r
t2

)
(6.1)

and define

f̆
S,κ

t1,t2(ω1, ω2) :=
1

4π2

t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

CS,κ(k1, k2) e
−i(ω1k1−ω2k2). (6.2)

Then

CS,κ(t1, t2) =
π2

N2

N−1∑
j1=−N

N−1∑
j2=−N

f̆
S,κ

t1,t2

(
ωN
j1 , ω

N
j2

)
ei
(
ωN

j1
t1−ωN

j2
t2

)
,

where wN
j := πj

N , j = −N, . . . , N−1 are Fourier frequencies. Moreover,CS(t1, t2) = CS,0(t1, t2) and f̆
S

t1,t2 (ω1, ω2) =

f̆
S,0

t1,t2 (ω1, ω2).

In this Gaussian framework we replace conditions (LR) and (MR) by the following condition on f̆
S,κ

s1,s2,t1,t2
(ω1, ω2)

defined by relation (6.2).

(LGR) There exists some positive constant values L,Q > 0 and a family of functions fκ : [0, 1]6 × (−π, π]2 → C,
κ ∈ Z, such that ∣∣∣fκ

u1,u2,τ1,τ2
(ω1, ω2)− fκ

u3,u4,τ3,τ4
(ω1, ω2)

∣∣∣
≤ L (∥u1 − u3∥+ ∥u2 − u4∥+ |τ1 − τ3|+ |τ2 − τ4|)

for any u1, u2, u3, u4,∈ [0, 1]2, τ1, τ2 ∈ [0, 1] and ω1, ω2 ∈ (−π, π].∣∣∣f̆S,κ
s1,s2,t1,t2

(ω1, ω2)− fκ
s̈1,s̈2,ẗ1,ẗ2

(ω1, ω2)
∣∣∣ ≤ Q

(
1

S1
+

1

S2
+

1

T

)
,

where si = (si,1, si,2), s̈i = (si,1/S1, si,2/S2), ẗi = ti/T, i = 1, 2 for N ≤ t1, t2 ≤ T −N . In addition, assume
that ∑

κ∈Z

∣∣∣fκ
u1,u2,τ1,τ2

(
ωM
l1 , ω

M
l2

)∣∣∣2 < ∞

and

lim
R→∞

R−1/2
R∑

κ=−R

∣∣∣fκ
u1,u2,τ1,τ2

(
ωM
l1 , ω

M
l2

)∣∣∣ = 0

for ωM
li

= 2πli
M , li = −M, . . . ,M − 1, i = 1, 2.

Notice that the first part of the condition (LGR) is a generalization of the condition (L) for replicates in the
considered Gaussian case. Since the replicates are not necessarily independent, the replicate-κ-shifted rescaled
spatiotemporal Loève spectrum fκ is not necessarily null, and consequently this fact is reflected in the additional
superscript κ.

If the condition (LGR) is satisfied, then the condition (LR) is also satisfied with

fκ
u,t(ω) = fκ

u1,u3,τ1,τ3
(ω1, ω3)f

κ
u2,u4,τ2,τ4

(−ω2,−ω4)

+ fκ
u1,u4,τ1,τ4

(ω1,−ω4)f
κ
u2,u3,τ2,τ3

(−ω2, ω3). (6.3)

Theorem 6.1. Assume that conditions (GR), (SR) and (LGR) are fulfilled. Then the conclusions of Theo-
rem 3.1 and of Theorem 3.2 hold.
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6.2. Proofs

We start with properties of the kernel that are used later in the document to prove properties of our estimators.

6.2.1. Some properties of kernels

Let us recall that the kernel w(·) is bounded and piecewise Lipschitz and supp(w(·) ⊂ [−1, 1]. Thus, there are
k = kw ∈ N, −1 = υ1 < · · · < υk = 1 such that w(·) is Lipschitz on each interval (υj , υj+1). This includes the
rectangular kernel as well as the triangular kernel. Then

1

Sh

S∑
s=1

w

(
u− s/S

h

)
= 1 +O

(
1

Sh2

)
uniformly with respect to u such that h ≤ u ≤ 1 − h, provided that h < 0.5, S ∈ N∗, and Sh2 bounded away
from 0. We deduce that∑

s

wu(s) =

(
1 +O

(
1

S1h2

))(
1 +O

(
1

S2h2

))
= 1 +

1

h2
O
(

1

S1
+

1

S2

)
uniformly with respect to h ≤ u1, u2 ≤ 1−h, provided that h < 0.5, S1, S2 ∈ N∗, S1h

2 as well as S2h
2 bounded

away from 0.

Proof. First we can write

S∑
s=1

1

Sh
w

(
u− s/S

h

)
=

1

h

∫ 1

0

w
(u− v

h

)
dv +

1

h

S∑
s=1

∫ s
S

s−1
S

(
w

(
u− s/S

h

)
− w

(u− v

h

))
dv.

Next notice that for h ≤ u ≤ 1− h
1

h

∫ 1

0

w

(
u− v

h

)
dv = 1.

Moreover, there exists a constant c > 0 such that∣∣∣∣w(u− s/S

h

)
− w

(
u− v

h

)∣∣∣∣ ≤ c

Sh

for any h > 0, any S ∈ N∗, any s = 1, . . . , S, except a finite number that is bounded by kw and for any v such
that (s− 1)/S < v < s/S. The constant c and the bound kw do not depend on u, v, h and S. Furthermore in
any case we have ∣∣∣∣w(u− s/S

h

)
− w

(
u− v

h

)∣∣∣∣ ≤ 2 sup
x

w(x) < ∞.

Hence we get that

1

h

S∑
s=1

∫ s
S

s−1
S

(
w

(
u− s/S

h

)
− w

(
u− v

h

))
dv ≤ c

Sh2
+ kw × 2 supx w(x)

Sh
= O

(
1

Sh2

)
.

This completes the proof of the equalities.

6.2.2. Notation

From now on, for the sake of simplicity, when there is no possibility of confusion, we denote f̃u1,u2,τ1,τ2
(ω1, ω2)

by f̃1,2 (ω1, ω2), and fu1,u2,τ1,τ2
(ω1, ω2) by f1,2(ω1, ω2). Moreover, let us denote

d̃ri (ω) = d̃rui,τi
(ω) =

∑
t

∑
s

Wτi(t)wui
(s)

t+N−1∑
k=t−N

X
S,r
s,k e

−iωk,

where i = 1, 2. Then the estimator f̃R
1,2 (ω1, ω2) can be equivalently expressed as

f̃1,2 (ω1, ω2) =
1

R

R∑
r=1

Ĩru1,u2,τ1,τ2
(ω1, ω2) =

1

4π2R

R∑
r=1

d̃r1 (ω1) d̃r2 (ω2), (6.4)

where the space and time smoothed periodogram Ĩru1,u2,τ1,τ2
(ω1, ω2) is defined by

Ĩr1,2(ω1, ω2) = Ĩru1,u2,τ1,τ2
(ω1, ω2) :=

1

4π2
d̃r1 (ω1) d̃r2 (ω2). (6.5)
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6.2.3. Proof of Theorem 3.1

From Lemma 6.1 and Lemma 6.2 below we easily deduce Theorem 3.1.

Lemma 6.1. (Limit of the expectation)
Let u1, u2 ∈ (0, 1)2, τ1, τ2 ∈ (0, 1), ω1, ω2 ∈ [−π, π) and M ≥ 1 fixed. Under condition (L), the expectation

E
(
f̃1,2 (ω1, ω2)

)
does not depend on R. Moreover for ωM

li
= liπ

M , li = −M, . . . ,M − 1, i = 1, 2, we have

E
(
f̃1,2

(
ωM
l1 , ω

M
l2

))
−→ fu1,u2,τ1,τ2

(ωM
l1 , ω

M
l2 )

provided that N = nM as well as h2S1, h2S2, ℏ2T → ∞ and n2(h + ℏ) → 0 as T, S1, S2 → ∞, h, ℏ → 0
independently of the behavior of n ≥ 1 and R ≥ 1.

Proof. From the definitions of f̃1,2 (ω1, ω2), d̃
r
1(ω1) and d̃r2(ω2), we have

E
(
f̃1,2 (ω1, ω2)

)
=

1

4π2R

R∑
r=1

E
(
d̃r1 (ω1) d̃r2 (ω2)

)
=

1

4π2R

R∑
r=1

∑
t1

∑
t2

∑
s1

∑
s2

Wτ1(t1)Wτ2(t2)wu1
(s1)wu2

(s2)

×
t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

E
(
X

S,r
s1,k1

X
S,r
s2,k2

)
e−i(ω1k1−ω2k2).

From assumption (SR) and relation (2.4) we have

E
(
X

S,r
s1,k1

X
S,r
s2,k2

)
=

π2

N2

N−1∑
j1=−N

N−1∑
j2=−N

f̆
S
s1,s2,k1,k2

(
ωN
j1 , ω

N
j2

)
ei(ω

N
j1

k1−ωN
j2

k2),

where ωN
j = jπ

N and we deduce that E
(
f̃1,2 (ω1, ω2)

)
does not depend on R as well as that

E
(
f̃1,2 (ω1, ω2)

)
=

1

4N2

∑
t1

∑
t2

∑
s1

∑
s2

Wτ1(t1)Wτ2(t2)wu1
(s1)wu2

(s2)

×
t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

N−1∑
j1=−N

N−1∑
j2=−N

f̆
S
s1,s2,k1,k2

(
ωN
j1 , ω

N
j2

)
ei(ω

N
j1

k1−ωN
j2

k2)e−i(ω1k1−ω2k2).

However, the assumption (L) ensures that

f̆
S
s1,s2,k1,k2

(
ωN
j1 , ω

N
j2

)
= fs̈1,s̈2,k̈1,k̈2

(
ωN
j1 , ω

N
j2

)
+O

(
S−1
1 + S−1

2 + T−1
)

= fu1,u2,τ1,τ2
(ωN

j1 , ω
N
j2 ) +O

(
S−1
1 + S−1

2 +NT−1 + h+ ℏ
)

for |τi − k̈i| ≤ ℏ+ N
T and ∥ui − s̈i∥ ≤ h, i = 1, 2. Since the supports of the rescaling kernels w(·) and W (·) are

contained in [-1,1], we obtain that

E
(
f̃1,2 (ω1, ω2)

)
=
∑
t1

∑
t2

∑
s1

∑
s2

Wτ1(t1)Wτ2(t2)wu1
(s1)wu2

(s2)

× 1

4N2

t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

N−1∑
j1=−N

N−1∑
j2=−N

(
fu1,u2,τ1,τ2

(ωN
j1 , ω

N
j2 )

+O
(
S−1
1 + S−1

2 +NT−1 + h+ ℏ
) )

ei(ω
N
j1

−ω1)k1e−i(ωN
j2

−ω2)k2 .

Notice that the O(·) does not depend on t1, t2, s1, s2, k1, k2, j1, j2. Using the fact that
∑N−1

k=−N e
iπjk
N = 0 for

j ̸= 0 mod 2N and N = nM with n,M ∈ N∗, M being fixed, we deduce that

E
(
f̃1,2
(
ωM
l1 , ω

M
l2

))
=
(
1 +O

(
S−1
1 h−2 + S−1

2 h−2 + T−1ℏ−2
))

×
(
fu1,u2,τ1,τ2

(
ωM
l1 , ω

M
l2

)
+N2O

(
S−1
1 + S−1

2 +NT−1 + h+ ℏ
))

for 2N
T +ℏ ≤ τ1, τ2 ≤ 1−ℏ− 2N−1

T and l1, l2 = −M, . . . ,M−1, which concludes the proof of the lemma, noticing

that n2S−1
i = n−2 × (n2h)2 × h−2S−1

i and n3T−1 = n−1 × (n2ℏ)2 × ℏ−2T−1. .
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Then we can easily determine the rate of convergence.

Corollary 6.1. (Rate of convergence for the bias)
Let u ∈ (0, 1)2, τi ∈ (0, 1), ωM

li
= liπ

M , li = −M, . . . ,M − 1, i = 1, 2 and M ≥ 1 fixed. Under condition (L), we
have

lim
R→∞

√
R
(
E
(
f̃1,2

(
ωM
l1 , ω

M
l2

))
− fu1,u2,τ1,τ2

(
ωM
li , ω

M
li

))
= 0

provided that N = nM as well as Rh−4(S−2
1 +S−2

2 ), Rℏ−4T−2, Rn4(h2+ℏ2) → 0 as R, T, S1, S2 → ∞, h, ℏ → 0,
independently of the behavior of n > 1.

This is a direct consequence of the proof of Lemma 6.1, noticing that Rn4S−2
i = Rh−4S−2

i ×Rn4h2×R−1h2

and Rn6T−2 = (Rn)−2 × (Rn4ℏ2)2 ×Rℏ−4T−2.

Lemma 6.2 (Bound for the variance). Assume that the mixing assumption (MR) is satisfied. Then

Var
(
f̃1,2 (ω1, ω2)

)
≤ cN4

R

where c is some positive constant independent of R, T, S,N, τ1, τ2, u1u2, ω1, ω2.

Proof. First

Var
(
f̃1,2 (ω1, ω2)

)
=

1

R2

R∑
r1=1

R∑
r2=1

Cov
(
Ĩr11,2(ω1, ω2), Ĩ

r2
1,2(ω1, ω2)

)
.

From assumption (MR)(ii) we have

16π4
∣∣∣Cov (Ĩr11,2(ω1, ω2), Ĩ

r2
1,2(ω1, ω2)

)∣∣∣ = ∣∣∣Cov (d̃r11 (ω1) d̃
r1
2 (ω2), d̃

r2
1 (ω1) d̃

r2
2 (ω2)

)∣∣∣
≤ c

∑
s1

∑
s2

∑
s3

∑
s4

Wτ1(t1)Wτ2(t2)Wτ3(t3)Wτ4(t4)

×wu1
(s1)wu2

(s2)wu3
(s3)wu4

(s4)N
4α

δ
4+δ

X (|r1 − r2|).

Then, due to the properties of the window kernels w(·) and W (·), we conclude that

Var
(
f̃1,2 (ω1, ω2)

)
≤ c

R2

R∑
r1=1

R∑
r2=1

N4α
δ

4+δ

X (|r1 − r2|)

≤ cN4

R

R−1∑
κ=−R+1

(
1− |κ|

R

)
α

δ
4+δ

X (|κ|).

The lemma is proved under condition (MR)(ii). Following the same reasoning one may easily prove the lemma
under condition (MR)(i).

6.2.4. Proof of Proposition 3.1

Proof. First notice that

R2Cov
(
f̃1,2 (ω1, ω2) , f̃3,4 (ω3, ω4)

)
=

1

16π4

R∑
r1=1

R∑
r2=1

Cov
(
d̃r11 (ω1) d̃

r1
2 (ω2), d̃

r2
3 (ω3) d̃

r2
4 (ω4)

)
. (6.6)

Let κ = r1 − r2. Then, from the stationarity with respect to the replicates (condition (SR)) we have

Cov
(
d̃r11 (ω1) d̃

r1
2 (ω2), d̃

r2
3 (ω3) d̃

r2
4 (ω4)

)
=
∑
t1

· ·
∑
t4

∑
s1

· ·
∑
s4

4∏
j=1

Wτj (tj)wuj
(sj)

×
t1+N−1∑
k1=t1−N

· ·
t4+N−1∑
k4=t4−N

CS,κ
s (k) e−i(ω1k1−ω2k2−ω3k3+ω4k4)

=
π4

N4

∑
t1

· ·
∑
t4

∑
s1

· ·
∑
s4

4∏
j=1

Wτj (tj)wuj
(sj)

t1+N−1∑
k1=t1−N

· ·
t4+N−1∑
k4=t4−N

N−1∑
l1=−N

· ·
N−1∑

l4=−N

f̆
S,κ
s,k

(
ωN

l

)
× ei(ω

N
l1
−ω1)k1e−i(ωN

l2
−ω2)k1e−i(ωN

l3
−ω3)k3ei(ω

N
l4
−ω4)k4 ,
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where k = (k1, k2, k3, k4), ω
N
l = (ωN

l1
, . . . , ωN

l4
), ωN

li
= liπ

N . Since condition (LR) is fulfilled and N = nM with
n,M ∈ N∗, we deduce that

16π4Cov
(
d̃r11
(
ωM
p1

)
d̃r12
(
ωM
p2

)
, d̃p2

3

(
ωM
p3

)
d̃r24
(
ωM
l4

))
=
(
1 +O

(
S−1
1 h−2 + S−1

2 h−2 + T−1ℏ−2
))

×
(
fκ
u,τ

(
ωM

p

)
+N4O

(
S−1
1 + S−1

2 +NT−1 + h+ ℏ
))

for the Fourier frequencies ωM
pi

:= piπ
M , pi = −M, . . . ,M −1, i = 1, . . . , 4. Notice that n4S−1

i = (n2h)2×h−2S−1
i

and n5T−1 = n−3 × (n4ℏ)2 × ℏ−2T−1. Then the use of relation (2.9) in the condition (LR) ends the proof of
the proposition.

Remark Since the observed process {XS
t } is real-valued, we have f̃1,2 (ω1, ω2) = f̃1,2 (−ω1,−ω2). Hence

ℜf̃1,2 (ω1, ω2) =
1

2

(
f̃1,2 (ω1, ω2) + f̃1,2 (−ω1,−ω2)

)
and

ℑf̃1,2 (ω1, ω2) =
1

2i

(
f̃1,2 (ω1, ω2)− f̃1,2 (−ω1,−ω2)

)
.

Then we can compute the components of the covariance matrix of f̃1,2 (ω1, ω2):

Var
(
ℜf̃1,2 (ω1, ω2)

)
=

1

2

(
Var

(
f̃1,2 (ω1, ω2)

)
+ ℜCov

(
f̃1,2 (ω1, ω2) , f̃1,2 (−ω1,−ω2)

))
,

Cov
(
ℜf̃1,2 (ω1, ω2) ,ℑf̃1,2 (ω1, ω2)

)
=

1

2
ℑCov

(
f̃1,2 (ω1, ω2) , f̃1,2 (−ω1,−ω2)

)
,

Var
(
ℑf̃1,2 (ω1, ω2)

)
=

1

2

(
Var

(
f̃1,2 (ω1, ω2)

)
−ℜCov

(
f̃1,2 (ω1, ω2) , f̃1,2 (−ω1,−ω2)

))
.

These formulas are used to derive the form of the covariance matrix of the limit distribution of
√
R f̃1,2 (ω1, ω2)

as R → ∞.

6.2.5. Proof of Theorem 3.2

Theorem 3.2 is a direct application of the Cramér-Wold device for the univariate asymptotic normality result,
which we derive from Corollary 6.1 and from Proposition 6.1 shown below.

Proposition 6.1.
Let assumptions (SR), (MR) and (LR) hold. Then

lim
R→∞

L
(√

R
(
f̃1,2(ω1, ω2)− E

(
f̃1,2(ω1, ω2)

)))
= N2 (0,Σ2) ,

for any Fourier frequencies ωi = ωM
li

= liπ
M , i = 1, 2, provided that M is fixed and

(i) either n is constant, T, S1, S2, R → ∞, h, ℏ → 0 with h2S1, h
2S2, ℏ2T → ∞;

(ii) or n, T, S1, S2, R → ∞, h, ℏ → 0 with h2S1, h
2S2, ℏ2T → ∞ and n4(h+ ℏ) → 0 and

sup
τiT/2≤t≤2τiT

t+N−1∑
k=t−N

∣∣∣XS,1
si,k

∣∣∣ ≤ C (6.7)

almost surely, or

sup
τiT/2≤t≤2τiT

t+N−1∑
k=t−N

E

(∣∣∣XS,1
si,k

∣∣∣4+δ
)1/(4+δ)

≤ C (6.8)

for some δ > 0 and for some finite constant C > 0. Here Σ2 = Σ(ω1,ω2)
τ1,τ2,u1,u2

is the limit covariance matrix of size

(2× 2) (see Proposition 3.1.)
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Proof. To prove the convergence in distribution of the two-dimensional random vector

√
R
(
f̃1,2 (ω1, ω2)− E

(
f̃1,2 (ω1, ω2)

))
we use the Cramér-Rao device. We show the asymptotic normality of

√
R (ζR − E (ζR)), where

ζR = a1ℜf̃1,2 (ω1, ω2) + a2ℑf̃1,2 (ω1, ω2)

for all real numbers a1 and a2. For the sake of simplicity, we take a1 = 1 and a2 = 0. Thus,

ζR = ℜf̃1,2 (ω1, ω2) =
1

R

R∑
r=1

WR,r,

where WR,r is the triangular random array of the form WR,r := (2π)−2ℜ
(
d̃r1 (ω1) d̃r2 (ω2)

)
, for r = 1, . . . , R,

R = 1, 2, . . . . Recall that T , S, ℏ and h depend on R. Moreover, since the replicates {XS,r
t }, r = 1, . . . , R,

have the same distribution, the random variables WR,r, r = 1, . . . , R have the same distribution. To get the

asymptotic normality of
√
R (ζR − E (ζR)) under assumption (MR)(ii), we apply Theorem 3.3.1 from [35] (see

also [36]) and hence we verify the following conditions:

(i) supR E
(
|WR,1 − E (WR,1)|2+δ′

)
< ∞, for some δ′ > 0;

(ii) lim supR→∞
∑R−1

k=−R+1 αWR
(k)δ

′/(2+δ′) < ∞;

(iii) R−1Var
(∑R

r=1 WR,r

)
−→ σ2 as R → ∞, where σ2 is the (1,1)-component of the variance 2 × 2-matrix

Σ2.

Recall that

d̃ri (ω) =
∑
t

∑
s

Wτi(t)wui
(s)

t+N−1∑
k=t−N

X
S,r
s,k e

−iωk.

The relation (i) is a direct consequence of the Hölder inequality, the triangular inequality for metric and the

assumption on the moment of order 4 + δ of X
S,r
si,ki

. Furthermore, for each R we have that αWR
(k) ≤ αX(k)

and hence the relation (ii) is a consequence of the assumption
∑

k αX(k)δ/(4+δ) < ∞. Finally, thanks to Propo-
sition 3.1, the condition (iii) is fulfilled. The proof under assumption (MR)(i) follows the same reasoning.

Remarks
1) In conditions (6.7) and (6.8), when N = nM → ∞, we essentially need that ti ≥ τiT/2. The inequality
ti ≤ 2τiT is added to avoid considering any ti between τiT/2 and ∞.
2) To state Theorem (3.2), it suffices to follow the proof of Proposition (6.1), noticing that the support of
the function ti 7→ Wτi(ti) is contained in [(τi − ℏ)T, (τi + ℏ)T ]. Moreover, for N/T + ℏ ≤ τi ≤ 1 − N/T − ℏ,
ti ∈ [(τi − ℏ)T, (τi + ℏ)T ] and ki ∈ [ti −N, ti +N − 1], we have 0 ≤ ki ≤ T − 1.

3) As an example, consider that |XS,1
s,t | ≤ ln(t)−1 for t > 1 a.s. Let 0 < τ < 1 and t ≥ τT/2 ≥ N + 1 > 1. Then

if T > 4/τ2 and 1 < N < min{lnT, τT/2} − 1,

t+N−1∑
k=t−N

∣∣∣XS,1
s,k

∣∣∣ ≤ 2N ln
(τT

2
−N

)−1

≤ 4,

and condition (6.7) is satisfied.

6.2.6. Proof of Corollary 3.1

Proof. We apply the delta method (see e.g. [37]) with the function ϕ : ((0,∞] × R)2 × R2 → R defined by

ϕ(x1, y1, x2, y3, x3, y3) :=
x2
3+y2

3

x1x2
. Indeed,

ρ̃u1,u2,τ1,τ2
(ω1, ω2) = ϕ

(
f̌
)
,

where

f̌ =

((
f̃u1,u1,τ1,τ1

(ω1, ω1)
)′

,
(
f̃u2,u2,τ2,τ2

(ω2, ω2)
)′

,
(
f̃u1,u2,τ1,τ2

(ω1, ω2)
)′)′

.
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Notice that f̃uj ,uj ,τj ,τj
(ωj , ωj) , j = 1, 2 are real and non-negative. Since the gradient of the function ϕ is equal

to

∇ϕ(x1, y1, x2, y2, x3, y3) =

(
−2(x2

3 + y23)

x2
1x2

, 0,
−2(x2

3 + y23)

x1x2
2

, 0,
2x3

x1x2
,
2y3
x1x2

)′

,

Corollary 3.1 is a direct consequence of Theorem 3.1 in [37] and Theorem 3.2.

6.2.7. Proof of Theorem 3.3

Below we state bootstrap consistency and its multivariate version, which are direct application of Theorem 3.2
from [16]. Recall that by P ∗ and E∗ we denote the conditional probability and conditional expectation given
the sample.
Let

f̃
∗
=
(
f̃∗
u11,u21,τ11,τ21

(ω11, ω21) , . . . , f̃
∗
u1r,u2r,τ1r,τ2r

(ω1r, ω2r)
)′

and

E∗(f̃∗)
=
(
E∗(f̃∗

u11,u21,τ11,τ21
(ω11, ω21)

)
, . . . ,E∗(f̃∗

u1r,u2r,τ1r,τ2r
(ω1r, ω2r)

))′
for Fourier frequencies ωi,j = ωM

li,j
with li,j ∈ {M, . . . ,M − 1}, i = 1, 2, j = 1, . . . , r.

Note that the bootstrap versions f̃∗
u11,u21,τ11,τ21

(ω11, ω21) , . . . , f̃
∗
u1r,u2r,τ1r,τ2r

(ω1r, ω2r) are constructed using the

same bootstrap blocks (see step 2 of the CBB algorithm). Moreover, let f̃∗,R
1,2 (ω1, ω2) be the bootstrap counterpart

of (6.4).

Proposition 6.2. Under assumptions of Theorem 3.2 and assuming that b−1 + R−1b = o(1) the CBB is
consistent i.e.,

sup
x∈R2

∣∣∣P ∗
(√

R
(
f̃∗
1,2 (ω1, ω2)− E∗(f̃∗

1,2(ω1, ω2)
))

≤ x
)

−P
(√

R
(
f̃1,2 (ω1, ω2)− E

(
f̃1,2(ω1, ω2)

))
≤ x

)∣∣∣ p−→ 0 as R −→ ∞,

for ωi = ωM
li

with li ∈ {M, . . . ,M − 1}, i = 1, 2.

Proposition 6.3. Under conditions of Proposition 6.2

sup
x∈R2r

∣∣∣P ∗
(√

R
(
f̃
∗
− E∗(f̃∗))

≤ x
)
− P

(√
R
(
f̃ − f

)
≤ x

)∣∣∣ p−→ 0 as R −→ ∞.

Then Theorem 3.3 is almost a direct application of Theorem 4.1 in [16] for the smooth function ϕ(x1, y1, x2, y3, x3, y3) =
x2
3+y2

3

x1x2
and the sequence

1/(2π)2d̃ru1,τ1
(ω1) d̃ru2,τ2

(ω2), r = 1, . . . , R. We should just be aware that the mentioned theorem cannot be
applied directly and requires a small adjustment. Indeed, the considered estimator is assumed to be unbiased
in [16]. This condition does not hold in our context (see equation (6.6) given above in the proof of Lemma 6.1),
but one can easily show that the conclusion of Theorem 4.1 in [16] are yet valid under the conditions of Theo-
rem 3.3.

6.2.8. Proof of Theorem 6.1

Recall that Lemma 6.1 gives us the convergence to 0 of the bias of the estimator. Below we study the behavior
of the covariance and the asymptotic normality of the estimator in the Gaussian framework. This restrictive
framework allows us to avoid the mixing assumption.

In the following for ui ∈ (0, 1)2, τi ∈ (0, 1) and ωi ∈ [−π, π), i = 1, . . . , 4, denote as

f̃1,2 := f̃u1,u2,τ1,τ2
(ω1, ω2) and f̃3,4 := f̃u3,u4,τ3,τ4

(ω3, ω4).
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Asymptotic behavior of the covariance and consistency

First notice that

R2Cov
(
f̃1,2 (ω1, ω2) , f̃3,4 (ω3, ω4)

)
=

1

16π4

R∑
r1=1

R∑
r2=1

Cov
(
d̃r11 (ω1) d̃

r1
2 (ω2), d̃

r2
3 (ω3) d̃

r2
4 (ω4)

)
.

Using the fact that the observations are Gaussian we know that

Cov
(
d̃r11 (ω1) d̃

r1
2 (ω2), d̃

r2
3 (ω3) d̃

r2
4 (ω4)

)
= E

(
d̃r11 (ω1) d̃

r2
3 (ω3)

)
E
(
d̃r12 (ω2)d̃

r2
4 (ω4)

)
+E

(
d̃r11 (ω1) d̃

r2
4 (ω4)

)
E
(
d̃r12 (ω2)d̃

r2
3 (ω3)

)
.

Additionally, from the stationarity condition (SR) with respect to the replications, we have

E
(
d̃r11 (ω1) d̃

r2
3 (ω3)

)
=
∑
t1

∑
t3

∑
s1

∑
s3

Wτ1(t1)Wτ3(t3)wu1
(s1)wu3

(s3)

× π2

N2

t1+N−1∑
k1=t1−N

t3+N−1∑
k3=t3−N

N−1∑
j1=−N

N−1∑
j3=−N

f̆
Sr1−r2
s1,s3,k1,k3

(
ωN
j1 , ω

N
j3

)
ei(ω

N
j1

−ω1)k1e−i(ωN
j3

−ω3)k3 .

Moreover, for N
T ≤ τi − ℏ− N

T ≤ ki

T ≤ τi + ℏ+ N−1
T ≤ 1− N

T , i = 1, 3, under the condition (LGR), we have

f̆
S,r1−r2
s1,s3,k1,k2

(ωj1 , ωj3) = fr1−r2
u1,u2,τ1,τ2

(ωj1 , ωj2) +O
(
S−1
1 + S−1

2 +NT−1 + h+ ℏ
)
.

Then, for ℏ− 2N
T ≤ τi ≤ ℏ+ 2N−1

T and ωi = ωM
li

= liπ
M , i = 1, 3, we get that

1

4π2
E
(
d̃r11 (ω1) d̃

r2
3 (ω3)

)
=
∑
t1

∑
t3

∑
s1

∑
s3

Wτ1(t1)Wτ3(t3)wu1
(s1)wu3

(s3)

×
(
fr1−r2
u1,u3,τ1,τ3

(ω1, ω3) +N2O
(
S−1
1 + S−1

2 +NT−1 + h+ ℏ
))

=
(
1 +O

(
S−1
1 h−2

))2 (
1 +O

(
S−1
2 h−2

))2 (
1 +O

(
T−1ℏ−2

))2
×
(
fr1−r2
u1,u3,τ1,τ3

(ω1, ω3) +N2O
(
S−1
1 + S−1

2 +NT−1 + h+ ℏ
))

.

Consequently,

1

16π4

R∑
r1=1

R∑
r2=1

E
(
d̃r11 (ω1) d̃

r2
3 (ω3)

)
× E

(
d̃r12 (ω2)d̃

r2
4 (ω4)

)
=
(
1 +O

(
S−1
1 h−2

)) (
1 +O

(
S−1
2 h−2

)) (
1 +O

(
T−1ℏ−2

))
×

R−1∑
κ=−R+1

(
R− |κ|

)
×
(
fκ
u1,u3,τ1,τ3

(ω1, ω3) +N2O
(
S−1
1 + S−1

2 +NT−1 + h+ ℏ
))

×
(
fκ
u2,u4,τ2,τ4

(ω2, ω4) +N2O
(
S−1
1 + S−1

2 +NT−1 + h+ ℏ
))

for ℏ− 2N
T ≤ τi ≤ ℏ+ 2N−1

T and ωi = ωM
li

= liπ
M , i = 1, 2, 3, 4.

Then using Lemma 6.1 we obtain the consistency of the estimator f̃1,2 (ω1, ω2). Moreover, we get the convergence

of RCov
(
f̃1,2 (ω1, ω2) , f̃3,4 (ω3, ω4)

)
. This concludes the proof.

Proof of the asymptotic normality

By Lemma P4.5 in [38], it remains to prove that every cumulant of order p ≥ 3 of
√
R f̃ converges to 0:

lim
R→∞

Rp/2Cum
(
f̃1,2(ω1, ω2), . . . , f̃2p−1,2p(ω2p−1, ω2p)

)
= 0,
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where

f̃2i−1,2i(ω2i−1, ω2i) =
1

4π2R

R∑
r=1

d̃r2i−1d̃
r
2i.

and

d̃rj =
∑
t

∑
s

Wτj (t)wuj
(s)

t+N−1∑
k=t−N

X
S,r
s,k e

−iωjk.

From the multilinearity of the cumulants, we have

(4π2R)p Cum
(
f̃1,2(ω1, ω2), . . . , f̃2p−1,2p(ω2p−1, ω2p)

)
=

R∑
r1=1

· · ·
R∑

rp=1

Cum
(
d̃r11 d̃r12 , . . . , d̃

rp
2p−1d̃

rp
2p

)

Denote di,1 := d̃ri2i−1 and di,2 := d̃ri2i. Thanks to [39], we have

Cum
(
d̃r11 d̃r12 , . . . , d̃

rp
2p−1d̃

rp
2p

)
=
∑
ν

Cum
(
di,l : (i, l) ∈ ν1

)
× · · · × Cum

(
di,l : (i, l) ∈ νq

)
,

where the summation is over all the indecomposable partitions ν = ν1∪· · ·∪νqν of Table 1. See also Theorem 2.3.2

(1,1) (1,2)
...

...
(p,1) (p,2)

Table 1

in [38] for the definition of indecomposable partitions of a table. Thus, we have

(4π2R)p Cum
(
f̃1,2(ω1, ω2), . . . , f̃2p−1,2p(ω2p−1, ω2p)

)
=
∑
ν

R∑
r1=1

· · ·
R∑

rp=1

Cum
(
di,l : (i, l) ∈ ν1

)
× · · · × Cum

(
di,l : (i, l) ∈ νqν

)
. (6.9)

Since the random array
(
di,l : i = 1, . . . , p; l = 1, 2

)
is centered Gaussian, the cumulant Cum

(
di,l : (i, l) ∈ νk

)
is

null except when the set νk has only two elements. Hence the terms of the sum (6.9) that are not necessarily
null correspond to the partitions ν for which all their components νk, k = 1, . . . , q, have exactly two elements.
In this case q = p. The number of such partitions is bounded by (2p)!.
Besides we know that

Cum
(
di1,l1 , di2,l2

)
= Cov

(
di1,l1 , di2,l2

)
= E

(
di1,l1di2,l2

)
=
∑
t1

∑
t2

∑
s1

∑
s2

Wτ2i1−2+l1
(t1)Wτ2i2−2+l2

(t2)wu2i1−2+l1
(s1)wu2i2−2+l2

(s2)

×
t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

ei
(
−(−1)l1+1ωi1

k1+(−1)l2+1ωi2
k2

)
E
(
X

ri1
s1,k1

X
ri2
s2,k2

)
for 2N

T + ℏ ≤ τ2i1−2+l1 , τ2i2−2+l2 ≤ 1− ℏ− 2N−1
T . However,

E
(
X

ri1
s1,k1

X
ri2
s2,k2

)
=

π2

N2

N−1∑
g1=−N

N−1∑
g2=−N

f̆
S,ri1−ri2
s1,s2,k1,k2

(
ωN
g1 , ω

N
g2

)
ei
(
ωN

g1
k1−ωN

g2
k2

)
.

Moreover, under assumption (LGR) we get that

f̆
S,ri1−ri2
s1,s2,k1,k2

(
ωN
g1 , ω

N
g2

)
= f

ri1−ri2
s̈1,s̈2,k̈1,k̈2

(
ωN
g1 , ω

N
g2

)
+O(S−1

1 + S−1
2 + T−1

)
= f

ri1−ri2
u1,u2,τ1,τ2

(
ωN
g1 , ω

N
g2

)
+O

(
S−1
1 + S−1

2 +NT−1 + h+ h̄
)
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for |τi − k̈i| ≤ ℏ− N
T and ∥ui − s̈i∥ ≤ h, i = 1, 2. When ωi1 and ωi2 are the Fourier frequencies, say ωi1 = ωM

pi1

and ωi2 = ωM
pi2

, N = nM , we obtain that

Cum
(
di1,l1 , di2,l2

)
= Cov

(
di1,l1 , di2,l2

)
= E

(
di1,l1di2,l2

)
=
∑
t1

∑
t2

∑
s1

∑
s2

Wτ2i1−2+l1
(t1)Wτ2i2−2+l2

(t2)wu2i1−2+l1
(s1)wu2i2−2+l2

(s2)

×
( π2

N2

N−1∑
g1=−N

N−1∑
g2=−N

t1+N−1∑
k1=t1−N

t2+N−1∑
k2=t2−N

(
f
ri1−ri2
u2i1−2+l1

,u2i2−2+l2
,τ2i1−2+l1

,τ2i2−2+l2

(
ωN
g1 , ω

N
g2

)
× ei

(
ωN

j1
+(−1)l1ωi1

)
k1 e−i

(
ωN

j2
+(−1)l2ωi2

)
k2

)
+N2O(S−1

1 + S−1
2 +NT−1 + h+ h̄

))
=
(
1 +O

(
S−1
1 h−2

))(
1 +O

(
S−1
2 h−2

))(
1 +O

(
T−1ℏ−2

))
×
(
4π2f

ri1−ri2
i1,l1,i2,l2

+N2O
(
S−1
1 + S−1

2 +NT−1 + h+ h̄
))

,

where for simplicity we denote

f
ri1−ri2
i1,l1,i2,l2

:= f
ri1−ri2
u2i1−2+l1

,u2i2−2+l2
,τ2i1−2+l1

,τ2i2−2+l2

(
(−1)l1−1ωM

pi1
, (−1)l2−1ωM

pi2

)
.

Now fix a partition ν which is significant for the sum (6.9), that is, ν = ν1 ∪ · · · ∪ νp is an indecomposable
partition of Table 1 and each of its components has two elements.

First, we can state that there exists a path starting at (i1, l1) ∈ ν1 visiting only once every (ij , lj) of the table
and such that (ij , lj) and (ij , 3− lj) do not belong to the same component νk of ν. More precisely, we can build
a sequence (i1, l1), (i1, 3 − l1), (i2, l2), (i2, 3 − l2), (i3, l3), . . . , (ij , lj), (ij , 3 − lj), . . . , (ip, lp), (ip, 3 − lp) of all the
elements of Table 1 with ν1 = {(ip, 3− lp), (i1, l1)}, νkj

= {(ij−1, 3− lj−1), (ij , lj)}, for j = 2, . . . , p and where
{k2, . . . , kp} is some permutation of {2, . . . , p}. See the proof of Lemma 6.3 below. Then, we deduce that

R∑
r1=1

· · ·
R∑

rp=1

∣∣Cum(di,l : (i, l) ∈ ν1
)
× · · · × Cum

(
di,l : (i, l) ∈ νp

)∣∣
=

R∑
r1=1

· · ·
R∑

rp=1

∣∣Cum(di,l : (i, l) ∈ νk1

)
× · · · × Cum

(
di,l : (i, l) ∈ νkp

)∣∣
≤

R∑
r1=1

· · ·
R∑

rp=1

(
1 +O

(
S−1
1 h−2

))(
1 +O

(
S−1
2 h−2

))(
1 +O

(
T−1ℏ−2

))
×
(
4π2
∣∣frip−ri1

ip,3−lp,i1,l1

∣∣+N2O
(
S−1
1 + S−1

2 +NT−1 + h+ h̄
))

×
(
4π2
∣∣fri1−ri2

i1,3−l1,i2,l2

∣∣+N2O
(
S−1
1 + S−1

2 +NT−1 + h+ h̄
))

× · · ·

· · · ×
(
4π2
∣∣frip−1

−rip
ip−1,3−lp−1,ip,lp

∣∣+N2O
(
S−1
1 + S−1

2 +NT−1 + h+ h̄
))

.
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Setting κj = rij−1 − rij , j = 2, . . . , p, p ≥ 3, we can write

R∑
r1=1

· · ·
R∑

rp=1

∣∣frip−ri1
ip,3−lp,i1,l1

∣∣× ∣∣fri1−ri2
i1,3−l1,i2,l2

∣∣× · · · ×
∣∣frip−1

−rip
ip−1,3−lp−1,ip,lp

∣∣
≤ R

R−1∑
κ2=1−R

· · ·
R−1∑

κp=1−R

∣∣f−κ2−···−κp

ip,3−lp,i1,l1

∣∣× ∣∣fκ2

i1,3−l1,i2,l2

∣∣× · · · ×
∣∣fκp

ip−1,3−lp−1,ip,lp

∣∣
≤ R

R−1∑
κ3=1−R

· · ·
R−1∑

κp=1−R

∣∣fκ3

i3,3−l3,i2,l2

∣∣× · · · ×
∣∣fκp

ip−1,3−lp−1,ip,lp

∣∣
×
( R−1∑

κ2=1−R

∣∣f−κ2−···−κp

ip,3−lp,i1,l1

∣∣× ∣∣fκ2

i1,3−l1,i2,l2

∣∣)

≤ R

R−1∑
κ3=1−R

· · ·
R−1∑

κp=1−R

∣∣fκ3

i3,3−l3,i2,l2

∣∣× · · · ×
∣∣fκp

ip−1,3−lp−1,ip,lp

∣∣
×
( R−1∑

κ2=1−R

∣∣f−κ2−···−κp

ip,3−lp,i1,l1

∣∣2)1/2 × ( R−1∑
κ2=1−R

∣∣fκ2

i1,3−l1,i2,l2

∣∣2)1/2
≤ R

p∏
j=3

R−1∑
κj=1−R

∣∣fκj

ij ,3−lj ,ij−1,lj−1

∣∣× (∑
κ

∣∣fκ
ip,3−lp,i1,l1

∣∣2)1/2 × (∑
κ

∣∣fκ
i1,3−l1,i2,l2

∣∣2)1/2.
Under the condition (LGR) (convergence assumptions) we deduce that

lim
R→∞

Rp/2
R∑

r1=1

· · ·
R∑

rp=1

∣∣Cum(di,l : (i, l) ∈ ν1
)
× · · · × Cum

(
di,l : (i, l) ∈ νp

)∣∣ = 0

for any indecomposable partition ν = ν1 ∪ · · · ∪ νp, with #ν1 = · · · = #νp = 2, p ≥ 3. Finally, using the
relation (6.9) and the Gaussianity of the observations we get that

lim
R→∞

Rp/2 Cum
(
f̃1,2(ω1, ω2), . . . , f̃2p−1,2p(ω2p−1, ω2p)

)
= 0

for any integer p ≥ 3 and any Fourier frequencies ω1 = ωM
l1
, ω2 = ωM

l2
, . . . , ω2p = ωM

l2p
, l1, l2, . . . , l2p =

−M, . . . ,M − 1. This completes the proof of Theorem 6.1.

Complement : Indecomposable partition

Let ν = ν1 ∪ · · · ∪ νp be an indecomposable partition of Table 1, such #ν1 = · · · = #νp = 2. We can state the
following elementary properties

1. If νk ↔ νk′ (νk and νk′ hook, and k ̸= k′) then ∃(i1, l1) ∈ νk, (i2, l2) ∈ νk′ such that i1 = i2. Of course in
this case, l1 ̸= l2 and, since l1, l2 ∈ {1, 2}, we have l2 = 3− l1.

2. If p ≥ 2, (i, 1) ∈ νk and (i, 2) ∈ νk′ then k ̸= k′. νk ∩ ν′k = ∅.
3. If νk1 ↔ νk2 ↔ · · · ↔ νkq , and

(
(i, l) ∈

⋃q
j=1 νkj ⇒ (i, 3− l) ∈

⋃q
j=1 νkj

)
then q = p and ν =

⋃p
j=1 νkj .

Lemma 6.3. There exists at least one path passing through each (i, l) of Table 1 and only once.

Proof. We build such a path by “recurrence”, applying the previous properties.

(1) Let k1 = 1 and (i1, l1) ∈ νk1
.

(2) Since 2 ≤ p, let k2 ≤ p for which (i1, 3 − l1) ∈ νk2 . Then k2 ̸= k1 and there exists a unique (i2, l2) ∈ νk2

such that i2 ̸= i1.
(3) If 3 ≤ p, let k3 ≤ p for which (i2, 3− l2) ∈ νk3

. Then k3 /∈ {k1, k2} and there exists a unique (i3, l3) ∈ νk3

such that i3 ̸= i2. We have also i3 /∈ {i1, i2}.
...
(j) If 3 ≤ j ≤ p, let kj ≤ p for which (ij−1, 3 − lj−1) ∈ νkj . Then kj /∈ {k1, . . . , kj−1}, and let (ij , lj) ∈ νkj

such that ij /∈ {i1, . . . , ij−1}. Notice that kj and (ij , lj) are unique.
...

(p) When j = p, we see that kp is the only value of {1, . . . , p}, which have not yet been considered: {kp} =
{1, . . . , p} \ {k1, . . . , kp−1}. Moreover, ν =

⋃
j=1 νkj

and (ip, 3− lp) ∈ νk1
.
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Thus we have built the sequence:

(i1, l1), (i1, 3− l1), (i2, l2), (i2, 3− l2), (i3, l3), . . . , (ij , lj), (ij , 3− lj), . . . , (ip, lp), (ip, 3− lp)

where νk1
= {(ip, 3 − lp), (i1, l1)} and νkj

= {(ij−1, 3 − lj−1), (ij , lj)}, j = 2, . . . , p. Hence Lemma 6.3 is
proved.

6.3. Visual Working Memory performance experiment

Figure 4 illustrates the experiment performed. It shows two rectangles with arrows. On the left panel, you can
see the examples of arrows appearing on the screen, which can have different orientations and colors. The test
subject has to memorize them. The right panel shows a possible answer of the test subject. The graph at the
bottom presents the timeline of the experiment described in Section 4. The experiment involved 6 participants,
each of whom performed 2400 repetitions. For simplicity, in our illustrative data analysis, we considered only
one subject. The aim of this experiment is to possibly identify in the EEG traces, recorded during the memory
set step, specific brain mechanisms that could be related to the errors committed.

Fig 4. Schematic representation of the experiment.

Figure 5 shows the software interface through which the subject answers questions about the color he has
memorized. He indicates the color from among the continuous color scale wrapped on a circle. As a result, the
error made by the test subject is measured as the angle between the truth and his answer.
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Fig 5. Software interface for color specification.
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