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Abstract

In this paper we develop tools for statistical inference on replicated realizations of
spatiotemporal processes that are locally time-harmonizable. Our method estimates
both the rescaled spatial time-varying Loéve-spectrum and the spatial time-varying
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dual-frequency coherence function under realistic modeling assumptions. We construct
confidence intervals for these parameters of interest using the Circular Block Bootstrap
method and prove its consistency. We illustrate the application of our methodology on
a dataset arising from an experiment in neuropsychology. From EEG recordings, our
method allows to study the dynamic functional connectivity within the brain associated
to visual working memory performance.

Keywords: Harmonizable spatiotemporal processes, nonparametric spectral analysis, Cir-
cular Block Bootstrap, functional connectivity, ElectroEncephaloGraphy.

1 Introduction

The paper is concerned with a class of spatiotemporal processes that are locally time-
harmonizable, that is, they possess a local two-dimensional spectrum. In order to introduce
such a class of processes, we need first to recall some basic facts concerning second order
harmonizable processes that are due to Loeve [1948]. A centered P-variate discrete-time
process { X} = {Xy, t € Z} with the finite second order moments is called harmonizable
if it admits a Cramér’s representation of the following form:

™

X, = / e™dZ (w), (1)
—T

where X; = (X14,...,Xp¢)" and the spectral process

{Z(w)} = {Z(w) = (Z1(w),...,Zp(w)), w € (—m, 7|} is a zero-mean stochastic process.

Here and hereafter the symbol (-) denotes the transpose of a vector.

The simplest example of processes admitting the representation (1) are stationary se-
quences. In that case the process {Z(w)} has orthogonal and cross-orthogonal increments
(see e.g., Brockwell and Davis [1991]). However, for the class of harmonizable processes,
{Z(w)} has correlated increments. They form a broad class of processes that includes many
nonstationary ones, such as periodically correlated time series. A very important feature
of harmonizable processes is that their covariance is a Fourier transform of a finite measure.

Harmonizable processes are particularly useful in modeling real-world data when the main
interest is frequency domain analysis. They are widely applied for instance in signal theory,
communications and mechanics (see e.g., Napolitano [2016], Gardner et al. [2006], Setoodeh
and Haykin [2017], Serpedin et al. [2005]). Our approach was initially motivated by the
analysis of ElectroEncephaloGraphy (EEG) data. However, it can be applied to other types
of problems with possibly some minor modifications.



In recent years, numerous studies of brain signals have explored networks of functional con-
nections to reveal subtle mechanisms of brain activity. Essentially, this involves measuring
the relationships in the activity of different brain regions. The analysis is often performed
using coherence, which is a frequency domain equivalent of correlation. More specifically,

for a P-variate harmonizable process {X;}, its Loeve spectrum f = ( qu)l <pa<P is a
P x P-matrix defined as follows o
Cov(dZ(w1),dZ(w2)) = f(w1,ws)dwidws. (2)

The dual-frequency coherence between a pair of processes ({Xp:}, {X,:}) and a pair of
frequencies (wi,ws) is given by:

Cov (dZ, (w1) , dZq (w2))[?
Var (dZ, (w1)) Var (dZ; (w2))

|qu (w1?w2)|2 (3)
fpp (wal) qu (W2aw2)‘

The dual-frequency coherence (3) allows to capture dependencies at two different frequen-
cies. Soedjak [2002] developed inference tools for the Loeve spectrum for such a model,
but the Loeve spectrum of the harmonizable process is constant in time and the model
does not consider any spatial localization. Therefore, it cannot sufficiently capture the
complexity of the brain mechanisms. Consequently, these results needed to be extended ac-
cordingly. This was achieved thanks to the recent and important contribution of Gorrostieta
et al. [2019]. The authors follow the approach of Dahlhaus [2012] to introduce multivariate
locally-harmonizable processes. They describe a windowed Fourier based estimation proce-
dure for the time-varying dual-frequency coherence. They derive exact confidence intervals
for testing if the coherence differs from zero under i.i.d. Gaussian assumptions, and also
obtain asymptotic confidence intervals.

Ppq (Wi, wo2) =

In this paper, we extend the existing results in several ways. First, we introduce new infer-
ence tools that take into account both time and space (i.e. spatial location). We define the
rescaled spatiotemporal local Loeve spectrum and the spatiotemporal coherence. In other
words, we measure the time-evolving squared correlation coefficient at different frequencies
between any pairs of spatial locations. Our approach uses spatial correlations to improve
the estimation of these quantities by exploiting spatial location information in the spirit of
the Ombao et al. [2008] method. Second, we consider more realistic modeling assumptions.
Third, in order to construct confidence intervals for the spatiotemporal coherence, we adapt
the Circular Block Bootstrap (CBB) method and show its consistency.



The paper is organized as follows. In Section 2 we introduce a spatial locally time-
harmonizable process model along with an appropriate estimation procedure under realistic
model assumptions. In Section 3 we discuss asymptotic properties of our estimators. More-
over, we show consistency of the CBB approach. In Section 4, we present the results in the
Gaussian framework. Finally, in Section 5 we illustrate the application of our method on a
real data set. All proofs can be found in the companion document [Aston et al., 2022].

2 Rescaled spatiotemporal spectrum estimation

In this section we generalize some of the ideas presented by Ombao et al. [2008] and Gor-
rostieta et al. [2019]. For the sake of clarity, we start by introducing the notion of spatial
time-harmonizable process and the corresponding Loeve spectrum. Next, we introduce
the spatial time-varying local Loeve spectrum for a general spatial process. Then, we de-
scribe our modeling assumptions, in particular the spatiotemporal rescaling. We construct
a rescaled spectrum estimator that is based on replicated observations of the process, and
give its asymptotic properties. Finally, we adapt the CBB method to construct bootstrap
confidence intervals and we prove the bootstrap consistency.

2.1 Spatiotemporal Loeve spectrum
Let { X2} = (X2t ez} = {Xi,t cZsef{l,..., 5} x{1,.. .,52}},§ = (1, 55) €
N*2| be a family of spatial time-harmonizable processes, i.e.,

X = / e“tdZ5 (w),

such that Cov (dZi(wl), dZi(wQ)) =f5 (w1, w2) dwydws, where fi =
is the Loeéve spectrum. Then

S
(f§17§2)§1,§26{1,...,Sl}X{l,...,SQ}

™ s
CE(t, ) := Cov (Xt%, X%) - / FS (w1, wa) € EH7922) oy o
—T —Tr

Notice that C’i(tl, t9) and fi(wl, wg) are S1 X S9 x S1 x Sy-matrices. Here and in the sequel
N*:={1,2,... }.

A sufficient condition for time-harmonizability and the existence of a two-dimensional spec-
tral density for the discrete-time spatial second order random processes {Xtﬁ} is given by
the following condition

Z ‘Ci(tl,tz){ < 00,

(t1,t2)€Z2



where C2(t1,ty) = Cov (X X5 ) Then the Loeve spectrum is a continuous function

t1?
and it coincides with

1 )
S _ - S —i(w1t1—wata)
FE(wnw) = D CE (b, ty) e itimenta),
(tl,t2)€Z2
Remark that the above definition does not include the stationary case as the Loéve spectrum
is two-dimensional while the spectrum of a stationary process is one-dimensional.

2.2 Localized Loeve spectrum

For the purpose of our application the notion of harmonizable processes is not sufficient.
Therefore, in this section, we generalize the previous considerations by introducing the
notion of spectrum (2) for a spatial second order process { X ti} that is not necessarily time-
harmonizable. We also introduce its estimator.

We define the (spatiotemporal) localized Loéve spectrum of the process {X ti} as

t1+N—1 to+N-1

S
ftl to (wla (JJ2 Z Z kly kQ _Z(UJlkl—WQk,‘Q) (4)

k1 t1—N ko=to—

using a local rectangular time window centered at (tl, to) with size V.
For any t; and to we obtain that

N-1 —
C (tl’t2 Z Z -ftl,tz ]1’ J]'Z)BZ(W'%tl_wth)’ (5)

Jl——N Jjo=—N

where wév = jﬁﬂ, j=—=N,...,N — 1 are the Fourier frequencies of the local rectangular
time window.

When {X tﬁ} is a family of spatial time-harmonizable processes with spectrum fﬁ(wl,wg)
one can easily verify that

oS
ftl 1, (W1, w2)

1 T T o, ,
= 42/ DN(WDDN(Wé)e’(W1t1*W2t2) .fi(wl + w/17w2 4 wé) dw’ldwé,
™ J-xd-m

where Dy (0) = 2N and Dy (w) = %Zlni(w]\/) otherwise. Furthermore, if for each ¢; and ¢,

w1

Z ‘Ci(tl,tgﬂ < 00,

(t1,t2)€Z2
then

. .S
lim fy 4, (w1,ws) = 3w, wa).
N—o0



2.3 The observations

In the following, we consider replicates {Xtﬁ’r}, r € N*, of a spatial zero-mean second order
process {Xti} This means that the processes {thr} have the same distribution as {Xti}
Here the process is not necessarily time-harmonizable. From now on, we assume that the
replicates are dependent, more precisely, that the family of processes {Xti’T}, r € N* is
nonstationary with respect to ¢ and stationary with respect to r.
Consequently, we denote

CE(t1, 1) := Cov (X', X2) = Cov(X2", X2 (6)

t1
for any positive integer r, and

ti+N—-1 to+N-1

1
ft1 tQ(Wl,WQ 4— Z Z C khkz l(Wlkl*ngQ)' (7)

k1=t1—N ko=to—

Then
2 Nl — ( Ny Nt)
Ci(tl,t2) = m Z Z ftl t2 Jl’ N)el Wiy 1wy, b2 ,
J1=—N ja=—N
where wj-v = %\7;,] =—-N,...,N—1.

The r-th replicate is observed at time instants 0,...,7 — 1 and at S7 x Sy different spatial
locations. Hence

(XS5" = (XZ"t=0,..., T—1}
= {Xst,t—o —1,se{l,....,81} x{1,...,5}},

where S = (51,92) € N*2. For the sake of simplicity we set th,r = 0g,xs, (the null
S1 x Sp-matrix) for t ¢ {0,...,T —1}.

In the following, we study the asymptotic behavior of the localized Loéve spectrum }%h (w1,ws).
For that purpose we introduce the rescaled spatiotemporal spectrum and we construct its
estimator. All asymptotic results are obtained as Si, .59, T, R go to co. The time window
size N can be fixed or going to oco.

2.4 Assumptions

To obtain the asymptotic results we assume the following conditions.



(L)

(SR)

(MR)

Rescaling conditions. There exists a function f : [0,1]% x (=7, 7]?> — C and positive
constants L and @ such that

‘fﬁlyﬂgﬂ'lﬂ? (wl? (.UQ) - f23aﬂ4:7'3,7'4 ((.Ul, wQ)‘
< L(lluy = usll + [lug — wyll + |71 — 73] + |72 — 7a]) (8)

for any Uy, Ug, Us, Uy, € [07 ”27 T, T2 € [07 1] and wi,ws € (_7T77T] and

9

1 1 1
Senalr ) ~fgante)<@(g g p) O

where S; = (8171,81'72), §z = (81,1/51,81'72/52),{1' = ti/T,i = 1,2 for N S tl,tg S
T — N. Inequality (9) is assumed to be true for all Sy, Se and T' large enough, and
for N fixed or sufficiently large, as the case may be.

Hereafter, fu, u,r (w1, w2) is called the rescaled Loéve spectrum

The replications {X?’T}, r € N* have the same distribution and are stationary with
respect to r.

Mizing property for the replicates: The family {Xﬁ”'}, r € N*, § € N*2_ is a-mixing
with respect to r and such that one of the following two conditions holds:

(i) sup; g )Xtﬁ’l‘ < C almost surely for some finite C' >0 and ), ax (k) < oo,

440
(ii) supt,ﬁE(‘Xtﬁ’l‘ ) < oo and Y, ax(k)" ) < oo for some § > 0.

The mixing coefficients are defined as follows

ax(k) :==supsup sup |P(ANB)—P(A)P(B)|,
r S A€Fr(S)
BeFTTr(S)

where F,.(S) := 0o {Xg%q :q <r,t €7 and all locations §} and
Frth(S) =0 {Xg%q :q>1+K,t €7 and all locations §}.

In order to state the asymptotic covariance of our estimator we consider an additional rescal-
ing assumption, which is a generalization of the condition (L) to the four-dimensional spec-
trum. Denote t := (t1,t,t3,t4) € Z*, T := (11,72, 73,74) € [0, 1]* and w := (w1, w2, w3, wy) €
(—m, 7]*. Moreover, for s € N*2 and u; € [0, 12, j=1,...,4, let 8 := (84, 89, 83,84) € N*3
and w := (uy, Uy, Uz, uy) € [0,1]% . Under the stationary condition (SR) the covariance

Cy' = Cov (XEH XER, XL 1, X1 1)

Sy,t17 7 8g,t2 7 83, S4,t4



does not depend on r > max{0, —«}, for any x € Z. Then define

t1+N—1 to+N—1 ts+N—-1 t4+N—-1

16 Z Z Z Z CSH —i(wik1—wake—wskztwaka)
7T

ki=t1—N ko=to—N k3z=t3—N kg=t4—

vS7
f.;,tﬁ(

The rescaling assumption is as follows.

12 4

(LR) Rescaling condition for the replicates. There exist functions f* : [0,1]" x (—m, 7|* —
C, k € N*, and some positive constants L and @ such that for each u; € [0,1]%,
€[0,1]* w € (—m, 7% i =1,2 and each k € N*,

4
’fﬁl,q—l (w) — f52,72 (w)| < LZ (||Hj,1 - Mj,2|| + |71 — Tj,2|) (10)
j=1

and

S 11
o (w ‘_ < +gt > (11)

where s, = (sj1,8j2), 8; = (8j1/51,852/S2),t; = t;/T,j = 1,2,3,4 and for N <
t17t27t37t4 ST_N
Furthermore, assume that

(W] < o0, (12)
KEZL
for the Fourier frequencies wi = (wl]\([,...,wﬁ/[) and wljy = liﬁ”, li=-M,...,.M —

1},i = 1,...,4, where the integer M > 0 is fixed and N = nM. Inequality (11) is
assumed to be true for all Sp, .59 and T sufficiently large, and for N fixed or sufficiently
large, as the case may be.

Remark 2.1.

1. Under conditions (L) and (LR) the functions fy, u, r m(wi,w2) and fz ;(w) are L-
Lipschitz-continuous in space and time components uniformly with respect to the
frequencies wi, . ..,wys and the shift x between replicates.

2. Identifiability. In condition (L), relation (9) is assumed to be true for all S, S and
T sufficiently large. Hence, if fy, u,m,m(wi,w2) exists then it is unique. Similarly,
under condition (LR) the function f;; ;(w) is unique.



3. When we assume that N — oo, then the rescaled Loeve spectrum fy, v, m(Wi,w2)
does not depend on N. Of course, if N is assumed to be fixed then fu ., r m(wi,w2)
may depend on N.

4. Example for condition (L). Let {X ti} be a spatial time-harmonizable process with the
Loeve spectrum of the form f§17§2 (w1, ws) = AS(sq, 89) ¢(w1,ws), where the function
¢(w1,w2) is bounded, say |¢(w1,w2)| < ¢, ¢ > 0, and

. Q[1 1
| A% (51, 89) — A(31,5)| < PR
for some (L /c)-Lipschitz-continuous function A : [0,1]* — C. Then assumption (L) is
fulfilled with f; (w1, we) = A(8;, 85) ¢(w1,w2). (See also Ombao et al. [2008])

1527t17t2

5. The a-mixing function ax is a weak dependence measure. Hence, replicated processes
{X971} and {X"2} that are close to each other, i.e. such that the distance k :=
|r1 — r2| between replications is small, can be dependent, while when « is large, they
are almost independent. The replicates are M-dependent, M > 1, if and only if
ax (k) =0 for any k > M. This generalizes the modeling assumptions in [Gorrostieta
et al., 2019], where the replicates are assumed to be independent, that is ax (k) = 0
for any k # 0. For properties and examples of other dependence measures, we refer
the reader to [Doukhan, 1994].

6. Gaussian framework. In Section 4, we present the results for a Gaussian process. In
this case, the mixing condition is useless, and the condition (LR) is replaced by (LGR).
Then we give an expression for the four-dimensional rescaled spectrum fy, » (w) in
terms of the two-dimensional rescaled spectrum. See relation (24).

In the following, we provide the results in two cases: N fixed and N — oo, that is n fixed
and n — oo for M fixed with N = nM. The integer M being defined below according to
the frequency resolution. The case N — oo denotes that we consider infinitely many time
points around each instant ¢.

2.5 Estimator of the rescaled Loeve spectrum

In this section we introduce an estimation procedure for the rescaled Loeve spectrum
fuy sy m2 (W1, w2). For that purpose, we first define two kernel functions that we use for
rescaling in space and time. To simplify the presentation, let us consider two non-negative
functions w, W : R — [0, 00) and two positive numbers h and h. We define

L 1 ’LLl—Sl/Sl UQ—SQ/SQ
w“(s)'_5152h2w( h )“’( h >




and §T
_—
t): _
where u = (u1,uz) € [0,1)%, s = (s1,82) € {1,...,51} x {1,...,S8}, 7€ [0,1] and t € N.
Notice that the kernel function wy(s) depends on S and h, and W-(t) depends on T" and
h. In the following, we always assume the following condition on W (-) and w(-).

(KS) The kernel functions w(-) : R — [0,00) and W(-) : R — [0, 00) are symmetric nonneg-
ative with support contained in [—1,1] and such that [~ w(u)du = fil W (u)du = 1.
Moreover, they are piecewise Lipschitz-continuous in the sense that there exist k, &' €
N, -l=v1 <---<yg=1land -1 =7 < --- < 7y = 1 such that w(-) and W(-)
are Lipschitz-continuous on each interval (vj,vjy1), 1 < j < k —1 and (75, 7j141),
1 < j' <K —1, respectively.

Note that under the condition (KS) the kernel functions w(-) and W (-) are bounded. It
holds for instance for rectangular and triangular kernels.

Now we define the dual-frequency periodogram of the r-th replicate for the spatial locations
S1, 8 and the instants t1, to at frequencies wy,ws and over a time window of size N as

1 -
Ig1,§2,t1,t2 ((.Ul, (A)Q) 4 2 dsl t1 (CL)l) dgzﬂfz ((A)Q),

where

t+N—1

r S 7‘ fzwk —iw(k+t)
&, W)=Y x5 § XS e
k=t—N

is the discrete Fourier transform of the r-th replicate for the spatial location s around the
instant ¢. Recall that we set X!, =0 for k¢ {0,...,T —1}.

Then the estimator of the local Logve spectrum is defined as the average of the dual-
frequency periodograms of replicates i.e.,

fsl’827t1)t2 (wl’w2 R Z 81,89,t1,t2 (WI,CUQ)

Finally, the estimator of the rescaled Loeve spectrum fy ., r m(wi,w2) is given by

fyl Uo,T1,T2 (w17w2)

= Z Z Z Z WTl t)W. T2 t2)wu1 (Sl)wu2 (52)fsl,82,t1,t2 (wi,w2) . (13)

51 52

10



The rescaled coherence is defined as

‘f“17“2»71,7'2 (W17W2)‘2

Puy g, ,m (W1, W2 14
ot LT ( ’ ) ful,ul,n,ﬁ (Wla LU1) fu2,u2,’7'2,7'2 (w27 w2) ( )
and its estimator is given by
~ 2
~ fyl,EQ,nﬁz (W17W2)’
Puy uy,m1,m2 (wi,w2) = (15)

fﬂpﬂpﬂﬂ'l (wla wl) ]22&2,7’2,7'2 (wQa w2) '

Due to the limitation of the frequency resolution capacity in the real life experiment, in the
sequel we consider the convergence of the estimator fy, u,r m (w1, w2) for a finite number
of Fourier frequencies wlM = ZMW, —M <1< M—1, where M > 1 is some fixed integer.
Furthermore, in order to ensure the identifiability of the frequencies, we take the window
size N equal to an integer multiple of M: N = nM.

This choice of modeling allows us to derive a more accessible asymptotic theory presented
in Section 3. Moreover, it is motivated by our real data application for which we typically
consider a finite number of frequency bands of interest. In particular, we consider the sets
of Fourier frequencies §2; := {w]M L < i< L;+1; — 1}, for some [; > 1, i = 1,2. Then
the estimator is computed as an average over the frequencies

Li+1l1—1 Lo+ls—1

ful,u2,T1,T2(917Q2 lllz Z Z ful,UQ,Tl,TQ ( ]]\147(*}]]\2/1) : (16)

ji=L1 jo=La

3 Main results

Below we state some asymptotic properties of our estimation procedure like convergence in
quadratic mean and asymptotic normality. All the proofs are deferred to the companion
document [Aston et al., 2022].

From now on any complex number z is treated as a vector of its real and imaginary parts,
ie., z = (Rz,32)".

Theorem 3.1. (Convergence in quadratic mean)
Let M > 1, uy,us € (0,1)2 and 71,72 € (0,1) be fized. Assume that the assumptions (L)
and (MR) hold. Then

M

M M M - -
ngn fu17u277—177—2 (Wit wis ) = fuy g (Wi, Wiy in quadratic mean,

11



for the Fourier frequencies w{l\_/[ = liﬁ”, li=—M,....M—1,1=1,2, provided that N = nM,
ntR=Y — 0, h2Sy, %S, B?T — oo and n?(h+ h),n3T~ — 0 as T, Sy, S9, R — o0, h,h — 0
independently of the behavior of n > 1.

Below we express the asymptotic covariance matrix of the estimator fy, u, r -

Lemma 3.1. Let M > 1, u; € (0,1)%, 7; € (0,1) and the Fourier frequencies wl]y be fized,
i=1,2,3,4. Assume that the assumptions (SR) and (LR) hold. Then

: rl M M ra M M M
RhE;ORCOV (fgl,gg,ﬁﬁz (Wll » Wi, ) 7f23a%177'377'4 (wlg y Wiy, )) = Z fg,r (wl ) )
KEZ

provided that N = nM, h?Sy, h2Ss, B?T — oo, n*(h + h),n*T~' — 0 as T, S1, 82, R — 00,
h,h — 0.

Before we formulate the multivariate central limit theorem we introduce some additional
notation. Let

/
/ /
f = ((fm,huz,m'l,lﬂ'z,l (w1,17w271)> yr (fﬂl,kuﬂz,kﬂ'l,kﬁz,k (wl,kﬂwlk)) ) )

and

/

~ / ~ !/
f = <<fu1717u27177'1,177'2,1 (w1717w271)> )t <f21,k7ﬂg,k77'1,k77'2,k (w17k7w27k)> > ’

where k is some positive integer, u; ; € (0, 12, 75 € (0,1), wi; = wl]:,/[j = li]ff, 1=1,2 and
j=1,.. k.

Now we state the asymptotic normality of the estimator.

Theorem 3.2. Assume that the assumptions (L), (SR), (MR) and (LR) hold. Then

lim £ <\/§ (,7' — f)) = Ny (0,39;) ,

R—o0

provided that

(i) either N = nM is a constant, T, S1,S2, R — oo, h, h — 0 with Rh*4(5’1_2+52_2), Rh4T2,
R(h%? +h%) — 0;

(ii) or N = nM — oo, T, S1,52, R — 00, h, h — 0 with Rh*4(51_2+52_2), Rh=4T72, Rn*(h*+
h%), RnST—2 — 0, and the additional condition

S,1
Z ’Xﬁwt
t

12

<C (17)



almost surely, or

1/(4+96)
S ) " <c (13)
t

for some finite C' > 0 which does not depend on the locations. The elements of the covari-
ance (2k x 2k)-matriz Xok can be calculated from Lemma 3.1.

Remark 3.1. When N — oo, conditions (17) and (18) can be replaced by more subtle
assumptions. For the sake of clarity, this technical remark is detailed only in the companion
document. See conditions (ii) in Proposition 1 in the companion document [Aston et al.,
2022] and to the subsequent remarks.

Theorem 3.2 is crucial to study the behavior of ]Zl uy,m1,m2 (21, Q22) given by the equation (16).

Corollary 3.1. Under conditions of Theorem 3.2, the estimator p of the rescaled spatiotem-
poral coherence p, defined respectively by (15) is asymptotically normal i.e.,

nglgoﬁ (\/E (Puy g 1,7 (@1, 02) = Puy uym1ma (w17w2))) =N(0,7), (19)
where the Fourier frequencies w; = wl]:/[ with l; € {M,...,M —1}, i =1,2 and provided that
fﬂpﬂlﬂ'h‘rl (wl,wl) X f2272277'2’7—2 (W27w2) 7é 0.

Here 72 = (ngfﬁ?hmﬁ)g(V(ﬁfﬁ%m)’, where V denotes the gradient operator. The co-
variance 6 x 6 matriz X is given in Theorem 3.2 fork =3, i1 =T1=T13="T1, T12 =
T22 =723 = T2, Uy = Ugq = U3 = Up, Upg = Upg = Up3z = Up, W11 = W21 = W13 = Wi,
and W12 = W22 = W23 = W2. MOT’@OU@’I“,

(w1,w2)
Up,Un,T1,T2
2 2
i ( - ‘fgl,gg,ﬁ,‘rz (Wlaw2)| 0 - ’fgl,gg,nﬁz (Wlaw2)}
- 2 » 2
(fgl,gl,n,n (w17w1>) fQQ,gQ,TQ,Tg, (W2aw2) fgl,gl,n,n (wlawl) (ng,gQ,‘rg,Tg (W27w2))

2§Rfyl U, T1,T2 (w1, w2) 2%f21 U, T1,72 (w1, wo)

!
, fylﬁl,n,n (w1, w1) f@27ﬂ277'277'2 (wa, wo) ’ fﬂl,yl,ﬁ,n (w1,w1) fﬂg»ﬂzﬂ?ﬂ? (W27W2)> .

Bootstrap approach

Using Corollary 3.1 one may construct confidence interval for the spatiotemporal dual-
frequency coherence py, u,m m (w1,w2). However, since the asymptotic variance 72 de-
pends on unknown parameters, it is in practice very difficult to estimate. Thus, we
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present below a bootstrap approach that allows to obtain consistent confidence intervals

for pTlﬂ'QvaﬂQ (w17w2)‘

Let us recall that we have R replicates {X (")} = {X%T} = {Xﬁ’r teZ,se{l,..., S} x

st
{1,...,82}}, r =1,..., R. The process {Xff} is stationary in r and nonstationary in t.

We will bootstrap our observations in replicates not in time. For that purpose we use the
CBB (see Politis and Romano [1992]). The CBB is a modification of the Moving Block
Bootstrap method [Kiinsch, 1989, Liu and Singh, 1992], which allows to reduce bias of the
bootstrap estimator. Below we present how to adapt the CBB algorithm to our problem.

Let B;, i = 1,..., R be the block of replicates from our sample (X(l),...,X(R)), that

starts with replicate X and has the length b € N, i.e.
B; = (X@, . 7X(i+b*1>) .

If i+b—1 > R then the missing part of the block is taken from the beginning of the sample
and we get

B; = (X(i), LX® x 7X(b—R+i—1))

fori=R—b+2,...,R.

CBB algorithm

1. Choose a block size b < R. Then our sample (X(l), ... ,X(R)) can be divided into [
blocks of length b and the remaining part is of length r,i.e. R =10b+r, R=0,...,b—1.

2. From the set {Bj, ..., Br} choose randomly with replacement [ 4+ 1 blocks.

3. Join the selected [ + 1 blocks (B, ..., By ;) and take the first R observations to get
the bootstrap sample (X*(l), . ,X*(R)) of the same length as the original one.

We apply the CBB to get bootstrap estimators of fu u, r m (W1,w2) and py, u, r m (W1, w2)
and finally to be able to construct confidence intervals for these characteristics. We use the
bootstrap algorithm described above. The bootstrap version of f, |ty 71T (w1, ws) is given
by

fﬂ*1 sUoyT1,T2 (wl ’ UJQ)

=3 > > Wa(t)Wa(t2)wy, (s1)wa, (82)fs, sy 000 (Wi,02), (20)

ti l2 5 s2
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where

1 R

f§1»§2:t1,t2 (wl’ w2) = E Z I;;z,tl,tz (w17w2) )
r=1

Igl’f‘§2,t1’t2 (w17w2) = Hd;f:tl ((JJ]_) d;;:tQ (WQ)’

and
t+N-1
dyt (W) = Z X:’]:e*““k.
k=t—N
Below we state the consistency of our bootstrap approach for the spatial time-varying dual-

frequency coherence function. The bootstrap estimator of the spatial coherence is defined
as

~ 2
fél s Uo 3 T1,T2 (W1, CUQ)

Y s P - .
o fﬂ*l »Uq,T1,T1 (wl’ W1) f£2,2272,7'2 (WQ, WQ)

Theorem 3.3. Under conditions of Theorem 3.2 and assuming that b= + R™1b = o(1) the
CBB is consistent i.e.,

_ 2 _ 2
(E*éR( T (w17w2))> + (E*S( T (w17w2))>
sup |P* | VR ﬁ;lyﬂz,nﬂ (w1, ws) — e e

zER E*( 2*132177'1171 (wl’wl)) E*< 227H277277—2 (w2’w2)>

—P (\/E (ﬁﬂl&zmﬂ (wl,wg)) — Pu, uy,m1,72 (w1, wsy) < a:)‘ 250 as R— 0
for Fourier frequencies w; = wl]y with l; € {M,...,M — 1}, i=1,2.

Centering of ﬁzhy%ﬁ’m (w1,w2) may seem surprising. One could expect to use simply
E* ([);1 Ay, (w1,ws)). But in fact the spatial time-varying dual-frequency coherence func-
tion is a function of the rescaled spatiotemporal Loeve spectrum and therefore to show con-
vergence (21), one needs first to obtain bootstrap consistency for fu, u,r m (W1,w2), then
to generalize this result to a multidimensional case and finally to apply the delta method
(see Theorems 2 and 3 in the companion document [Aston et al., 2022]).

While applying block bootstrap a natural question that appears concerns the choice of the
block length. In the case of stationary sequences this problem is well investigated (see
Lahiri [2003]). It is well known that for the CBB the optimal block length obtained by
minimization of the mean squared error of the bootstrap estimator is b = O(R'/3) (see
Theorem 5.4 in [Lahiri, 2003]).
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4 Gaussian framework

In this section the spatiotemporal random family {X tﬁ’r teZ,r=1,..., R} is assumed

to be Gaussian for any S € N*2 and any R € N*. Under the stationarity condition (SR),

we have )
Cov( SKH X ) COV( S'HT Xt%r)

for any k € Z and for any posmve integers r and 1’ > —k. Denote

Csn(tl,tg) = COV( fﬂ+r X%T) (22)
and define
S 1 t1+N—1 to+N-—1
L,R — —
ftl,t2<w17w2) = 2 Z Z C'SF” (k1 ks) e i(wik1—waks) (23)
k1=t1—N ko=to—
Then
25K i(wNt—wlVt
CSK(tl’h Z Z ftl t2 Jl’ j];/)ez(wh T 2)’
J17—NJ27—N
where wév = %j, j = —N,...,N — 1 are Fourier frequencies. Moreover, Cﬁ(tl,tg) =

S 45,0
C50(ty,t2) and fy, 4, (w1, ws) = Fy) 4, (wi,w2).

In this Gaussian framework we replace conditions (LR) and (MR) by the following condition

on _;"i’;im (w1,ws) defined by relation (23).

(LGR) There exists some positive constant values L, > 0 and a family of functions f* :

[0,1]6 x (=, 7> = C, k € Z, such that

fEI,HQ,Tl,TQ (W1, w2) - fgg,%l,rg,u (wlv OJ?)‘

< L(lluy — ugll + llug — wall + |71 = 73] + |72 — 74])

for any wy,uy, uz, uy, € [0,1]2, 71,72 € [0,1] and wy,wq € (—7r,7r].

7S,k
shsgst1ts (W1, W2) — fg,g,fl,b(wl’w?)‘ <@ < + sz + >

where S; = (Si71,5i72), s (Sl 1/51,512/52) i =1 /T 1= 1 2 for N < tl,tg < T—N.
In addition, assume that

K

2
M M
Uy ,Uo,T1,T2 (wll ’wlg ) ‘

D

KEZL

< 00

16



and

K
fyl yUso,T1,T2 (wll » Wi,

R
I%LIE;ORfl/Q _Z:R M M)’:O

for wM =2l l;=—M,....M—1,i=12.

Notice that the first part of the condition (LGR) is a generalization of the condition (L) for
replicates in the considered Gaussian case. Since the replicates are not necessarily indepen-
dent, the replicate-x-shifted rescaled spatiotemporal Loeve spectrum f* is not necessarily
null, and consequently this fact is reflected in the additional superscript k.

If the condition (LGR) is satisfied, then the condition (LR) is also satisfied with

S:t(w) = 51723»7'1773 (WI’WS)f£272477'27T4(_w27 _w4)
+ 51724’7177.4((&)1,—&]4) 52:2377277'3(_0')2’“]3)' (24)
Theorem 4.1. Assume that conditions (GR), (SR) and (LGR) are fulfilled. Then the

conclusions of Theorem 8.1 and of Theorem 3.2 hold.

5 Real data application

We illustrate the application of our method on a dataset derived from an experiment in
neuropsychology. It aims at improving our understanding of the brain mechanisms involved
in Visual Working Memory performance. After a brief description of the scientific context
and data, we demonstrate the usage of our methodology by providing a visualization of the
estimated spatiotemporal dual-frequency coherence and an estimation of the dual-frequency
functional connectivity networks.

5.1 Scientific context

Working Memory (WM) is an essential cognitive resource because it is strongly correlated
with general cognitive abilities. Its function is to maintain access to relevant information
during a brief time-span, which enables a person to perform activities such as navigation,
communication, problem solving...Over the past 20 years there has been an explosion
of more specific research on Visual Working Memory (VWM). Following Luck and Vogel
[2013], Visual Working Memory is an ”active maintenance of visual information to serve the
needs of ongoing tasks”. There are key issues at stake in describing and identifying sources
of VWM limitation and variability, particularly from the perspective of brain connectivity
[Fougnie et al., 2012]. Brain connectivity describes how localized activity can be statistically
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dependent from one part of the brain to another. In the neuroscience community this is
referred to as functional connectivity [Friston, 2011].

In our data example, the study of these brain mechanisms is based on the analysis of
EEG signals. In brief, electrical currents generated in the brain by ensembles of neurons
firing in a synchronized manner propagate through the cerebral cortex to the scalp, where
they are recorded by spatially localized EEG electrodes. These electrodes measure electric
potentials over time, which represent the oscillations of the brain waves. Hence, the study
of functional connectivity can be addressed using coherence analysis. It has already been
proved useful in order to reveal interesting facts about Working Memory [Sauseng et al.,
2005]. A challenging aspect is that these dynamic functional connections may involve brain
waves oscillatory components of different frequencies [Gorrostieta et al., 2012, Pascual-
Marqui et al., 2016]. In other terms, bursts of high frequencies in some area of the brain
could occur preferentially during specific phases of low frequency activity in other areas.
It is worth noticing that electrical currents at the scalp surface are spatiotemporal phe-
nomenon sampled at the specific localization of the electrodes. We showed that our method
is an appropriate tool for modeling such a phenomenon because it consistently estimates
the corresponding spatio-spectral characteristics.

In fact, neuroscientists are interested in studying certain specific frequency bands that relate
to different brain states and that can be interpreted in a meaningful way. More specifically,
in the sequel, we consider the so-called theta, alpha and beta frequency bands ([4, 8]-Hz,
[8,12]-Hz and [12, 20]-Hz, respectively) denoted as Qp, 2, and Qg.

5.2 Experiment and data analysis pipeline

Our real data comes from an experiment that consists of the following consecutive steps
(an illustration is provided in Section 2 of the companion document Aston et al. [2022]):

e Memory set

— Memorize: the subject is placed in front of a computer screen. An arrow appears
on the screen and the subject has 2 seconds to memorize its orientation and color.

— Retain: a blank screen appears for 0.3 seconds, then, for the next 0.1 seconds,
multiple arrows appear to knock out the immediate memory. Finally, a blank
screen appears again for 0.9 seconds.

e Memory test: using a joystick, the subject has 1.7 seconds to reproduce the orientation
and the color of the arrow.

Notice that the subject answers about the color he remembers by selecting it from a color
scale wrapped on a circle (see the companion document Aston et al. [2022]). Henceforth,
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we compute the VWM errors for both orientation and color as angles between the truth
and the subject’s answers. This results as a set of two-dimensional VWM error measures
denoted hereafter as {y(™ e [0,27)*;r =1,...,R}.

While the subject is performing these tasks, EEG traces are recorded using a Hydrocel
GSN equipment with 129 electrodes that are placed on the subject’s scalp at specific spatial
locations. These electrodes record the electric potential (in micro-volts) over time with a
sampling rate of 500 Hz. The subject performs this experiment R = 2400 times.

In the following, we denote the set of replicated spatially localized EEG traces as { X tﬁ’r, s €
M,r =1,..., R}, where M is the set of electrode coordinates in the two-dimensional plane.

Remark 5.1. The EEG electrodes are spatially localized in 3d space over a template of
the human head. Standard practice is to use projected coordinates on the 2d plane. All
the information and code to obtain the 2d layout associated with the Hydrocel GSN can be
obtained from Qostenveld et al. [2011].

Remark 5.2. We developed our method based on realistic modeling assumptions for such
real data applications:

e Since we are interested in studying EEG connectivity and there is empirical evidence
for correlations between oscillatory components of brain waves at different frequencies
(see Pascual-Marqui et al. [2016]), we considered modeling these data as some kind
of harmonizable processes.

o Along the experiment, EEGs corresponds to the electrical activity of sequence of
different brain states, rapidly changing from one state to another. For example,
the brain states related to visual information acquisition, memorization, joystick us-
age. . . Piecewise stationary models have been proved useful in such regime/state switch-
ing situation [Kumar et al., 2014, Schréder and Ombao, 2019)].

o EEG signals represent a sample of a process that is inherently spatial, which justifies
a spatial approach.

o The test subject repeats many times the same experiment. This experiment has a
precisely timed performance of different tasks. This is taken into account by our model
considering the same distribution of replicates. We additionally introduce short-term
dependencies between replicates to account for fatigue and the effect of training.

e 7] shows that the Gaussian behavior of EEG is violated most of the time during
mental tasks. Therefore, we do not assume Gaussianity in the main results.
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o We use the assumptions of uniform Lipschitz continuity which we find to be mathe-
matically convenient, while at the same time not violating fundamental properties of
our real data.

5.3 Statistical analysis

To illustrate the application of our method to real data, we proceed in three steps. We
have replicated time series associated with two covariates: the orientation and the color
errors. Since our estimators are computed on replicated observations, we need to cluster
our replicates into meaningful subgroups according to these variables. All replicated time
series in a given subgroup will be used to estimate the corresponding spectral quantities.
Therefore, the first step of the analysis consists of unsupervised clustering of replicates
according to the WVM scores. The second step consists of visualizing the data in order to
comparison of the corresponding spatial time-varying dual-frequency coherence functions
within each cluster, and finally the third step is to compare the dual-frequency connectivity
networks.

5.3.1 Step 1: clustering with toroidal mixture

Figure 1 shows the bidimensional angular errors for all replicates. Note that both orientation
and color errors are well centered around (0,0), meaning that on average the subject has
an unbiased assessment of angle and color. We observe a seemingly more precise quality of
memorization for colors than for orientations.

Our first step is to model the joint distribution of errors. Using the R package "BAMBI”
[Chakraborty and Wong, 2019, 2018] and considering the weighted AIC criterion, our best
fit is obtained using a two-component mixture of bivariate von Mises distributions. It gives
a satisfactory clustering, as shown in Figure 1. The first subgroup of replicates (colored
in red) can be interpreted as 'poor’ memorization scores, the second subgroup (colored in
blue) as ’good’ memorization scores. The first subgroup contains approximately 10% of the
total number of replicates.

5.3.2 Step 2: estimation of the spatial time-varying dual-frequency coherence

We can now proceed to the estimation of the spatial time-varying dual-frequency coherence
functions for each cluster based on formula (16). In Figure (2) we present the estimated
spatial dual-frequency coherence for frequency bands (€, £2,) in the group of poor VWM
scores ﬁﬂﬂyl@z (Q9,9,) at time 7 = 1.2s. The graph on the left shows the location of
u; € M. It is specified by the user. The graph on the right contains the output of our
software, i.e. a topographic map of the spatial coherence {/7777@17@2 (Q0,Q0) ,uz € [0, 1]2}.

20



Color error (in radian)
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- ; .
Orientation error (in radian)

Figure 1: Angular errors associated with each replicate; x-axis: orientation error; y-axis:
color error. Red and blue colors identify the subgroup resulting from unsupervised cluster-
ing.

Remark 5.3. In this analysis and after we consider a size of the Fourier window of 0.5
seconds. The time window was chosen as a rule of thumb. It is an actual research question
in this context to choose a proper length for the time window. It should be chosen small
enough to avoid bias due to the nonstationarity and large enough to get a suitable frequency
resolution.

5.3.3 Step 3: estimation of the dual-frequency functional connectivity net-
works

Neuroscientists are interested in interpreting significant and sufficiently large coherence
values. Hereafter, we consider that coherence values passing above 0.3 are of neurophysio-
logical interest. We use our bootstrap approach to check whether the coherence values are
above this reference value by constructing 95% left-sided bootstrap confidence intervals fol-
lowing Section 3. This is done for each pairs of spatial locations (here restricted to a subset
of spatial locations of electrodes of interest) and for each time blocks. The block length for
the CBB is taken as the integer part of the cubic root of the number of replicates. Next, we
construct adjacency matrices of dual-frequency connectivity that refer to different spatial
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spatial reference point coherence attime=1.25s

1.0
0.a
0.6
0.4
0.2

0.0

Figure 2: Estimated spatial (g, 2,) dual-frequency coherence function associated with
poor VWM scores. On the left-hand side: location of u; (user-specified); on the right-hand
side: the estimated spatial coherence for all spatial locations us.

locations at given time points. From these matrices, we construct a dynamic visualization
of the network. The resulting networks of (£2,,23) dual-frequency functional connectivity
at a time point of interest is shown in Figure 3. The graphs present the connectivity es-
timated from the set of replicates related to poor (left side) and good (right side) scores.
Blue lines are drawn between spatial locations for which the lower limit of the bootstrap
confidence interval for dual-frequency coherence passes over the predefined threshold value
of 0.3.

More specifically, the Figure 3 reveals that brain mechanisms associated to good memoriza-
tion scores exhibit significant correlation between the oscillatory components of moderate
(alpha) and high (beta) frequencies within the prefrontal cortex during the memory set.
Our results seem to be consistent with other known results that highlight the role of the
prefrontal cortex in encoding task-relevant information in working memory tasks (Lara and

Wallis [2015], Funahasi [2017]).
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set stays on screen ; time: 0.182 s

Figure 3: Statistically and neurophysiologically significant functional connections at
(Qq,Qp) frequency bands associated with poor (left graph) and with good memorization
scores (right graph).

6 Conclusions

In this paper we introduce spectral analysis for a novel model for replicated spatiotemporal
processes that are locally time-harmonizable. We propose a consistent estimation procedure
for the rescaled spatial time-varying Loeve spectrum and the spatial time varying dual fre-
quency coherence. We model dependency across replicated observations and we proved the
consistency of the circular block bootstrap. This method allows to obtain valid confidence
interval for inference. As an application example, we consider the analysis of replicated
measurements of EEG signals in a neuropsychology experiment. We demonstrated the
ability of our method to provide a novel way to visualize topographic maps of EEG voltage
and to describe the dynamic dual-frequency functional connectivity.
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