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The exact boundary controllability of the semilinear wave equation ytt -yxx + f (y) = 0, x ∈ (0, 1) assuming that f is locally Lipschitz continuous and satisfies the growth condition lim sup |r|→∞ |f (r)|/(|r| ln p |r|) β for some β small enough and p = 2 has been obtained by Zuazua in 1993. The proof based on a non constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized wave equation. Under the above asymptotic assumption with p = 3/2, by introducing a different fixed point application, we present a simpler proof of the exact boundary controllability which is not based on the cost of observability of the wave equation with respect to potentials. Then, assuming that f is locally Lipschitz continuous and satisfies the growth condition lim sup |r|→∞ |f (r)|/ ln 3/2 |r| β for some β small enough, we show that the above fixed point application is contracting yielding a constructive method to approximate the controls for the semilinear equation. Numerical experiments illustrate the results. The results can be extended to the multi-dimensional case and for nonlinearities involving the gradient of the solution.

Introduction and main results

Let Ω := (0, 1) and let T > 0. We set Q T := Ω × (0, T ). We consider the semilinear 1D wave equation

     y tt -y xx + f (y) = 0 in Q T , y(0, •) = 0, y(1, •) = v in (0, T ), (y(•, 0), y t (•, 0)) = (u 0 , u 1 ) in Ω, (1) 
where (u 0 , u 1 ) ∈ V := H 1 0 (Ω) × L 2 (Ω) is a given initial state, v ∈ H 1 0 (0, T ) is a control function and f ∈ C 0 (R) is a nonlinear function such that |f (r)| C(1 + |r|) ln 2 (2 + |r|) for every r ∈ R and some C > 0. Then, (1) admits a unique weak solution in C 0 ([0, T ]; H 1 (Ω)) × C 1 ([0, T ]; L 2 (Ω)) (see [START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF]).

The system (1) is said to be exactly controllable at time T > 0 if for any initial state (u 0 , u 1 ) ∈ V and target data (z 0 , z 1 ) ∈ V , there exists a control function v ∈ H 1 0 (0, T ) such that the associated solution to (1) satisfies (y(•, T ), y t (•, T )) = (z 0 , z 1 ). The controllability time T > 0 needs to be large enough in view of the finite speed of propagation of the solutions.

Literature -The exact controllability for the linear wave equations is by now well-understood, see for instance the pioneer works by D. L. Russell, [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF], J.-L. Lions, [Lio88a, Lio88b], J. Lagnese & J.-L. Lions [START_REF] Lagnese | Modelling analysis and control of thin plates[END_REF]; we also refer [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF].

The first work concerning the controllability of finite dimensional nonlinear wave equations has been done by Markus [Mar65] by the way of an implicit function theorem. Later on, this approach has been adapted for the local exact controllability of nonlinear wave equations by Chewning [START_REF] William | Controllability of the nonlinear wave equation in several space variables[END_REF], Fattorini [START_REF] Fattorini | Local controllability of a nonlinear wave equation[END_REF]. Global exact distributed controllability for the semilinear wave equations in any space dimension has first been obtained by E. Zuazua [START_REF] Zuazua | Exact controllability for semilinear distributed systems[END_REF][START_REF] Zuazua | Contrôlabilité exacte de systèmes d'évolution non linéaires[END_REF][START_REF] Zuazua | Exact controllability for the semilinear wave equation[END_REF] assuming that the nonlinear functions are globally Lipschitz and asymptotically linear, i.e. assuming that lim sup |r|→∞ |f (r)|/|r| < ∞. For the boundary controllability case, this asymptotic assumption has been removed in [START_REF] Zuazua | Exact boundary controllability for the semilinear wave equation[END_REF] in the framework of the HUM method introduced by Lions coupled with a fixed point argument.

Theorem 1. [Zua91, Theorem 2.1] Assume that T > 2. Then, for every globally Lipschitz continuous function f such that f ∈ L ∞ (R) and γ ∈ (0, 1), γ = 1 2 , the system (1) is exactly controllable in H γ 0 (0, 1) × H γ-1 (0, 1) with a control v ∈ H γ 0 (0, T ).

Later on, this result (actually proved in a multidimensional situation) was recovered by I. Lasiecka and R. Triggiani, [START_REF] Lasiecka | Exact controllability of semilinear abstract systems with application to waves and plates boundary control problems[END_REF], using a global inversion theorem. The authors improved some regularity of their boundary control still assuming globally Lipschitz nonlinearity.

Then, in the framework of the distributed controllability with a control support ω ⊂ (0, 1), the assumption f ∈ L ∞ (R) has been relaxed by Zuazua.

Theorem 2. [Zua93, Theorem 1] Let ω = (l 1 , l 2 ) with 0 < l 1 < l 2 < 1. Assume that T > 2 max{l 1 , 1l 2 }, that f is locally Lipschitz continuous and satisfies

(H 1 ) lim sup |r|→∞ |f (r)| |r| ln 2 + |r|
β for some β small enough depending only on ω and T . Then, for any (u 0 , u 1 ), (z 0 , z 1 ) ∈ V , the system

     y tt -y xx + f (y) = v 1 ω in Q T , y(0, •) = y(1, •) = 0 in (0, T ), (y(0, •), y t (0, •)) = (u 0 , u 1 ) in Ω, (2) 
is exactly controllable with control in L 2 (ω × (0, T )): there exists v ∈ L 2 (ω × (0, T )) such that (y(•, T ), y t (•, T )) = (z 0 , z 1 ).

Here and in the sequel, we note

ln + |r| = 0 if |r| 1 ln |r| else.
Moreover, it is proved in [Zua93, Theorem 2] that, if f behaves like -s ln p (|s|) with p > 2 as |s| → +∞, then the system is not exactly controllable in any time T > 0, due to an uncontrollable blow-up phenomenon. Theorem 1 has been slightly improved in [START_REF] Cannarsa | One-sided and internal controllability of semilinear wave equations with infinitely iterated logarithms[END_REF], weakening the condition (H 1 ) into lim sup ln [k] (e k + r 2 ) -2

< +∞

where ln [k] denotes the k th iterate of ln and e k > 0 is such that ln [k] (e k ) = 1. This growth condition is optimal since the solution of (2) may blow up whenever f grows faster at infinity and has the bad sign. The multi-dimensional case in which Ω is a bounded domain of R d , d > 1, with a C 1,1 boundary has been addressed in [START_REF] Li | Exact controllability for semilinear wave equations[END_REF]; assuming that the support ω of the control function is a neighborhood of ∂Ω and that T > diam(Ω\ω), the exact controllability of (2) is proved under the growth condition lim sup |r|→+∞ |f (r)| |r| ln 1/2 + |r| < β for some β small enough. For control domains ω satisfying the classical multiplier assumption (see [Lio88b]), exact controllability has been proved in [START_REF] Zhang | Explicit observability estimate for the wave equation with potential and its application[END_REF] assuming that f is globally Lipschitz continuous. We also mention [START_REF] Coron | Global steady-state stabilization and controllability of 1D semilinear wave equations[END_REF] where a positive boundary controllability result is proved for steady-state initial and final data and for T large enough by a quasi-static deformation approach. We also mention the work [START_REF] Dehman | Stabilization and control for the subcritical semilinear wave equation[END_REF] by B. Dehman, G. Lebeau and E. Zuazua which is concerned with the controllability and stabilizability of some subcritical semilinear wave equations in Ω ⊂ R 3 . Assuming that the nonlinearity f ∈ C 3 (R) satisfies f (0) = 0, rf (r) 0, |f (j) (r)| C(1 + |r|) p-j , j = 1, 2, 3; 1 p < 5 the exact internal controllability of the semilinear wave equations at time T := T (u 0 , u 1 ) > 0 that depends on the size of the initial data (u 0 , u 1 ) ∈ H 1 0 (Ω ) × L 2 (Ω ). See also [START_REF] Dehman | Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time[END_REF] achieving the same result in a uniform time under smallness assumption on the initial data. The sign condition has been weakened in [START_REF] Joly | A note on the semiglobal controllability of the semilinear wave equation[END_REF] to an asymptotic sign assumption leading to a semi-global internal controllability result in the sense that the target data is prescribed in a precise subset of H 1 0 (Ω ) × L 2 (Ω ) . The above results devoted to internal controllability, notably Theorem 2, can be employed together with the domain extension method to get indirectly boundary controllability results for system (1) of interest in the present work.

The proof of Theorem 2 is based on a Leray Schauder fixed point argument applies to the operator Λ : L ∞ (Q T ) → L ∞ (Q T ), where y := Λ(z) is a controlled solution with the control function v of the linear boundary value problem

     y tt -y xx + f (z) y = -f (0) + v1 ω in Q T , y(0, •) = y(1, •) = 0 in (0, T ), (y(•, 0), y t (•, 0)) = (u 0 , u 1 ) in Ω, f (r) :=    f (r) -f (0) r if r = 0 f (0) if r = 0 (3) 
satisfying (y(•, T ), y t (•, T )) = (z 0 , z 1 ). The stability of the operator Λ in L ∞ (Q T ) is based on a precise estimate of the cost of the control v in term of the potential f and data (u 0 , u 1 ), (z 0 , z 1 ).

Objective -The general goal addressed in this work is the approximation of the controllability problem associated with (1), that is to construct an explicit sequence (y k , v k ) k∈N converging strongly toward a control-state pair solution (y, v) for (1). Although almost sharp with respect to the nonlinearity, Theorem 2 is not constructive as it does not provide any convergent sequences (y k ) k∈N to a fixed point of Λ, i.e. to a controlled solution y of (2). This is due to the fact that the operator Λ is not contracting in general.

Assuming slightly stronger assumptions on f , a constructive convergent sequence has been proposed by the third author and E. Trélat in [START_REF] Münch | Constructive exact control of semilinear 1D wave equations by a least-squares approach[END_REF] using a least-squares approach coupled with a Newton type linearization.

Theorem 3. [MT22, Theorem 2.3] Let ω = (l 1 , l 2 ) with 0 < l 1 < l 2 < 1. Assume that T > 2 max{l 1 , 1 -l 2 } and that f ∈ C 1 (R) satisfies (H 1 ) ∃α > 0, s.t. |f (r)| α + β ln 2 + |r|, ∀r ∈ R
for some β > 0 small enough depending only on ω and T and

(H p ) ∃p ∈ (0, 1] such that sup a,b∈R a =b |f (a) -f (b)| |a -b| p < +∞.
Then, for any (u 0 , u 1 ), (z 0 , z 1 ) ∈ V , one can construct a sequence (y k , v k ) k∈N converging strongly to a controlled pair for (2) satisfying (y(•, T ), y t (•, T )) = (z 0 , z 1 ). Moreover, after a finite number of iterations, the convergence is of order at least 1 + p.

The hypothesis on f are stronger here than in Theorem 1: it should be noted however that the function f (r) = a + br + βr ln(1 + |r|) 2 , a, b ∈ R which is somehow the limit case in (H 1 ) satisfies (H 1 ) and (H 1 ). On the other hand, Theorem 3 is constructive, contrary to Theorem 1. The construction makes appear the operator Λ 1 :

L ∞ (Q T ) → L ∞ (Q T )
where y := Λ 1 (z) is a controlled solution with the control function v of the linear boundary value problem

     y tt -y xx + f (z)y = v1 ω + f (z)z -f (z) in Q T , y(0, •) = y(1, •) = 0 in (0, T ), (y(•, 0), y t (•, 0)) = (u 0 , u 1 ) in Ω. ( 4 
)
Theorem 3 is extended to a multidimensional case, i.e. Ω ⊂ R d with d 3 in [START_REF] Bottois | Constructive exact control of semilinear multi-dimensional wave equations by a least-squares approach[END_REF] under the same condition on f except that the exponent 2 in (H 1 ) is replaced by an exponent 1/2.

Main result of the present work -In this paper, we prove the following result, directly in the framework of the boundary controllability.

Theorem 4. Assume T > 2. Let s > 0 large enough.

• There exists β > 0 such that if f ∈ C 0 (R) satisfies (H 2 ) ∃α 1 , α 2 > 0, s.t. |f (r)| α 1 + |r| α 2 + β ln 3/2 + |r| , ∀r ∈ R then system (1) is exactly controllable at time T for initial data in V with controls in H 1 0 (0, T ). • There exists β > 0 such that if f ∈ C 1 (R) satisfies (H 2 ) ∃α > 0, s.t. |f (r)| α + β ln 3/2 + |r|, ∀r ∈ R
then, for any initial state (u 0 , u 1 ) and final state (z 0 , z 1 ) in V , one can construct a sequence (y k , v k ) k∈N * that converges strongly to a controlled pair (y, v) in C 0 ([0, T ]; H 1 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)) × H 1 0 (0, T ) for the system (1). Moreover, the convergence of (y k , v k ) holds at least with a linear rate for the norm ρ(s) • L 2 (Q T ) + ρ 1 (s) • L 2 (0,T ) where ρ, ρ 1 are defined in (8) and s is chosen sufficiently large depending on (u 0 , u 1 ) V and (z 0 , z 1 ) V .

To our knowledge, this result is the first proposing a constructive approximation of boundary controls for the semilinear wave equation without the assumption that f is globally Lipschitz. Under smallness assumptions on the data, we mention the recent works [START_REF] Calvalcanti | Numerical control of a semilinear wave equation on an interval[END_REF] and [START_REF] Vivek Natarajan | Exact controllability of a class of nonlinear distributed parameter systems using back-and-forth iterations[END_REF].

Concerning the first part of the theorem, if we compare with Theorem 2 (leading indirectly to boundary controllability result by the extension method), the assumption on the asymptotic behavior of f is slightly stronger with an exponent 3 2 instead of 2. This is due to the fact the method in [Zua93] based on explicit computation (using the d'Alembert formula) is genuinely one dimensional, while the present work is based on Carleman estimates valid in any space dimension. On the other hand, this first part relaxed the regularity assumption to f ∈ C 0 (R) instead of f locally Lipschitz continuous. Moreover, this first part of Theorem 4 differs from Theorem 2 on the functional spaces as it is based on a different fixed point application leading to a simpler proof. In particular, it is not based on the analysis of the cost of observability of the wave equation with potential. Concerning the second part of the theorem, it relaxes the Hölder assumption (H p ) on f but still leads to a constructive method. As we shall see, this is related to an appropriate choice of the parameter s related to the norm of the initial condition. Again, to our knowledge, this is the first result leading to a convergent approximation of boundary controls for superlinear nonlinearities without smallness assumption notably on the initial condition and target (contrary to the recent works [START_REF] Calvalcanti | Numerical control of a semilinear wave equation on an interval[END_REF] and [START_REF] Vivek Natarajan | Exact controllability of a class of nonlinear distributed parameter systems using back-and-forth iterations[END_REF]).

Theorem 4 is obtained by adapting the recent work [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF] devoted to a semilinear heat equation. We introduce the following linearized controllability problem: for y in a suitable class C R (s) depending on a free parameter s 1, find the control v such that the solution y of

     y tt -y xx = -f ( y) in Q T , y(0, •) = 0, y(1, •) = v in (0, T ), (y(•, 0), y t (•, 0)) = (u 0 , u 1 ) in Ω, (5) 
satisfies (y(•, T ), y t (•, T )) = (z 0 , z 1 ) in Ω, and (y, v) corresponds to the minimizer of a functional J s depending on s and involving Carleman weight functions (see Remark 3). This will define an operator Λ s : y → y from some suitable class C R (s) into itself, on which we can use fixed point theorems for s sufficiently large depending on u 0 L ∞ (Ω) , namely Schauder fixed point theorem for the first item of Theorem 4, and Banach-Picard fixed point theorem for the second item, allowing to exhibit a simple sequence of convergent approximations of the control and controlled trajectory. The analysis of the fixed point operator is based on Carleman estimates as they allow to get precise estimates on the control and controlled trajectories in term of the parameter s. Choosing the Carleman parameter large allows to limit the influence of lowers order terms and get suitable contracting properties. Such tricks have already been used in the context of inverse problems reformulated through a least-squares functional in [START_REF] Baudouin | Global Carleman estimates for waves and applications[END_REF] and [START_REF] Michael | Globally strictly convex cost functional for a 1-D inverse medium scattering problem with experimental data[END_REF].

With respect to the heat equation considered in [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF][START_REF] Lemoine | Constructive exact control of semilinear 1d heat equations[END_REF], the Carleman weights are not singular with respect to the time variable, avoiding technicalities. On the other hand, the regularity issue is more delicate for the hyperbolic case which does not enjoys regularizing property. This is a fortiori true for boundary control : precisely, in order to get L ∞ estimate for the controlled trajectories solution of (1), the boundary control v needs to be more regular than L 2 (0, T ). Hopefully, it turns out that the optimal state-control pair for the functional J s (see Remark 3) involving L 2 norms enjoys suitable regularity property as soon as the initial and final data belongs to V and satisfy compatibility condition at x = 0 and x = 1. This point is crucial in our analysis.

Outline -The paper is organized as follows. In Section 2, we derive a controllability result for the linear wave equation with precise estimates in term of the right hand side, the initial data and the Carleman parameter s large enough. In particular, we prove that the optimal control for the L 2 (0, T ) norm belongs actually to H 1 (0, T ): this result stated in Theorem 7 is proven in Appendix A. Then, in Section 3, we prove, for any time T > 2 the uniform null controllability of (1) assuming that f is continuous and satisfies the condition (H 2 ). Then in Section 3.5, assuming that f is continuous and satisfies the condition (H 1 ), we show that the operator Λ s is contracting, yielding the convergence of the Picard iterates y k+1 = Λ s (y k ). Section 5 illustrates the result with some numerical experiments while Section 6 concludes with some remarks.

Notations. In this article, C denote generic constants depending on Ω and T , which may change from line to line, but are independent of the Carleman parameter s.

Controllability results for the linear wave equation

This section is devoted to a controllability result for a linear wave equation with a right hand side B ∈ L 2 (Q T ) and initial data (u 0 , u 1 ) ∈ V . Precisely, for any (z 0 , z 1 ) ∈ V and T > 0 large enough, we are interested by the existence of a control function v ∈ H 1 0 (0, T ) such that the solution y of

     y tt -y xx = B in Q T , y(0, •) = 0, y(1, •) = v in (0, T ), (y(•, 0), y t (•, 0)) = (u 0 , u 1 ) in Ω, (6) 
satisfies (y(•, T ), y t (•, T )) = (z 0 , z 1 ). Though this linear control is by now standard, we aim to get precise weighted estimate of a state-control pair in a given functional space in the data, which will crucial to handle the nonlinear system (1). We employ Carleman estimates as fundamental tool (see [START_REF] Bellassoued | Carleman estimates and applications to inverse problems for hyperbolic systems[END_REF]).

A global Carleman estimate

For any β ∈ (0, 1) and x 0 < 0, we define the auxiliary function

ψ(x, t) = |x -x 0 | 2 -β t - T 2 2 + M 0 in Q T , (7) 
where M 0 > 0 is chosen in such a way that ψ is strictly positive. Then, for any λ > 0, we define φ(x, t) = e λψ(x,t) . For all s s 0 , let us now define the following weight functions ρ(s; x, t) := e -sφ(x,t) , ρ 1 (s; t) = ρ(s;

1, t), ∀(x, t) ∈ Q T . (8) 
Remark that e -cs ρ(s; x, t) e -s , e -cs ρ 1 (s;

t) e -s in Q T with c := φ L ∞ (Q T ) , that ρ -1 , ρ ∈ C ∞ (Q T ) and that ρ 1 , ρ -1 1 ∈ C ∞ ([0, T ]).
In short, we shall write ρ(s) and ρ 1 (s) to denote the above weight functions.

Then, for any δ > 0 such that T -2δ > 2 sup Ω |x -x 0 |, we introduce a cut-off function η ∈ C ∞ c (R) satisfying the following properties:

     0 η(t) 1 in (δ, T -δ), η(t) = 1 in [2δ, T -2δ], η(t) = 0 in (-∞, δ] ∪ [T -δ, +∞). (9) 
Let

P := {w ∈ C 0 ([0, T ]; H 1 0 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)), w tt -w xx ∈ L 2 (Q T )}.
Recall that w x (1, •) ∈ L 2 (0, T ) for every w ∈ P (see [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF]Theorem 4.1]).

The controllability property for the linear system (6) is based on the following Carleman estimate with boundary observation at x = 1.

Theorem 5. Assume T > 2. There exists s 0 > 0, λ > 0 and C > 0, such that for any s s 0 , we have the following Carleman inequality

s Q T ρ -2 (s)(|w t | 2 + |w x | 2 ) + s 3 Q T ρ -2 (s)|w| 2 + s Ω ρ -2 (s; •, 0)(|w t (•, 0)| 2 + |w x (•, 0)| 2 ) + s 3 Ω ρ -2 (s; •, 0)|w(•, 0)| 2 + s Ω ρ -2 (s; •, T )(|w t (•, T )| 2 + |w x (•, T )| 2 ) dx + s 3 Ω ρ -2 (s; •, T )|w(•, T )| 2 C Q T ρ -2 (s)|w tt -w xx | 2 + Cs T 0 η 2 (t)ρ -2 1 (s)|w x (1, •)| 2 (10)
for every w ∈ P .

Proof. We refer to [CFCM13, Lemma 2.3] using [BDBE13, Remark 2.9 and Theorem 2.5]. Remark that the occurence of the terms at t = T on the left hand side are due to the fact that ρ(•, t) = ρ(•, T -t) and the reversibility of the wave operator.

Application to controllability

In a standard way, Theorem 5 allows to deduce some controllability results for the system (6). For any s s 0 , we define the bilinear form (w, z) P,s :=

Q T ρ -2 (s)LwLz + s T 0 η 2 (t)ρ -2 1 (s)w x (1, t)z x (1, t), (11) 
for any w, z ∈ P . Here and in what follows, we use the notation Lw := w tt -w xx . It is easily seen that (11) defines a scalar product in P and if P s denotes P endowed with this scalar product, then P s is an Hilbert space. We can state the main result of this section, devoted without loss of generality to the null controllability case, for which (z 0 , z 1 ) = (0, 0) in Ω.

Theorem 6. Assume that T > 2 and let η ∈ C ∞ (R) be a cut-off function satisfying (9). For s s 0 , B ∈ L 2 (Q T ) and (u 0 , u 1 ) ∈ V , there exists unique w s ∈ P s , depending only on B, u 0 , u 1 such that

(w s , z) P,s = Ω u 1 z(•, 0) dx - Ω u 0 z t (•, 0) dx + Q T Bz, ∀z ∈ P s . ( 12 
)
Then v s (t) = sη 2 (t)ρ -2 1 (s)(w s ) x (1, t) is a control function for (6) where y s = ρ -2 (s)Lw s is the associated controlled trajectory, that is y s (x, T ) = (y s ) t (x, T ) = 0 for all x ∈ Ω and the operator defined by

Λ 0 s : (B, u 0 , u 1 ) → y s (13) is linear, continuous from L 2 (Q T ) × H 1 0 (Ω) × L 2 (Ω) to L 2 (Q T )
. Moreover, we have the following estimates for y s and v s for some constant C > 0 independent of s:

ρ(s)y s L 2 (Q T ) + s -1/2 ρ 1 (s) η v s L 2 (δ,T -δ) C s -3/2 ρ(s)B L 2 (Q T ) + s -1/2 e -s u 0 L 2 (Ω) + s -3/2 e -s u 1 L 2 (Ω) . (14) 
Before going to the proof, we make the following remarks.

Remark 1. It is well-known that the boundary controllability of (6) with L 2 (0, T ) controls holds true with initial data (u 0 , u 1 ) only in L 2 (Ω) × H -1 (Ω). We start directly with (u 0 , u 1 ) ∈ V since the application of some fixed point theorem to deal with the semilinear case shall require regularity on the state-control pair (see Section 2.3).

Remark 2. In the framework of exact controllability with no vanishing target (z 0 , z 1 ) ∈ V , the right hand side of estimate (14) contains the extra quantities

s -1/2 e -s z 0 L 2 (Ω) + s -3/2 e -s z 1 L 2 (Ω) .
The point here to be noted is that the coefficients (powers of s or exponentials associated with s) in front of the norms of u 0 , u 1 and z 0 , z 1 are the same, and this would hold for any subsequent estimates. This is why, there is no loss of generality to choose (z 0 , z 1 ) = (0, 0) which will make the computations shorter and simpler.

Proof. We first ensure the solvability of the variational equation (12). Since (•, •) P,s is a scalar product on P s , we only need to check that the right hand side of (12) is a linear continuous form on P s .

• For all z ∈ P s : since ρ(s)B ∈ L 2 (Q T ), we have

Q T Bz Q T |ρ(s)B| 2 1/2 Q T |ρ -1 (s)z| 2 1/2 . Now, since z enjoys the Carleman inequality (10), one has ρ -1 (s)z L 2 (Q T )
Cs -3/2 z Ps (recall the definition of the inner product (11) on P s ). Thus, we have

Q T Bz Cs -3/2 ρ(s)B L 2 (Q T ) z Ps .
• Next, we observe that

Ω u 0 z t (•, 0) dx ρ(s; •, 0)u 0 L 2 (Ω) ρ -1 (s; •, 0)z t (•, 0) L 2 (Ω)
Cs -1/2 e -s u 0 L 2 (Ω) z Ps , using the Carleman inequality (10) and that |ρ(s; x, 0)| = |e -sφ(x,0) | e -s (since φ 1).

• Similar, we get

Ω u 1 z(•, 0) dx ρ(s; •, 0)u 1 L 2 (Ω) ρ -1 (s; •, 0)z(•, 0) L 2 (Ω) Cs -3/2 e -s u 1 L 2 (Ω) z Ps .
Combining the above three items, the right hand side of (12) corresponds to a linear functional on P s . The Riesz representation theorem, implies the existence of a unique w s ∈ P s satisfying the formulation (12) which additionally satisfies

w s Ps C s -3/2 ρ(s)B L 2 (Q T ) + s -1/2 e -s u 0 L 2 (Ω) + s -3/2 e -s u 1 L 2 (Ω) , (15) 
where the constant C > 0 is independent of s s 0 . Then, set y s = ρ -2 (s)Lw s and v s = sη 2 ρ -2 (s)(w s ) x (1, •). From the equality (12), the pair (y s , v s ) satisfies

Q T y s Lz dxdt + T 0 v s z x (1, •)dt = Ω u 1 z(•, 0) dx - Ω u 0 z t (•, 0) dx + Q T Bz, ∀z ∈ P s , meaning that y s ∈ L 2 (Q T )
is a solution to the linear system (6) associated with the function v s ∈ L 2 (0, T ) in the sense of transposition. By uniqueness, y s indeed solves (6) in a weak sense. Eventually, using the estimate (15) for w s , we get that ρ(s)

y s = ρ -1 (s)Lw s ∈ L 2 (Q T ) and s -1/2 ρ 1 (s)v s = s 1/2 η 2 ρ -1 1 (s)(w s ) x (1, •) ∈ L 2 (0, T
) and deduce the weighted estimate (14).

Remark 3. The functions y s and v s introduced by Theorem 6 can be characterized as the unique minimizer of the following functional

J s (y, v) = s Q T ρ 2 (s)y 2 + T 0 η -2 ρ 2 1 (s)v 2 (16) over the set (y, v) ∈ L 2 (Q T ) × L 2 (0, T ) solution of (6) with y(•, T ) = y t (•, T ) = 0 in Ω . We refer to [CFCM13,
Section 2] for the details.

Remark 4. The controlled state y s = ρ -2 Lw s satisfies

     Ly s = B in Q T , y s (0, •) = 0, y s (1, •) = sη 2 ρ -2 1 (s)(w s ) x (1, •) in (0, T ), (y s (•, 0), (y s ) t (•, 0)) = (u 0 , u 1 ), in Ω, (17) 
implying (by standard regularity results for the wave equation) that

y s ∈ C 0 ([0, T ]; L 2 (Ω)) ∩ C 1 ([0, T ]; H -1 (Ω)).
On the other hand, the function w s uniquely satisfies the equation

Lw s = ρ 2 y s in Q T , w s (0, •) = w s (1, •) = 0 in (0, T ), ( 18 
)
implying that (w s (•, 0), ∂ t w s (•, 0)) ∈ V (see estimate (10)) and w s ∈ C 0 ([0, T ]; H 1 0 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)).

Estimate for the state-control pair in

C 0 ([0, T ]; H 1 (Ω)) × H 1 (0, T )
In this section, we prove that the state-control pair (y s , v s ) given by Theorem 6 enjoys additional regularity property, under the assumption (u 0 , u 1 ) ∈ V and the introduction of the cut-off function η with respect to the time variable. In particular, we obtain that v s ∈ H 1 0 (0, T ) and y s ∈ L ∞ (Q T ). This gain is crucial for the analysis of the semilinear case.

Theorem 7. Let any (u 0 , u 1 ) ∈ V and B ∈ L 2 (Q T ) be given. Then, the solution (y s , v s ) of (6) defined in Theorem 6 satisfies v s ∈ H 1 (0, T ), y s ∈ C 0 ([0, T ]; H 1 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)
) and the following estimate :

ρ(s)(y s ) t L 2 (Q T ) + s -1/2 ρ 1 (s)(v s ) t L 2 (0,T ) C s -1/2 ρ(s)B L 2 (Q T ) + s -1/2 e -s u 1 L 2 (Ω) +s 1/2 e -s u 0 L 2 (Ω) + s -1/2 e -s (u 0 ) x L 2 (Ω) . (19) 
We refer to [EZ10, Theorem 5.4] where a similar gain of regularity is proved in the slightly simpler case of control of minimal L 2 (0, T )-norm, i.e. J s in ( 16) is replaced by J(y, v) = v 2 L 2 (0,T ) . We also refer to [START_REF] Dehman | Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time[END_REF] for internal control by introducing a cut-off function in space. The proof of Theorem 7 is long and requires several steps. It is done in Appendix A.

Let us prescribe the following regularity estimate for the controlled trajectory y s .

Lemma 1. Let us recall the controlled trajectory y s and the control v s for the linear system (6), defined by Theorem 6. Then, y s satisfies the following bound

y s C 0 ([0,T ];H 1 (Ω)) + (y s ) t C 0 ([0,T ];L 2 (Ω)) C B L 2 (Q T ) + e cs ρ(s)B L 2 (Q T ) + e (c-1)s (u 0 ) x L 2 (Ω) + se (c-1)s u 0 L 2 (Ω) + s 1/2 e (c-1)s u 1 L 2 (Ω) , (20) 
where C > 0 is a constant that does not depend on s s 0 , and

c = φ L ∞ (Q T ) .
Proof. It is well-known that for given data (u 0 , u 1 ) ∈ V and B ∈ L 2 (Q T ), we have

y s C 0 ([0,T ];H 1 (Ω)) + (y s ) t C 0 ([0,T ];L 2 (Ω)) C B L 2 (Q T ) + (v s ) t L 2 (0,T ) + (u 0 ) x L 2 (Ω) + u 1 L 2 (Ω) . (21)
Then, using the estimate (19) from Theorem 7, it is not difficult to obtain (20).

3 Controllability result for the semilinear problem with f ∈ C 0 (R): a Schauder fixed point argument For any s s 0 and R > 0, we introduce the class C R (s), defined as the closed convex subset of

L ∞ (Q T ) C R (s) := y ∈ L ∞ (Q T ) : y L ∞ (Q T ) R, ρ(s) y L 2 (Q T ) R 1/2 (22)
and assume that that the nonlinear function f ∈ C 0 (R) in (1) satisfies the growth assumption (H 2 ) for some β positive precisely chosen later.

Then, for T > 2, s s 0 (to be fixed later) and for all y ∈ C R (s), we first solve the linearized boundary control problem, given by

     y tt -y xx = -f ( y) in Q T , y(0, •) = 0, y(1, •) = v in (0, T ), (y(•, 0), y t (•, 0)) = (u 0 , u 1 ) in Ω (23) with v such that (y(•, T ), y t (•, T )) = (0, 0) in Ω. The existence of a controlled trajectory y ∈ L ∞ (Q T )
is guaranteed by Theorem 7 with the source term -f ( y) ∈ L 2 (Q T ). Now, our aim is to prove that there exists a fixed point of the following operator

Λ s : L ∞ (Q T ) → L ∞ (Q T ), Λ s ( y) = y. ( 24 
)
Note that, Λ s ( y) = Λ 0 s (-f ( y), u 0 , u 1 ), as per the definition (13).

Claim: We are going to show that 1. for β > 0 small enough, there exist R > 0 large enough and s s 0 such that C R (s) is stable under the map Λ s ; see Section 3.2;

2. Λ s (C R (s)) is relatively compact subset of C R (s) for the norm • L ∞ (Q T ) ; see Section 3.3; 3. Λ s is a continuous map in C R (s) for the topology induced by the norm • L ∞ (Q T ) ; see Section 3.4.
Accordingly, by the Schauder fixed point theorem, there will exist a fixed point of Λ s , denote by y, which will be the controlled trajectory for our semilinear problem (1).

Estimate of

Λ s (ŷ) L ∞ (Q T )
We begin with the following lemma.

Lemma 2. Assume T > 2 and f ∈ C 0 (R) satisfies (H 2 ). For any s s 0 and y ∈ L ∞ (Q T ), the quantity f ( y) satisfies the following estimates:

f ( y) L 2 (Q T ) α 1 T + α 2 + β ln 3/2 + y L ∞ (Q T ) e cs ρ(s) y L 2 (Q T ) , ρ(s)f ( y) L 2 (Q T ) α 1 T e -s + α 2 + β ln 3/2 + y L ∞ (Q T ) ρ(s) y L 2 (Q T ) , f ( y) L ∞ (Q T ) α 1 T + α 2 + β ln 3/2 + y L ∞ (Q T ) y L ∞ (Q T ) , with c = φ L ∞ (Q T ) .
Proof. The proof of above lemma follows from the growth assumption (H 2 ) on f . Observe that

Q T |f ( y)| 2 1/2 α 1 T + ρ -1 (s) ∞ Q T |ρ(s) y| 2 α 2 + β ln 3/2 + | y| 2 1/2 α 1 T + α 2 + β ln 3/2 + y L ∞ (Q T ) e cs ρ(s) y L 2 (Q T ) ,
where we have used that

ρ -1 (s) L ∞ (Q T ) = e sφ L ∞ (Q T )
e cs . The other estimates are obtained in a similar way.

Proposition 1. Under the assumptions of Lemma 2, for s s 0 and for all y ∈ L ∞ (Q T ), the solution y = Λ s ( y) to the linearized system (23) satisfies the following estimates:

ρ(s)y L 2 (Q T ) + s -1/2 ρ 1 (s)v L 2 (0,T ) Cs -3/2 α 2 + β ln 3/2 + y L ∞ (Q T ) ρ(s) y L 2 (Q T ) + Cs -3/2 α 1 T e -s + Cs -1/2 e -s u 0 L 2 (Ω) + Cs -3/2 e -s u 1 L 2 (Ω) , (25) ρ(s)y t L 2 (Q T ) + s -1/2 ρ 1 (s)v t L 2 (0,T ) Cs -1/2 α 2 + β ln 3/2 + y L ∞ (Q T ) ρ(s) y L 2 (Q T ) + Cs -1/2 α 1 T e -s + Cs -1/2 e -s (u 0 ) x L 2 (Ω) + Cs 1/2 e -s u 0 L 2 (Ω) + Ce -s u 1 L 2 (Ω) . (26) Moreover, y ∈ C 0 ([0, T ]; H 1 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)) and y L ∞ (Q T ) Cα 1 T + Cα 1 T e (c-1)s + C α 2 + β ln 3/2 + y L ∞ (Q T ) e cs ρ(s) y L 2 (Q T ) + Ce (c-1)s (u 0 ) x L 2 (Ω) + Cse (c-1)s u 0 L 2 (Ω) + Cs 1/2 e (c-1)s u 1 L 2 (Ω) . (27)
Proof. Put B = -f ( y) in the linear model (6). Then, the proof is followed as a consequence of Theorem 6, Theorem 7, Lemma 1 and Lemma 2.

Stability of the class C R (s) for suitable choices of parameters

We express the result in term of the following lemma. We hereby recall the set C R (s) defined in (22). Lemma 3. Under the assumptions of Lemma 2, if β in (H 2 ) is small enough, there exists an s and R > 0 large enough, such that we have

Λ s C R (s) ⊂ C R (s). ( 28 
)
where C R (s) is the class given in (22).

Proof. We start with any y ∈ C R (s) for s s 0 1 and we look for the bounds of the solution y = Λ s ( y) (to (23)) with respect to the associated norms. Since

y ∈ C R (s), one has ρ(s) y L 2 (Q T ) R 1/2 and y L ∞ (Q T ) R. Therefore, the estimate (25) yields ρ(s)y L 2 (Q T ) Cs -3/2 α 2 + β ln 3/2 + R R 1/2 + Cs -3/2 α 1 T e -s + Cs -1/2 e -s u 0 L 2 (Ω) + Cs -3/2 e -s u 1 L 2 (Ω) . (29) Similarly, estimate (27) implies y L ∞ (Q T ) Cα 1 T + Cα 1 T e (c-1)s + C α 2 + β ln 3/2 + R e cs R 1/2 + Ce (c-1)s (u 0 ) x L 2 (Ω) + Cse (c-1)s u 0 L 2 (Ω) + Cs 1/2 e (c-1)s u 1 L 2 (Ω) . (30)
We now fix the parameter s in term of R as follows :

s = 1 32c ln + R, with c = φ L ∞ (Q T ) > 1, (31) 
where R > 0 is chosen large enough to ensure s s 0 1. With this choice of s, the solution y = Λ s ( y) satisfies, in view of (29) and the fact that ŷ belongs to C R (s),

ρ(s)y L 2 (Q T ) C(32c) 3/2 ln 3/2 + R α 2 + β ln 3/2 + R R 1/2 + Cα 1 T (32c) 3/2 R 1/32c ln 3/2 + R C √ 32c R 1/32c ln 1/2 + R u 0 L 2 (Ω) + C(32c) 3/2 R 1/32c ln 3/2 + R u 1 L 2 (Ω) (32)
Thus, if β > 0 is small enough such that

C(32c) 3/2 β < 1/4, (33) 
it can be guaranteed for large enough R > 0 that

                     C(32c) 3/2 ln 3/2 + R α 2 + β ln 3/2 + R R 1/2 + Cα 1 T (32c) 3/2 R 1/32c ln 3/2 + R 1 3 R 1/2 , C √ 32c R 1/32c ln 1/2 + R u 0 L 2 (Ω) 1 3 R 1/2 , C(32c) 3/2 R 1/32c ln 3/2 + R u 1 L 2 (Ω) 1 3 R 1/2 (34) involving, in view of 32 that ρ(s)y L 2 (Q T ) R 1/2 .
Similarly, in view of (30) and the fact that y belongs to C R (s),we infer that

y L ∞ (Q T ) Cα 1 T + Cα 1 T R ( 1 32 -1 32c ) + C α 2 + β ln 3/2 + R R 1/32 R 1/2 + + C 32c (ln + R)R ( 1 32 -1 32c ) u 0 L 2 (Ω) + CR ( 1 32 -1 32c ) (u 0 ) x L 2 (Ω) + C √ 32c (ln 1/2 + R)R ( 1 32 -1 32c ) u 1 L 2 (Ω) . (35) 
Taking β > 0 as before and R large enough, we infer that (recall

that c = φ L ∞ (Q T ) > 1 so that 0 < 1 32 -1 32c < 1)                          C α 2 + β ln 3/2 + R R 1/32 R 1/2 R/5, C 32c (ln + R)R ( 1 32 -1 32c ) u 0 L 2 (Ω) R/5, CR ( 1 32 -1 32c ) (u 0 ) x L 2 (Ω) R/5, C √ 32c (ln 1/2 + R)R ( 1 32 -1 32c ) u 1 L 2 (Ω) R/5, Cα 1 T + Cα 1 T R ( 1 32 -1 32c ) R/5 (36) implying from (35) that y L ∞ (Q T ) R. It follows that y = Λ s ( y) ∈ C R (s)
. This concludes the proof.

Remark 5. The smallness condition on β is explicit:

β < 1 4C(32c) 3/2 , ( 37 
)
where C is the constant appearing in Proposition 1.

Remark 6. Provided we impose the relation (31), the above proof shows that C R (s) is stable for Λ s for any R R 0 (equivalently s s 0 ) for a suitably large R 0 (equivalently s 0 ). With the above choices, in view of (34)-(36), the lower bound R 0 depends on (u 0 , u 1 ) V as a power of (u 0 , u 1 ) V , so that the lower bound s 0 can be chosen as depending logarithmically on (u 0 , u 1 ) V . Note also that there is no upper bound for R so that the parameter s (appearing notably in the definition of the weights) can be taken arbitrarily large.

3.3 Relative compactness of the set Λ s (C R (s))

Proposition 2. Under the assumptions of Lemma 3,

Λ s (C R (s)) is a relatively compact subset of C R (s) for the L ∞ (Q T ) norm.
Proof. Let (y n ) n∈N be a bounded sequence in Λ s (C R (s)). We proof that there exists a subsequence (y n k ) k∈N of (y n ) n∈N that converges strongly to some y ∈ C R (s) with respect to the L ∞ (Q T ) norm.

Thanks to Lemma 3, (y n ) n∈N is a bounded sequence in C R (s) and so, there exists a subsequence

y n k ∈ C R (s) and y ∈ C R (s) such that y n k y weakly in L ∞ (Q T ), as k → +∞. (38) Now, since (y n k ) k∈N ⊂ Λ s (C R (s)), there is a sequence ( y n k ) k∈N ⊂ C R (s) such that y n k = Λ s ( y n k ), ∀k ∈ N. More precisely, there exists a sequence (v n k ) k∈N ∈ H 1 0 (0, T ) such that, for all k ∈ N, y n k satisfies      (y n k ) tt -(y n k ) xx = -f ( y n k ) in Q T , y n k (0, t) = 0, y n k (1, t) = v n k (t) in (0, T ), (y n k (•, 0), (y n k ) t (•, 0)) = (u 0 , u 1 ) in Ω.
Moreover, for some C 1 > 0, we have

y n k C 0 ([0,T ];H 1 0 (Ω)) C 1 R, (y n k ) t C 0 ([0,T ];L 2 (Ω)) C 1 R,
thanks to their estimates in (20) for B = -f ( y n k ) and the analysis in Lemma 3. Since the embedding {y ∈ L ∞ (0, T ;

H 1 0 (Ω)) | y t ∈ L ∞ (0, T ; L 2 (Ω)) → C 0 ([0, T ]; C 0 (Ω)
) is compact (see [Sim87, Corollary 8 p. 90 and Lemma 12 p. 91]), this ensures the strong convergence of (y n k ) k∈N in C 0 (Q T ) as k → +∞.

Continuity of the map

Λ s in C R (s)
We prove the following result.

Proposition 3. Under the assumptions and result of Lemma 3, the map

Λ s : C R (s) → C R (s) is continuous with respect to the L ∞ (Q T ) norm. Proof. Let ( y n ) n∈N be a sequence in C R (s) such that y n → y as n → +∞ w.r.t. the L ∞ (Q T ) norm for some y ∈ C R (s).
Let y n = Λ s ( y n ) and prove that y n → y := Λ s ( y) as n → +∞ w.r.t. the same norm. Since

f ∈ C 0 (R), f is uniformly continuous in [-R, R] implying that f ( y n ) → f ( y) in L ∞ (Q T ), as n → +∞. ( 39 
)
and thus f (

y n ) → f ( y) in L 2 (Q T ) as n → +∞. Now (as mentioned in Theorem 6), Λ s ( y n ) = Λ 0 s (-f ( y n ), u 0 , u 1 ) is linear continuous map from L 2 (Q T ) × H 1 0 (Ω) × L 2 (Ω) to L 2 (Q T ).
Consequently, y n → y as n → +∞.

Proof of the first item of Theorem 4

Taking β small enough (see (33)) so that Lemma 3 applies, with s and R given by (31), we can apply Schauder fixed point theorem to Λ s on C R (s): there exists y s ∈ C R (s) ⊂ L ∞ (Q T ) such that y s = Λ s (y s ). By construction of Λ s , there exists a function v ∈ H 1 0 (0, T ) such that y s is the solution of the null controllability problem (23) with ŷ = y s : it follows that this element y s is a controlled solution of the semilinear wave equation (1).

4 Construction of control by Banach fixed point approach with f ∈ C 1 (R): proof of the second item of Theorem 4

In this section, we assume that f is locally Lipschitz continuous and that f satisfies (H 2 ) with β small as before. Remark that condition (H 2 ) implies the condition (H 2 ) used in the previous section. We endow the convex set C R (s) with the distance d defined by d(y, z) = ρ(s)(y -z) L 2 (Q T ) . We easily check that (C R (s), d) is a complete space. In the next proposition, we prove that the operator Λ s : C R (s) → C R (s) is a contracting mapping leading to constructive method to find its fixed point.

Proposition 4. Assume that f satisfies (H 2 ) with β satisfying (37), R and s as chosen in Lemma 3. Then, for any y 1 , y 2 ∈ C R (s),

d(Λ s ( y 2 ), Λ s ( y 1 )) 1 2 d( y 2 , y 1 ). ( 40 
)
In particular, Λ s is a contraction mapping from C R (s) into itself.

Proof. Let y 1 , y 2 ∈ C R (s). From ( 14), we get that

ρ(s)(Λ s ( y 2 ) -Λ s ( y 1 )) L 2 (Q T ) Cs -3/2 ρ(s)(f ( y 2 ) -f ( y 1 )) L 2 (Q T ) .
Then, we can use (H 2 ) to deduce

ρ(s)(Λ s ( y 2 ) -Λ s ( y 1 )) L 2 (Q T ) C(32c) 3/2 α ln 3/2 + R + β ρ(s)( y 2 -y 1 ) L 2 (Q T ) , (41) 
since s is given by (31). Since C(32c) 3/2 β 1/4, the result follows as soon as R is large enough.

Theorem 8. Let (u 0 , u 1 ) ∈ V . Assume that f is locally Lipschitz continuous and satisfies (H 2 ) with β satisfying (37), s and R as chosen in Lemma 3. Then, for any y 0 ∈ C R (s), the sequence (y k ) k∈N ⊂ C R (s) given by y k+1 = Λ s (y k ), k 0, (where Λ s is defined by (24)) together with the associated sequence of controls (v k ) k∈N ⊂ H 1 0 (0, T ) strongly converges strongly in L 2 (Q T ) × L 2 (0, T ) to a controlled solution for (1). Moreover, the convergence is at least linear with respect to the distance d.

Proof. The convergence of the sequence (y k ) k∈N toward y = Λ s (y) ∈ C R (s) with linear rate follows from the contraction property of Λ s :

ρ(s)(y -y k ) L 2 (Q T ) = ρ(s)(Λ s (y) -Λ s (y k-1 )) L 2 (Q T ) 1 2 k ρ(s)(y -y 0 ) L 2 (Q T ) 1 2 k (R 1/2 + e -s y 0 L 2 (Q T ) ).
Let now v ∈ H 1 0 (0, T ) be associated with y so that y -y k satisfies, for every

k ∈ N            (y -y k ) tt -(y -y k ) xx = -f (y) -f (y k-1 ) in Q T , (y -y k )(0, •) = 0, (y -y k )(1, •) = (v -v k ) in (0, T ), ((y -y k )(•, 0), (y -y k ) t (•, 0)) = (0, 0) in Ω, ((y -y k )(•, T ), (y -y k ) t (•, T )) = (0, 0) in Ω. (42) 
Estimate ( 14) then implies (recall

s = 1 32c ln + R) ρ 1 (s)(v -v k ) L 2 (0,T ) Cs -1 ρ(s) f (y) -f (y k-1 ) L 2 (Q T ) C 32c ln + R α + β ln 3/2 + R ρ(s)(y -y k-1 ) L 2 (Q T ) .
and therefore the convergence is at a linear rate of the sequence (v k ) k∈N toward an exact control for (1).

Remark 7. It can be observed from (41) that the constant appearing in front of ρ(s)( y 2 -y 1 ) L 2 (Q T ) is getting smaller as R (consequently s) getting larger. In particular, if f satisfies

lim |r|→+∞ |f (r)| ln 3/2 + |r| = 0, (43) 
then, for any given > 0 (however small), the map Λ s is -contractive for large enough s s 0 . In other words, the speed of convergence of the sequence (y k ) k 1 introduced by Theorem 8 increases with s.

As as corollary of the previous result and the classical Banach-Picard's fixed point theorem, the contraction property of the operator Λ s for β small enough given in (33) and s and R given by (31) allows to define a convergent sequence (y k , v k ) k∈N to a controlled pair for (1) and prove the following precise version of the second item of Theorem 4.

Numerical illustrations

We present some numerical illustrations of the convergence result given by Theorem 8 and emphasize the influence of the parameter s. More precisely, for s large enough, we compute the sequence

(y k , v k ) k∈N solution to            y k,tt -y k,xx = -f (y k-1 ) in Q T , y k (0, •) = 0, y k (1, •) = v k in (0, T ), (y k (•, 0), (y k ) t (•, 0)) = (u 0 , u 1 ) in Ω, (y k (•, T ), (y k ) t (•, T )) = (0, 0) in Ω, (44) 
obtained through the variational formulation (12) with the source term B = -f (y k-1 ). We first sketch the algorithm and then discuss some numerical experiments obtained with the software FreeFem++ (see [START_REF] Hecht | New development in Freefem++[END_REF]).

Construction of the sequence (y

k , v k ) k 1
Starting with some suitable initial guess y 0 ∈ C R (s), we can obtain the solution y k to (44) with a control v k based on Theorem 6. Assume that the value of the Carleman parameter s satisfies Lemma 3. Then, for each k 1, we define the unique solution w k ∈ P s (see Theorem 6) of

(w k , z) P,s = Ω u 1 z(•, 0) dx - Ω u 0 z t (•, 0) dx - Q T f (y k-1 )z dxdt ∀z ∈ P s , (45) 
then we set

y k = ρ -2 (s)Lw k in Q T and v k = sη 2 ρ -2 1 (s)(w k ) x (1, •) in (0, T ).
The numerical approximation of the variational formulation (45) has been addressed in [START_REF] Cîndea | A mixed formulation for the direct approximation of the control of minimal L 2 -norm for linear type wave equations[END_REF][START_REF] Cîndea | Numerical controllability of the wave equation through primal methods and Carleman estimates[END_REF] and more recently in [START_REF] Burman | Space time finite element methods for control problems subject to the wave equation[END_REF]. A conformal finite dimensional approximations, say P s,h of P s , leads to a strong convergent approximation w k,h of w k for the P s norm as the discretization parameter h goes to 0. Then, from w k,h , we can define the approximated controlled solution

y k,h := ρ -2 (s)Lw k,h and v k,h := sη 2 ρ -2 1 (s)(w k,h ) x (1, •).
In our semilinear setting, we shall employ an equivalent but different formulation, more appropriate for numerical purposes. First, in order to avoid the possible numerical blow up of the weights for s large, we introduce a change of variable. Second, in order to avoid second differentiation in order to compute y k from the definition y k = ρ -2 (s)(w k,tt -w k,xx ), we incorporate directly the controlled state solution in the formulation. Therefore, we introduce the variables

m k = ρ -1 1 (s)w k , p k = ρ -1 (s)Lw k in Q T ( 46 
)
so that p k = ρ -1 (s)L(ρ 1 (s)m k ) and y k = ρ -1 (s)p k and then replace the formulation (45) by the equivalent and well-posed following mixed formulation: find

(m k , p k , λ k ) ∈ ρ -1 (s)P s × L 2 (Q T ) × L 2 (Q T ) solution of                            Q T p k p dxdt + s T 0 η 2 (t)(m k ) x (1, t)m x (1, t)dt + Q T λ k p -ρ -1 (s)L(ρ 1 (s)m) dxdt = 1 0 u 1 ρ 1 (s, 0)m(•, 0) dx - 1 0 u 0 (x) [ρ 1 (0; s)m t (0, x) + (∂ t ρ 1 )(0; s)m(0, x)] dx - Q T f (ρ -1 (s)p k-1 )ρ 1 (s)m dxdt, Q T λ p k -ρ -1 (s)L(ρ 1 (s)m k ) dxdt = 0, (47) 
for all (m, p, λ

) ∈ ρ -1 (s)P s × L 2 (Q T ) × L 2 (Q T ).
The variable λ k stands as a Lagrange multiplier for the constraint

p k -ρ -1 (s)L (ρ 1 (s)m k ) = 0 in Q T .
We check the following inequality

ρ -1 (s)L (ρ 1 (s)m k ) = ρ -1 (s)ρ 1 (s)Lm k + ρ -1 (s)∂ tt ρ 1 (s)m k + 2ρ -1 (s)∂ t ρ 1 (s)(m k ) t = A 1 Lm k + A 2 m k + A 3 (m k ) t , with      ∂ t ρ 1 (s; t) = sλβ(2t -T )φ(1, t)ρ 1 (s; t), ∂ tt ρ 1 (s; t) = 2sλβφ(1, t)ρ 1 (s; t) -sλ 2 β 2 (2t -T ) 2 φ(1, t)ρ 1 (s; t) + s 2 λ 2 β 2 (2t -T ) 2 φ 2 (1, t)ρ 1 (s; t), A 1 = ρ -1 (s)ρ 1 (s), A 2 = ρ -1 (s)∂ tt ρ 1 (s), A 3 = 2ρ -1 (s)∂ t ρ 1 (s)
and we observe that the functions A i do not contains exponential with positive arguments. For instance, we get ρ -1 (s)ρ 1 (s) = e -s(φ(1,t)-φ(x,t)) , and recall that φ(1, t) -φ(x, t) 0 in Q T . Eventually, from the solution (m k , p k , λ k ), the controlled pair (y k , v k ) can be retrieved using the formula

y k = ρ -1 (s)p k , v k = sη 2 ρ -1 1 (s)(m k ) x (1, •). ( 48 
)
The sequence (y k , v k ) k 1 is initialized with (y 0 , v 0 ) = (0, 0) so that the iteration (y 1 , v 1 ) is the solution to the linear system (44) with the right hand side B = -f (y 0 ) = -f (0). We perform the iterations until the following criterion is fulfilled

ρ(s)y k+1 -ρ(s)y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) 10 -6 . ( 49 
)
We denote by k the smallest integer k such that (49) holds. Eventually, concerning the approximation of the formulation (47), we use a conformal spacetime finite element method (as addressed in [START_REF] Cîndea | A mixed formulation for the direct approximation of the control of minimal L 2 -norm for linear type wave equations[END_REF]). We introduce a regular triangulation T h of Q T such that Q T = K∈T h K. We assume that {T h } h>0 is a regular family, where the index h is such that h = max K∈T h diam (K). We then approximate of the variables p k and λ k in the space

P h := {p h ∈ C 0 (Q T ) : p h | K ∈ P 1 (K), ∀K ∈ T h } ⊂ L 2 (Q T )
, where P 1 (K) denotes the space of affine functions both in x and t. On the other hand, the variable m k is approximated with the space

V h := {v h ∈ C 1 (Q T ) : v h | K ∈ P(K), ∀K ∈ T h } ⊂ ρ -1
1 (s)P s , where P(K) denotes the composite Hsieh-Clough-Tocher C 1 element defined for triangles. We refer to [Cia02, page 356] and [START_REF] Bernadou | Basis functions for general Hsieh-Clough-Tocher triangles, complete or reduced[END_REF] where the implementation has been discussed. We refer to [START_REF] Burman | Space time finite element methods for control problems subject to the wave equation[END_REF] for the numerical analysis of the formulation (47).

Experiments

In what follows, we take T = 2.5 and (u 0 (x), u 1 (x)) = c u0 (sin(πx), 0) with x ∈ Ω = (0, 1) parametrized by the real c u0 . Then we define the various weight functions appearing in the Carleman inequality (10) in Section 2.1 as follows: we take

ψ(x, t) = (x + 0.02) 2 -0.9 (t -T /2) 2 + 2, φ(x, t) = e 1 2 ψ(x,t) in Q T ,
so that ψ 0.5 in Q T . The weights ρ and ρ 1 are then defined by (8). The cut-off function η is chosen as follows:

η(t) = e - 1 (t+10 -6 )(T -t+10 -6 ) , ∀t ∈ (0, T ).
Eventually, we employ a regular space-time mesh composed of 25600 triangles and 13041 vertices corresponding to the discretization parameter h ≈ 1.25 × 10 -2 .

5.2.1

Nonlinear functions with growth r ln 3/2 (2 + |r|)

In the mixed formulation (47), let us first consider the semilinear function

f (r) = c f r(α 2 + β ln 3/2 (2 + |r|)), ∀r ∈ R (50) 
with α 2 = β = 1 and some c f ∈ R * , so that f (0) = 0. We check that f satisfies (H 2 ) and (H 2 ). In this case, the source term in (47) can be rigorously written as

ρ 1 (s)f (ρ -1 (s)p k-1 ) = c f ρ 1 (s)ρ -1 (s)p k-1 α 2 + β ln 3/2 (2 + |y k-1 |) . (51) 
I. Experiments for fixed (c f , c u0 ) w.r.t. the parameter s. Let us make the following experiments given by Table 1, 2, for some fixed parameters c f (associated with the nonlinear function) and c u0 (associated with the initial data). For some large parameters c f = 5 and c u0 = 20, it has been checked that the value s = 1 is not large enough to imply the Banach contraction property (ensuring the convergence of the algorithm w.r.t. the criterion (49)). Then, by choosing s 2, we recover the required convergence criterion (49). We provide the results in Table 1.

Figure 1 depicts the evolution of the relative error

ρ(s)y k+1 -ρ(s)y k L 2 (Q T ) ρ(s)y k L 2 (Q T )
w.r.t. to the iteration number k for s ∈ {1, 2, 3, 4, 5}. In agreement with Remark 7, we observe that the decay of the error is amplified with larger values of s.

Table 2 reports experiments is the unfavorable situation for which c f < 0. We checked that for c f = -5 (c u0 = 20 as previous), the convergence is observed from s = 3. It is noticeable that the L 2 norms of the solutions and the associated controls are relatively larger compare to the case of positive c f given by Table 1. 

s y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) v k L 2 (0,T ) ρ 1 (s)v k L 2 (0,T ) v k H 1 0 (0,T ) v k L ∞ (0,
s y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) v k L 2 (0,T ) ρ 1 (s)v k L 2 (0,T ) v k H 1 0 (0,T ) v k L ∞ (0,
c u0 = 20 ; c f = -5; f (r) = c f r(1 + ln 3/2 (2 + |r|)); Norms of (y k , v k ) w.r.t. s.
II. Experiments for fixed (s, c u0 ) w.r.t. c f . Hereafter, for fixed Carleman parameter s = 3, we consider several values of c f to look the number of iterations for which the pair the solution y k * satisfies the criterion (49); see Table 3. We observed that for these parameters, i.e., s = 3, c u0 = 20, the algorithm fails to converge when c f is large, which indeed verifies our theoretical results, since the constant c f should be small enough to apply the fixed point arguments. In fact, for large absolute values of c f , the algorithm still may converge provided we start with larger values of the Carleman parameter s, which is in accordance with Lemma 3 and Theorem 8. For instance, if c f = 8, then s = 3 does not give the convergence result whereas by choosing s = 4, we recover the required convergence criterion (49). 

c f y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) v k L 2 (0,T ) ρ 1 (s)v k L 2 (0,T ) v k L ∞ (0,
c u0 = 20 ; s = 3; f (r) = c f r(1 + ln 3/2 (2 + |r|)); Norms of (y k , v k ) w.r.t. c f .
III. Experiments for fixed (s, c f ) w.r.t. the parameter c u0 . We now fix the parameters s and c f and then vary the size of the initial data u 0 in terms of the parameter c u0 . We give some results in Table 4 and Table 5 for (s, c f ) = (3, -2) and (s, c f ) = (3, 2) respectively. One can observe that for large c u0 also, the algorithm converges. The quantity C(y, v) defined by (following the estimates in (6) or Proposition 1)

C(y, v) = ρ(s)y L 2 (Q T ) + s -1/2 ρ 1 (s)v L 2 (0,T ) s -3/2 ρ(s)f (y) L 2 (Q T ) + s -1/2 e -s u 0 L 2 (Ω) (52) 
is uniform with respect to the quantity c u0 in agreement with our theoretical results. 

c u0 y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) v k L 2 (0,T ) ρ 1 (s)v k L 2 (0,T ) v k * L ∞ (0,T ) C(y k * , v k * )
) = (3, -2); f (r) = c f r(1 + ln 3/2 (2 + |r|)); Norms of (y k , v k ) w.r.t. c u0 .
IV. Evolution of the controlled solutions. In this paragraph, we present some figures of the controlled solutions and the associated controls for our semilinear system. We fix c f = -3 and c u0 = 10. Figures 2 provides the controlled solutions y k * for s = 1, 5 and 9 respectively. The corresponding optimal control is given in Figure 3 

y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) v k L 2 (0,T ) ρ 1 (s)v k L 2 (0,T ) v k * L ∞ (0,T ) C(y k * , v k * )
) = (3, 2); f (r) = c f r(1 + ln 3/2 (2 + |r|)); Norms of (y k , v k ) w.r.t. c u0 .
5.3 Nonlinear functions with growth r| cos(r 2 )| ln 3/2 (2 + |r|)

Let us consider the following nonlinear function

f (r) = c f r| cos(r 2 )| α 2 + β ln 3/2 (2 + |r|) , ∀r ∈ R (53)
with some c f ∈ R * and α 2 = β = 1. It satisfies the assumption (H 2 ) but not (H 2 ). We check that for small values of c f , the algorithm converges for s = 1. For instance, in Table 6 we give some experiments for c f = -1, c u0 = 20 and s ∈ {1, 2, 3, 4, 5}. On the other hand, with c f = -2, the method fails to converge for s ∈ {1, 2, 3, 4, 5}, meaning that the contraction property is lost. The convergence for s larger than 6, see Table 7. Moreover, we see that the number of iterations k * to fulfill the convergence criterion ( 49) is very high compare to the case of c f = -1. 

s y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) v k L 2 (0,T ) ρ 1 (s)v k L 2 (0,T ) v k H 1 0 (0,T ) v k L ∞ (0,T ) k 1 10
c u0 = 20 ; c f = -1; Norms of (y k , v k ) w.r.t. s; when f = c f r| cos(r 2 )|(1 + ln 3/2 (2 + |r|)). s y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) v k L 2 (0,T ) ρ 1 (s)v k L 2 (0,T ) v k H 1 0 (0,T ) v k L ∞ (0,
c u0 = 20 ; c f = -2; Norms of (y k , v k ) w.r.t. s; when f = c f r| cos(r 2 )|(1 + ln 3/2 (2 + |r|)).
5.4 Nonlinear functions with growth r ln p (2 + |r|) for p 2

In this section, we first consider the following form of the nonlinear function:

f (r) = c f r(α 2 + β ln 2 (2 + |r|)) ∀r ∈ R (54) 
which satisfies (H 1 ) but not (H 2 ) nor (H 2 ). For c f = 4 and c u0 = 10, we have checked that the algorithm does not converge for the Carleman parameters s = 1, 2. For the experiments, we need at least s > 2 to fulfill the convergence criterion (49). We present some results in Table 8. But, as soon as we increase the L 2 -norm of the initial data u 0 , the result is getting worse, even if we keep the value of c f = 4. For instance, considering c u0 = 20 is giving the convergence for s > 4, see Table 9. In other words, the algorithm does not really fit w.r.t. large values of norms for the initial data. 

s y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) v k L 2 (0,T ) ρ 1 (s)v k L 2 (0,T ) v k H 1 0 (0,T ) v k L ∞ (0,T ) k 3 18
c u0 = 10 ; c f = 4; f (r) = c f r(1 + ln 2 (2 + |r|)); Norms of (y k , v k ) w.r.t. s. s y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) v k L 2 (0,T ) ρ 1 (s)v k L 2 (0,T ) v k H 1 0 (0,T ) v k L ∞ (0,T ) k 5 131
c u0 = 20 ; c f = 4; f (r) = c f r(1 + ln 2 (2 + |r|)); Norms of (y k , v k ) w.r.t. s.
We also perform some experiments for s = 3, c u0 = 10 to see how the algorithm behaves with respect to different values of c f . In Table 10, we see that the algorithm converges for the values of c f ∈ [-3, 4]. On the other hand, for the same quantities (s, c u0 ) = (3, 10), we have the divergence of our method when the nonlinear parameter c f -4 or c f 5. 

c f y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) v k L 2 (0,T ) ρ 1 (s)v k L 2 (0,T ) v k L ∞ (0,T ) C(y k * , v k * ) k -3 433 
c u0 = 10 ; s = 3; f (r) = c f r(1 + ln 2 (2 + |r|)); Norms of (y k , v k ) w.r.t. c f .
Next, we make some experiments for the nonlinearities f that behave like r ln p |r| at infinity when p > 2 and therefore does not satisfy (H 1 ). Below, we consider the nonlinear function

f p (r) = c f r 1 + ln p (2 + |r|) , for p > 2, ∀r ∈ R. (55) 
We refer to Table 11 for some results.

We have observed that by choosing p 2.4, the algorithm does not converge anymore. More precisely, the norms of the solutions and controls are blowing up as number of iterations are increasing, which is in accordance with the result in Theorem 2. 

y k L 2 (Q T ) ρ(s)y k L 2 (Q T ) v k L 2 (0,T ) ρ 1 (s)v k L 2 (0,T ) v k L ∞ (0,T ) C(y k * , v k * ) k p =

Concluding remarks

By introducing a functional in the Carleman setting different than in the seminal paper of Zuazua in 1993, we have derived, under similar assumptions, a somehow simpler proof of the boundary controllability of a semilinear wave equation of the form y tt -y xx + f (y) = 0. Moreover, assuming an additional growth assumption on f , we have constructed a sequence of state-control pairs, solution of a linear boundary controllability problem, converging pointwise and with a linear rate to a solution of the semilinear equation. As in the recent work [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF] devoted to the distributed controllability for a semilinear heat equation, the analysis emphasizes the role of the Carleman weights parameterized by the real s. Numerical experiments illustrates that the speed of convergence of the sequence is amplified as the Carleman parameter s is larger. Our analysis is based on a simple fixed point strategy which consists to see the nonlinear term as a source term. It would be interesting to analyze whether or not the fixed point operator introduced by Zuazua in 1993, involving a potential, is, after reformulation in a functional Carleman setting, contracting for s large enough.

The fixed point argument employed here requires uniform bounds of the controlled trajectories for a linear wave equation: this is achieved by assuming the initial data in H 1 0 (Ω) × L 2 (Ω) and by imposing that the control satisfies at the initial and final time some compatibility conditions with the solution: this leads to boundary controls in H 1 0 (0, T ) and then, in our one dimensional situation, to trajectories in L ∞ (Q T ). Assuming more regularity on the initial conditions, we may extend our results for multi-dimensional situations and for nonlinearities depending on the gradient of the solution. This will be addressed in future works.
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A Appendix: Proof of Theorem 7

In what follows, in order to simplify the notations, we shall just write ρ = ρ(t) and ρ 1 = ρ 1 (t) instead of ρ = ρ(s; x, t) and ρ 1 = ρ 1 (s; t).

Preliminary to the proof and following [START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF], for all f ∈ C 0 (R; E) (where E is a Banach space) and any τ > 0, we define δ τ f := f t + τ 2 -f t -τ 2 and

T τ f := 1 τ δ τ δ τ f τ = f (t + τ ) -2f (t) + f (t -τ ) τ 2 .
Let now w s ∈ P s and the solution y s ∈ L 2 (Q T ) be given by Theorem 6. Then, z defined by z = T τ w s belongs to P s , where w s as well as y s can be extended uniquely on (-∞, 0) and (T, +∞). Indeed, in the interval (-∞, 0) the solution y s satisfies the following set of equations

     Ly s = 0 in Ω × (-∞, 0), y s (0, t) = y s (1, t) = 0 for t ∈ (-∞, 0), (y s (•, 0), ∂ t y s (•, 0)) = (u 0 , u 1 ) in Ω, (56) 
where the source term B ∈ L 2 (Q T ) is assumed to be extendable by 0 outside (0, T ). Recall that the boundary condition y s (1, t) = 0 holds outside (0, T ) since η = 0 (appearing in the formula of v s ) vanishes outside (δ, T -δ).

Similarly, in (T, +∞) we can define the solution y s uniquely, and y s (t) = 0 for all t T . It follows that the solution y s satisfies y s ∈ C 0 (R; L 2 (Ω)) ∩ C 1 (R; H -1 (Ω)) and [START_REF] Lasiecka | Nonhomogeneous boundary value problems for second order hyperbolic operators[END_REF]). We extend as well the weights ρ and ρ 1 in Ω × R so that it preserves smoothness and positivity properties.

y s ∈ C 0 ((-∞, δ]; H 1 (Ω)) ∩ C 1 ((-∞, δ]; L 2 (Ω)) and y s ∈ C 0 ([T -δ, +∞); H 1 (Ω)) ∩ C 1 ([T -δ, +∞); L 2 (Ω)) (see
This ensures the extension of the solution w s which satisfies the following set of equations in R

Lw s = ρ 2 y s in Ω × R, w s (0, t) = w s (1, t) = 0, in R. (57) 
Moreover, it can be seen that Lw s = 0 in [T, +∞), since y s is a controlled solution to (56).

We now proceed to the proof of Theorem 7, done in three steps.

Step 1 : We suppose first that u 0 ∈ H 1 0 (Ω) ∩ H 2 (Ω), u 1 ∈ H 1 0 (Ω) and B ∈ D(0, T ; L 2 (Ω)) and prove that v s ∈ H 1 (0, T ) and (y s ) t ∈ L 2 (Q T ).

We start by considering the variational formulation (12) by choosing z = T τ w s as test function. Since w s ∈ C 0 (R;

H 1 0 (Ω)) ∩ C 1 (R; L 2 (Ω)) solves (57), it is clear that T τ w s ∈ C 0 ([0, T ]; H 1 0 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)), (T τ w s ) x ∈ L 2 (0, T ). With this z, the formulation reads Q T ρ -2 Lw s LT τ w s dxdt + s T 0 η 2 (t)ρ -2 1 (w s ) x (1, t)T τ (w s ) x (1, t)dt = Ω u 1 (x)T τ w s (x, 0) dx - Ω u 0 (x)T τ (w s ) t (x, 0) dx + Q T BT τ w s dxdt. ( 58 
)
Sub-step 1. Let us start with the first integral in the left hand side of (58). We have

Q T ρ -2 (t)Lw s (t)LT τ w s (t) dxdt = 1 τ Q T ρ -2 (t)Lw s (t) Lw s (t + τ ) -Lw s (t) τ dxdt - 1 τ Q T ρ -2 (t)Lw s (t) Lw s (t) -Lw s (t -τ ) τ dxdt = 1 τ Q T ρ -2 (t)Lw s (t) Lw s (t + τ ) -Lw s (t) τ dxdt - 1 τ T -τ -τ Ω ρ -2 (t + τ )Lw s (t + τ ) Lw s (t + τ ) -Lw s (t) τ dxdt = Q T ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ Lw s (t + τ ) -Lw s (t) τ dxdt - 1 τ 0 -τ Ω ρ -2 (t + τ )Lw s (t + τ ) Lw s (t + τ ) -Lw s (t) τ dxdt
since Lw s = ρ 2 y s = 0 on [T, +∞). Now, observe that

Q T ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ Lw s (t + τ ) -Lw s (t) τ dxdt = Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ ρ -2 (t) Lw s (t + τ ) -Lw s (t) τ dxdt = - Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ 2 dxdt + Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ ρ -2 (t) -ρ -2 (t + τ ) τ Lw s (t + τ ) dxdt.
(59) The equality (59) then reads

Q T ρ -2 Lw s (t)LT τ w s (t) dxdt = - Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ 2 dxdt + Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ ρ -2 (t) -ρ -2 (t + τ ) τ Lw s (t + τ ) dxdt - 1 τ 0 -τ Ω ρ -2 (t + τ )Lw s (t + τ ) Lw s (t + τ ) -Lw s (t) τ dxdt. (60) 
Next, we shall look into the second term in the left hand side of (58). First, recall the smooth function η given by (9) satisfies η = 0 in (-∞, δ] ∪ [T -δ, +∞) (with δ > 0 given in (9)). Then, in a similar way that have lead to (59), we have assuming τ δ :

T 0 η 2 (t)ρ -2 1 (t)(w s ) x (1, t)T τ (w s ) x (1, t)dt = T 0 η 2 (t)ρ -2 1 (t)(w s ) x (1, t) -η 2 (t + τ )ρ -2 1 (t + τ )(w s ) x (1, t + τ ) τ × (w s ) x (1, t + τ ) -(w s ) x (1, t) τ dt. (61)
Then, using the identity

ad -bc = (a -c)(b + d) -(a + c)(b -d) 2 , ∀(a, b, c, d) ∈ R 4 (62) with a = η 2 (t)ρ -2 1 (t), b = (w s ) x (1, t + τ ), c = η 2 (t + τ )ρ -2 1 (t + τ ) and d = (w s ) x (1, t), we obtain from (61) T 0 η 2 (t)ρ -2 1 (t)(w s ) x (1, t)T τ (w s ) x (1, t)dt = T 0 η 2 (t)ρ -2 1 (t) -η 2 (t + τ )ρ -2 1 (t + τ ) ((w s ) x (1, t) + (w s ) x (1, t + τ )) 2τ × (w s ) x (1, t + τ ) -(w s ) x (1, t) τ dt - T 0 η 2 (t)ρ -2 1 (t) + η 2 (t + τ )ρ -2 1 (t + τ ) 2 (w s ) x (1, t + τ ) -(w s ) x (1, t) τ 2 dt. (63) 
Now, using (60) and (63) in the formulation (58), we have

Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ 2 dxdt + s T 0 η 2 (t)ρ -2 1 (t) + η 2 (t + τ )ρ -2 1 (t + τ ) 2 (w s ) x (1, t + τ ) -(w s ) x (1, t) τ 2 dt = Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ ρ -2 (t) -ρ -2 (t + τ ) τ Lw s (t + τ ) dxdt - 1 τ 0 -τ Ω ρ -2 (t + τ )Lw s (t + τ ) Lw s (t + τ ) -Lw s (t) τ dxdt + s T 0 η 2 (t)ρ -2 1 (t) -η 2 (t + τ )ρ -2 1 (t + τ ) ((w s ) x (1, t) + (w s ) x (1, t + τ )) 2τ × (w s ) x (1, t + τ ) -(w s ) x (1, t) τ dt - Q T BT τ w s dxdt - Ω u 1 T τ w s (•, 0) dx + Ω u 0 T τ (w s ) t (•, 0) dx :=I 1 + I 2 + I 3 + I 4 + I 5 + I 6 . ( 64 
)
Sub-step 2. In this step, we obtain precise estimates for the terms I 1 and I 3 and then an estimate of the left hand side of (64).

(i) Estimate of I 1 . Young's inequality leads to

|I 1 | 1 2 Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ 2 dxdt + 1 2 Q T ρ 2 (t) ρ -2 (t) -ρ -2 (t + τ ) τ Lw s (t + τ ) 2 dxdt. ( 65 
)
(ii) Estimate of I 3 . We have

|I 3 | = s T 0 η(t)ρ -1 1 (t) -η(t + τ )ρ -1 1 (t + τ ) ((w s ) x (1, t) + (w s ) x (1, t + τ )) 2τ × η(t)ρ -1 1 (t) + η(t + τ )ρ -1 1 (t + τ ) ((w s ) x (1, t + τ ) -(w s ) x (1, t)) τ dt 2s T 0 η(t)ρ -1 1 (t) -η(t + τ )ρ -1 1 (t + τ ) ((w s ) x (1, t) + (w s ) x (1, t + τ )) 2τ 2 dt + s 8 T 0 η(t)ρ -1 1 (t) + η(t + τ )ρ -1 1 (t + τ ) 2 (w s ) x (1, t + τ ) -(w s ) x (1, t) τ 2 dt 2s T 0 η(t)ρ -1 1 (t) -η(t + τ )ρ -1 1 (t + τ ) ((w s ) x (1, t) + (w s ) x (1, t + τ )) 2τ 2 dt + s 2 T 0 η 2 (t)ρ -2 1 (t) + η 2 (t + τ )ρ -2 1 (t + τ ) 2 (w s ) x (1, t + τ ) -(w s ) x (1, t) τ 2 dt. (66) 
(iii) A first estimate of the left hand side of (64). The previous estimates and (64) give

1 2 Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ 2 dxdt + s 2 T 0 η 2 (t)ρ -2 1 (t) + η 2 (t + τ )ρ -2 1 (t + τ ) 2 (w s ) x (1, t) -(w s ) x (1, t + τ ) τ 2 dt 1 2 Q T ρ 2 (t) ρ -2 (t) -ρ -2 (t + τ ) τ Lw s (t + τ ) 2 dxdt + 1 τ 0 -τ Ω ρ -2 (t + τ )Lw s (t + τ ) Lw s (t + τ ) -Lw s (t) τ dxdt + 2s T 0 η(t)ρ -1 1 (t) -η(t + τ )ρ -1 1 (t + τ ) ((w s ) x (1, t) + (w s ) x (1, t + τ )) 2τ 2 dt + Q T BT τ w s dxdt + Ω u 0 T τ (w s ) t (•, 0) dx + Ω u 1 T τ w s (•, 0) dx := J 1 + J 2 + J 3 + J 4 + J 5 + J 6 . (67) 
Sub-step 3 : We prove that the left hand side of (67) is bounded uniformly with respect to

τ ∈ [0, δ]. (i) J 1 is bounded. Since ρ -2 ∈ C ∞ (Q T ), (ρ -1 ) t = -2sλβ(t -T 2 )φρ -1 and Lw s ∈ C 0 (R; L 2 (Ω)): Q T ρ 2 (t) ρ -2 (t) -ρ -2 (t + τ ) τ Lw s (t + τ ) 2 dxdt → 4s 2 λ 2 β 2 Q T t - T 2 2 φ 2 (t)ρ 2 (t)y 2 s dxdt as τ → 0 and thus J 1 is bounded. (ii) J 2 is bounded. Since ρ -2 Lw s = y s ∈ C 0 (R; L 2 (Ω)), ρ -2 ∈ C ∞ (Q T ) and Lw s = ρ 2 y s ∈ C 1 ((-∞, δ]; L 2 (Ω)) we have, as τ → 0 1 τ 0 -τ Ω ρ -2 (t + τ )Lw s (t + τ ) Lw s (t + τ ) -Lw s (t) τ dxdt → Ω y s (0)(ρ 2 y s ) t (0)
and thus J 2 is bounded.

(iii) J 3 is bounded. Since (w s ) x (1, •) ∈ L 2 (0, T ) and ηρ -1 1 ∈ C 1 (R) we have 2s T 0 η(t)ρ -1 1 (t) -η(t + τ )ρ -1 1 (t + τ ) ((w s ) x (1, t) + (w s ) x (1, t + τ )) 2τ 2 dt → 2s T 0 (ηρ -1 1 ) t (t)(w s ) x (1, t) 2 dt
as τ → 0 and thus J 3 is bounded.

(iv) J 4 is bounded. For τ small enough, since B ∈ D(R; L 2 (Ω)) and w s ∈ C 1 (R; L 2 (Ω)), we have

Q T BT τ w s dxdt = T +τ -τ Ω T τ Bw s dxdt → Q T B tt w s dxdt (68) 
as τ → 0 and thus J 4 is bounded.

(v) J 5 is bounded. We have Lw s = ρ 2 y s ∈ C 0 (R; L 2 (Ω)) and w s ∈ C 0 (R; H 1 0 (Ω)), thus (w s ) tt = Lw s + (w s ) xx ∈ C(R; H -1 (Ω)). We then have, for all t ∈ R:

(w s ) t (t) -(w s ) t (0) = t 0 Lw s (ξ) dξ + t 0 (w s ) xx (ξ) dξ. This yields T τ (w s ) t (0) = (w s ) t (τ ) -2(w s ) t (0) + (w s ) t (-τ ) τ 2 = 1 τ 2 τ 0 Lw s (ξ) dξ + -τ 0 Lw s (ξ) dξ + τ 0 (w s ) xx (ξ) dξ + -τ 0 (w s ) xx (ξ) dξ = 2 τ τ 0 ξ τ Lw s (ξ) -Lw s (-ξ) 2ξ dξ + 2 τ τ 0 ξ τ (w s ) xx (ξ) -(w s ) xx (-ξ) 2ξ dξ. Now, since Lw s = ρ 2 y s ∈ C 1 ((-∞, δ]; L 2 (Ω)), we write that Ω u 0 2 τ τ 0 ξ τ Lw s (ξ) -Lw s (-ξ) 2ξ dξ dx → Ω u 0 (ρ 2 y s ) t (0) dx = -2sλβT Ω φ(0)ρ 2 (0)u 2 0 dx + Ω ρ 2 (0)u 0 u 1 dx as τ → 0. ( 69 
)
On the other hand, since

u 0 ∈ H 2 (Ω) ∩ H 1 0 (Ω) and w s ∈ C 0 (R; H 1 0 (Ω)): 2 τ τ 0 ξ τ (w s ) xx (ξ) -(w s ) xx (-ξ) 2ξ , u 0 H -1 ,H 1 0 dξ = 2 τ τ 0 ξ τ Ω (u 0 ) xx (w s )(ξ) -(w s )(-ξ) 2ξ dx dξ → Ω (u 0 ) xx (w s ) t (0) dx as τ → 0 (70) since moreover w s ∈ C 1 (R; L 2 (Ω)). Thus Ω u 0 T τ (w s ) t (•, 0) dx → -2sλβT Ω φ(0)ρ 2 (0)u 2 0 + Ω ρ 2 (0)u 0 u 1 + Ω (u 0 ) xx (w s ) t (0) dx (71) 
as τ → 0 and thus J 5 is bounded.

(vi) J 6 is bounded. We have Lw s = ρ 2 y s ∈ C 0 (R; L 2 (Ω)) and w s ∈ C 1 (R; H 1 0 (Ω)), thus (w s ) tt = ρ 2 y s + (w s ) xx ∈ C 0 (R; H -1 (Ω)). Therefore

T τ w(0) = w(τ ) -2w(0) + w(-τ ) τ 2 → (w s ) tt (0) = (w s ) xx (0) + ρ 2 (0)u 0 in H -1 (Ω)
as τ → 0 and thus

Ω u 1 T τ w(•, 0) dx → (w s ) tt (0), u 1 H -1 (Ω)×H 1 0 (Ω) = (w s ) xx (0), u 1 H -1 (Ω)×H 1 0 (Ω) + Ω ρ 2 (0)u 1 u 0 dx (72) = - Ω (w s ) x (•, 0)(u 1 ) x dx + Ω ρ 2 (0)u 1 u 0 dx.
as τ → 0. J 6 = Ω u 1 T τ w(•, 0) dx is therefore bounded.

(vii) Then we can conclude, from (67), that the terms

Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ 2 dxdt and T 0 η 2 (t)ρ -2 1 (t) + η 2 (t + τ )ρ -2 1 (t + τ ) 2 (w s ) x (1, t) -(w s ) x (1, t + τ ) τ 2 dt
are bounded. Remark that this implies that the two terms

Q T ρ -2 (t)|L( δτ ws τ )| 2 dxdt and T 0 η 2 (t)ρ -2 1 (t)|( δτ ws τ ) x (1, t)| 2 dt are bounded; indeed, T 0 η 2 (t)ρ -2 1 (t)|( δ τ w s τ ) x (1, t)| 2 dt 2 T 0 η 2 (t)ρ -2 1 (t) + η 2 (t + τ )ρ -2 1 (t + τ ) 2 (w s ) x (1, t) -(w s ) x (1, t + τ ) τ 2 dt.
We also have

Q T ρ -2 (t)|L( δ τ w s τ )| 2 dxdt 2 Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ 2 dxdt + 2 Q T ρ 2 (t) ρ -2 (t) -ρ -2 (t + τ ) τ Lw s (t + τ ) 2 dxdt
and each term of the right hand side is bounded.

Sub-step 4. In this step, we prove that v s ∈ H 1 (0, T ) and

y s ∈ C 0 ([0, T ]; H 1 (Ω))∩C 1 ([0, T ]; L 2 (Ω)). Since δτ ws τ ∈ C 0 ([0, T ]; H 1 0 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)
) and satisfies ( δτ ws τ ) x (1, •) ∈ L 2 (0, T ) then the Carleman estimates (10) gives

s Q T ρ -2 (t) |( δ τ w s τ ) t | 2 + |( δ τ w s τ ) x | 2 dxdt + s 3 Q T ρ -2 (t)| δ τ w s τ | 2 dxdt + s Ω ρ -2 (0) |( δ τ w s τ ) t (x, 0)| 2 + |( δ τ w s τ ) x (x, 0)| 2 dx + s 3 Ω ρ -2 (0)| δ τ w s τ (x, 0)| 2 dx C Q T ρ -2 (t)|L( δ τ w s τ )| 2 dxdt + Cs T 0 η 2 (t)ρ -2 1 (t)|( δ τ w s τ ) x (1, t)| 2 dt. (73) 
Therefore, since the right hand side is bounded, ( δτ ws τ ) t and ( δτ ws τ ) x are bounded in L 2 (Q T ) and thus (w s ) tt ∈ L 2 (Q T ) and (w s ) t ∈ L 2 (0, T ; H 1 0 (Ω)). Moreover, δτ ws τ (•, 0) is bounded in H 1 0 (Ω) thus (w s ) t (•, 0) ∈ H 1 0 (Ω). We also have L(

δτ ws τ ) bounded in L 2 (Q T ) so L(w s ) t ∈ L 2 (Q T ). Thus (w s ) t satisfies      L(w s ) t ∈ L 2 (Q T ), (w s ) t (0, t) = (w s ) t (1, t) = 0, t ∈ (0, T ) ((w s ) t (0), (w s ) tt (0)) ∈ H 1 0 (Ω) × L 2 (Ω) and thus (w s ) t ∈ C 0 ([0, T ]; H 1 0 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)) and (w s ) tx (1, •) ∈ L 2 (0, T ). Therefore from the definition of v s , v s ∈ H 1 (0, T ) while from the equation satisfied by (y s , v s ) (see (17)), y s ∈ C 0 ([0, T ]; H 1 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)). Remark 8. We then have w s ∈ C 1 ([0, T ]; H 1 0 (Ω)) ∩ C 2 ([0, T ]; L 2 (Ω))
and from the equation satisfied by w s , since Lw s ∈ C 1 ([0, T ]; L 2 (Ω)) we deduce that (w s ) xx = (w s ) tt -Lw s ∈ C 0 ([0, T ]; L 2 (Ω)) and thus that (w s ) xx (•, 0) ∈ L 2 (Ω).

Step 2 : In this step, we give estimates on (v s ) t and (y s ) t .

First of all, since (w s ) t ∈ C 0 ([0; T ]; H 1 0 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)), L(w s ) t ∈ L 2 (Q T ) and (w s ) tx (1, •) ∈ L 2 (0, T ), we can write the Carleman estimate (10) for (w s ) t leading to Sub-step 1 : In this step, we pass to the limit when τ → 0 in equation (64). We have, since y s = ρ -2 Lw s ∈ C 1 (R; L 2 (Ω)) : We conclude that the limit with respect to τ → 0 in (64) leads to the following equality (iii) Using that (ρ -1 1 ) t = -2sλβ(t -T 2 )φρ -1 1 , we obtain We now estimate the term T 0 ρ -2 1 |(w s ) x (1, t)| 2 dt appearing in the previous inequality: proceeding as in [Lio88a, Lemma 3.7] with q(x, t) = xρ -2 (x, t) such that q(0, t) = 0 and q(1, t) = ρ -2 1 (t), we get the equality 1 2

Q T ρ 2 (
|K 3 | = s T 0 (η 2 ρ -
T 0 ρ -2 1 (t)|(w s ) x (1, t)| 2 = 2 Q T xρ -1 ρ -1 t w x w t + 1 2 Q T (ρ -2 -2xρ -1 ρ -1 x )(w 2 x +w 2 t )+ Ω [xρ -2 w t w x ] T 0 .
Writing that |ρ -1 ρ -1 x | Csρ -2 and |ρ -1 ρ -1 t | Csρ -2 , we obtain (since s 1) (iv) Using the Carleman estimate (74) we have

1 2 T 0 ρ -2 1 (t)|(w s ) x (1, t)| 2 Cs Q T ρ -2 (
|K 4 | = Q T B(w s ) tt dxdt s -1 Q T ρ 2 B 2 1/2 s Q T ρ -2 |(w s ) tt | 2 1/2 C s -1 Q T ρ 2 B 2 1/2 Q T ρ -2 |(ρ 2 y s ) t | 2 dxdt + s T 0 η 2 (t)ρ -2 1 |(w s ) tx (1, t)| 2 dt 1/2 C s -1 Q T ρ 2 B 2 1/2 s 2 Q T ρ 2 |y s | 2 dxdt + Q T ρ 2 |(y s ) t | 2 dxdt + s T 0 η 2 (t)ρ -2 1 |(w s ) tx (1, t)| 2 dt 1/2 C s -1 Q T ρ 2 B 2 + s 2 Q T ρ 2 |y s | 2 dxdt + 1 8 Q T ρ 2 |(y s ) t | 2 dxdt + s 8 T 0 η 2 (t)ρ -2 1 |(w s ) tx (1, t)| 2 dt.
(v) Similarly, using again the Carleman estimate (74) we have

|K 5 | = Ω (w s ) tt (•, 0)u 1 dx ρ(0)u 1 L 2 (Ω) ρ -1 (0)(w s ) tt (•, 0) L 2 (Ω)
Cs -1/2 ρ(0)u 1 L 2 (Ω) (viii) Eventually, (74) leads to

Q T ρ -2 (t)|(ρ 2 y s ) t | 2 dxdt + s T 0 η 2 (t)ρ -2 1 |(w s ) tx (1, t)| 2 dt 1/2 Cs -1/2 ρ(0)u 1 L 2 (Ω) s 2 Q T ρ 2 |y s | 2 dxdt + Q T ρ 2 |(y s ) t | 2 dxdt + s
|K 8 | = Ω (u 0 ) x (w s ) tx (•, 0) ρ(0)(u 0 ) x L 2 (Ω) ρ -1 (0)(w s ) tx (•, 0) L 2 (Ω)
Cs -1/2 ρ(0)(u 0 ) x L 2 (Ω) 

Q T ρ -2 (t

Figure 1 :

 1 Figure 1: Evolution of the relative error ρ(s)y k+1 -ρ(s)y k L 2 (Q T ) ρ(s)y k L 2 (Q T )

  -Left for s ∈ {1, 3, 5, 9}. The evolution of the L 2 (Ω) norm w.r.t. t ∈ (0, T ) is depicted in fig. 3-Right. Figures 4 and 5 are concerned with the case c f = 3, leading to control-state pairs with lower norms.

Figure 2 :

 2 Figure 2: Controlled solution y k * for c f = -3, c u0 = 10 and f (r) = c f r(1+ln 3/2 (2+|r|)); s ∈ {1, 5, 9}.

Figure 3 :Figure 4 :

 34 Figure 3: c f = -3, c u0 = 10 and f (r) = c f r(1 + ln 3/2 (2 + |r|)); Left: Control v k * w.r.t. s; Right: Evolution of y k * (•, t) L 2 (Ω) w.r.t. time t.

Figure 5 :

 5 Figure 5: c f = 3, c u0 = 10 and f (r) = c f r(1 + ln 3/2 (2 + |r|)); Left: Control v k * w.r.t. t; Right: Evolution of y k * (•, t) L 2 (Ω) w.r.t. t.

  (t)(|(w s ) tt | 2 + |(w s ) tx | 2 ) dxdt + s 3 Q T ρ -2 (t)|(w s ) t | 2 dxdt + s Ω ρ -2 (0)(|(w s ) tt (x, 0)| 2 + (w s ) tx (x, 0)| 2 ) dx + s 3 Ω ρ -2 (0)|(w s ) t (x, 0)| 2 dx C Q T ρ -2 (t)|(Lw s ) t | 2 dxdt + Cs

T 0 η 2

 02 (t)ρ -2 1 (t)|(w s ) tx (1, t)| 2 dt. (74)

as τ → 0 .

 0 Since (w s ) tt (•, 0) ∈ L 2 (Ω), the convergence (72) readsΩ u 1 T τ w s (•, 0) dx → Ω (w s ) tt (•, 0)u 1 dx. Similarly, since (w s ) t (•, 0) ∈ H 1 0 (Ω), (71) reads Ω u 0 T τ (w s ) t (•, 0) dx → -2sλβT Ω φ(0)ρ 2 (0)u 2 0 dx + Ω ρ 2 (0)u 0 u 1 dx -Ω (u 0 ) x (w s ) tx (•, 0) dx.

(

  ii) Similarly, recalling that y s (•, 0) = u 0 and (y s ) t (•, 0) = u 1 , there exists C > 0 such that|K 2 | Cs ρ(0)u 0 2 L 2 (Ω) + ρ(0)u 0 L 2 (Ω) ρ(0)u 1 L 2 (Ω) .

T 0 η 2 ρ 2 8 T 0 η 2

 022802 (t)ρ -2 1 |(w s ) tx (1, t)| 2 dt |y s | 2 dxdt + 1 8 Q T ρ 2 |(y s ) t | 2 dxdt + s (t)ρ -2 1 |(w s ) tx (1, t)| 2 dt.(vi) Simpler, we get|K 6 | Cs ρ(0)u 0 2 L 2 (Ω) (vii) and |K 7 | ρ(0)u 0 L 2 (Ω) ρ(0)u 1 L 2 (Ω) .

Table 1 :

 1 c u0

	T ) k

Table 2 :

 2 

	T ) k

Table 3 :

 3 

	T ) k

Table 6 :

 6 

		.415	1.311	7.893	1.635 × 10 -1	33.08	7.976	24
	2	10.212	2.2974 × 10 -1	7.929	4.541 × 10 -3	33.398	8.195	20
	3	9.987	4.457 × 10 -2	8.002	1.759 × 10 -4	34.3	8.627	18
	4	9.799	9.128 × 10 -3	8.085	8.968 × 10 -6	35.616	8.975	14
	5	9.657	1.94 × 10 -3	8.196	4.972 × 10 -7	37.011	9.326	14

Table 7 :

 7 

	T ) k

Table 8 :

 8 

		.16	1.981 × 10 -2	61.872	1.687 × 10 -4	247.795	93.918	17
	4	14.998	4.168 × 10 -3	47.839	5.926 × 10 -6	196.934	72.472	14
	5	12.562	9.055 × 10 -4	37.038	2.862 × 10 -7	158.616	55.242	13
	6	11.791	2.0098 × 10 -4	38.389	1.472 × 10 -8	176.911	59.853	11
	7	12.7496	4.535 × 10 -5	46.642	7.7768 × 10 -10	221.245	75.804	10

Table 9 :

 9 

		.602	1.774 × 10 -3	616.056	4.783 × 10 -7	2668.36	1004.82	36
	6	119.542	3.95 × 10 -4	559.19	2.594 × 10 -8	2470.46	933.931	25

Table 10 :

 10 

		.899	8.057 × 10 -2	473.795	1.517 × 10 -2	503.043	4.122 × 10 -2 36
	-2	16.512	2.446 × 10 -2	19.926	6.372 × 10 -4	20.044	9.318 × 10 -2 12
	-1	5.0298	2.271 × 10 -2	3.587	5.838 × 10 -5	4.268	9.85 × 10 -2	7
	0	5.902	2.176 × 10 -2	5.6657	9.726 × 10 -5	6.895	1.073 × 10 -1	1
	1	7.819	2.108 × 10 -2	12.589	7.245 × 10 -5	15.975	9.249 × 10 -2	7
	2	8.536	2.056 × 10 -2	17.4798	1.067 × 10 -4	23.876	8.187 × 10 -2	9
	3	8.425	2.014 × 10 -2	17.138	1.519 × 10 -4	20.768	7.375 × 10 -2 11
	4	18.16	1.981 × 10 -2	61.872	1.687 × 10 -4	93.918	6.724 × 10 -2 17

Table 11 :

 11 c f = -2, s = 3, c u0 = 10; Norms of (y k , v k ) w.r.t. f p ; f p given by (55).

	2	16.512	2.446 × 10 -2	19.926	6.372 × 10 -4	20.044	9.318 × 10 -2 12
	p = 2.05	20.581	2.472 × 10 -2	23.047	8.334 × 10 -4	25.093	9.293 × 10 -2 12
	p = 2.1	26.176	2.508 × 10 -2	24.076	1.099 × 10 -3	32.173	9.237 × 10 -2 13
	p = 2.15	34.134	2.564 × 10 -2	26.570	1.468 × 10 -3	44.653	9.077 × 10 -2 15
	p = 2.2	47.681	2.662 × 10 -2	49.532	2.011 × 10 -3	63.213	8.617 × 10 -2 17
	p = 2.25	76.081	2.883 × 10 -2	84.956	2.938 × 10 -3	95.777	7.511 × 10 -2 20
	p = 2.3	136.668	3.542 × 10 -2	121.539	5.045 × 10 -3	156.929	5.612 × 10 -2 26

  t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ (t) |(y s ) t | 2 dxdt as τ → 0 and since (w s ) tx (1, •) ∈ L 2 (-δ, T + δ) and ηρ -1 1 ∈ C(R) : ) x (1, t + τ ) -(w s ) x (1, t) τ |(w s ) tx (1, t)| 2 dt as τ → 0. Since y s = ρ -2 Lw s ∈ C 1 (R; L 2 (Ω)), Lw s ∈ C 1 (R; L 2 (Ω)) and (ρ -1 ) t = -2sλβ(t -T 2 )φρ -1 in Q T , we infer that Q T ρ 2 (t) ρ -2 (t)Lw s (t) -ρ -2 (t + τ )Lw s (t + τ ) τ ρ -2 (t) -ρ -2 (t + τ ) τ Lw s (t + τ ) dxdt

			2
		0	dxdt → ρ 2 T Q T η 2 (t)ρ -2 1 (t) + η 2 (t + τ )ρ -2 1 (t + τ ) 2 (w s 2	dt
			T
	→ 1 (t) → -2sλβ 0 η 2 (t)ρ -2 Q T (t -T 2 )φ(t)ρ 2 (t)(y s ) t y s dxdt
	and		
	1	0	
	τ	-τ Ω
			τ	dt
			T
		→	(η 2 ρ -2 1 )
			0

ρ -2 (t + τ )Lw s (t + τ ) Lw s (t + τ ) -Lw s (t) τ dxdt → Ω y s (0)(ρ 2 y s ) t (0) dx as τ → 0. Similarly, since w s ∈ C 2 (R; L 2 (Ω)) and (w s ) tx (1, •) ∈ L 2 (-δ, T + δ), T 0 η 2 (t)ρ -2 1 (t) -η 2 (t + τ )ρ -2 1 (t + τ ) ((w s ) x (1, t) + (w s ) x (1, t + τ )) 2τ × (w s ) x (1, t + τ ) -(w s ) x (1, t) τ dt = T -δ 0 η 2 (t)ρ -2 1 (t) -η 2 (t + τ )ρ -2 1 (t + τ ) ((w s ) x (1, t) + (w s ) x (1, t + τ )) 2τ × (w s ) x (1, t + τ ) -(w s ) x (1, t) t (w s ) x (1, t)(w s ) tx (1, t)dt,

and

Q T BT τ w s dxdt → Q T B(w s ) tt dxdt.

  (t)(y s ) t y s dxdt -Ω y s (0)(ρ 2 y s ) t (0) ) t (t)(w s ) x (1, t)(w s ) tx (1, t)dt -0 ) x (w s ) tx (•, 0) dx := K 1 + K 2 + K 3 + K 4 + K 5 + K 6 + K 7 + K 8 In this step, we estimate each term K i , i = 1, • • • , 8. (i)We get that, there exists C > 0 only depending on T such that|K 1 | 1 8 Q T ρ 2 (t)|(y s ) t | 2 dxdt + Cs 2 Q T ρ 2 (t)|y s | 2 dxdt.

	ρ 2 (t) |(y s ) t |	2 dxdt + s	T	η 2 (t)ρ -2 1 (t) |(w s ) tx (1, t)| 2 dt
	Q T		0		
	= -2sλβ )φ(t)ρ 2 + s Q T (t -T 2 T 0 (η 2 ρ -2 1 Q T	B(w s ) tt dxdt -	Ω	(w s ) tt (•, 0)u 1 dx	(75)
	-2sλβT	φ(0)ρ 2 (0)u 2 0 dx +	ρ 2 (0)u 1 u 0 dx -
		Ω			Ω
	Sub-step 2 :				

Ω

(u

  2 1 ) t (w s ) x (1, t)(w s ) tx (1, t)dt

	2 s	T	|(ηρ -1 1 ) 1/2	s	T	η 2 (t)ρ -2 1 (t)|(w s ) tx (1, t)| 2 dt	1/2
		0									0	
	C s 3			T	η 2 (t)ρ -2 1 (t)|(w T	ρ -2 1 (t)|(w s ) x (1, t)| 2 dt	1/2	×
			0								0	
													T	1/2
													s	η 2 (t)ρ -2 1 (t)|(w s ) tx (1, t)| 2 dt
													0
	C s	δ	T -δ	ρ 2 1 (t) η 2 (t)	v 2 s dt + s	0	T	ρ -2 1 (t)|(w s ) x (1, t)| 2 dt +	s 8	0	T	η 2 (t)ρ -2 1 |(w

t | 2 |(w s ) x (1, t)| 2 dt s ) x (1, t)| 2 dt + s s ) tx (1, t)| 2 dt.

  )|(ρ 2 y s ) t | 2 dxdt + Cs

							T	1/2
							η 2 (t)ρ -2 1 (t)|(w s ) tx (1, t)| 2 dt
							0
	Cs -1/2 ρ(0)(u 0 ) x L 2 (Ω) s 2	ρ 2 (t)|y s | 2 dxdt +		ρ 2 (t)|(y s ) t | 2 dxdt
			Q T			Q T
					T		1/2
				+ s	η 2 (t)ρ -2 1 (t)|(w s ) tx (1, t)| 2 dt
					0	
	C s -1 ρ(0)(u 0 ) x	2 L 2 (Ω) + s 2	Q T	ρ 2 (t)|y s | 2 dxdt +	1 8 Q T	ρ 2 (t)|(y s ) t | 2 dxdt
				+	s 8	

T 0 η 2 (t)ρ -2 1 (t)|(w s ) tx (1, t)| 2 dt.