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Abstract 

In this paper, the dynamics of the 2-DOF manipulators are presented. The mathematical analysis 

for these dynamics for two cases is carried out: in the first case, the manipulator is moving without any 

collision (external forces) with its environment, whereas the second case the manipulator is collided. 

The Computed-Torque Control is used for these dynamic of the manipulator. A simulation study is 

executed using a sinusoidal motion commanded simultaneously to the two joints of the manipulator. 

The actual and desired signals of the joints’ positions, velocities, accelerations and torques of the 2-

DOF robot are compared whether there is a collision or no. The results prove that the computed-torque 

control is effectively minimizing the error between the actual signals and the desired signals. In 

addition, the dynamic coupling between the joints is presented from the results.    

 

Keywords: Robot-Manipulator, Joints Dynamics, Dynamic Coupling, Collision, Computed-Torque 

Control. 

 

1. Introduction 

The robot manipulators are highly nonlinear, dynamically coupled and time-varying systems which 

are used extensively in industrial applications [1]. The benefit of the dynamic model of the manipulator 

is to compute the torque and force required in order to execute the typical work cycle and to give vital 

information for the design of the links, the joints, the drives, and the actuators as well as for the control 

scheme. The manipulator dynamic behaviour gives a relationship between the joint actuator torques and 

the links motion for simulation and design of control algorithms. Dynamics analysis of robot 

manipulator is investigated by many researchers in [2]–[5] and the dynamic coupling between the joints 

of the manipulator is investigated experimentally in [6]. 

Computed-Torque Control is an effective motion control strategy for robotic manipulator systems 

[7]. Computed Torque Control [8] is worth noting because of the easiness to be understood and of its 

good performances. Computed Torque Control is a method for linearizing and decoupling the robotic 

dynamics by using perfect dynamical models of robotic manipulator systems in order to each joint 

motion can individually be controlled using other well-developed linear control strategies [7]. 

Computed-Torque controller was proposed by many researchers for a parallel manipulator [9], for a 
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master-slave robot manipulator system [10], and stable computed-torque control was proposed in [11] 

of robot manipulators via fuzzy self-tuning. 

In this paper, the mathematical analysis for the dynamics of 2-DOF Manipulator is presented. The 

computed-torque control law is used for these dynamics. The dynamic coupling between the 

manipulator joints is investigated and presented. Indeed, the main benefit from this procedure is that 

the dynamic coupling between the joints should be taken into account during the design and the 

implementation of the human-robot collision detection method and the collided link identification 

which contribute to the safety of the human-robot interaction.  

  

2. Dynamics of Multiple Joints Motion 

For the presented case study, it is assumed that the commanded motion is applied to the 4th (A3) and 

6th (A5) joint of the KUKA LWR manipulator (collaborative robot), as shown in Fig. 1. The case when 

the two joints during the planar horizontal motion is studied and analyzed (Fig. 1b). In all the paper, 

joint 1 and joint 2 will represent A3 and A5 joints respectively. It should be noted that the all other 

joints of the manipulator are fixed. 

 

Figure 1. Kuka LWR manipulator. (a) The all joints of the kuka robot. (b) Motion of Joint A3 and A5 

(The black spot means the center of mass) in a horizontal plane.  

                           

The second-order vector differential equation for the motion of the manipulator as a function of the 

applied joint torques when there is no external forces (collisions) affecting on the end-effector or the 

link between the two joints is given by [12] 

                                                              𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇)𝜃̇ = 𝜏                                                                      (1) 

In another form, the equation can be rewritten as [12] 

                              [
𝛼 + 2𝛽𝑐2 𝛿 + 𝛽𝑐2

𝛿 + 𝛽𝑐2 𝛿
] [

𝜃̈1

𝜃̈2

] + [
−𝛽𝑠2𝜃̇2 −𝛽𝑠2(𝜃̇1 + 𝜃̇2)

𝛽𝑠2𝜃̇1 0
] [

𝜃̇1

𝜃̇2

] = [
𝜏1

𝜏2
]                (2) 

where  

𝛼 = 𝐼𝑧1 + 𝐼𝑧2 + 𝑚1𝑟1
2 + 𝑚2(𝐿1

2 + 𝑟2
2) 

(a) (b) 

𝑥 

𝑦 

Joint 1 (A3) 
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𝛽 = 𝑚2𝐿1𝑟2 

𝛿 = 𝐼𝑧2 + 𝑚2𝑟2
2 

where 𝜃𝑖, 𝜃̇𝑖, 𝜃̈𝑖 is the actual angular position of the center of mass for the ith link and their corresponding 

time derivatives. 𝑟𝑖 is the distance from the joint 𝑖 to the center of mass for link 𝑖. 𝐼𝑧𝑖 is the moment of 

inertia about the z-axes of the ith link frame. 𝑀(𝜃) ∈  𝑅2×2 is the inertia matrix that depends on the 

variable 𝜃, and 𝐶(𝜃, 𝜃̇) ∈  𝑅2×2 is the matrix containing the Coriolis and centrifugal terms. 𝐺(𝜃) ∈

 𝑅2 = 0.0 is the gravity vector and it is equal to zero due to that the motion in horizontal plane. 𝜏𝑖 ∈  𝑅2 

is the joint torque for ith joint. 𝑚𝑖 is the mass of ith link, 𝐿𝑖 is the length of ith link, 𝑠𝑖 = 𝑠𝑖𝑛𝜃𝑖, 𝑐𝑖 =

𝑐𝑜𝑠𝜃𝑖, 𝑠𝑖𝑗 = 𝑠𝑖𝑛(𝜃𝑖 + 𝜃𝑗), and 𝑐𝑖𝑗 = 𝑐𝑜𝑠(𝜃𝑖 + 𝜃𝑗). 

From (2), it is easy to derive the torque at joint1 and 2 as the following equations 

                               𝜏1 = (𝛼 + 2𝛽𝑐2)𝜃̈1 + (𝛿 + 𝛽𝑐2)𝜃̈2 − 𝛽𝑠2𝜃̇1𝜃̇2 − 𝛽𝑠2(𝜃̇1 + 𝜃̇2)𝜃̇2                      (3) 

                                                      𝜏2 = (𝛿 + 𝛽𝑐2)𝜃̈1 + 𝛿𝜃̈2 + 𝛽𝑠2𝜃̇1
2                                                     (4) 

 

2.1. External Force is perpendicular to link 1 (𝐋𝟏) 

If there is an external force exerted perpendicularly on the link 1 as shown in Fig. 2, the dynamic 

equation is derived by the following steps, 

 

Figure 2. Effect of external force (collision) on the joints torque. (a) Link after rotating by the effect 

of the external force. (b) External perpendicular force (collision) on link 1. 

 

The work done by force 𝐹 is given by 

                                                                     𝑑𝑊 = 𝐹𝑟1 𝑑𝜃1                                                                 (5)          

𝜃1 

Joint 1  
𝑥 

𝑦 

(a) (b) 
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The potential energy 𝑉(𝜃) is equal to the work done by force 𝐹 so  

                         𝑉(𝜃) = 𝑑𝑊 = 𝐹𝑟1 𝑑𝜃1                                                            (6) 

Taking the derivative of (6) according to 𝜃1and 𝜃2 

                                                                
𝜕𝑉

𝜕𝜃1
= 𝐹𝑟1 ,    

𝜕𝑉

𝜕𝜃2
= 0                                                             (7) 

So the equation for the motion of the manipulator is converted from (2) into the following equation 

                   [
𝛼 + 2𝛽𝑐2 𝛿 + 𝛽𝑐2

𝛿 + 𝛽𝑐2 𝛿
] [

𝜃̈1

𝜃̈2

] + [
−𝛽𝑠2𝜃̇2 −𝛽𝑠2(𝜃̇1 + 𝜃̇2)

𝛽𝑠2𝜃̇1 0
] [

𝜃̇1

𝜃̇2

] + [
𝐹𝑟1

0
] = [

𝜏1

𝜏2
]             (8) 

It is noted from (8) that the torque at joint 1 is more affected than the torque at joint 2. 

 

2.2. External Force is perpendicular to link 2 (𝐋𝟐) 

In case of the perpendicular external force on link 2 as shown in Fig. 3, the dynamic equation is 

derived as the following steps, 

 

Figure 3. External perpendicular force (collision) exerted on link 2 

 

The potential energy 𝑉(𝜃) is equal to the work done by force 𝐹 

                                                                  𝑉(𝜃) = 𝑑𝑊1 + 𝑑𝑊2                                                                (9) 

The work done by force 𝐹 at joint 2 

                                                                 𝑑𝑊1 = 𝐹𝑟2 𝑑(𝜃1 + 𝜃2)                                                               (10) 

 

𝑥 
Joint 1  

𝑦 
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where  

𝑑(𝜃1 + 𝜃2) = (𝜃1 + 𝜃2)𝑎𝑓𝑡𝑒𝑟 𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘 − (𝜃1 + 𝜃2)𝑏𝑒𝑓𝑜𝑟𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘 

The work done by force F at joint 1 

                                𝑑𝑊2 = 𝐹(𝑟2 + 𝑎)𝑑(𝜃1 + 𝜃2) = 𝐹(𝑟2 + 𝐿1 cos(𝜃2))𝑑(𝜃1 + 𝜃2) 

                                         = 𝐹𝑟2𝑑(𝜃1 + 𝜃2) + 𝐹𝐿1 cos(𝜃2) 𝑑(𝜃1 + 𝜃2)                                                    (11) 

By substituting (10) and (11) into (9), the potential energy is  

                              𝑉(𝜃) = 𝐹𝑟2 𝑑(𝜃1 + 𝜃2) + 𝐹𝑟2𝑑(𝜃1 + 𝜃2) + 𝐹𝐿1 cos(𝜃2) 𝑑(𝜃1 + 𝜃2) 

                                        = 2𝐹𝑟2 𝑑(𝜃1 + 𝜃2) + 𝐹𝐿1 cos(𝜃2) 𝑑(𝜃1 + 𝜃2)                                              (12) 

Taking the derivative of (12) according to 𝜃1and 𝜃2 

                
𝜕𝑉

𝜕𝜃1
= 2𝐹𝑟2 + 𝐹𝐿1 cos(𝜃2),   

𝜕𝑉

𝜕𝜃2
= 2𝐹𝑟2 + 𝐹𝐿1 cos(𝜃2) − 𝐹𝐿1 sin(𝜃2) 𝑑(𝜃1 + 𝜃2)       (13) 

So the dynamic equation for the motion of the manipulator is converted from (2) into the following 

equation 

[
𝛼 + 2𝛽𝑐2 𝛿 + 𝛽𝑐2

𝛿 + 𝛽𝑐2 𝛿
] [

𝜃̈1

𝜃̈2

] + [
−𝛽𝑠2𝜃̇2 −𝛽𝑠2(𝜃̇1 + 𝜃̇2)

𝛽𝑠2𝜃̇1 0
] [

𝜃̇1

𝜃̇2

] +

                                                              [
2𝐹𝑟2 + 𝐹𝐿1 𝑐𝑜𝑠(𝜃2)

2𝐹𝑟2 + 𝐹𝐿1 𝑐𝑜𝑠(𝜃2) − 𝐹𝐿1 𝑠𝑖𝑛(𝜃2) 𝑑(𝜃1 + 𝜃2)
] = [

𝜏1

𝜏2
]      

                                                                                                                                                             (14) 

It is noted from eq. (14) that the torque at joint 1 is more affected than joint 2 because of the higher 

lever-arm.  

Note: To derive the dynamic equation when there is an external force on link 1 and in the same time 

another force on link 2, the same previous steps can be followed. 

 

3. Computed Torque Control 

Computed torque is a special application of feedback linearization of nonlinear systems, which has 

gained popularity in modern systems theory [13], [14]. Computed-Torque Control is used in this paper 

to simulate the reality as working with a real robot to show the effects on the variables; position, 

velocity, acceleration and torque whether there is external force or no. The following steps derive the 

equation of the computed-Torque Control law. 

If the desired trajectory 𝜃𝑑(𝑡) is selected for the arm manipulation so the tracking error is 

                                                                   𝑒(𝑡) = 𝜃𝑑(𝑡) − 𝜃(𝑡)                                                             (15)                           
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By taking the first and second derivative of the error is 

                                                               𝑒̇ = 𝜃̇𝑑 − 𝜃̇,      𝑒̈ = 𝜃̈𝑑 − 𝜃̈                                                  (16) 

From (1), 𝜃̈ is given by 

                                                            𝜃̈ =  𝑀(𝜃)−1(𝜏 − 𝐶(𝜃, 𝜃̇)𝜃̇)                                                  (17) 

By substituting 𝜃̈ from (17) into (16) so 

                                                          𝑒̈ = 𝜃̈𝑑 + 𝑀(𝜃)−1(𝐶(𝜃, 𝜃̇)𝜃̇ − 𝜏)                                             (18) 

Defining the control input function as [15]  

                                                       𝑢 = 𝑒̈ = 𝜃̈𝑑 + 𝑀(𝜃)−1(𝐶(𝜃, 𝜃̇)𝜃̇ − 𝜏)                                        (19) 

From (19), the computed joint torque 𝜏 is given by 

                                                           𝜏 = 𝑀(𝜃)(𝜃̈𝑑 − 𝑢) + 𝐶(𝜃, 𝜃̇)𝜃̇                                               (20) 

Select the control signal 𝑢 as the proportional-Derivative (PD) Feedback 

                                                                     𝑢 = −𝐾𝑑𝑒̇ − 𝐾𝑝𝑒                                                           (21) 

By substituting (21) into (20), the computed joint torque which is the robot arm input becomes 

                                                    𝜏 = 𝑀(𝜃)(𝜃̈𝑑 + 𝐾𝑑𝑒̇ + 𝐾𝑝𝑒) + 𝐶(𝜃, 𝜃̇)𝜃̇                                       (22) 

Which called the computed-Torque Control law. The PD gains are usually selected for critical 

damping 𝜉 = 1 [15], [16]. In this case: 

                                                               𝐾𝑑 = 2√𝐾𝑝    and    𝐾𝑝 =
𝐾𝑑

2

4
                                               (23) 

The computed-torque control depends on the inversion of the robot dynamics, and indeed is called 

inverse dynamics control and it results the real joint acceleration vector after calculating 𝜏 from eq. (22) 

and substituting its value in eq. (17).  

The equation for the entire system can be derived from (1) and (22) by 

                                    𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇)𝜃̇ = 𝑀(𝜃)(𝜃̈𝑑 + 𝐾𝑑𝑒̇ + 𝐾𝑝𝑒) + 𝐶(𝜃, 𝜃̇)𝜃̇ 

                                                                𝜃̈ = 𝜃̈𝑑 + 𝐾𝑑𝑒̇ + 𝐾𝑝𝑒 

Therefore, 

                                                                𝑒̈ + 𝐾𝑑𝑒̇ + 𝐾𝑝𝑒 = 0.0                                                               (24) 

Equation (24) means that there is not any external disturbance. The block diagram of the computed–

torque control is shown in Fig. 4 
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Figure 4. Computed-torque control scheme. In our case, 𝐺(𝜃) = 0.0 because of the motion is in 

horizontal plane. 

 

3.1. Computed Torque Control for Multiple joints motion 

The torque from the PD-controller based on Fig. 4 is given by the following equation 

     [
𝛼 + 2𝛽𝑐2 𝛿 + 𝛽𝑐2

𝛿 + 𝛽𝑐2 𝛿
] [

𝜃̈1𝑑 + 𝐾𝑑1𝑒̇1 + 𝐾𝑝1𝑒1

𝜃̈2𝑑 + 𝐾𝑑2𝑒̇2 + 𝐾𝑝2𝑒2

] + [
−𝛽𝑠2𝜃̇2 −𝛽𝑠2(𝜃̇1 + 𝜃̇2)

𝛽𝑠2𝜃̇1 0
] [

𝜃̇1

𝜃̇2

] = [
𝜏𝑐1

𝜏𝑐2
]      (25) 

A. If there is no external force 

When there are no external disturbances, the computed joint torque is equal to the torque resulted 

from the controller as 

                                                                𝜏1 = 𝜏𝑐1  and 𝜏2 = 𝜏𝑐2                                                        (26)                 

By substituting (26) into (25) and make the equality with (2), the equation for the entire system is 

derived as  

                                                              [
𝑒̈1 + 𝐾𝑑1𝑒̇1 + 𝐾𝑝1𝑒1

𝑒̈2 + 𝐾𝑑2𝑒̇2 + 𝐾𝑝2𝑒2
] = 0.0                                                    (27) 

 

B. If there is external force that is perpendicular to link 1 

According to the equations (5-8) and (25), the computed joint torques for the two joints are derived 

as  

                                                                    [
𝜏1

𝜏2
] = [

𝜏𝑐1

𝜏𝑐2
] + [

𝐹𝑟1

0
]                                                          (28) 
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By substituting (25) into (28) and make the equality with (2), then the equation for the entire system is 

derived as  

                                      [
𝑒̈1 + 𝐾𝑑1𝑒̇1 + 𝐾𝑝1𝑒1

𝑒̈2 + 𝐾𝑑2𝑒̇2 + 𝐾𝑝2𝑒2
] = − [

𝛼 + 2𝛽𝑐2 𝛿 + 𝛽𝑐2

𝛿 + 𝛽𝑐2 𝛿
]

−1

[
𝐹𝑟1

0
]                               (29) 

 

C. If there is external force that is perpendicular to link 2 

From equations (9-14) and (25), the computed joint torques for the two joints are calculated by  

                                  [
𝜏1

𝜏2
] = [

𝜏𝑐1

𝜏𝑐2
] + [

2𝐹𝑟2 + 𝐹𝐿1 𝑐𝑜𝑠(𝜃2)

2𝐹𝑟2 + 𝐹𝐿1 𝑐𝑜𝑠(𝜃2) − 𝐹𝐿1 𝑠𝑖𝑛(𝜃2) 𝑑(𝜃1 + 𝜃2)
]                      (30) 

By substituting (25) into (30) and make the equality with (2), then the equation for the entire system is 

derived as  

[
𝑒̈1 + 𝐾𝑑1𝑒̇1 + 𝐾𝑝1𝑒1

𝑒̈2 + 𝐾𝑑2𝑒̇2 + 𝐾𝑝2𝑒2
]

=  − [
𝛼 + 2𝛽𝑐2 𝛿 + 𝛽𝑐2

𝛿 + 𝛽𝑐2 𝛿
]

−1

[
2𝐹𝑟2 + 𝐹𝐿1 𝑐𝑜𝑠(𝜃2)

2𝐹𝑟2 + 𝐹𝐿1 𝑐𝑜𝑠(𝜃2) − 𝐹𝐿1 𝑠𝑖𝑛(𝜃2) 𝑑(𝜃1 + 𝜃2)
] 

       (31) 

After calculating the joint torques 𝜏1 and 𝜏2 whether there is disturbance or no, then substituting their 

values into (2) to calculate the actual acceleration as  

                         [
𝜃̈1

𝜃̈2

] = [
𝛼 + 2𝛽𝑐2 𝛿 + 𝛽𝑐2

𝛿 + 𝛽𝑐2 𝛿
]

−1

([
𝜏1

𝜏2
] − [

−𝛽𝑠2𝜃̇2 −𝛽𝑠2(𝜃̇1 + 𝜃̇2)

𝛽𝑠2𝜃̇1 0
] [

𝜃̇1

𝜃̇2

])              (32) 

By make the integral for 𝜃̈1 and 𝜃̈2, the actual velocity and position are determined. 

 

4. Simulation Study  

A program in Matlab is implemented based on the computed torque control for the multiple joints 

motion to simulate the reality and show the differences between the actual and the reference positions, 

velocities, accelerations, and torques of the two joints whether there is external force or no.  

 

4.1. Determining the Parameters 

The parameters used during the simulation are real data and collected from the KUKA LWR robot 

datasheet [17] as shown in table I. A sinusoidal motion is commanded to the two joints as 

 

                                                           𝜃𝑑(𝑡) = 𝐴 − 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡)                                                          (33) 

where 𝐴 is the range of the sinusoidal motion in radians  =
𝜋

4
, 

𝑓 is the frequency of the sinusoidal motion. 

 

Using Zeigler-Nichols rules, the PD gains that give the best performance are given as 

    𝐾𝑝1 = 4, 𝐾𝑑1 = 4, 𝐾𝑝2 = 4, 𝐾𝑑2 = 4 
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Table I.  The values of the parameters used in the simulation [17] 

Parameter Value 

𝐿1 0.39 𝑚 

𝑟1 0.195 𝑚 

𝑟2 0.078 𝑚 

𝑚1 3.3 𝑘𝑔 

𝑚2 0.3 𝑘𝑔 

𝐼𝑧1 𝑚1𝑟1
2 ≈ 0.1255 𝑘𝑔. 𝑚2 

𝐼𝑧2 𝑚2𝑟2
2 ≈ 0.00183 𝑘𝑔. 𝑚2 

 

4.2. The Results 

The diagrams of the actual and desired joints positions, velocities, accelerations and the computed 

joint torques 𝜏1 and 𝜏2 whether there is external force or no are shown from Fig. 5 to Fig. 7. 

 

 

  (a) Joint 1                                                  (b) Joint 2 

Figure 5. The actual and desired joints’ positions, velocities, accelerations and the computed torques 

when there is no external forces. 
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                               (a) Joint 1                                                                            (b) Joint 2 

Figure 6. The actual and desired joints’ positions, velocities, accelerations and the computed torques when there 

is external force perpendicular to link 1 and equal to 10 N at time = 5 sec. 

 

(a) Joint 1                                                    (b) Joint 2 

Figure 7. The actual and desired joints’ positions, velocities, accelerations and the computed torques when there 

is external force perpendicular to link 2 and equal to 10 N at time = 5 sec. 
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As shown from the results the actual joint position, velocity and acceleration are approximately 

coincide with the desired (reference) signals (Fig. 5) because of using the PD-controller. The errors 

between the actual signals and desired ones are very small (neglected), therefore, we can conclude that 

the PD-controller works very well and is a robust controller.  

When there is external force or disturbance, the actual signal is affected by this force at the time 

when the force exerts on the link (time = 5 s in Fig.6 and Fig. 7) then the PD-controller tries to coincide 

again the actual signal with the desired signal after the force effect finishes. 

The dynamic coupling between the joints of the manipulators are presented from the figures (Fig. 6 

and Fig. 7) and discussed as following: 

▪ When there is external force (or in another words collision) whether on link 1 or link 2, these 

variables; position, velocity and acceleration of joint 2 are more affected than of joint 1. When 

the force exerts on link 2 the effect of this force on these variables is more than when it exerts 

on link 1 and this is observed also from the mathematical calculations.  

▪ The computed torque of joint 1 is higher than of joint 2 in any case whether there is collision 

or no. In the case where the force is perpendicular to link 1, there is no change on the computed 

torque of joint 2 (Fig. 6b) whereas the computed torque of joint 1 is affected at the time when 

the force exerts on the link (Fig. 6a). When the collision on link 2, both the computed torques 

are affected at the time when the force exerts on the link whereas the computed torque of joint 

1 is affected more than of joint 2 because of the higher lever-arm (Fig. 7). 

5. Conclusions  

In this paper, the mathematical modelling of the 2-DOF manipulator dynamics is presented. The 

analysis is presented in two cases; the first one without collisions applied to the links of the manipulator, 

whereas the second one is the collided applied case. The Computed-Torque Control is also presented 

and a simulation study is executed using a sinusoidal motion commanded simultaneously to the two 

joints of the manipulator. The results prove that the computed-torque control is effectively minimizing 

the error between the actual signals and the desired signals of the joints’ positions, velocities, 

accelerations and torques of the manipulator. Moreover, the dynamic coupling between the joints is 

presented. The dynamic coupling between the manipulator joints should be considered during the design 

and implementing the human-robot collision detection method and collided link identification which 

contribute to the safety of the human-robot interaction. 
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