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Environmental and social implications of incorporating carpooling 

service on a customized bus system 

Abstract

This study addresses one of the most challenging issues in designing a sustainable and efficient ride-

sharing service. This paper uses an extensive computational study to quantify the behavior of carpooling 

in customized bus routing problems. This mechanism allows organizations to draw on the potential of 

their employees’ private cars to provide convenient alternative rides for other employees, thereby 

reducing air pollution and greenhouse gas emissions as well as increasing overall satisfaction with the 

transportation system offered. The objective functions minimize: (i) total transportation costs and 

incentives paid to drivers of private cars, (ii) dissatisfaction as determined by staff walking distance, 

travel time, and delays in arriving at work, and (iii) total carbon emissions generated by commuting. 

We propose a resolution algorithm based on Pareto Strength Ant Colony Optimization (PSACO) as an 

effective meta-heuristic method for solving the multi-objective mathematical model and compare it 

with the results obtained by an exact method. The effectiveness and applicability of the proposed 

problem have been evaluated by performing computational experiments on a real case study in Paris 

using a number of comparative metrics with appropriate assumptions. Different parameters affecting 

the performance of the algorithm are also investigated. The concluding section presents a comparison 

of the results achieved. The test outcomes confirm that the formulation and the solution methods can 

be useful references for practice. The insights obtained from the research could provide the basis for 

designing incentive schemes and information campaigns aimed at making ride-sharing systems more 

successful and improving their performance.

Keywords: Ride-sharing system; Customized buses; Vehicle routing problem; Sustainable 

transportation; Pareto strength ant colony optimization 

1. Introduction

People around the world usually drive their own cars to work, most often with no one else in the 

car. Large companies and organizations require thousands of individuals to be present at work every 

day, significantly increasing car use. The high number of commuter trips during peak hours and low 

vehicle occupancy rates often lead to severe traffic congestion in cities. These commuting practices lead 

to numerous problems, including noise pollution, high greenhouse gas emissions, and the scarcity of 

parking spots (Asghari and Mirzapour Al-e-Hashem, 2020b, 2021). The resulting air pollution and 

stress can negatively affect health.

While public transportation systems can almost entirely alleviate the problem, more often than not, 

they are essentially ignored by the many people who prefer not to use them (Bruck et al., 2017). This is 
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due to the fact that public transportation cannot serve all requests cost-effectively or provide a level of 

comfort and convenience anywhere near that of private vehicles. If there is no nearby bus station, people 

may find themselves stranded and forced to wait a long time or walk long distances. In such conditions, 

they may not be interested in using the bus service for future trips.

In light of these considerations, customized carpooling has been proposed as an economically 

efficient and innovative solution for organizations to offer non-stop door-to-door ride services, a 

sustainable option that has drawn increasing attention in recent years as public awareness of 

environmental issues has grown (Caulfield, 2009; Delhomme and Gheorghiu, 2016; Bruck et al., 2017; 

Javid et al., 2017). Carpooling is a ride-sharing practice in which one of a group of people picks up and 

drops off the other group members in their private car on their way to and from work (Caulfield, 2009). 

To reduce the number of personal vehicles traveling to and from the workplace, a large company that 

organizes a carpooling program can provide incentives to encourage its employees to participate in the 

program and pick up colleagues on their commute (Baldacci et al., 2004). The benefits of this type of 

program are particularly relevant in terms of the decrease in both personal vehicle use and the amount 

of parking space needed.

To inform the adoption of emerging transportation technologies such as carpooling systems and 

their net effects on sustainability, in competition with existing modes, a complete economic, 

environmental, and social analysis of these new modes and integrated form of them need further 

evaluation. This study is motivated by environmental problems caused by transportation and the 

corresponding need to deploy sustainable solutions. As one of those solutions, we deal with 

interoperating carpooling for bus routing problems and propose a different multi-objective model 

because of the bus and private car route planning simultaneously in the literature. We believe that this 

is the first work to attempt to use a multi-objective optimization model to consider carpooling behavior 

in Customized Bus (CB) service. The problem aims to develop an integrated configuration of the 

company’s transportation service and employees’ private cars to efficiently organize carpooling 

employees heading to a common destination on a daily basis. The developed formulation incorporates 

three objective functions, including the company’s total loss, employee satisfaction, and total vehicle 

emissions. 

The mathematical model is then linearized, which enables us to solve the suggested model more 

efficiently. To provide users with viable compromise solutions, a meta-heuristic algorithm based on 

Pareto Strength Ant Colony Optimization (PSACO) is embedded in the last multi-objective 

mathematical programming model. To carry out the effects of crucial parameters on the overall 

performance of the PSACO and find the most appropriate setting, we use parameter tuning, Iterated 

Racing for Automatic Algorithm Configuration (IRACE, López-Ibáñez et al., 2016). The results of the 

adapted meta-heuristic are compared with an exact method. In this paper, we use a real case at a service 

company to demonstrate the properties of the proposed model. The practical case results attest to great 
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potential for achieving cost savings while satisfying individuals and reducing emissions by using 

carpooling in the different scenarios.

The remainder of the paper is organized as follows. Section 2 presents a brief review of the existing 

literature and highlights the gaps in it. In Sections 3 and 4, respectively the problem description, 

mathematical formulation, and solution framework are presented in detail. In Section 5, several 

numerical tests are executed and the efficiency of the model and its solution approaches are considered. 

Finally, conclusions and future research opportunities are discussed in Section 6.

2. Literature review

The increase in research into more sharable and sustainable systems of transportation reflects 

emerging challenges, such as growing environmental concerns, rising oil prices, and increasing traffic 

congestion. This section provides a brief overview of the main studies related to our paper in the field 

of customized bus problems, ride-sharing optimization models, and their solution techniques. This 

literature review sets out a summary report and describes the contribution of the study to the state-of-

the-art.

2.1.  Related work

The CB service design, in the field of operations research, is an optimization problem that involves 

the setting of vehicle timetables and routes serving the requests of known passengers. Chang and 

Schonfeld (1991) have undertaken one of the first studies of flexible bus service methods, which 

analytically compares the subscription feeder bus system with the conventional one. In recent years, 

several optimization models have addressed the operation-planning process of CB service design 

determining timetables, routes, stop locations, and passengers’ assignment (Guo et al., 2019; Qiu et al., 

2019; Dou et al., 2020; Ma et al., 2020; Sun et al., 2020; Cao and Wang, 2016).

A comprehensive examination of CB network design in China was presented by Liu and Ceder 

(2015). The authors analyzed the operation-planning process, including fare design and collection, real-

time control, crew scheduling, vehicle scheduling, timetable development, network route design, and 

elements of online demand collection. Tong et al. (2017) proposed a mixed inter programming 

formulation for addressing practical challenges in CB service and used a Lagrangian decomposition-

based algorithm to solve it. Lyu et al. (2019) jointly optimized routes, stops, timetables, and passengers’ 

mode choices for a CB system. Huang et al. (2020) proposed a two-phase optimization model for the 

demand-responsive CB service. They formulated the interactive mechanism between passengers and 

the operator in an integrated decision-making framework. Shang et al. (2021) proposed a time-

discretized dynamic programming-based school bus routing problem to design students commuting to 

different schools.

A data-driven approach for the arrangement and emission reduction of CB services is undertaken 

by Yu et al. (2020). Wang et al. (2020) proposed a multi-objective CB routing problem under stochastic 
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demands and employed a two-stage approach based on the NSGA-II algorithm to process static and 

dynamic ride requests. Chen et al. (2021) modeled a bi-objective optimization problem minimizing 

operating and passenger costs in the CB route design. To efficiently solve the proposed model, the 

authors used a heuristic algorithm with adaptive variable neighborhood search. Recently, Liu et al. 

(2021) investigated the operational strategy of CB considering passengers' changes in different stages.

Motivated by emerging transportation technologies, many studies have been devoted to innovative 

mobility ways, such as car-sharing and ride pooling systems, which have the potential to improve the 

efficiency and sustainability of transportation (Jorge et al., 2015; Ma et al., 2017). Carpooling, also 

known as ride-sharing, has attracted the attention of many researchers, leading to the existence of 

comprehensive literature. Readers who are interested in a more in-depth study can refer to Furuhata et 

al. (2013), where the authors presented a framework for identifying the main obstacles to carpooling 

and fostering the development of effective carpooling mechanisms. The authors in Chan and Shaheen 

(2012) focused on how the Internet, social media, and cell phone use are integrated into ride-sharing 

applications. A thorough survey of the relevant literature on ride-sharing problems was provided by 

Agatz et al. (2012).

In the carpooling problem literature, different objective functions have been used. Some studies 

aim to minimize the total fixed costs of vehicles as well as network travel costs (Yan and Chen, 2011; 

Mahmoudi and Zhou, 2016; Ou and Tang, 2018). Some focus on minimizing delays in carpooling 

services (Guo et al., 2013b). Other studies model the related problems by taking into account the penalty 

cost of unserved requests (Yan and Chen, 2011; Baldacci et al., 2004). While few studies focus on exact 

algorithms to solve the problem (Baldacci et al., 2004; Masoud and Jayakrishnan, 2017; Masoud et al., 

2017; Xue et al., 2016; He et al., 2017), most previous studies introduced heuristic solution methods 

due to the NP-hard complexity of carpooling problems (Najmi et al., 2017; Xia et al., 2015). Some of 

the most important studies are discussed in detail below.

In one of the early attempts at the carpooling service problem, Agatz et al. (2011) applied an 

optimization model to minimize the total cost of matching riders and drivers. For the many-to-many 

carpooling problem developed by Yan and Chen (2011), a time-space network flow method with 

various kinds of vehicles was investigated and was finally solved using a Lagrangian relaxation 

technique. Another study performed by Bruglieri et al. (2011) introduced a carpooling problem on a 

carpooling service for the faculty, students, and employees of two universities with the goal of 

minimizing total route length while maximizing the number of users served. To solve the problem, the 

authors used a heuristic guided Monte-Carlo strategy. An optimization-based method for the real-time 

carpooling matching problem was presented by Ghoseiri (2012). In this study, a negotiating policy was 

supposed to match preference ride-sharing and a hierarchical temporal and spatial decomposition 

technique was developed to solve the problem. To handle the long-term carpooling problem, a multi-

agent-based self-adaptive genetic algorithm was described by Guo et al. (2013a), who developed an ant 

colony-based resolution algorithm for a multi-destination version of the problem, (Guo et al., 2013b). 
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Yan et al. (2014) applied a heuristic technique based on a constraint relaxation algorithm to solve 

the carpooling problem with stochastic vehicle travel times. To minimize the transportation costs and 

ride distances, He et al. (2014) focused on mining Global Positioning System (GPS) trajectories in an 

urban ride-sharing system. Filcek and Gasior (2014) formulated a common route planning problem for 

carpoolers as a multi-objective optimization task and used an exact method to solve it. Hrncır et al. 

(2015) aimed to determine the appropriate pricing and incentive schemes to assess the potential services 

in the multiagent carpool routing problem. Pelzer et al. (2015) used a heuristic agent-based approach to 

solve a carpooling model. The objective function was to minimize detours due to picking up and 

dropping off additional passengers. 

To provide appropriate ride matches for the carpooling service problem, Chou et al. (2016) 

developed a meta-heuristic algorithm of stochastic set-based particle swarm optimization based on local 

exploration. Zhang et al. (2016) presented a stochastic optimization-based approach; it aims to minimize 

the fleet size required to meet all transportation demand while maximizing the passengers served by the 

multi-vehicle carpooling problem. Najmi et al. (2017) employed a clustering heuristic to solve a new 

dynamic formulation of a real-time ride-sharing system based on trip spatial attributes. Bruck et al. 

(2017) aimed to minimize carbon dioxide emissions in a practical daily carpool service. They also 

developed two heuristic approaches to efficiently solve their proposed mathematical formulations and 

finally presented a prototype of the web application. To optimality solve a multi-hop peer-to-peer ride-

matching problem, Masoud and Jayakrishnan (2017) applied a decomposition technique. 

Different solution techniques have been developed to solve multi-objective problems. One of these 

is the PSACO algorithm, which has been proven to be effective for solving multi-objective optimization 

problems (Ariyasingha and Fernando, 2015). Ant Colony Optimization (ACO) is a meta-heuristic 

solution method that has recently emerged in the literature to solve complex combinatorial optimization 

problems (Alba and Dorronsoro, 2006; Stützle and Dorigo, 2003). The basic mechanism of such an 

algorithm is that a colony of artificial ants cooperates in finding good solutions for combinatorial 

optimization problems (see Dorigo and Di Caro, 1999). Ant System (AS) was the first attempt to use 

the algorithm to solve the traveling salesman problem (Colorni et al., 1992a, 1992b; Dorigo et al., 

1991a, 1991b, 1996). Afterwards, various algorithms of ACO were developed as a result of further 

investigations done to enhance the algorithm’s performance. They include Max-Min Ant System 

(MMAS) by Stützle and Hoos (1996, 1997), the rank-based ant system by Bullnheimer et al. (1999), 

ant colony combined with reinforcement learning technique (Ant-Q) by Gambardella and Dorigo 

(1995), and Acute Coronary Syndrome (ACS) by Gambardella and Dorigo (1996). Dorigo and Stützle 

(2019) published a comprehensive book on ACO algorithms.

Since the introduction of the AS by Dorigo et al. (1991a, 1991b, 1996) and Colorni et al. (1992a, 

1992b), the algorithm has been employed in different NP-hard combinatorial optimization problems 

such as activity crashing in project management (Abdallah et al., 2009), the car sequencing problems 

(Moya et al., 2019; Sun and Fan, 2017), the vehicle routing problems (Kim and Park, 2018; Tan et al., 
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2019; Liu et al., 2020), the job shop scheduling problems (Jong et al., 2020), resource allocation 

problems (Chaharsooghi and Kermani, 2008) and the travelling salesman problems (López-Ibáñez and 

Blum, 2010; Ebadinezhad, 2020). It has been shown ACO outperforms other heuristics like genetic 

algorithm and simulated annealing on a number of problems. To tackle mixed-variable optimization 

problems, Liao et al. (2014) extended the ACO algorithm for continuous optimization.

The ant colony optimization algorithm was initially used in single objective decision problems. 

Later, many studies tried to take a second objective and multiple objective functions into account 

(Stummer and Sun, 2005; Iredi et al., 2001; Doerner et al., 2004; McMullen 2001; Lopez-Ibanez and 

Stutzle, 2012). McMullen (2001) used a single combined pheromone matrix for a production 

sequencing problem with multiple objective functions. Stummer and Sun (2005) and Doerner et al. 

(2004, 2006, 2008) shown Pareto ant colony optimization using a scheme with multiple pheromone 

matrices, each corresponding to an objective, outperforms other meta-heuristics in solving multi-

objective optimizations. In Pareto ACO, a subset of ants (within a population) updates pheromones to 

achieve the best and second-best solutions along with each respective objective on the current non-

dominated fronts. However, in previous attempts, these updates on the constants were considered fixed 

and not related to their performance. To more information on various multi-objective ACO algorithms 

and their configurations, see Ariyasingha and Fernando (2015).

2.2.  Research gaps and contribution

In Table 1, we summarize the most relevant studies on ride-sharing systems and carpooling 

services. The column headings represent the main features of these problems, including having several 

riders (R), considering vehicle capacity constraints (Ca), synchronization or coordinating different 

transportation units in terms of time and space (Syn), social impacts (Sc), environmental impacts (En), 

bus routing problem (BRP), multi-objective approach (MO), and the objectives and solution techniques 

employed to solve the problem. Considering synchronization constraints in carpooling problems can be 

another significant feature of these studies (Herbawi and Weber, 2012; Baldacci et al., 2004; Hosni et 

al., 2014; Lee and Savelsbergh, 2015; Stiglic et al., 2018; Żak et al., 2019). As shown in Table 1, very 

few ride-sharing papers have focused on participants’ satisfaction with the service provided by the 

system (Masoud et al., 2017; Wang et al., 2018; Lu and Quadrifoglio, 2019; Żak et al., 2019) or 

greenhouse gas emissions (Stiglic et al., 2016; Javid et al., 2017) despite their importance in routing 

and scheduling realistic shared mobility systems like ride-sharing. We could not find any meaningful 

effort to consider the bus routing problem. Moreover, in the literature, multi-objective optimization is 

rarely studied, except by Żak et al. (2019) who used a combination of two multi-objective sub-problems, 

including the carpool matching problem and the vehicle routing problem, in a multiple criteria 

optimization problem, and Beed et al. (2020), who proposed a hierarchical approach of classifying 

objectives including the total distance traveled, individual passenger cost, and car utilization.
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Table 1

An overview of the related papers.

Study authors (Year) R Ca Syn Sc En BRP MO Objective 
function Solution method

Baldacci et al. (2004)    Td, Pn Column generation
algorithm

Wolfler Calvo et al. 
(2004)   Tt Heuristic

Herbawi and Weber 
(2012)    Td, Tt, Pn Genetic algorithm

Huang et al. (2013) Oc Branch-and-bound & integer 
programing algorithm

Kaan and Olinick (2013)   Oc Heuristic
Hosni et al. (2014)    Oc Lagrangian decomposition
Lee and Savelsbergh 
(2015)  Oc Meta-heuristic

Santos and Xavier (2015)   Pn Greedy randomized adaptive 
search procedure

Stiglic et al. (2015)   Td, Pn Matching solution approach
Jung and Jayakrishnan 
(2016)   Tt, Oc Hybrid-simulated annealing

Stiglic et al. (2016)   Pn Simulation
Alonso-Mora et al. 
(2017)   Oc Greedy assignment

Masoud et al. (2017)    Pn Exact method
Kalczynski and Miklas-
Kalczynska (2018)   Td Heuristic

Stiglic et al. (2018)    Tt, Oc Matching solution approach
Wang et al. (2018)   Td Matching solution approach
Chen et al. (2019)   Tt, Oc, Dp Constructive heuristic
Lu and Quadrifoglio 
(2019)   Td Exact method

Tamannaei and Irandoost 
(2019)   Td, Fc, Dp CPLEX

Żak et al. (2019)    Td, Tt, Oc NSGA-II
Beed et al. (2020)    Td, Oc, Or Genetic algorithm

Our study       
Td, Tt, Pn, Fc, 
Oc, E, Dp, Or CPLEX & PSACO

Td: Travel distance, Tt: Travel time, Pn: Number of participants, Fc: Fix cost, Oc: Operational cost, E: 
Emissions, Dp: Delayed arrival penalty, Or: Occupancy rate.

This study seeks to bridge the gaps in the existing literature by developing a mixed-integer non-

linear programming model to optimize carpooling behavior in a bus routing problem. This study’s 

contribution to the state-of-the-art can be summarized as follows: 

- To efficiently organize carpooling employees on a daily basis, this study develops an integrated 

configuration of the company’s transportation service and employees’ private cars in which the 

company is willing to provide incentives to employees who carpool to work. 

- Unlike previous articles published in the context of ride-sharing systems and carpooling services, 

this study is the only research that designs and evaluates an integrated routing and scheduling 
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problem simultaneously exploring environmental and social implications of incorporating 

carpooling service into a customized bus system.

- The proposed problem extends the multi-vehicle carpooling problem to include: (i) transportation 

service costs and incentives intended to encourage staff to participate in the program, (ii) employee 

satisfaction resulting from door-to-door ride service and reduced commute times, and (iii) reducing 

traffic congestion, greenhouse gas emissions, individual employee commuting costs including fuel 

and tolls, and the stress of driving by having more employees use one vehicle.

- To guarantee the optimality of the larger-scale problems, this study proposes a resolution algorithm 

from a Pareto frontier based on the Pareto Strength Ant Colony Optimization algorithm. The results 

of the embedded meta-heuristic approach are compared with an exact method.

The proposed multi-objective mathematical model and the developed PSACO algorithm are 

expected to assist large companies in designing an integrated transit service and realizing the importance 

of tradeoffs among the conflicting route service components. We believe that if similar approaches, the 

combination of the existing modes with various novel transportation technologies and systems, are 

implemented in various state/private organizations, a significant reduction in the company costs and 

vehicle pollutants can be achieved. Furthermore, the social impact from this company-level customized 

ridesharing system looks noticeable to the society.

3. Problem definition

The research highlighted in the introduction is motivated by the environmental damage done by 

transportation and the corresponding need to deploy sustainable solutions. This study focuses on 

carpooling as one of those solutions and develops a multi-objective optimization model for the 

integrated carpooling and bus routing problem. As illustrated in Fig. 1, in this study we aim to design 

an integrated platform for carpooling groups and organize the company’s bus system, which can be an 

effective tool in reducing transportation costs and directly cutting CO2 emissions. This mechanism can 

provide an opportunity for decision-makers to make the company’s transportation service more 

effective and individuals’ participation more efficient. The insights acquired through this process can 

be used to establish a framework for designing incentive and pricing policies aimed at improving the 

ride-sharing system’s performance.
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Fig. 1. The structure of the integrated network studied.

The model is intended to support the configuration of a company's transportation service for 

commuting, taking environmental and social impact into account. To this end, the objective functions 

minimize the company’s bus operation and carpooling participation incentive costs, employees' 

dissatisfaction due to commuting, and the carbon emissions from transportation. In this problem, as in 

the real case, we assume that certain employees are expected to request to share trips with friends. The 

company or organization can rent an unlimited number of buses; the fixed and variable costs of using 

each one are considered in the objective function. Each bus used in the fleet must stop at a number of 

bus stops so that all stations are covered by buses. Each bus can pick up several passengers at each 

station as long as the capacity of the bus allows. Each of the buses will return to the organization at the 

end of the trip. In this case, we consider the satisfaction associated with traveling by bus to be different 

(probably less) than that associated with traveling by car.

The most important difference between the proposed approach and normal carpooling and 

CB/shuttle bus service is the more complexity of their simultaneous planning, which can be the result 

of the following:

 Integration of the two well-studied problems car-sharing and customized bus service problems 

that imposes more computational complexity on the system.

 The multi-objective framework of the proposed model to make a trade-off between the triple 

bottom line of sustainability.

 Private cars and buses visit different nodes.

 Not all nodes are visited by private cars nor all bus stops are visited by buses.
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 The travel time required to traverse a specific distance is considered to be different for private 

cars and buses.

 Using each of the carpooling and company's shuttle bus service schemes has different carbon 

emissions and costs, and also creates different levels of satisfaction for travelers.

 The node from which each carpooling trip begins is one of the applicants’ nodes designated by 

the model as the driver, the one to whom the incentive is paid.

 To encourage employees to participate in the carpooling program, incentives paid to drivers 

increase with the number of people using a shared car.

 Employees who want to take the bus will have to walk a certain distance from their homes to 

the nearest bus stop. On the other hand, employees who carpool or ride-share with colleagues 

do not need to walk, since they are picked up by a private car in front of their homes.

In this problem, we also consider the amount of emissions produced by private cars, which can vary 

depending on the distance each car travels, according to the standard rules proposed by Mirzapour Al-

e-hashem et al. (2013).

Prior to describing the mathematical model, in the following subsections we provide the 

assumptions and notations pertaining to our framework for the reader’s convenience.

3.1.  Assumptions

 All parameters are considered to be deterministic.

 Private cars and buses are assumed to be heterogeneous, with different emission standards 

(e.g., Euro 5, Euro 6, etc.) and different CO2 emission indices.

 All employee transportation demand is met.

 Each pickup point, including bus stations and staff locations, must be visited no more than 

once.

 For each private car, the whole penalty cost of delay is proportional to that vehicle’s delay.

 If an employee registers as a passenger, he/she is not allowed to drive his/her car (for the 

home/office trip).

 Each bus has the same origin and destination. 

 Compared to the operational costs of shuttle service, the implementation cost of this computer 

application is negligible; therefore, it is ignored.

 Compared to the operational costs of shuttle service, the subscription cost of this computer 

application is either negligible or could be added as fixed cost; therefore, it is ignored.

3.2.  Constants

K: Set of potential locations for bus stops. We consider  as the center (arrival and departure node).0
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L: Set of all applicants’ nodes. We consider  as the center (departure node).0
:𝑁𝑗 Set of applicants’ nodes ( ) located at a distance less than a standard distance for covering ( ) 𝑖 ∈ 𝐿 𝑑𝑙

from potential location j ( ).𝑁𝑗 = {𝑖|𝑑𝑖𝑗 < 𝑑𝑙}, 𝑗 ∈ 𝐾
B: Set of all buses.
C: Set of available private cars ( ), which its number is less than or equal to the number 𝑣 ∈ 𝑉 = {𝐵 ∪ 𝐶}

of employees ( ).  indicates the applicant's node to which the car belongs ( ).|𝐶| ≤ |𝐿| 𝑗𝑣 𝑗𝑣 ∈ 𝐿, 𝑣 ∈ 𝐶
st: Starting time by which employees must be present at the office

:𝑑𝑖𝑗 Symmetrical distance between node i and node j (Km)
:𝑞𝑣 Capacity of vehicle v
:𝑓𝑣 Fixed costs of using bus v (USD)
:𝑐𝑖𝑗𝑣 Variable costs of bus v traveled from location i to node j (USD/Km)

:𝑡𝐵
𝑖𝑗 Travel time from node i to node j by bus (hour)
:𝑡𝐶

𝑖𝑗 Travel time from node i to node j by private car (hour)
:𝛼 Dissatisfaction comes along with the unit-time delay at the start of work
:𝛽 Incentive paid for carpooling (USD)
:𝛿𝑗 Satisfaction (as a negative parameter) or dissatisfaction (as a positive parameter) for every 1 

kilometer of walking by the person in node j
( ):𝜌𝐶 𝜌𝐵 Dissatisfaction comes along with one unit of travel time by private car (bus)
:𝑡𝑤 Average time required to walk one kilometer (hour)
:𝜔𝑣 CO2 emitted by vehicle v (g/Km)

:𝑀 An arbitrary large number

3.3.  Decision variables

:𝑋𝑖𝑗𝑣 1, if vehicle v visits node j immediately after node i; 0, otherwise 
:𝑌𝑙𝑗 1, if the person in node l needs to go to node j for using the bus; 0, otherwise
:𝑍𝑣 1, if bus v is used in the fleet; 0, otherwise
:𝑊𝑗 Distance traveled by the person in node j to the nearest bus stop (Km)

:𝑇𝑗 The bus/vehicle arrival time at node j 

3.4.  Mathematical model

Based on the descriptions and indices laid out above, a multi-objective mixed-integer non-linear 

programming model can be formulated as below:  

Min ∑
𝑣 ∈ 𝐵

𝑓𝑣.𝑍𝑣 + ∑
𝑖,𝑗 ∈ 𝐾

∑
𝑣 ∈ 𝐵

𝑐𝑖𝑗𝑣.𝑑𝑖𝑗.𝑋𝑖𝑗𝑣 + 𝛽.∑
𝑣 ∈ 𝐶

𝑀𝑎𝑥{ ∑
𝑖,𝑗 ∈ 𝐿

𝑋𝑖𝑗𝑣 ― 1,0} (1)

Min ∑
𝑖 ∈ 𝐿

𝛿𝑖.𝑡𝑤.𝑊𝑖 + ∑
𝑖,𝑗 ∈ 𝐿

∑
𝑣 ∈ 𝐶

𝜌𝐶.(𝑠𝑡 ― 𝑇𝑗).𝑋𝑖𝑗𝑣 + ∑
𝑙 ∈ 𝑁𝑗

∑
𝑗 ∈ 𝐾

𝜌𝐵.(𝑠𝑡 ― 𝑇𝑗 + 𝑡𝑤.𝑑𝑙𝑗).𝑌𝑙𝑗

+ ∑
𝑗 ∈ 𝐿

∑
𝑣 ∈ 𝐶

𝛼.𝑋𝑗0𝑣.𝑀𝑎𝑥{𝑇𝑗 + 𝑡𝐶
𝑗0 ― 𝑠𝑡, 0}

(2)

Min ∑
𝑖,𝑗 ∈ 𝐿

∑
𝑣 ∈ 𝐶

𝜔𝑣.𝑑𝑖𝑗.𝑋𝑖𝑗𝑣 + ∑
𝑙 ∈ 𝐿

∑
𝑖,𝑗 ∈ 𝐾

∑
𝑣 ∈ 𝐵

𝜔𝑣.𝑑𝑖𝑗.𝑌𝑙𝑗.𝑋𝑖𝑗𝑣 (3)

s.t.

∑
𝑙 ∈ 𝑁𝑗

𝑌𝑙𝑗 ≤ 𝑀. ∑
𝑖 ∈ 𝐾/𝑗

∑
𝑣 ∈ 𝐵

𝑋𝑖𝑗𝑣,          ∀𝑗 ∈ 𝐾 (4)

∑
𝑖 ∈ 𝐾/𝑗

∑
𝑣 ∈ 𝐵

𝑋𝑖𝑗𝑣 = 1,          ∀𝑗 ∈ 𝐾/0 (5)
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{∑
𝑗 ∈ 𝐾

𝑋0𝑗𝑣,∑
𝑖 ∈ 𝐾

𝑋𝑖0𝑣} ≤ 1,          ∀𝑣 ∈ 𝐵 (6)

𝑌𝑙𝑗 + ∑
𝑖 ∈ {𝐿 ∪ 0}

∑
𝑣 ∈ 𝐶

𝑋𝑙𝑖𝑣 = 1,          ∀𝑗 ∈ 𝐾, ∀𝑙 ∈ 𝑁𝑗 (7)

∑
𝑖,𝑗 ∈ 𝐾

𝑋𝑖𝑗𝑣 ≤ 𝑀.𝑍𝑣,          ∀𝑣 ∈ 𝐵 (8)

∑
𝑖 ∈ 𝐾/𝑗

(𝑋𝑖𝑗𝑣 ― 𝑋𝑗𝑖𝑣) = 0,          ∀𝑣 ∈ 𝐵, ∀𝑗 ∈ 𝐾/0 (9)

∑
𝑖 ∈ 𝐿/𝑗

(𝑋𝑖𝑗𝑣 ― 𝑋𝑗𝑖𝑣) = 0,          ∀𝑣 ∈ 𝐶, ∀𝑗 ∈ 𝐿/{𝑗𝑣 ∪ 0} (10)

∑
𝑖,𝑗 ∈ 𝐿

𝑋𝑖𝑗𝑣 ≤ 𝑞𝑣,          ∀𝑣 ∈ 𝐶 (11)

∑
𝑙 ∈ 𝐿

∑
𝑖,𝑗 ∈ 𝐾

𝑌𝑙𝑗.𝑋𝑖𝑗𝑣 ≤ 𝑞𝑣,          ∀𝑣 ∈ 𝐵 (12)

𝑊𝑖 = ∑
𝑗 ∈ 𝐾

𝑌𝑖𝑗.𝑑𝑖𝑗,          ∀𝑖 ∈ 𝐿 (13)

𝑇𝑖 + 𝑡𝐵
𝑖0 ≤ 𝑠𝑡 + 𝑀(1 ― ∑

𝑣 ∈ 𝐵
𝑋𝑖0𝑣),          ∀𝑖 ∈ 𝐾 (14)

𝑇𝑖 + 𝑡𝐵
𝑖𝑗 ≤ 𝑇𝑗 + 𝑀(1 ― ∑

𝑣 ∈ 𝐵
𝑋𝑖𝑗𝑣),          ∀𝑖,𝑗 ∈ 𝐾 (15)

𝑇𝑖 + 𝑡𝐶
𝑖𝑗 ≤ 𝑇𝑗 + 𝑀(1 ― ∑

𝑣 ∈ 𝐶
𝑋𝑖𝑗𝑣),          ∀𝑖,𝑗 ∈ 𝐿 (16)

𝑇𝑗 , 𝑊𝑗 ∈ 𝑅 + ,          ∀𝑗 ∈ 𝐽 (17)

𝑋𝑖𝑗𝑣,𝑌𝑙𝑗, 𝑍𝑣 ∈ {0,1},          ∀𝑖,𝑗,𝑙 ∈ 𝐽,∀𝑣 ∈ 𝑉 (18)

Three components of the first objective function (1) minimize, respectively, the fixed cost of using 

or renting buses, transportation-related costs modeled as a linear function of the distance traveled, and 

the incentive paid to the drivers of the private cars which depends on the number of people who share 

a car. The second objective function of the proposed mathematical model (2) measures the satisfaction 

or dissatisfaction resulting from the walk required to reach the nearest bus stop, travel time by private 

car and bus (since employees need to leave earlier to use the organization's bus service, there will 

usually be more dissatisfaction with the bus), and the penalty resulting from late arrival at work when 

employees use private cars. In calculating the late arrival time, we took into account the last applicant's 

node visited by car in the tour. The third objective function (3) aims to minimize the total amount of 

CO2 emissions from vehicles used for commuting, which depends on the vehicle’s occupation rate and 

the distance traveled. Constraint (4) ensures that if a person goes to a bus stop, that station must be 

served by a bus. Constraint (5) indicates that each bus stop is visited by a maximum of one bus. 
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Constraint (6) compels buses to begin from/return to the center. Constraint (7) ensures that each 

employee must be serviced either by a private car or by a bus. Constraint (8) forces the logical 

relationship between variables and ensures that nodes can only be assigned to buses used in the 

organization's fleet. Constraints (9) and (10) specify the flow conservation constraints for buses and 

private cars in turn. Constraints (11) and (12) prevent overuse of shared vehicles. Constraint (13) shows 

the distance a person must travel to reach the nearest bus stop. Constraints (14) – (16) guarantee that 

service to node j must be at least started after the service time to node i, plus the time needed to travel 

between two nodes, if the same vehicle serves node i immediately before node j. Eventually, constraint 

(17) forces the corresponding decision variables to be non-negative, and constraint (18) imposes the 

integrality restrictions on the binary values of decision variables.

Linearization technique

It is expedient for the proposed mathematical formula to be linearized because of the much lower 

computation time and the significant improvement in the efficiency of linear programming form 

compared to its non-linear form. Since this model is non-linear, which results from multiplying the 

variables in the second and third objective functions and constraint (12), we use a linearization method 

discussed in Asghari and Mirzapour Al-e-Hashem (2020a). To linearize two bilinear terms  and 𝑇𝑗.𝑋𝑖𝑗𝑣 𝑇𝑗

 in the second objective, we replace them with the following auxiliary variables: .𝑌𝑙𝑗

𝑇𝑗.𝑋𝑖𝑗𝑣→𝑋𝑇𝑖𝑗𝑣,          ∀𝑖, 𝑗 ∈ 𝐿, ∀𝑣 ∈ 𝐶 (19)
𝑇𝑗.𝑌𝑙𝑗→𝑌𝑇𝑙𝑗,          ∀𝑙 ∈ 𝐿,∀𝑗 ∈ 𝐾 (20)

Using (19) and (20), the equations in the objective function would be rewritten as follows:

∑
𝑗 ∈ 𝐿

∑
𝑣 ∈ 𝐶

𝛼.(𝑋𝑇𝑗0𝑣 + 𝑋𝑗0𝑣.𝑡𝐶
𝑗0 ― 𝑋𝑗0𝑣.𝑠𝑡) (21)

∑
𝑖,𝑗 ∈ 𝐿

∑
𝑣 ∈ 𝐶

𝜌𝐶.(𝑠𝑡.𝑋𝑖𝑗𝑣 ― 𝑋𝑇𝑖𝑗𝑣) + ∑
𝑙 ∈ 𝑁𝑗

∑
𝑗 ∈ 𝐾

𝜌𝐵.(𝑠𝑡.𝑌𝑙𝑗 ― 𝑌𝑇𝑙𝑗 + 𝑡𝑤.𝑑𝑖𝑗.𝑌𝑙𝑗) (22)

So as to linearize two nonlinear expressions  and 𝑀𝑎𝑥{∑
𝑖,𝑗 ∈ 𝐽𝑋𝑖𝑗𝑣 ― 1,0} 𝑀𝑎𝑥

 in the objective functions which are currently nonlinear due to the {𝑋𝑇𝑗0𝑣 + 𝑋𝑗0𝑣.𝑡𝐶
𝑗0 ― 𝑋𝑗0𝑣.𝑠𝑡, 0}

 operators, we use the maxl function of IBM ILOG CPLEX. We also use the minl function 𝑚𝑎𝑥𝑖𝑚𝑢𝑚

by substituting the binary variables multiplication in the third objective function and constraint (12), 𝑌𝑙𝑗.

, with  operator , respectively. Interested readers can investigate more about 𝑋𝑖𝑗𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 min {𝑌𝑙𝑗,𝑋𝑖𝑗𝑣}

this linearization technique in Mohammadi et al. (2020). The model can be linearized by adding some 

new constraints as follows:
𝑋𝑇𝑖𝑗𝑣 ≤ {𝑇𝑗,𝑀.𝑋𝑖𝑗𝑣},          ∀𝑖, 𝑗 ∈ 𝐽, ∀𝑣 ∈ 𝑉 (23)
𝑋𝑇𝑖𝑗𝑣 ≥ {0, 𝑇𝑗 + 𝑀.(𝑋𝑖𝑗𝑣 ― 1)},          ∀𝑖, 𝑗 ∈ 𝐽, ∀𝑣 ∈ 𝑉 (24)
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𝑌𝑇𝑙𝑗 ≤ {𝑇𝑗, 𝑀.𝑌𝑙𝑗},          ∀𝑙 ∈ 𝐿,∀𝑗 ∈ 𝐽 (25)
𝑌𝑇𝑙𝑗 ≥ {0,𝑇𝑗 + 𝑀.(𝑌𝑙𝑗 ― 1) },          ∀𝑙 ∈ 𝐿,∀𝑗 ∈ 𝐽 (26)

4. Solution procedures

There are several ways to solve combinatorial optimization problems with multiple and competing 

objectives, known as multi-objective programming. We utilize the IBM ILOG CPLEX solver to reach 

optimal solutions for the proposed linearized mathematical model in small-scale cases. However, the 

commercial solver cannot solve large-scale cases within a reasonable time, leading us to develop a 

meta-heuristic PSACO (Pareto Strength Ant Colony Optimization) algorithm.

ACO procedure is a widely used meta-heuristic to solve the combinatorial optimization problems 

concerning more than one objective (Sahraoui et al., 2018). However, early adaptations of multi-

objective ACO applied equal or fixed weights for heuristic and/or pheromone trails in each objective, 

and then aggregated them based on a weighted sum or weighted product approach (Lopez-Ibanez and 

Stutzle, 2012). Thus, the solutions might be found only in a specific part of the Pareto front. The PSACO 

algorithms, which use the Pareto optimality and dominance concepts, have been proven to be very 

effective in the simultaneous optimization of any number of conflicting objectives and perform better 

when extended to deal with a discrete and combinatorial structure of large size multi-objective problems 

(Doerner et al., 2004).

Although the PSACO algorithm has previously been used for solving different multi-objective route 

planning (Pasia et al., 2007; Kuo et al., 2016), some changes are made to adapt this paradigm to our 

ride-sharing framework. For example, (i) how to update pheromone trails in which all ants from a 

population are contributed based on their performance, (ii) mutation operation that is perfectly designed 

for this problem, (iii) node clustering and its sequence codes, (iv) elitism procedure in which the concept 

of best non-dominated solutions is modified to promote diversity, and (v) the heuristic information 

value which represents a priori information of the problem and different objective functions. In the 

following, we detail the explanation of the algorithm adapted in this study.

4.1.  Ant colony optimization algorithm

Ant System is the first ACO algorithm. It was developed by Dorigo et al. (1996) to solve stochastic 

combinatorial optimization problems. All the previously used pheromone trails are related to arcs which 

set to an initial given value of pheromone . The heuristic information  is equal to , where  𝜏0 𝜂 1/𝑑𝑖𝑗 𝑑𝑖𝑗

denotes the distance between nodes i and j. Initially, m ants are located in the randomly chosen nodes. 

Each ant k then changes position from node i to node j by employing the probabilistic formula,

𝑃𝑘
𝑖𝑗 = { (𝜏𝑖𝑗)𝛼(𝜂𝑖𝑗)𝛽

∑
𝑢 ∈ 𝑁𝑘

𝑖
(𝜏𝑖𝑢)𝛼(𝜂𝑖𝑢)𝛽,

0,
      

𝑖𝑓 𝑗 ∈ 𝑁𝑘
𝑖

 
 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(27)
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where  and  are parameters that respectively represent the relative importance of the pheromone trail 𝛼 𝛽

and the heuristic information.  is the feasible neighborhood of ant k in node i. At each construction 𝑁𝑘
𝑖

step, every ant placed at node i probability selects the next node j as below:

𝑗 = {arg max {(𝜏𝑖𝑢)𝛼(𝜂𝑖𝑢)𝛽},
𝑆,       

𝑓𝑜𝑟 𝑢 ∉ 𝑡𝑎𝑏𝑢𝑘, 𝑖𝑓 𝑞 ≤ 𝑞0

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (28)

where  denotes the pheromone value of the path between the current node i and the possible node u. 𝜏𝑖𝑢

The visibility on arc (i, u) is defined by , which is equal to the inverse of the distance between node 𝜂𝑖𝑢

i and node u, . Nodes that have already been visited by ant k are kept in the set  and 𝜂𝑖𝑢 = 1/𝑑𝑖𝑢 𝑡𝑎𝑏𝑢𝑘

cannot be re-selected. q is a random variable that is uniformly distributed in [0, 1] and parameter , 𝑞0 0 ≤

, measures exploitation against the ants’ exploration during the search process. S can be attained 𝑞0 ≤ 1

by the roulette wheel rule using the probabilistic formula given in equation (27).

Updating the pheromone trails is an essential part in ACO adaptive learning and improving the 

subsequent solutions. After n iterations when all the ants have completed their tour, the pheromone 

trails are deposited on the paths already visited by ants as follows:

𝜏𝑛𝑒𝑤
𝑖𝑗 = (1 ― 𝜌)𝜏𝑜𝑙𝑑

𝑖𝑗 +
𝑚

∑
𝑘 = 1

∆𝜏𝑘
𝑖𝑗 (29)

 ( ) denotes the pheromone evaporation rate and  denotes the level of pheromones on arc 𝜌 0 ≤ 𝜌 < 1 ∆𝜏𝑘
𝑖𝑗

(i, j) deposited by ant k. In AS,  is defined by the following equation: ∆𝜏𝑘
𝑖𝑗

∆𝜏𝑘
𝑖𝑗 =

𝐴
𝐿𝑘

(30)

A is a constant and  denotes a fitness value of the tour completed by the kth ant. This fitness value is 𝐿𝑘

calculated as the sum of the objective functions (1)-(3).

To avoid premature convergence on a local optimum in the ACO algorithm and diversify the 

population, this study applies the mutation operation, which aims to change some assignments to 

generate new solutions to this algorithm. To explain the mutation operators, Fig. 2 illustrates an 

example of a solution with 14 stations visited by 3 buses. As shown in Fig. 3, the mutation operation is 

executed on sequence codes transformed from the solution depicted in Fig. 2 in which the depot and 

the employees who use the bus have been eliminated from the code. 
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An illustration of bus routes with 14 stations

Sequence codes of the solution for buses’ routs: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fig. 2. Generic diagram of a typical solution and its sequence codes through a set of stations and 

carpool passengers.

In Fig. 3, carpooling participants who use a specific private car are divided by blank characters. These 

employees are classified into five different groups, {1, 2, 3, 4}, {8, 9, 10}, {14, 15, 16, 17}, {21}, and 

{25, 26}, in which the first numbers (i.e., 1, 8, 14, 21, and 25) show the car owners. The mutation 

operator randomly conducts node substitution without considering the restrictions on route times and 

vehicle capacity. The operator randomly selects several pairs of bus stations and travel applicants who 

registered for the carpooling program as passengers, e.g., 1 and 11, 3 and 6, 5 and 8 among the bus 

stops, and 2 and 8, 3 and 26, 10 and 21 among the employees who use carpooling. As shown in this 

figure, a new sequence code is obtained by replacing these pairs of nodes. 

Mutation in routing buses Mutation in carpooling

Fig. 3. Representation of the sequence obtained using the mutation operator.

Fig. 4 shows how to produce new solutions for carpooling using a random array. In this approach, 

the carpooling nodes are determined on the basis of values assigned to the nodes. Then, as shown in 
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Fig. 4, some points, e.g., 7, 16, 20, and 27, will be randomly selected and applicant clusters will be 

formed in the solution constructed by ant l. In producing solutions that fall on the current non-dominated 

fronts, all ants from a population are allowed to contribute in updating pheromones, the amounts of 

which depends on their performance. The solutions can be attained using Pseudo code 1.

Fig. 4. New solution obtained using random array and clustering nodes.

Pseudo code 1. The ACO algorithm procedure for finding initial solutions.
Step 1. Information:

- Input: the number of ants m, , the set of bus stops  and applicants’ nodes , the set of buses 0 ≤ 𝑞0 ≤ 1 (𝐾) (𝐿)

 and private cars , maximum route time  and the limited capacity  for all .(𝐵) (𝐶) 𝑟𝑖 𝑞𝑖 𝑖 ∈ {𝐵 ∪ 𝐶}

- Output: m initial solutions.

Step 2. Initialization:

- For , start ant k at the depot, for , start ant l at each applicant's node, and initialize the set of 𝑘 ∈ 𝐾 𝑙 ∈ 𝐿

visited nodes ; candidate bus stops  and applicants’ nodes 𝑡𝑎𝑏𝑢 = ∅ 𝑐𝑛𝑑𝑘 = {1, 2,  · · ·, 𝑘} 𝑐𝑛𝑑𝑙 =

.{1, 2,  · · ·, 𝑙}

- Set  and .𝑘 =  1 𝑙 = 1

Step 3. For the given bus  and private car , make new solution for carpooling and set available capacity 𝑏 ∈ 𝐵 𝑐 ∈ 𝐶

, and route time .𝑞𝑞𝑖 = 𝑞𝑖 𝑟𝑟𝑖 = 𝑟𝑖

Step 4. Update the candidate list: According to  , , , , constraint of allocating passengers to bus or 𝑡𝑎𝑏𝑢 𝑞𝑢𝑏𝑏 𝑞𝑞𝑐 𝑟𝑟𝑖

private car [based on Eq. (7), if the passenger is assigned to a bus, that applicant's node will be removed 

from the list of applicants’ nodes ], the capacity constraints (11) and (12) and route time constraints (𝑐𝑛𝑑𝑙)

(14)-(16), update  and  for ant k and l, respectively.𝑐𝑛𝑑𝑘 𝑐𝑛𝑑𝑙

Step 5. Criterion of constructing another route: 

- If , then set  and return to Step 3 (the ant k recommences from the depot and constructs 𝑐𝑛𝑑𝑘 = ∅ 𝑘 = 𝑘 + 1

another route); otherwise, go to Step 6.

- If , then set  and return to Step 3 (the ant l recommences from the depot and constructs 𝑐𝑛𝑑𝑙 = ∅ 𝑙 = 𝑙 + 1

another route); otherwise, go to Step 6.

Step 6. Selecting the next node: 

- If , then select the next bus station to be visited j ( ) according to Equations 𝑐𝑛𝑑𝑘 ≠ ∅ 𝑗 ∉ 𝑡𝑎𝑏𝑢 ∧  𝑗 ∈ 𝑐𝑛𝑑𝑘

(27) and (28).

- If , then select the next applicant's node to be visited j ( ) according to 𝑐𝑛𝑑𝑙 ≠ ∅ 𝑗 ∉ 𝑡𝑎𝑏𝑢 ∧  𝑗 ∈ 𝑐𝑛𝑑𝑙

Equations (27) and (28).

Step 7. Set , -  (u is the vertex visited before j by vehicle i) and , and go 𝑡𝑎𝑏𝑢 = 𝑡𝑎𝑏𝑢 ∪ {𝑗} 𝑟𝑟𝑖 = 𝑟𝑟𝑖 𝑡𝑢𝑗 𝑞𝑞𝑖 = 𝑞𝑞𝑖 ―1

to Step 8.
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Step 8. If  (then set ) and  (then set ), go to Step 9; otherwise, go to Step 4.𝑐𝑛𝑑𝑘 = ∅ 𝑘 = 𝑘 + 1 𝑐𝑛𝑑𝑙 = ∅ 𝑙 = 𝑙 + 1

Step 9. Stopping criterion: If , then stop; otherwise, set  (if ) or  (if ) and go to 𝑘 > 𝐾 ∧ 𝑙 > 𝐿 𝑘 = 1 𝑘 ≤ 𝐾 𝑙 = 1 𝑙 ≤ 𝐿

Step 3.

Suppose that the sum of the solutions is indicated by  where  denotes offspring solutions 𝑆1 + 𝑆2 𝑆2

attained by using the mutation operator and  denotes the number of ants ( ). The  𝑆1 𝑆2 ≤ 𝑆1 𝑆1 + 𝑆2

solutions are ranked based on the fitness value of ant l ( ), which is evaluated by the 1 ≤ 𝑙 ≤ 𝑆1 + 𝑆2

objective values related to solution . The first  solutions are then applied to update the amount of 𝑙 𝑆1

pheromone on each arc defined in Eq. (30).

4.2.  Pareto strength ant colony optimization algorithm

To obtain non-dominant solutions for the multi-objective mathematical model, this work develops 

a pareto strength version of the ACO algorithm. An AS-based PSACO algorithm was introduced by 

Thantulage (2009) for solving multi-objective optimization problems. The PSACO algorithm applies 

the same pheromone matrix for all the objective functions, while the pheromone trails are updated by 

applying the domination concept employed in SPEA-II (Zitzler et al., 2001). The ants use the random 

proposition rule as described in the AS algorithm, Eq. (27) while moving from one node to another. 

Although the PSACO algorithm has previously been used for solving different multi-objective routing 

problems, some changes must be made to adapt this algorithm to our framework.

The notable change in the PSACO algorithm is the pheromone update procedure. The algorithm 

keeps two sets of solutions in each iteration (t): population  and archive . The population  contains 𝑃𝑡 𝐴𝑡 𝑃𝑡

solutions generated in the current iteration. The overall best non-dominated solutions are also stored in 

a fixed-number set, archive . If the number of best non-dominated solutions is smaller than the archive 𝐴𝑡

size, the archive  will be completed with the current best dominated solutions. Note that, in SPEA, 𝐴𝑡

the concept of best non-dominated solutions is slightly modified to promote diversity. The number of 

solutions in the population  and the archive  dominated by a solution i assigns a strength value as 𝑃𝑡 𝐴𝑡

follows:
𝑆(𝑖) = |{𝑗|𝑗 ∈ 𝑃𝑡 ∪ 𝐴𝑡 ∧ 𝑖 ≻ 𝑗}| (31)

where  represents that solution j is dominated by solution i and  denotes the cardinality of a set. 𝑖 ≻ 𝑗 |.|

Based on this strength value, the raw fitness of each solution  can be determined. A form of 𝑅(𝑖)

proximity search, Nearest Neighbor Search, is also used to measure the density information . The 𝐷(𝑖)

quality of an individual solution  can then be set using the following equation:𝑄(𝑖)

𝑄(𝑖) =
1

𝑅(𝑖) + 𝐷(𝑖) (32)
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The value of  used to update the pheromone in the PSACO algorithm follows the same 𝑄(𝑖)

procedure as that defined in Eq. (28) and Eq. (29) for AS. Consequently, a new archive is produced by 

copying all the non-dominated solutions in the population   and the archive . If the number of non-𝑃𝑡 𝐴𝑡

dominated solutions exceeds the fixed size of the archive, some solutions will be removed from the 

archive. The heuristic information is calculated as follows:

𝜂𝑖𝑗 = 𝜃
1

𝜌∑
𝑘 ∈ 𝐾𝑤𝑘𝑓𝑘

(33)

where k denotes the number of objective functions and  is the weighting coefficient of each one. 𝑤𝑘

Moreover, the value of objective function k is denoted by .  and  are fixed parameters.𝑓𝑘 𝜃 𝜌

5. Computational results

To demonstrate the validity and effectiveness of the proposed mathematical model and the solution 

approaches, in this section, we implement them on numerical examples inspired by a real case. 

Sensitivity analyses are then performed to examine the results derived in prior sections and to survey 

the effects of the main parameters on the problem’s behavior. To obtain optimum/near-optimum 

solutions, all experiments were coded using the CPLEX script accessed via IBM ILOG CPLEX 

Optimization Studio 12.8 and C# programming language on a machine with a 3-core 2.13 GHz 

processor and 4.0 GB of RAM.

5.1.  Case study

To verify the effectiveness and applicability of the proposed problem, we provide real numerical 

evidence based on the collected data from a real employee transportation service in Paris and run the 

model on this case.

Input data description

As illustrated in Fig. 5, we consider a service network with 18 bus stops. The blue circle denotes 

the location of the office (arrival and departure node). The organization can rent an unlimited number 

of buses; the travel cost, the amount of generated greenhouse gas emissions, and the capacity of each 

of them are known. The stations must be visited by the company's buses include Rue des Pyrénées ( ), 𝑆1

Porte Maillot ( ), Pont Cardinet ( ), Javel ( ), Vaugirard ( ), Labrouste ( ), Alesia ( ), 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7

Observatoire ( ), Université Paris VI ( ), Daumesnil ( ), Bercy Seine ( ), Porte de Charenton (𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

), Avron ( ), Rue Vieille du Temple ( ), La Fayette ( ), Stalingrad ( ), Terminus Ligne ( ), 𝑆13 𝑆14 𝑆15 𝑆16 𝑆17

and George V ( ). In this case, we examine 82 applicants where their approximate positions are shown 𝑆18

in Fig. 5 with gold circles.
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Bus station

Staff location

Office

Fig. 5. The employee transportation service network of the case study.

The symmetrical distance between each pair of bus stations is detailed in Table 2 (0 is the index of 

office location). Travel times between the bus stations are determined by an average speed of around 

22.81 km/h at which most public transport buses run on urban networks during rush hours. We have 

used an online tool, Google Maps for calculation distances between nodes. It should be noted that road 

congestion and travel time change during the day, thus the time traveled by private cars between each 

pair of nodes has been calculated using the same tool at 7:00 to 8:00 AM. The number of available 

private cars is assumed to be equal to three-quarters of the number of applicants. Besides, the capacity 

of private cars is 4 and the passenger seating capacity of buses ranges from 18 to 25 people. The fixed 

and variable cost of travel per unit of distance by each bus are assumed to be $200 and $0.65, 

respectively. We also estimated the emissions generated by different types of vehicles using the 

standard rules proposed by Mirzapour Al-e-hashem et al. (2013). 

Table 2

Distance between each pair of nodes (kilometer).
Index 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16 𝑆17 𝑆18

0 6.2 9.1 8.2 6.8 5.5 4.3 2.9 1.7 1.9 2.4 2.5 5.3 4.4 4.2 5.7 7.1 5.8 6.8
𝑆1 0.0 10.3 8.4 18 16.2 14.1 7.4 6.2 4.3 3.4 7.2 3.7 1.6 4.1 5.2 4.8 6.4 8.6
𝑆2 000 3.2 8.7 9.8 10.7 12.2 7.5 7.9 9.4 9.5 17.6 14 8.2 6.6 9.4 4.6 2.7
𝑆3 0.0 6.8 7.0 7.3 7.5 6.3 6.6 8.6 8.7 18.4 14.9 6.5 4.4 4.4 2.4 3.2
𝑆4 0.0 2.1 3.2 5.6 5.0 7.4 9.7 9.3 11.9 16.5 8.4 8.2 8.9 6.2 3.8
𝑆5 0.0 1.1 3.5 2.9 4.8 6.8 6.9 10.3 8.8 6.0 6.7 7.8 6.0 4.1
𝑆6 0.0 3.1 3.1 5.1 7.7 7.1 9.6 13.3 7.0 7.0 8.1 6.4 4.8
𝑆7 0.0 2.3 4.9 6.2 5.5 7.3 11.0 6.3 7.0 8.1 7.6 6.7
𝑆8 0.0 2.6 4.6 4.7 7.5 6.7 4.0 4.7 5.8 4.8 5.2



21

Index 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16 𝑆17 𝑆18

𝑆9 0.0 1.9 2.4 5.2 4.0 2.3 4.2 5.2 4.3 5.7
𝑆10 0.0 2.3 2.3 2.1 2.2 4.2 5.0 5.3 7.6
𝑆11 0.0 3.2 3.6 3.4 5.9 6.2 6.0 7.4
𝑆12 0.0 2.7 5.5 7.5 7.3 8.7 10.1
𝑆13 0.0 3.7 4.9 4.5 6.1 9.4
𝑆14 0.0 2.6 3.5 3.4 6.3
𝑆15 0.0 5.5 3.2 1.4

𝑆16 0.0 4.1 6.4

𝑆17 0.0 2.9

Table 3 lists the applicants covered by each bus station and their distance. We assume that 

employees whose residences locate more than 2 km away from the nearest bus stop would not use the 

organization's transportation service ( ). The average speed of humans walking on crosswalks is 𝑑𝑙 = 2

assumed to be about 5 km/h. Therefore, the average time required to walk one kilometer is set to 0.2 

hours. We also set dissatisfaction coefficient caused by delays, use of private cars, and buses between 

2 and 9, and walking satisfaction/dissatisfaction between -10 and 10. The starting time by which 

employees must be present at the office is 8:00 AM. The company offers an incentive of about $10 to 

participate in the carpooling scheme and riding each passenger. 

Table 3

Distance between applicants’ locations and bus stations (kilometer).
Index Covered applicants ( )𝑁𝑗 Distance

𝑆1 {𝑎41,𝑎42,𝑎43,𝑎44,𝑎45,𝑎46,𝑎47} {1.919, 0.808, 1.746, 1.858, 1.573, 1.650, 1.903}
𝑆2 {𝑎74,𝑎75,𝑎76,𝑎78} {1.510, 1.069, 1.931, 1.784}
𝑆3 {𝑎68,𝑎69,𝑎70,𝑎72,𝑎73} {1.755, 0.914, 1.403, 1.647, 1.912}
𝑆4 {𝑎2,𝑎4,𝑎5,𝑎6} {1.741, 1.010, 0.918, 1.640}
𝑆5 {𝑎6,𝑎7,𝑎11,𝑎13} {1.908, 1.877, 1.286, 1.979}
𝑆6 {𝑎10,𝑎11,𝑎13,𝑎17} {1.205, 1.900, 0.754, 1.989}
𝑆7 {𝑎14,𝑎15,𝑎16,𝑎17,𝑎18} {1.826, 1.579, 0.915, 1.163, 1.344}
𝑆8 {𝑎20,𝑎21} {1.308, 1.640}
𝑆9 {𝑎22,𝑎23} {1.029, 1.917}
𝑆10 {𝑎26,𝑎27,𝑎28} {0.936, 1.180, 1.490}
𝑆11 {𝑎28,𝑎29,𝑎30} {0.988, 1.451, 1.994}
𝑆12 {𝑎29,𝑎30,𝑎31,𝑎32,𝑎33,𝑎34,𝑎35} {1.805, 0.795, 1.175, 1.837, 1.009, 1.953, 1.988}
𝑆13 {𝑎36,𝑎37,𝑎38,𝑎40} {1.095, 1.891, 1.969, 1.764}
𝑆14 {𝑎22,𝑎23,𝑎24,𝑎52} {1.929, 1.702, 1.814, 1.553}
𝑆15 {𝑎53,𝑎54,𝑎61,𝑎62} {0.978, 1.314, 1.702, 1.066}
𝑆16 {𝑎54,𝑎55,𝑎56,𝑎57,𝑎59} {1.698, 1.811, 0.947, 1.990, 1.906}
𝑆17 {𝑎63,𝑎64,𝑎65,𝑎66} {1.399, 1.089, 1.460, 1.811}
𝑆18 {𝑎76,𝑎77} {1.177, 0.442}
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Result analysis of the case

First, we transform the initial multi-objective optimization problem into an equivalent single-

objective form and provides ideal compromise solutions. The detailed formulation, including a crisp 

goal programming (CGP) model as suggested by Abd El-Wahed and Lee (2006), can be summarized 

as below:

max ∑
ℎ

𝜏ℎ𝛼ℎ (33)

s.t.

𝑍ℎ(𝑥𝑖) ≤ 𝑍𝑁𝐼𝑆
ℎ ― 𝛼ℎ(𝑍𝑁𝐼𝑆

ℎ ― 𝑍𝑃𝐼𝑆
ℎ ),          ℎ, 𝑖 ∈ {1, 2, 3} (34)

𝛼ℎ ∈ [0, 1],          ℎ ∈ {1, 2, 3} (35)

𝑥 ∈ 𝐹(𝑥) (36)

where  is the importance factor of the hth objective function ( ) confirmed by the decision-𝜏ℎ ∑
ℎ𝜏ℎ = 1

maker.  designates the feasible area associated with the constraints of the original model. This 𝐹(𝑥)

formulation aims to achieve the highest level of satisfaction, the -value, in such a way that the 𝛼

constraints of the problem are satisfied. To determine the negative ideal solution (NIS) and the positive 

ideal solution (PIS) for each objective function, we first solve the initial mathematical model, the 

objective functions (1)-(3), separately to attain PISs, i.e., ( , ), ( , ) and ( , ), 𝑍𝑃𝐼𝑆
1 𝑥𝑃𝐼𝑆

1 𝑍𝑃𝐼𝑆
2 𝑥𝑃𝐼𝑆

2 𝑍𝑃𝐼𝑆
3 𝑥𝑃𝐼𝑆

3

following which the negative ideal solution for the objective functions is obtained as follows:

𝑍𝑁𝐼𝑆
1 = 𝑍1(𝑥𝑃𝐼𝑆

2 ) 𝑜𝑟 𝑍1(𝑥𝑃𝐼𝑆
3 ) (37)

𝑍𝑁𝐼𝑆
2 = 𝑍2(𝑥𝑃𝐼𝑆

1 ) 𝑜𝑟 𝑍2(𝑥𝑃𝐼𝑆
3 ) (38)

𝑍𝑁𝐼𝑆
3 = 𝑍3(𝑥𝑃𝐼𝑆

1 ) 𝑜𝑟 𝑍3(𝑥𝑃𝐼𝑆
2 ) (39)

Table 4 summarizes the results reported by the exact solution method on the case study. Columns 

1-4 report the computational results obtained by CPLEX, including service routes, visited bus stops in 

the service route, arrival time to each bus stop, and picked up passengers from there, respectively. We 

use the same importance factors to choose the most preferable parameter values using the CGP 

approach. In this case, we had an execution time of about 285 minutes. It needs to be pointed out that 

the quality of the obtained solution depends on the importance factors and designated parameters, 

despite some vacillations, it is relatively acceptable.

Table 4

Statistics for the optimized service route schedule of the CBs.
Services Bus stops Arrival time Boarded applicants

First bus 𝑆2 6:53:33 AM {𝑎75,𝑎76}
𝑆3 7:04:16 AM {𝑎68,𝑎69,𝑎70,𝑎72}
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Services Bus stops Arrival time Boarded applicants

𝑆16 7:19:23 AM {𝑎54,𝑎55,𝑎56,𝑎57,𝑎59}
𝑆15 7:37:07 AM {𝑎53,𝑎54,𝑎61,𝑎62}
𝑆14 7:46:34 AM {𝑎22,𝑎23,𝑎24,𝑎52}
𝑆9 7:54:01 AM {𝑎22,𝑎23}

Second bus 𝑆1 7:19:06 AM {𝑎42,𝑎43,𝑎44,𝑎45,𝑎46}
𝑆13 7:24:22 AM {𝑎36,𝑎37,𝑎38,𝑎40}
𝑆12 7:33:09 AM {𝑎29,𝑎30,𝑎31,𝑎32,𝑎33,𝑎34,𝑎35}
𝑆11 7:44:47 AM {𝑎28,𝑎29,𝑎30}
𝑆10 7:52:19 AM {𝑎26,𝑎27,𝑎28}

Third bus 𝑆17 7:02:34 AM {𝑎63,𝑎64,𝑎65}
𝑆18 7:12:01 AM {𝑎76,𝑎77}
𝑆4 7:15:28 AM {𝑎2,𝑎4,𝑎5,𝑎6}
𝑆5 7:32:53 AM {𝑎6,𝑎7,𝑎11,𝑎13}
𝑆6 7:36:17 AM {𝑎10,𝑎11,𝑎13,𝑎17}
𝑆7 7:46:04 AM {𝑎14,𝑎15,𝑎16,𝑎17,𝑎18}
𝑆8 7:54:19 AM {𝑎20,𝑎21}

Fig. 6 illustrates a partial network of the case resulted by CPLEX. In this case, to catch up the best 

transportation service plan integrating the private cars and buses with minimum cost, dissatisfaction 

and emission, the company makes a schedule that employed three buses served 56 passengers, and the 

rest, 26 applicants, use car sharing service provided by 7 employees. Carpooling groups include 

, , , , , , and {𝑎1,𝑎3,𝑎8,𝑎9} {𝑎81,𝑎82,𝑎12,𝑎19} {𝑎74,𝑎78,𝑎79,𝑎80} {𝑎66,𝑎67,𝑎71,𝑎73} {𝑎58,𝑎60} {𝑎47,𝑎48,𝑎49,𝑎51}

 . The total travel time by each of the buses was 67, 41 and 58 minutes, respectively. {𝑎25,𝑎39,𝑎41,𝑎50}

Also, the total incentive paid to private drivers that had participated in carpooling was equal to $190.
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Fig. 6. Optimized service network for incorporating carpooling in the case.

To verify the utility and feasibility of the proposed model, we compare the optimal results of the 

case study with two manual solutions to the problem, including just the use of the company's buses and 

just the use of the carpooling system for staff transportation. The optimal results of the first to third 

objective functions of the case study obtained by CPLEX are $834.51, $471.03, and $534.74, 

respectively. In a rough assessment, when the company uses only the bus shuttle service, the company 

needs to rent two more buses and its cost increases by 26.9 percent to $1,059.02. The use of buses, 

while reducing emissions to a minimum of 361 grams, increases the employees' dissatisfaction due to 

commuting to 546.84, which is the result of increased dissatisfaction that comes along with walking 

and the travel time by buses. 

In the second analysis, without using any bus, 23 drivers received a total of $590 as an incentive to 

share their cars. Compared to the proposed solution, using the carpooling scheme reduces the second 

objective function, employee satisfaction, by about 50% to 246 and significantly increases emissions to 

1,718 grams. Although the use of the bus shuttle service by all employees can minimize emissions, 

some of them in practice tend to use their own car instead of the company's buses. By paying incentives 

for sharing cars, the proposed solution not only saves costs and increases employee satisfaction, but 

also significantly reduces emissions compared to mere carpool or private car use.

5.2.  Tuning of the PSACO parameters

Parameter setting is an important feature of the ACO algorithm and can control solution quality 

(Ghannadpour et al., 2014). Several studies have been conducted on parameter setting methodologies 

in different problem domains (Hutter et al., 2007; Ries and Beullens, 2015; López-Ibánez et al., 2011, 

2016). In evolutionary computation, two common strategies are usually used to determine parameter 
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values: parameter control and parameter tuning. In parameter control, following the scheme proposed 

in Eiben and Smit (2011), the parameter values are specified while the algorithm is running. If this 

strategy is used, when the algorithm is started, the parameters are given an initial value and are modified 

during the execution of a given algorithm. With parameter tuning, the value of parameters is specified 

before executing a heuristic/meta-heuristic algorithm. If parameter tuning is used, the value of 

parameters is established in the initialization stage and remain unchanged during execution, for example 

Taguchi method (Roy, 1990; Gümüş et al., 2016; Sazvar et al., 2016), Response Surface Methodology 

(Montgomery, 2003; Myers et al., 2009), and IRACE (Dell'Amico et al., 2016; Samà et al., 2016).

This study determines the parameter settings for the PSACO algorithm by tuning them with the 

IRACE (López-Ibáñez et al., 2016) that automatically finds the most appropriate configurations through 

an iterated racing procedure. To select the best combination of the parameters, we applied the default 

IRACE Package settings on a dedicated set of examples, different from the one tested in subsection 5.1. 

We also set the stopping criterion to 3600 seconds of the processor with a maximum of 30,000 

executions during the tuning. Table 5 reports the settings tested for crucial parameters, including , , 𝛼 𝛽

, and the number of ants. In the study, the proposed PSACO is executed to solve the single-objective 𝜌

form of the problem with the implementation of equivalent CGP formulation. To choose the most 

preferable parameter values using the CGP approach, we use the same importance factors. According 

to the results listed in Table 5, the best , , , and  obtained in our experiments were found to 𝛼 𝛽 𝜌 𝑛𝐴𝑛𝑡𝑠

be equal to 1, 5, 0.05, and 150, respectively.

Table 5 

Parameters used for computational tests.
Parameters Meaning Test interval Selected value

𝛼 The pheromone trail importance 1, 3, 5, 7, 9 1

𝛽 The heuristic information importance 1, 3, 5, 7, 9 5

𝜌 The pheromone evaporation rate 𝑢𝑛𝑖[0.01,0.99] 0.05

𝑛𝐴𝑛𝑡𝑠 The number of ants 100, 125, 150, 175, 200 150

5.3.  Performance of the PSACO algorithm 

In order to study the efficiency of the proposed PSACO algorithm, we generate 12 test problems 

with different dimensions. For this purpose, the parameters were randomly generated using a continuous 

uniform distribution. To carry out different illustrative examples, we will use the nominal data sources 

, , , , , , ,𝑓𝑣~𝑢𝑛𝑖[1000,3000] 𝑐𝑖𝑗𝑣~𝑢𝑛𝑖[0.5,0.8] 𝑑𝑖𝑗~𝑢𝑛𝑖[0,12] 𝑡𝐵
𝑖𝑗~

𝑑𝑖𝑗

𝑢𝑛𝑖[15,30] 𝑡𝐶
𝑖𝑗~

𝑑𝑖𝑗

𝑢𝑛𝑖[20,50] 𝛼 𝜌𝐶 𝜌𝐵

, , and  as fixed costs of using buses, variable costs of buses, ~𝑢𝑛𝑖[2,12] 𝛽~𝑢𝑛𝑖[2,12] 𝛿𝑗~𝑢𝑛𝑖[ ― 12,12]

the distance between each pair of nodes, travel time by bus, travel time by private car, dissatisfaction 

factors, incentive paid for carpooling, and walking satisfaction/dissatisfaction, respectively, where  𝒶

and  in  specifies the lower and upper bounds; the figures in the bracket indicate the range 𝒷 𝑢𝑛𝑖[𝒶,𝒷]

over which the probability is uniform within that range. In all the examples, the capacity of private cars 
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is assumed follows the uniform distribution between 3 to 5, and the passenger seating capacity of buses 

ranges from 20 to 40 people. The other parameters are generated using the data specified in subsection 

5.1, A case study.

Table 6 summarizes the reported results for some non-dominated solutions in the Pareto set. As 

such, we solve all numerical examples first using CPLEX and then using PSACO. Columns 2-4 indicate 

the size of the test instances, respectively characterized by the number of bus stops, applicants, and 

available private cars. Columns 5-8 report the results obtained using CPLEX ( ) including economic 𝑍𝐸
𝑖

( ), satisfaction ( ) and environmental ( ) objectives and the number of iterations used, respectively. 𝑍1 𝑍2 𝑍3

Columns 9-11 show the computational results obtained using PSACO ( ). In this study, ten 𝑍𝐻
𝑖

independent runs of the algorithm were performed to solve the problem. In Table 6, the best-known 

results obtained using PSACO over 10 runs have been listed. The last three columns specify the gap 

between them determined by  and can measure the relative efficiency of the proposed ∆𝑖 =
𝑍𝐻

𝑖 ― 𝑍𝐸
𝑖

‖𝑍𝐸
𝑖 ‖

algorithm.

Table 6

Solution approach performance on different examples.

Dimension CPLEX PSACO Gap
Instance

𝐾 𝐿 𝐶 𝑍1 𝑍2 𝑍3 𝑍1 𝑍2 𝑍3 ∆1  ∆2 ∆3

𝐼1 7 30 22  268.82  139.56  197.46 283.87 143.60 204.37 0.028 0.015 0.018
𝐼2 8 38 28  342.76  197.46  254.85 351.33 204.17 259.95 0.013 0.017 0.010
𝐼3 10 47 35  436.51  249.58  291.20 448.30 253.58 299.65 0.014 0.008 0.015
𝐼4 11 56 42  519.47  282.54  344.49 577.13 304.86 364.47 0.056 0.040 0.029
𝐼5 17 65 49  662.65  368.44  410.01 704.40 394.23 447.73 0.032 0.035 0.046
𝐼6 15 73 55  752.78  389.16  470.05 862.68 422.24 548.08 0.073 0.043 0.083
𝐼7 18 82 62  834.51  471.03  534.74 968.03 527.08 619.23 0.080 0.060 0.079
𝐼8 20 90 68 1,036.52*  502.83*  569.80* 1204.43 568.19 651.85 0.081 0.065 0.072
𝐼9 21 100 75 1,082.73*  593.69*  589.11* 1219.16 650.69 641.54 0.063 0.048 0.045
𝐼10 23 112 84 N/A N/A N/A 1393.53 698.72 693.68 - - -
𝐼11 26 125 91 N/A N/A N/A 1727.42 793.95 802.56 - - -
𝐼12 30 140 99 N/A N/A N/A 2155.82 908.28 934.82 - - -
Average 0.049 0.037 0.044
K: the number of bus stops, L: the number of applicants, C: available cars
* Lower bound

Table 6 shows that the PSACO algorithm consistently achieves reliable solutions, with an average 

gap of 4.3%. Note that CPLEX is unable to solve larger cases. Hence, to estimate the gaps for large-

scale instances, we use the most trustworthy bounds of CPLEX attained after five hours reported in the 

Engine tab of the software. Therefore, the results obtained by the software for instances  and  are 𝐼8 𝐼9

probably not optimal. In the last three test problems - , CPLEX was terminated as “out of memory” 𝐼10 𝐼12

and did not reach a feasible solution by the reported time. 
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To give an idea of the execution time required by CPLEX and the best-known execution time of 

the PSACO algorithm, Fig. 7 shows the computation time (in seconds) for all test problems.  Since 

CPLEX was not able to solve the last example, the execution time is not shown in the figure. In instances 

 and , where we stopped the software after 5 hours, the time is shown as diagonal stripes. We note 𝐼8 𝐼9

here that the execution time of the PSACO algorithm for medium and large-sized cases, is shorter than 

the exact method. Thus, our meta-heuristic algorithm has a more optimized execution time and virtually 

the only solution for large-sized problems compared with CPLEX, thereby validating its utility and 

feasibility in solving such problems.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12
CPLEX 483 1,286 2,365 4,344 5,988 12,850 17,064 18,000 18,000
PSACO 521 1,499 2,149 2,487 3,101 4,937 5,984 8,690 15,204 25,430 42,006 69,374
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Fig. 7. Computation times for different examples.

5.4.  Sensitivity analysis

Fig. 8 depicts the set of non-dominated solutions determined by running the PSACO algorithm on 

instance . It should be underlined that in further iterations of the algorithm, the number of non-𝐼9

dominated solutions increased. However, in all cases, no significant improvement in the number and 

quality of non-dominated solutions appeared after 100 iterations. The last case has a larger solution 

space, which allowed the algorithm to produce several new feasible solutions, resulting in constant 

updating of the non-dominant set.
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Fig. 8. Pareto fronts returned by PSACO algorithm for instance .𝐼9

Because of the probability nature of carpooling originated from an unknown rate of actual 

participation, Fig. 9 depicts a sensitivity analysis on the participation rate (i.e. available cars). 

Therefore, we solve the instance with 29 nodes for different participation rates to find the optimal size 𝐼9

of the fleet, including both the buses used in the transportation service and the private cars involved in 

the carpooling program, over which this problem stays on a profitable role. Fig. 9 confirms that 

increased individual participation not only considerably affects the organization's costs, staff 

satisfaction, and CO2 emissions, but is also a convenient way for individual drivers who share their car 

to make money.
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(c) Sensitivity of the third objective function

Fig. 9. The effect of participation rate on the value of the objective functions.

In a nutshell, the numerical experiments show that the problem introduced can be a successful 

platform use by organizations to establish an integrated configuration of their transportation service and 

a carpooling program using employees’ private cars. Doing so provides a convenient transportation 

service which motivates employees to take action in response to increasing environmental concerns by 

eliminating single-occupant vehicle trips for commuting.

6. Conclusions

Although many researchers have explored ride-sharing from different perspectives, there was 

previously no effort to study the effects of incorporating carpooling behavior into the CB service design. 

To do so, this study carried out integrated planning and scheduling of employees’ cars and company 

buses, which aimed to (1) identify and cluster travel applicants who differ in terms of whether or not 

they chose to carpool, (2) determining the number of buses that must be rented for the company’s 

transportation service, (3) increasing employee satisfaction, and (4) highlighting the main determinants 

of real practice of carpooling. A meta-heuristic algorithm based on PSACO was also adapted to 

efficiently solve the multi-objective optimization model. Using computational experiments, we have 

demonstrated what type of ride-sharing systems offer the greatest benefits. The experimental results 

indicate that carpooling has several prominent positive impacts on the company’s total loss, employee 

satisfaction, and total vehicle GHG emissions. These influences on the transportation problem are 

directly dependent on participation in the program.

The findings of this study have to be seen in light of some limitations. For example, the 

implementation costs of this computer program have been ignored for the cases in which the company 

offers the shuttle service. In the cases where companies do not provide shuttle service and have not any 

commuter benefits program in place, the operational costs of developing such complex computer 

applications must be considered. The proposed problem provides intriguing and promising options for 

extending existing ride-sharing systems. Future research can pursue the following directions: (i) 

studying the potential relationship between vehicle capacity and cost allocation for each passenger, 

which we believe provides insight into the inherent nature of ride-sharing games, (ii) investigating the 

effects of day-to-day stochastic traffic condition data and exploring the potential benefits of expanding 

the problem to a robustness-oriented optimization model, and (iii) a passenger’s potential desire to be 

served or not by a particular vehicle.
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