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ABSTRACT Emotion recognition plays an important role in human computer interaction systems
as it helps the computer in understanding human behavior and their decision making process. Using
Electroencephalographic (EEG) signals in emotion recognition offers a direct assessment on the inner state
of human mind. This study aims to build a subject dependent emotion recognition system that differentiate
between high and low levels of valance and arousal, using multidimensional EEG signals. Our system
offers a transfer learning- minimum distance to Riemannian mean (TL-MDRM) framework. In this work,
we perform two pre-processing stages. In the first stage, we analyze the EEG signals to investigate their non-
Gaussianity and determine the most appropriate signal distribution. Using several statistical and goodness
of fit tests, T-distribution was found to be the most appropriate distribution. Covariance matrix estimations
plays a crucial step in manifold learning technique, based on the most suitable signal distribution the
covariance matrix estimation technique is chosen. In the second stage, we perform transfer learning to deal
with cross-session variability by generating a unique reference point for each participant and performing
affine transformation for the covariance matrices on the symmetric positive definite (SPD) manifold around
this point. The results show that, TL process improved the performance even when assuming Gaussian
distribution, while assuming T-distribution with TL improved the performance further.

INDEX TERMS Covariance matrix estimation, Emotion recognition, Multidimensional EEG Signals,
Riemannian manifold, Signal Analysis, SPD Matrices, Transfer Learning.

I. INTRODUCTION

IN the last few decades there has been a considerably
growing attention towards human computer interaction

(HCI) systems, but most of those systems are still not effi-
cient in understanding human emotions. The ability to clas-
sify human emotional responses to different stimuli opens the
door for new innovations in HCI.

The most commonly used methods for extracting human
emotional states are facial expressions [1] [2], human voice
[3] [4], Electroencephalography (EEG) signals [5] [6] [7], or
by combining multiple modalities for more accurate systems
[8] [9] [10].

Recording EEG signals requires the placement of multiple
electrodes at certain locations on the scalp. Due to the cur-

rent advance in technology, EEG signals capturing devices
became wearable, portable, easy to use, and even wireless
this makes the use of EEG signals very attractive as it is
noninvasive, fast and inexpensive. There exist wide area of
applications for the use of EEG-based emotion recognition
systems such as, e-learning [11], e-health care [12], enter-
tainment and gaming [13].

EEG signals based emotion recognition systems extracts
features from time domain, frequency domain, or joint time
and frequency domains. In time domain techniques, statisti-
cal features such as signal power, energy, entropy,...,etc. have
been excessively used [14]. In frequency domain, features are
extracted from different frequency bands and added together
to form the feature vectors used for classification [5] [15].
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New techniques [16] combining both time and frequency
domain features were introduced. Other EEG based emotion
recognition systems use raw EEG signals for extracting use-
ful spatial and temporal information’s from different chan-
nels and different time samples [17].

The use of Riemannian geometry in brain computer in-
terface (BCI) and in studding brain disorders is attracting
attention due to its simplicity, robustness, and accuracy.
In [18] Fruehwirt et al. used Riemannian tangent space
mapping in studying Alzheimer’s disease. Yuan et al. in
[19] performed Epileptic seizure detection in the space of
the symmetric positive definite (SPD) matrices using Log-
Euclidean Gaussian Kernel-Based sparse. In [20] Congedo
et al. offered a complete review on the use of Riemannian
geometry for EEG-based brain computer interface. In our
previous work [6] on emotion recognition using EEG signals
we used Minimum Distance to Riemannian Mean (MDRM)
classifier, for classifying four classes of emotions. Different
frequency-bands, channel combinations, and geometric mean
generation techniques were examined.

Data in real-world scenarios tends to be corrupted with
outliers and/or exhibit heavy tails. In such cases using sample
covariance matrices (assuming Gaussian distribution) offers
biased results, as it tends to ignore outliers and heavy tail
of the data. In [21] J. Charles et al. tested EEG signal
distribution and found that Laplace distribution proved to be
more robust estimator than Gaussian Distribution, and in [22]
they also used Laplace distribution for better statistical reduc-
tion of multi-channel EEG data. N. Nazmia et al. [23] used
goodness to fit tests to find the most appropriate EEG signal
distribution, they found that the Generalized Extreme Value
distribution is the most appropriate distribution for describing
the EEG and the Electromyography (EMG) signals.

EEG data recorded on different sessions and/or from dif-
ferent participants tends to have statistical variability. This
forms a challenge that faces brain computer interface systems
that tries to reuse data from previous sessions/subjects. Trans-
fer learning (TL) is an approach used to overcome this vari-
ability. Their are several studies that perform transfer learn-
ing on Riemannian geometry framework. In [24] Zanini et al.
performed cross-session and cross-subject transfer learning,
their TL approach is based on modifying MDRM classi-
fier they called their new framework Riemannian alignment
(RA)-MDRM. Zanini et al. dealt with cross-session/subject
variability as a geometric transformation (shift) of covariance
matrices on the Riemannian manifold with respect to a refer-
ence state, and when the brain is performing a specific task,
covariance matrices are shifted in the same direction over the
SPD manifold. RA-MDRM technique showed improvement
over normal MDRM classifier over both motor imagery
and event-related potentials datasets. He et al. [25] aligned
the EEG trials in the Euclidean space which makes them
more similar and enhances the learning performance for new
participants, feature extraction and classification processes
are performed on the aligned data. Working in the Euclidean
space gave them the advantage of faster computation and also

the ability of using various classifiers. In [26] P. Rodrigues et
al. matched the statistical distribution of two datasets using
three steps geometrical transformations (translation, scaling,
and rotation) in order to make the shape of the statistical
distribution of the data as similar as possible. In [27] Lin et
al. proposes a machine-learning strategy called robust princi-
pal component analysis (RPCA)-embedded transfer learning
(TL) frame work aims to generate a personalized cross-day
emotion-classification model with less labeled data, while
avoiding intra and inter-individual difference. They used the
Riemannian distance to measure the between-session simi-
larity and thereby pair most similar auxiliary source sessions
to a target session for TL. Yair et al. [28] proposed an
unsupervised approach for domain adaptation using parallel
transportation on the cone manifold of SPD matrices. In
[29] Wang et al. proposed a domain adaptation SPD matrix
network (daSPDnet) to solve subject independent emotion
recognition problem. They combined prototype learning with
the Riemannian metric and design a new prototype loss,
which aims to calculate the geometric mean of the SPD
matrix set in the low-dimensional representation layer. Their
daSPDnet can extract an intrinsic emotional representation
shared between different subject.

The objective of our work is to offer a TL-MDRM frame-
work to classify human emotions and study the effect of using
the most appropriate covariance matrix estimation technique
(based on determining the closest EEG signal distribution) on
the system performance.A two step process was performed.
In the first step, we analyse the EEG signals using multiple
statistical tests to prove that the signals are heavy tailed,
then using two goodness of fit tests we compared between
Gaussian distribution, T-distribution and Laplace distribution
to find the most appropriate signal distribution. In the second
step, we perform cross-session transfer learning, in which we
use the pre-trial baseline signals to generate a unique refer-
ence point for each participant. Then the points on the SPD
manifold are shifted towards this reference point to overcome
variability’s in different observations. Two experiments were
carried out, using two different channel configurations on five
different frequency bands.

The rest of this paper is organized as follows; In section
(II) we introduce the basic concepts of Riemannian geometry
and transfer learning. In section (III) EEG signal analysis is
performed using several statistical tests and two goodness
of fit tests. In section (IV) our complete methodology is
introduced. Results and discussions reported in section (V).
In section (VI) we conclude and draw some perspectives of
the work.

II. RIEMANNIAN GEOMETRY
A. NOTATIONS
We denote by M(N) =

{
M ∈ RN×N

}
the space of

N × N square matrices, S(N) =
{
S ∈ M(N),ST = S

}
the space in M(N) of symmetric N × N square matrices.
P (N) is an open subset of S(N) defined as P(N) ={
P ∈ S(N),uTPu > 0,∀u ∈ RN

}
. The space of P (N) is
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the space of symmetric positive definite matrices (SPD), de-
noted by Sn

++. The SPD matrices are the covariance matrices
that form a smooth Riemanninan manifold that have a non-
positive curvature in the N(N +1)/2 dimensional Euclidean
space. Covariance matrix estimation forms a crucial step in
manifold learning techniques and is explained in details in
section (IV-D).

B. RIEMANNIAN DISTANCE
A non-singular square covariance matrix A ∈ RN×N be-
longs to the set of symmetric positive-definite (SPD) ma-
trices. Those SPD matrices form a connected Riemannian
manifold Sym+

N [30]. As the Euclidean distance does not
consider the inner curvature of the manifold, it can’t be used
to measure the distance between two points A,B ∈ P (N).
The distance here can be defined as the length of unique
shortest path connecting the two points. This path is called
the geodesic from A to B [31] [32].

There are several metrics used to measure the geodesic
distances, each of them is more or less suitable based on
the application. For any two SPD matrices A and B, the
Affine Invariant Riemannian Metric (AIRM) between them
is defined as [33] [30]:

d(A,B) = ∥log
(
A

−1
2 BA

−1
2

)
∥F (1)

where ∥ · ∥F is the Frobenius norm of a matrix. One of the
important proprieties of this Riemannian metric in Eq. 1 is
that it’s invariance to affine transformations by any invertible
matrix D ∈ RN×N ,

d(A,B) = d(DADT ,DBDT ) (2)

This property of Riemannian distance is called the con-
gruence invariance, which means that, the distance between
any two SPD matrices is invariant with respect to any linear
invertible transform in the data space [24] [26]. This property
will be used in the transfer learning process (Section IV-E).

C. MEAN OF SPD MATRICES
The geometric mean is a suitable descriptor for the center of
mass of the points on the SPD manifold. The Riemannian
center of mass of m elements A1, . . . ,Am, called Karcher
mean [34] [32] is defined as:

G(A1, . . . ,Am) = argmin
A∈P(n)

m∑
i=1

d2 (X,Ai) (3)

with d(·, ·) is defined in Eq. (1). The notation argmin f(X)
means the point X0 at which the function f reaches its
minimum value. The minimum in Eq. (3) is obtained at a
unique point G which represents the geometric mean and that
forms the solution for the matrix equation:

m∑
i=1

log
(
Ai

−1
2 XAi

−1
2

)
= 0 (4)

Eq. (4) has a closed-form solution only for m = 2, for
three or more matrices, there is no closed form solution and
iterative algorithms should be used [26] [30].

D. MINIMUM DISTANCE TO RIEMANNIAN MEAN
CLASSIFIER (MDRM)
In Euclidean spaces large number of standard classifiers
could be used, but they are not suitable in our case as the
space of Sn

++ is non linear. A very simple and efficient
classifier called Minimum Distance to Riemannian Mean
(MDRM), which is based on nearest neighbor classifier could
be used.

Given l the set of all labeled classes li ∈ (l1, l2, . . . , lk),
where k is the number of classes. During the training stage
the mean for each class is generated M̂(li). In the test stage,
the geometric mean of the new observation is generated
M. The distance between M and each class mean M̂(li)
is computed. The new observation belongs to the class l
according to the classification rule:

l̂ = argmin
l∈l1,l2,...,lk

{
d
(
M, M̂(l)

)}
(5)

where M̂(l) is the Riemannian mean of class lk, M is the
covariance matrix representing the mean of test observation,
and l̂ is the predicted class label of M.

MDRM classifier works in the same way regardless of the
data dimension (number of electrodes) and with any number
of classes.

E. TRANSFER LEARNING
Zanini et al. [24] offered a modification over MDRM classi-
fier, they called their new framework Riemannian alignment
RA-MDRM. They dealt with cross session/subject variability
as a geometric transformation (shift) of covariance matrices
on the Riemannian manifold with respect to a reference state.
When the brain is performing a specific task, covariance
matrices are shifted in the same direction over the SPD man-
ifold. Their method showed great improvement over normal
MDRM in solving classification problem on motor imagery
and event-related potentials datasets.

In RA-MDRM they first estimate the covariance matrix
of the rest state. For motor imagery data the rest state is
the recorded EEG data in the time window in which the
participant is not engaged in the experiment, while in event-
related potentials they used non-target stimuli as the rest
state.

In RA-MDRM the covariance matrices representing the
rest state is estimated ( Rn

k ), where k is the number of
covariance matrices in the rest state, n is the session number.
Then compute the mean of those matrices (denoted as R,
R

(1)
and R

(2)
represents the reference points for session

1 and 2 respectively). R is used as a reference point to
reduce the cross-session/subject variability by performing the
transformation:

C̃n
i =

(
R

(n)
)−1

2

Cn
i

(
R

(n)
)−1

2

(6)

where Cn
i , and C̃n

i are the ith covariance matrix in the nth

session before and after shifting respectively.
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Because of the congruence invariance propriety in Eq. (2)
the transformation in Eq. (6) does not change the distance
between the points that belong to the same session/subject.

III. EEG SIGNAL ANALYSIS
Covariance matrix estimation forms a vital and crucial step
in manifold learning techniques, recently several researches
tackled the problem of covariance matrix estimation from
high dimensional data and from heavy tail distribution data.
In [35] Ke et al. offered a method for estimating a stronger
sample covariance matrix by introducing element-wise and
spectrum wise truncation operators, and their M-estimator
counterparts. Wei et al. [36] proposed an estimator of the
covariance matrix under weak assumptions on the underlying
distribution. In this work, we focus on understanding the
underlying signal distribution. We use simple approaches for
determining the most appropriate type of covariance matrix
estimation technique by first determining the correct distri-
bution of the EEG data.

In this section we analyse the EEG signals in DEAP
dataset to determine the most appropriate distribution to
which those signals belong. Based on the closest signal distri-
bution we choose the most accurate technique for covariance
matrix generation, we used two methods for covariance ma-
trix generation (see section IV-D).

It is common when dealing with EEG signals to assume
that, they exhibit Gaussian distribution. This assumption pro-
vides only a modest approximation for EEG data as a random
variable [21] [22] [23]. In [21] J. Charles et al. performed
Chi-square (χ2) test, comparing EEG signals probability den-
sity function (pdf) against Gaussian distribution and Laplace
distribution, they found that Laplace distribution proved to
be more robust estimator. In [22] they also used Laplace
distribution for better statistical reduction of multi-channel
EEG data. Nazmia et al. [23] performed two Goodness-of-
Fit tests Kolmogorov-Smirnov and Anderson Darling. They
tested the EEG and Electromyography (EMG) signal distri-
butions against Exponential distributions, Generalized Pareto
distribution and Generalized Extreme Value distribution, they
found that the Generalized Extreme Value distribution is the
most appropriate distribution for describing the EMG and
EEG signals.

In this work, we first perform several statistical tests on the
EEG signals to determine whether they follow a Gaussian
distribution or not. Then we use two goodness of fit tests
Anderson Darling (A2) and Watson (U2) to compare the EEG
signals distribution against Gaussian distribution, Laplace
distribution and T-distribution.

A. OUTLIERS, SKEWNESS AND KURTOSIS TESTS
Outliers are points in data that differs significantly from other
values they often indicate that the data has a heavy-tailed
distribution and high skewness and that assuming a normal
distribution is a modest assumption in this case.

In this part, we analyse the EEG signals (signals from all
the 32 participants in DEAP dataset 40 trial each is used in

this analysis) using different spatial window sizes to detect
the percentage of outliers in each window-size. Through this
work we define the outlier as a data value that is greater than
three scaled median absolute deviations (MAD) away from
the median. Leys et al. [37] stated that detecting outliers in
data using median absolute deviation forms a more robust
measure of data spread than using standard deviation around
the mean. Scaled median absolute deviations for a random
variable A, having N samples is defined as:

MAD = b ∗ (M (|(Ai −M(A))|)) (7)

where M is the median, b is a scaling factor and i =
1, 2, . . . , N . Then, Skewness and Kurtosis tests are used to
describe the shape of the distribution and check for the non-
Gaussianity of the EEG signals.

Skewness is a measure of the asymmetry of the proba-
bility distribution. Skewness close to zero is considered a
symmetric distribution. A positive skewness implies a long
left tail, which means that, the mass of the distribution is
concentrated on the left part. A negative skewness on the
other hand indicates a long right tail.

For measuring if the data are light-tailed or heavy-tailed
relative to a Gaussian distribution Kurtosis is used. The
kurtosis of the Gaussian distribution equals three. Kurtosis
greater than three indicates that the data distribution have
heavy-tail and Kurtosis less than three means that the data
have light-tail.

Given a Random variable X having N samples and s
standard deviation, Skewness and kurtosis are calculated as
follows [38]:

Skew =
1

N

N∑
i=1

(
xi − x̄

s

)3

,

Kurt =
1

N

N∑
i=1

(
xi − x̄

s

)4
(8)

Table 1 shows the percentage of outliers in each window
(window size varies from one to eight seconds), the percent-
age of signals with light-tail, heavy-tail,-long left-tail, long
right-tail, median kurtosis, and median degree of freedom.

From Table 1 we can see that the existence of outliers
increase by increasing the window size and their values are
significant, they can not be overlooked and should be taken
into consideration. The kurtosis values are higher than three,
which means that the percentage of heavy-tailed signals are
much more than light-tailed signals. The skewness value is
mostly grater than zero around 52% of the signals have a
long right tail and the rest of the signals (around 47%) have a
long left tail. Testing for outliers, skewness and kurtosis show
that the EEG signals have heavy-tails and does not follow
Gaussian distribution.
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TABLE 1: Percentage of outliers in each window (window size varies from 1 to 8 seconds), signals with long right-tail, long
left-tail, light-tail, heavy-tail, median Kurtosis, and median degree of freedom.

Window size in seconds 1 2 3 4 5 6 7 8

Outliers 2.13 5.76 9.62 13.64 17.69 21.86 26.1 30.27

Long-Right tail 51.97 52.37 52.55 52.57 52.66 52.87 52.85 52.95

Long-Left tail 48.03 47.63 47.45 47.43 47.34 47.13 47.15 47.05

Heavy-Tailed 65.9 81.88 88.32 91.82 93.86 95.38 96.36 97.08

Light-Tailed 34.1 18.12 11.68 8.18 6.14 4.62 3.64 2.92

Median-Kurtosis 3.288 3.829 4.27 4.63 4.875 5.103 5.27 5.428

Median-degree of freedom 17.91 8.39 6.488 5.7 5.33 5.049 4.88 4.75

TABLE 2: A2 (GD), A2 (TD), A2 (GD & TD) and A2(LD) are the results from Anderson Darling test that fails to reject
the null hypothesis of Gaussian distribution , T-distribution, both ( Gaussian distribution & T-distribution ), and Laplace
distribution respectively. U2 (LD) is the result from Watson statistic test that fails to reject the null hypothesis of Laplace
distribution.

A2(LD) A2 (TD) A2(GD & TD) A2(LD) U2(LD)

27.047% 97.435% 25.52% 0.0378% 2.852%

(a) Probability density function (PDF).

(b) Cumulative Distribution Function (CDF).

(c) Quantile-Quantile plot (QQP).

FIGURE 1: A comparison between EEG signal distribution
against both T-distribution and Gaussian distribution. As
an illustrative example we used the EEG signal from user
number 19, trial 40, electrode F3, using 4s window size.

B. GOODNESS OF FIT TESTS

In this section we perform two goodness to fit tests to
compare the EEG signal distribution against two distributions
that are close to Gaussian but has heavier tails.

The T-distribution is a probability distribution that is sim-
ilar to the Gaussian Distribution (GD) with a bell shape but
has heavier tails, i.e. it tends to have values that exist far from
its mean. The existence of heavier-tails could be detected by
a parameter of T-distribution called the degree of freedom,
the higher the degree of freedom the more the distribution
becomes close to Gaussian distribution (median degree of
freedom is shown in the last row in Table 1. T-distribution
tends to have bigger values of Kurtosis and smaller values of
degree of freedom than Gaussian distribution. Laplace Distri-
bution [39] also known as a double exponential distribution
also have a bell shape but it is very sharp in the center and is
used to model symmetric data with long tails.

1) Anderson Darling goodness of fit test (A2): Is based
on the cumulative probability distribution of data it is
a modification of the Kolmogorov-Smirnov test and
is known to gives more weight to the observations in
the tails of the distribution. It is more sensitive to the
existence of outliers and is better in detecting departure
form normality specially in the tails of the distribution
[40].

2) Watson statistic test (U2): Is suggested to be the most
power full when testing for Laplace distribution against
other symmetric distributions. This test is quite power-
ful and provides equal sensitivity to the tails as to the
median of the empirical distribution function [41].

The Anderson Darling test and Watson test for Laplace
distribution is performed using R package "lawstat" [42],
while the Anderson Darling test for Gaussian distribution

VOLUME 4, 2016 5



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and T-distribution is performed using MATLAB statistical
toolbox.

Table 2 shows The percentage of EEG signals that fails
to reject the null hypothesis at 0.05 significance level for the
Gaussian distribution , T-distribution, or Laplace distribution
using Anderson Darling test and Watson test. In Fig. 1 we
show a comparison between EEG signal distribution against
both Gaussian distribution and T-distribution using the Prob-
ability Density Function (PDF), Cumulative Distribution
Function (CDF), and Quantile-Quantile plot (QQP). Results
in Table 2 and Fig. 1 is generated from using 4s window size
(the temporal window size that will be used in the emotion
classification task). From Table 2 and Fig. 1 we can see that
the EEG signal distribution is closer to T-distribution than
Gaussian distribution and Laplace distribution.

IV. METHODOLOGY
A. DATASET
DEAP dataset [43] is a multimodal dataset that is used in
analyzing human affective state. The electroencephalogram
(EEG) and other physiological signals of 32 individuals (16
males and 16 females, with average age 26.9) were recorded
while each of them was watching 40 one-minute music
videos. EEG signals were recorded at a sampling rate of
512 Hz using 32 active AgCl electrodes placed around the
scalp according to the 10-20 international positioning system
[44]. The dataset was recorded in two sessions separated by a
break (20 observations per session) and in two different labs
participants 1-22 were recorded in Twente and participant 23-
32 in Geneva [43].

The DEAP dataset has two versions, the first one is the
original without pre-processing, while in the second one EEG
signals were down sampled to 128 Hz, the Electrooculogra-
phy (EOG) artifacts were removed, the signals were filtered
from 4 to 45 Hz. In the pre-processed version each observa-
tion (trial) is 63s, in which the first 3s are baseline signals
before the participant starts to be engaged in the experiment.
In this work, we are studying emotion classification based
on EEG signals using the pre-processed version and the 3s
baseline signals are used to generate the reference point for
each participant.

We performed our experiment once on the 18 electrodes
placed on the upper half of the scalp and another time on
the 32 electrodes placed around the complete scalp. The
positions of our 18 electrodes are: FP1-FP2, AF3-AF4, F3-
F4, F7-F8, FC1-FC2, FC5-FC6, C3-C4, T7-T8, FZ and CZ.
The 32 electrodes are composed of the previous 18 electrodes
plus CP1-CP2, CP5-CP6, P3-P4, P7-P8, PO3-PO4, O1-O2,
PZ and OZ.

B. EMOTION LABELING
In DEAP dataset, participants were asked to label each trial
by giving a score between 1 and 9 to rate the levels of arousal,
valence, liking and dominance for each of the 40 one-minute
videos. We divided the two dimensional emotion plane (see

FIGURE 2: Valence-Arousal model for human emotions.

TABLE 3: Emotion Classification Labels. The valence and
arousal scores used for labeling, the number of trials in the
dataset that belongs to each label, and the average number of
trials per participant belongs to each label.

Emotion Label Scores # Trials #Trials/Participant

High Valance V > 5 707 22

Low Valance V ≤ 5 575 18

High Arousal A > 5 737 23

Low Arousal A ≤ 5 543 17

Fig. 2) into four classes according to the scores given by
participants to valence (V) and arousal (A).

In this work, we use score 5 as a threshold with is
commonly used when working with DEAP dataset [15] [7].
Two different binary classification problems were introduced
for subject-dependent emotion recognition: The discrimina-
tion of low/high arousal (LA/HA), and low/high valance
(LV/HV). Table 3 shows emotion classification labels, the
number of trials in the dataset that belongs to each label, and
the average number of trials per participant belongs to each
label. Since there are a balanced number of observations in
each class accuracy can be used for performance measure.

C. TEMPORAL WINDOWING
The EEG signals during each trial were recorded for 63s
(60s trials and a 3s pre-trial baseline), which is much longer
than the time needed for recognizing emotion states. For
identifying the emotion state, EEG signals are windowed
into short segments. Thammasan et al. [45] tested emotion
recognition accuracy with window duration that varies from
1 to 8 seconds their result showed that increasing the window
size reduces performance. Mohammadi et al. [15] stated that
the emotion hold time is between 2 to 4 seconds and found
that their best performance was achieved using 4s window.
Through this work we use a window size of 4s with 50%
overlap during the emotion recognition stage and 1s window
with 50% overlap during reference point generation (used for
cross-session transfer learning process (Section IV-E)).
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D. COVARIANCE MATRIX ESTIMATION TECHNIQUES
The EEG signals recorded from N electrodes, each electrode
data forms a time series xk(t) where k = 1, ..., N . Each time
domain signal is divided into small overlapping windows
(in this work we use, 4s window with 50% overlap, this
gives us 29 windows with 512 sample in each window). Let
Wik refers to window i where i = 1, .., 29 coming from
electrode k where k = 1, ..., N . Each window is a vector
containing n samples. Convolution is performed between
each window and the corresponding windows coming from
the N electrodes to generate 29 covariance matrices Ci,
i = 1, .., 29. We denote by X ∈ RN×n a given EEG
recording epoch recorded from N electrodes and having n
samples per window. The covariance matrix C between N
random variables is a square matrix that can be calculated
from X, C ∈ RN×N [30].

In section (III) we performed EEG signal analysis and
clarified that EEG signals are corrupted with outliers and
exhibit heavy tails. In this case using sample covariance
matrix will offer a biased estimation. In section (III-B) we
performed Anderson Darling goodness of fit test and Watson
statistic test to clarified that the EEG signals are closer to
T-distribution than Gaussian distribution or Laplace distribu-
tion. In this work we estimate the covariance matrix using
two different method, sample covariance, and T-distribution
covariance.

1) Sample Covariance: Assuming that the EEG signal dis-
tribution is Gaussian distribution ignoring the effect of
outliers and heavy-tails, the sample covariance matrix
it is given by:

x =
1

N

N∑
i=1

xi,

C =
1

N − 1

N∑
i=1

(xi − x) (xi − x)
T

(9)

2) T-distribution Covariance: By assuming the observed
data follows multivariate Student’s t distribution, the
parameters (mean vector, covariance matrix, degree of
freedom, . . . , etc) can be directly learned from the raw
data via maximum likehood estimation (MLE). In [46]
Rui Zhou et al. proposed an algorithm based on the
generalized expectation maximization (GEM) method
to obtain the estimator. In this work, we generate T-
distribution covariance using fit : mvt() function in
R package fitHeavyTail [47]. In [48] Rui Zhou et
al. offers a detailed explanation for covariance matrix
estimation under heavy tail using fit : mvt() function.

E. CROSS-SESSION TRANSFER LEARNING
In this work we deal with the variability in EEG signals
recorded by the same subject on two different sessions by
finding a unique reference point for each subject and per-
forming affine transformation for covariance matrices around
this point. The variability between different sessions results

from changes in electrodes positioning, environmental con-
ditions, and subject physiological state.

In this work, we performed two experiments. In the first
experiment (Fig. 3) we used the 3s baseline signals from
the EEG data recorded during the two sessions together to
generate a unique reference point for each participant. In the
second experiment (shown in Fig. 4) we used data from one
session for training and the second for testing. Each partici-
pant reference point is generated during training stage from
the baseline signals in the training set, then during testing
the 3s base line signal in test observation is used to adjust
the participant reference point. A complete illustration for
the proposed two experiments is given in section (IV-F). The
effect of using a reference point and shifting the covariance
matrices towards it by performing affine transformation helps
in reducing the bias in the EEG data recorded in two different
sessions. Fig. 5 shows each class data (in both sessions)
before and after shifting and Fig. 6 shows the effect of all
classes covariance matrices in both sessions before and after
shifting.

F. EMOTION CLASSIFICATION
In this work, we are examining subject dependent emo-
tion recognition, which means that the train and test ob-
servation of each subject is independent of other obser-
vations from other subjects. Two different binary clas-
sification problems were examined for subject-dependent
emotion recognition: The discrimination of low/high va-
lence (LV/HV), and low/high arousal (LA/HA). Let{(

M(1), l(1)
)
, . . . ,

(
M(n), l(n)

)}
be a training set of labeled

observations. Where M(i) is the center of mass for ob-
servation i and l(i) is the corresponding emotion label for
that observation, l(i) ∈ {HV,LV,HA,LA} in a certain
frequency band.

Emotion classification processes was performed using the
EEG data recorded from the 31 participants in DEAP dataset,
participant number 20 was excluded as his class 3 (Low
valance) observations exist only in session 2, there are no LV
observations in the first session.

Five different frequency bands were examined, the signal
without frequency separation, theta (4-8 Hz), alpha (8-12
Hz), beta (12-30 Hz) and gamma (> 30 Hz). Two different
experiments were performed:

1) Experiment 1:
In the first experiment (Illustrated in Fig. 3). The 40 obser-
vations (trials) of each participant recorded during the two
sessions are used to generate the reference point.

During the training stage:

1) The first 3s (rest state) in each observation is divided
into one second windows with 50% overlapping (5
windows, 128 sample in each window),

2) Covariance matrices are generated from each corre-
sponding window 5 covariance matrices from each ob-
servation Rj

k, k is the number of covariance matrices
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FIGURE 3: Proposed Subject-dependent EEG based emotion recognition system first experiment. For each user N (N =
1, 2, ...., 32), a two steps transfer learning process is performed. In the first step we generate a reference point (Ri, i=1,..,40)
from the rest state of each user observation, then a common reference point (R̄) for each participant is generated from his 40
trials recorded during the two sessions (20 trials per session). Then, all the covariance matrices Cj

i (the ith covariance matrix in
the jth trial) are shifted on the manifold towards this reference point (see section (IV-E)). Each trial is labeled (low valance/ high
valance (LV/HV ), and low arousal/ high arousal (LA/HA)). The geometric mean for each trial (GM/Trial) is generated. In
the classification process, observations are divided into training set and testing set. From the training set, the geometric mean
for each class (GM/Class) is generated. In the testing process the geometric mean of each test observation is generated . The
classification process is performed using minimum distance to Riemannian mean (MDRM ) classifier (see section (IV-F).

in the rest state in each observation, j is the number of
observations.

3) The geometric mean (denoted as R̄) from Rj
k is gen-

erated. R̄ represents the unique reference point for that
participant.

4) Each participant 40 observations are divided to training
set and testing set. 70% of the trials as used for training
and 30% are used for testing.

5) The 60s left in each training observation is divided into
4s window with 50% overlapping. Consider Cj

i , the ith

covariance matrix in the jth observation.
6) Using R̄ as the reference point and substituting in Eq.

(6), affine transformation is performed on each covari-
ance matrix in each training observation to overcome
cross-session variability.

7) Each trial from the training set is labeled l(i) ∈
{HV,LV,HA,LA};

8) The geometric mean for each training trial is generated
Mi,

9) The geometric mean (GM) for each emotion class
is generated GMHV ,GMLV ,GMHA,GMLA from
the training set.

During the testing stage ( for each test observation T ):

1) The last 60s is divided into 4s window with 50%
overlapping. Consider CT

i , the ith covariance matrix
in the T th test observation.

2) Using R̄ generated in the training stage as the reference
point and substituting in Eq. (6), affine transformation
is performed on each covariance matrix. The shifted
covariance matrices (C̃T

i ) are the ones used in the
emotion classification.

3) The geometric mean for the test observation is gener-
ated MT ,

4) Riemannian distance between MT and GMHV ,GMLV

is calculated and the test observation belongs to the
class (LV/HV) to which it has the minimum distance.
Then for the LA/HA classification, distance between
MT and GMHA,GMLA is calculated and the test
observation belongs to the class (LA/HA) to which it
has the minimum distance.

2) Experiment 2:

In the second experiment (Illustrated in Fig. 4). We used
observations in one session for training and the second for
testing. Each participant reference point is generated during
training stage from the baseline signals in the training set,
then during testing the 3s base line signal in test observation
is used to adjust the participant reference point.

The training stage is the same as in Experiment 1 except
that, only 20 observations recorded in the training session is
used to generate the reference point and the geometric mean
of each class.
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FIGURE 4: Proposed Subject-dependent EEG based emotion recognition system second experiment. During the training stage
(20 trials per participant); for each participant N (N = 1, 2, ...., 32) we generate a reference point (Ri, i=1,..,20) from the rest
state of each user observation, then a common reference point (R̄) for each participant is generated from his 20 training trials
recorded during the training sessions ( the R̄ per participant is stored in the database. Then, all the covariance matrices Cj

i (the
ith covariance matrix in the jth trial) are shifted on the manifold towards this reference point (see section (IV-E)). Each trial
is labeled (low valance/ high valance (LV/HV ), and low arousal/ high arousal (LA/HA)). The geometric mean for each trial
(GM/Trial) is generated. From the training set, the geometric mean for each class (GM/Class) is generated and stored in
the database. In the testing stage we use the observations recorded in the second session. For user N test trial J , the reference
point from the test observation is generated Rj and added to his reference point stored in the database ¯(RN ) to generate his
new reference point R̂, then the covariance matrices in this test observation is shifted around this new reference point. The
geometric mean for this test trial is generates Mj . Using the participant geometric mean for each class stored in the database
the classification process is performed using minimum distance to Riemannian mean (MDRM ) classifier (see section (IV-F).

During the testing stage ( for each user N test observation
T ):

1) The 3s baseline signal is used to generate a refer-
ence point from that test observation RT . This new
reference point is used to adjust user N reference
point stored in the database ¯(RN ) to generate his new
reference point R̂.

2) The last 60s is divided into 4s window with 50%
overlapping. Consider CT

i , the ith covariance matrix
in the T th test observation.

3) Using the new generated reference point R̂ and substi-
tuting in Eq. (6), affine transformation is performed on
each covariance matrix.

4) The geometric mean for the test observation MT is
generated, from the shifted covariance matrices (C̃T

i ).
5) Using the participant geometric mean for each class

generated during the training stage classification pro-
cess is performed using minimum distance to Rieman-
nian mean (MDRM) classifier.

V. RESULTS AND DISCUSSION

In this work, we used MDRM classifier with transfer learning
for subject-dependent emotion recognition based on EEG
signals.

Two pre-processing steps were performed. In the first step,
the EEG signals were analysed by performing several statis-
tical and goodness of fit tests. We found that T-distribution
is most appropriate for describing EEG signals distribution.
The signal analysis step helped us in determining the most
appropriate covariance matrix estimation technique. Two co-
variance matrix estimation techniques were examined, Sam-
ple covariance and T-distribution covariance. In the second
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FIGURE 5: Original covariance matrices of subject 1 (as an example) in both session 1 and session 2 in each of the four classes
(LA, HA, LV and HV) before and after shifting (Eq. (6)). Visualization obtained through t-SNE method using the Riemannian
distance (Eq. (1)).

FIGURE 6: Original covariance matrices of subject 1 (as an example) in both session 1 and session 2 before and after shifting
(Eq.(6)). Visualization obtained through t-SNE method using the Riemannian distance (Eq. (1)).
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TABLE 4: Average Classification Results for experiment 1 (Reference point generated from both sessions). Sample covariance
without transfer learning, Sample covariance with transfer learning and T-distribution covariance with transfer learning.

Sample Cov. without TL Sample Cov. with TL T-dist Cov.with TL
Freq. Band

A V A V A V

All 53.95 ± 10.9 54.52 ± 9.5 56.26 ± 10 59.31 ± 9 58.33 ± 8.3 61.1 ± 8.6

Theta 55.61 ± 9.3 55.81 ± 10 75.63 ± 7.7 73.97 ± 7.6 86.3 ± 5.28 87.1 ± 5.31

Alpha 57.91 ± 9.8 55.06 ± 9.2 64.45 ± 8.1 65.63 ± 7.4 67.11 ± 8.6 67.18 ± 8.28

Beta 53.25 ± 10.2 54.68 ± 9.6 63.77 ± 8.6 66.15 ± 8.7 67.67 ± 8.6 71.03 ± 8.3

Gamma 46.09 ± 10.8 46.13 ± 9.5 58.98 ± 10.4 61.66 ± 7.9 60 ± 11.4 62 ± 7.2

(a) 18 Channels
Sample Cov. without TL Sample Cov. with TL T-dist Cov.with TL

Freq. Band
A V A V A V

All 62.66 ± 3.47 56.76 ± 2.15 67.28 ± 0.49 60.87 ± 1.9 68.79 ± 1.02 65.76 ± 2.1

Theta 62.3 ± 2.32 56.04 ± 4.7 84.93 ± 2.14 83.37 ± 1.86 86.37 ± 2.1 88.78 ± 2.16

Alpha 63.46 ± 2.96 56.67 ± 2.22 75.25 ± 2.85 71.41 ± 3.04 75.94 ± 2.82 71.84 ± 2.4

Beta 60.73 ± 2.66 58.34 ± 2.82 72.87 ± 1.41 66.53 ± 2.92 73.1 ± 2.68 73.52 ± 2.94

Gamma 65.37 ± 3.98 58.05 ± 3.84 67.08 ± 5.23 60.84 ± 3.312 74.63 ± 3.89 73.15 ± 2.93

(b) 32 Channels

TABLE 5: Average Classification Results experiment 2 (Reference point generated from training session only). Sample
covariance without transfer learning, Sample covariance with transfer learning and T-distribution covariance with transfer
learning.

Sample Cov. without TL Sample Cov. with TL T-dist Cov.with TL
Freq. Band

A V A V A V

All 53.85 ± 0.33 51.11 ± 0.23 56.03 ± 2.07 56.22 ± 0.96 58.21 ± 2.61 60.48 ± 2.89

Theta 50.6 ± 0.69 51.63 ± 2.28 75.25 ± 0.86 73.21 ± 0.87 75.35 ± 1.8 76.71 ± 2.59

Alpha 53.14 ± 0.28 51.35 ± 0.56 63.85 ± 1.63 65.02 ± 2.01 67.03 ± 3.1 66.62 ± 2.73

Beta 52.81 ± 2.45 51.8 ± 1.37 60.38 ± 2.28 60.12 ± 2.04 62.21 ± 0.26 60.81 ± 0.8

Gamma 45.7 ± 1.5 46.03 ± 0.81 58.67 ± 2.28 57.61 ± 0.73 59.85 ± 1.75 57.87 ± 1.55

(a) 18 Channels
Sample Cov. without TL Sample Cov. with TL T-dist Cov.with TL

Freq. Band
A V A V A V

All 61.24 ± 0.08 51.75 ± 1.59 63.17 ± 1.95 59.5 ± 3.34 64.18 ± 8.03 60.7 ± 6.59

Theta 53.63 ± 0.71 51.78 ± 0.95 76.78 ± 3.47 74.57 ± 4.5 79.74 ± 3.9 80.11 ± 2.63

Alpha 53.46 ± 3.13 51.64 ± 1.59 65.94 ± 8.6 65.57 ± 10.02 69.31 ± 1.21 68.9 ± 0.24

Beta 54.23 ± 1.62 52.34 ± 1.18 62.32 ± 2.12 62.4 ± 2.84 72.48 ± 2.5 66.7 ± 0.33

Gamma 53.69 ± 1.53 50.86 ± 1.18 65.63 ± 0.93 59.84 ± 1.58 67.25 ± 0.37 60.4 ± 2.1

(b) 32 Channels
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TABLE 6: Results from 18 channels (Experiment 1) each participant in the Theta frequency-band.

Sample Cov. without TL Sample Cov. with TL T Dist. Cov. with TL
User Number

A V A V A V

1 60.5 ± 8.5 61.4 ± 9.4 76 ± 8.7 71.7 ± 16 83.5 ± 10.9 95.7 ± 2.7

2 58.8 ± 12.8 75.7 ± 8.5 90.3 ± 0.8 87.7 ± 0.4 95.5 ± 3.4 95.1 ± 3.7

3 69.7 ± 8.9 51.4 ± 15.6 88.7 ± 0.6 90.5 ± 1 98.0 ± 1.4 93.8 ± 5.8

4 43.5 ± 12.3 51 ± 15.5 57.3 ± 14.8 79 ± 3.7 96.3 ± 3.1 93.5 ± 5.4

5 52.4 ± 7.8 36.3 ± 6.5 67.1 ± 13.7 47.3 ± 9.4 50.3 ± 9.0 57.0 ± 12.3

6 41.4 ± 6.3 42.2 ± 13 72.4 ± 8.7 61.1 ± 9.6 82.6 ± 9.5 90 ± 6.2

7 57.3 ± 9.1 47.8 ± 10 86.3 ± 8 81.4 ± 2.7 59.5 ± 12.3 73.3 ± 8.4

8 63.4 ± 6 70.2 ± 6.4 64.6 ± 6.5 53.1 ± 11 96.0 ± 3 98.6 ± 0.9

9 61.5 ± 13.1 75 ± 12.2 77.5 ± 6.2 76.7 ± 5.3 93.8 ± 4.0 88.3 ± 8.5

10 59.5 ± 14.0 76.7 ± 6.2 57.1 ± 5.2 75 ± 15.5 93.3 ± 6.2 95 ± 3.7

11 56.3 ± 4.9 35.8 ± 5.2 85.8 ± 6.8 88 ± 4 96.2 ± 2.1 97 ± 2

12 58.0 ± 14.7 41.2 ± 5.9 52.3 ± 14 47.1 ± 10.7 87.7 ± 6.2 95.7 ± 2.7

13 44.5 ± 3.4 46.9 ± 6.9 90 ± 2.2 89 ± 3.3 86.4 ± 6.7 92.6 ± 4.5

14 66.7 ± 12.7 56.7 ± 9.1 77.2 ± 8.8 80 ± 4.1 81.9 ± 6.6 93.3 ± 6.2

15 43.3 ± 3.3 70 ± 10 88.3 ± 4.1 85 ± 7.5 99.0 ± 0.8 98.7 ± 0.3

16 56.7 ± 11.1 55.0 ± 9.3 85 ± 3.3 82 ± 1 98.3 ± .3 98.4 ± 1.2

17 50 ± 16.3 50 ± 12.9 63 ± 8.3 84.3 ± 17.4 97.5 ± 2.1 96.7 ± 2.8

18 44.5 ± 13.0 55.5 ± 8.5 71 ± 9.6 64.8 ± 8.3 76.8 ± 7.5 77.5 ± 7.8

19 71.9 ± 10.7 55 ± 8.7 82.8 ± 9.4 70.5 ± 4.9 92.5 ± 6.1 96.7 ± 2.1

21 48 ± 9.9 54.3 ± 16 74.7 ± 19 81.4 ± 5.3 96.8 ± 1.8 95.2 ± 3.1

22 45 ± 7.9 38.3 ± 8.5 87.5 ± 4 73.3 ± 11.1 95.5 ± 2.5 94.0 ± 4.0

23 62.5 ± 10.3 55.5 ± 5.6 80.8 ± 6.5 69 ± 9.7 82.9 ± 7.1 91.5 ± 7.6

24 53 ± 8.8 56.2 ± 6.3 82.7 ± 6.3 78.1 ± 7.8 94 ± 3.7 90.2 ± 7

25 44.4 ± 7.5 36.7 ± 8.5 94.4 ± 2.2 93.3 ± 3.3 96.7 ± 2.7 98.3 ± 1.3

26 63.1 ± 10.2 62 ± 7.4 62.6 ± 16.8 62.3 ± 14.7 77.9 ± 9.5 65.8 ± 9.2

27 65.6 ± 13.3 65.6 ± 12 68.3 ± 10.5 57.8 ± 17.7 70.8 ± 8.7 56.1 ± 5.7

28 36.7 ± 8.2 51.5 ± 10.8 53.3 ± 6.7 39 ± 11.2 54.4 ± 4.7 52.0 ± 11.8

29 70 ± 8.5 74.5 ± 12.4 77.5 ± 7.5 86.4 ± 2.9 80.0 ± 6.7 75.0 ± 10.3

30 65 ± 6.2 45.3 ± 12.4 83.3 ± 3.3 87.5 ± 8.9 71.1 ± 6.7 60.8 ± 8.8

31 63.3 ± 4.1 64.9 ± 12.7 75 ± 11.3 66 ± 5.7 80.0 ± 8 88.6 ± 3.5

32 48.6 ± 7.2 71.7 ± 11.3 59.2 ± 11.7 68.3 ± 12.2 96.4 ± 2.9 93.3 ± 6.2

Mean ± Std. 55.6 ± 9.3 55.8 ± 9.8 75.6 ± 7.7 74 ± 7.6 86.3 ± 5.28 87.1 ± 5.31

TABLE 7: The accuracy improvement caused by transfer learning and by T-distribution covariance with transfer learning.

All Theta Alpha Beta Gamma Mean ± Std.

Sample Cov. with TL

VS

Sample Cov without TL

18 Channels
Experiment 1 3.55 19.1 8.68.56 11 14.21 11.28 ± 5.9

Experiment 2 3.65 23.12 12.19 7.94 12.27 11.83 ± 6.5

32 Channels
Experiment 1 4.26 24.98 13.26 10.17 2.25 10.98 ± 8.1

Experiment 2 4.84 22.97 13.21 9.07 10.46 12 .04 ± 6.2

T-dist Cov. with TL

VS

Sample Cov. with TL

18 Channels
Experiment 1 1.93 11.9 2.07 4.39 0.78 4.21 ± 3.4

Experiment 2 3.2 3.41 0.56 3.61 9.93 4.14 ± 3.1

32 Channels
Experiment 1 3.22 1.8 2.39 1.26 0.72 1.88 ± 0.87

Experiment 2 1.11 4.25 3.35 7.23 1.09 3.4 ± 2.28
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step, cross-session transfer learning process was performed
to overcome the variability in the EEG data recorded in dif-
ferent sessions. Classification was performed using MDRM
classifier. Accuracy is used as an index of classification
performance. It is considered as a suitable index as, the
average number of observations/participant belongs to each
label is almost balanced (see Table 3). Three methods were
tested: using sample covariance without performing transfer
learning process, using sample covariance with performing
transfer learning, and finally using T-distribution covariance
with performing transfer learning.

Two different experiments were performed for reference
point generation. The result for the first experiment (see Table
4) achieved by performing five fold cross validation and
averaging the results. In each fold we fuse the observations of
each participant recorded during the two sessions, label the
data to four classes (section IV-B), shuffle the observations
belongs to each class, divide each class observations to 70%
train and 30% testing and we made sure that the training
data and the test data are entirely disjointed. The result for
the second experiment (Table 5) achieved by using the first
session for training and the second for testing and then using
the second for training and the first for testing and averaging
the results.

From Table 4 and 5 we can see that, using transfer learning
process improved the results even with sample covariance es-
timation technique and combining T-distribution covariance
with transfer learning process showed better performance
in all frequency bands. Theta frequency band gave the best
performance 87.1% for valence, 86.3% for arousal in ex-
periment 1 using 18 channels, 88.78% for valence, 86.37%
for arousal in experiment 1 using 32 channels, 76.71%
for valence, 75.35% for arousal in experiment 2 using 18
channels, and 80.11% for valence, 79.74% for arousal in
experiment 2 using 32 channels. It is clear that generating
the reference point from the two sessions (Experiment 1)
gave better results than generating the reference point from
training session and using minimum information from the
test observation to adjust this reference point. Also, using 32
channels placed around the entire scalp gave better results
than using only 18 channels placed over the upper half of
the scalp. In Table 6 we show the results for each of the 31
participants generated in experiment 1 using 18 channels.

In Table 7 the percentage of improvement offered by
using transfer learning and by using T-distribution covariance
is shown. Using transfer learning as a pre-processing step
improved the results even if the covariance estimation is
performed using sample covariance.

VI. CONCLUSION
In this work, we present a scheme to improve the accuracy of
MDRM classifier. We build subject-dependent EEG emotion
recognition system based on MDRM classifier, with adding a
two steps pre-processing stage.

In the first step, we analyze the EEG signals to investigate
their non-Gaussianity, we found that the signals are corrupted

with outliers, exhibit heavy tails , and that T-distribution is
the closest to the actual EEG signals distribution. Based on
the previous finding, the covariance matrix estimation was
performed. In the second step, we performed cross-session
transfer learning by generating a common reference point for
each participant from his rest-state.

Performing cross-session transfer learning improved the
system performance even when using sample covariance
estimation, while combining T-distribution covariance with
transfer learning gave the best results.The proposed pre-
processing steps could be used in any brain computer inter-
face system based on SPD manifold learning techniques.
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