Andrea Campagner 
email: a.campagner@campus.unimib.it
  
Davide Ciucci 
  
Thierry Denoeux 
  
Belief Functions and Rough Sets: Survey and New Insights

Keywords: Rough set theory, Evidence theory, Belief functions, Uncertainty representation, Knowledge representation, Machine learning

Rough set theory and belief function theory, two popular mathematical frameworks for uncertainty representation, have been widely applied in different settings and contexts. Despite different origins and mathematical foundations, the fundamental concepts of the two formalisms (i.e., approximations in rough set theory, belief and plausibility functions in belief function theory) are closely related. In this survey article, we review the most relevant contributions studying the links between these two uncertainty representation formalisms. In particular, we discuss the theoretical relationships connecting the two approaches, as well as their applications in knowledge representation and machine learning. Special attention is paid to the combined use of these formalisms as a way of dealing with imprecise and uncertain information. The aim of this work is, thus, to provide a focused picture of these two important fields, discuss some known results and point to relevant future research directions.

Introduction

Many mathematical formalisms to represent and manage uncertainty have been proposed and studied in the literature, starting from probability theory and including, among others, imprecise probabilities [START_REF] Augustin | Introduction to imprecise probabilities[END_REF][START_REF] Walley | Statistical Reasoning with Imprecise Probabilities[END_REF], fuzzy set theory [START_REF] Zadeh | Fuzzy sets[END_REF], possibility theory [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF], rough set theory [START_REF] Pawlak | Rough sets[END_REF] and belief functions [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. These latter two, that is, rough set theory and belief function theory, represent particularly important examples.

Rough set theory, originally proposed by Pawlak [START_REF] Pawlak | Rough sets[END_REF], is a set-theoretic uncertainty model that allows one to study different forms of uncertainty (including: indiscernibility, granularity and ambiguity), as induced by a relation among objects of interest representing their mutual indiscernibility (i.e., equality, similarity). By contrast, belief function theory, first introduced by Dempster [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF] and then formalized by Shafer [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF], is a framework for representing and reasoning with uncertain information based on non-additive measures, which can be seen as an extension of set theory and probability theory [START_REF] Denoeux | Representations of uncertainty in ai: beyond probability and possibility[END_REF].

Despite having had more or less orthogonal developments, the formalisms of rough set theory and belief functions are strongly related. Indeed, a theoretical relationship between the two formalisms was already noted by Pawlak [START_REF] Pawlak | Rough probability[END_REF], and further studied during the following years [START_REF] Klopotek | A new qualitative rough-set approach to modeling belief functions[END_REF][START_REF] Tan | Evidence-theory-based numerical characterization of multigranulation rough sets in incomplete information systems[END_REF][START_REF] Wu | Connections between rough set theory and Dempster-Shafer theory of evidence[END_REF][START_REF] Yao | Interpretation of belief functions in the theory of rough sets[END_REF][START_REF] Zhang | Relationships between relation-based rough sets and belief structures[END_REF], leading to potential applications (mainly driven by the translation of properties and tools from belief functions to rough sets), especially in the fields of knowledge representation and machine learning.

In this survey article, we present a review of the most relevant contributions at the intersection of rough set and belief function theories focusing, in particular, on the theoretical contributions linking these two formalisms, as well as on the applications (both theoretical and practical) of such results in the areas of knowledge representation and machine learning. With respect to knowledge representation, we highlight the contributions providing theoretical links and relationships among the mathematical formalisms of rough set and belief function theories, as well as results highlighting the combined use of the two theories to represent uncertain data. From the machine learning viewpoint, we highlight the most relevant contributions providing a direct application of the above mentioned theoretical results, with special emphasis on the applications of the two formalisms to clustering and learning from uncertain or imprecise data.

The rest of the paper is structured as follows. In Section 2 we quickly review the basics of belief function and rough set theories. In Section 3 we recall the main theoretical relationships among the two formalisms and their application to knowledge representation. In particular, in Section 3.1 we discuss results related to Pawlak's rough set model, in Section 3.2 we consider the extensions of the previous results to more general rough set models, while in Section 3.3 we discuss the use of rough sets and belief functions to model uncertain and imprecise data. In Section 4 we focus on applications in Machine Learning: in particular, the relationships between evidential and rough set-based clustering models are discussed in Section 4.1, where we also provide new results on the link between credal partitions and three-way clustering. In Sections 4.2 and 4.3, we discuss applications to the management of data affected by uncertainty, respectively, in the conditional and decision attributes.

Background

In this section, we provide the necessary background material on belief functions and rough sets. In particular, we recall the basic notions of belief function theory in Section 2.1, including the definition of belief and plausibility functions, the relationship of the model with other uncertainty representation frameworks, the definitions of the main combination and transformation methods, as well as the basic concepts concerning the application of belief function theory to decision-making and clustering. In Section 2.2, we first introduce Pawlak's classical rough set model and its main extensions; we then summarize the applications of rough set theory in feature selection and classification, as well as the basic concepts on rough clustering and related soft clustering models.

Basic notions on Belief Functions

Belief function theory (also referred to as Dempster-Shafer theory or evidence theory) is a general mathematical framework for uncertainty representation and management, first proposed by Dempster and Shafer [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] (see also [START_REF] Denoeux | Representations of uncertainty in ai: beyond probability and possibility[END_REF] for a recent introduction to belief function theory). Formally, we have the following definitions.

Definition 2.1. Let X be a finite set and 2 X the corresponding power set. A basic belief assignment (bba) is a function m : 2 X → [0, 1] s.t.

A∈2 X m(A) = 1. If m(∅) = 0, then we say that the bba is unnormalized.

Starting from a bba, we can define two other set functions, namely the belief and plausibility functions: Definition 2.2. Let m be a bba. Then, the belief and plausibility functions, Bel : 2 X → [0, 1] and P l : 2 X → [0, 1] are defined, respectively, as:

Bel(A) = B:∅ =B⊆A m(B) (1) 
P l(A) = B:B∩A =∅ m(B). (2) 
It is easy to observe that Bel and P l are dual of each other, that is Bel(A) = 1 -m(∅) -P l(A c ) and P l(A) = 1 -m(∅) -Bel(A c ). Given a bba, we can define the collection of focal sets F m = {A ∈ 2 X : m(A) = 0}, i.e., the sets for which the basic belief assignment is greater than 0. If m(A) = 1 for some A ⊆ X, then m is said to be logical.

Example 2.1. Let X = {a, b, c} and let m : 2 X → [0, 1] be a bba defined by m({a}) = 0.1, m({b}) = 0.2, m({b, c}) = 0.3 and m(X) = 0.4. The focal sets of m are F m = {{a}, {b}, {b, c}, X}. Then, taking for example A = {a, c}, we can compute the belief Bel(A) = 0.1, and plausibility P l(A) = 0.8.

Given two bbas, m 1 and m 2 , we can define their combination (also, orthogonal sum) through the so-called Dempster's rule of combination, namely:

m 1 ⊕ m 2 (A) = 1 1 -K(m 1 , m 2 ) B,C:B∩C=A m 1 (B) • m 2 (C), (3) 
where K(m 1 , m 2 ) = A,B:A∩B=∅ m 1 (A) • m 2 (B) is the conflict between m 1 and m 2 . If K(m 1 , m 2 ) = 1, then the combination m 1 ⊕ m 2 is undefined. The rule of combination ⊕ assumes that both sources of information m 1 , m 2 can be considered as reliable. This assumption is weakened in the disjunctive rule [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence[END_REF][START_REF] Smets | The transferable belief model[END_REF], which only assumes that at least one of the two bbas is reliable:

m 1 ∪ m 2 (A) = B,C:B∪C=A m 1 (B) • m 2 (C). ( 4 
)
Example 2.2. Consider the bba defined in Example 2.1, and let m be defined as m ({a, c}) = 0.6 and m(X) = 0.4. Then, m * = m ⊕ m is defined as m * ({a}) = 0.11, m * ({b}) = 0.09, m * ({c}) = 0.21, m * ({a, c}) = 0.27, m * ({b, c}) = 0.14 and m * (X) = 0.18. On the other hand, m † = m ∪ m is defined as m † ({a, c}) = 0.06 and m † (X) = 0.94.

Discussing the connections of belief function theory with other uncertainty representation formalisms, we recall that if the focal sets are all singletons, then m is said to be Bayesian: in this case, m is equivalent to a probability distribution and, for each A ⊆ X, it holds that Bel(A) = P l(A). In this sense, belief function theory can be understood as a generalization of probability theory. Indeed, if m 1 is a Bayesian bba and m 2 is logical, it can be easily seen that the result of m 1 ⊕ m 2 is equivalent to probabilistic conditioning.

Furthermore, it can also be shown that belief functions are related to imprecise probabilities. Indeed, any belief function Bel (and the corresponding bba m) can be uniquely associated to the (convex) set of probabilities that dominate (i.e., are point-wise greater than) Bel. Namely, P(m) = {P : ∀A ⊆ X, P (A) ≥ Bel(A)}.

(5)

Thus, in the particular case where Bel is Bayesian, the set P m contains exactly Bel as unique element. If, on the other hand, the focal sets are nested (i.e. for each A, B ∈ F m , either A ⊆ B or B ⊆ A) then m is said to be consonant, and it can be shown that Bel is a necessity measure and P l is a possibility measure [START_REF] Denoeux | Representations of uncertainty in ai: beyond probability and possibility[END_REF]. Thus, belief function theory can also be understood as a generalization of possibility theory [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF]. However, we note that the two theories differ in their semantics and in certain formal aspects [START_REF] Dubois | Representation and combination of uncertainty with belief functions and possibility measures[END_REF]. In particular, Dempster's rule (3) does not preserve consonance and is, therefore, not compatible with possibility theory.

Starting from a bba m, we can define mappings that transform m into a probability distribution. In particular, the pignistic probability [START_REF] Smets | The combination of evidence in the transferable belief model[END_REF][START_REF] Smets | The transferable belief model[END_REF], P Betm , based on m is defined as:

P Betm (x) = A:x∈A m(A) |A| , (6) 
for all x ∈ X. Similarly, the plausibility probability function [START_REF] Shenoy | Modeling financial portfolios using belief functions[END_REF][START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF], P P lm , is defined as: The two transformations generally yield different results and satisfy different properties. For example, it has been shown that the plausibility transform is the only probabilistic transformation of belief functions compatible with Dempster's rule [START_REF] Cobb | On the plausibility transformation method for translating belief function models to probability models[END_REF], in the sense that

P P lm (x) = P l({x}) y∈X P l({y}) . (7 
P P lm 1 ⊕m 2 = P P lm 1 ⊗ P P lm 2 , (8) 
where, for any two probability distribution P 1 , P 2 , the orthogonal product is defined as:

P 1 ⊗ P 2 (x) = P 1 (x) • P 2 (x) x∈X P 1 (x) • P 2 (x)
.

On the other hand, the pignistic transform is the only transformation from belief functions to probability distributions which is linear [START_REF] Smets | Decision making in the tbm: the necessity of the pignistic transformation[END_REF], i.e.,

P Bet αm 1 +(1-α)m 2 = αP Betm 1 + (1 -α)P Betm 2 (9) 

Decision-making with Belief Functions

In this section, we recall some basic concepts of decision-making based on belief function theory [START_REF] Denoeux | Decision-making with belief functions: A review[END_REF]. Assume D = {d 1 , . . . , d n } is a set of states of nature or classes, and F = {f 1 , ..., f k } is a set of acts. In the following, we assume that 

F D 1 2 3 1 1 0 0 2 0 1 0 3 0 0 1
Starting from a basic utility function U : D × D → [0, 1], if we want to consider also the utility of partial assignments U has to be extended to D × 2 D . Various ways for doing so have been considered in the literature: Campagner et al. [START_REF] Campagner | The three-way-in and three-way-out framework to treat and exploit ambiguity in data[END_REF] considered an approach based on arbitrary anti-tone functions, while Ma et al. [START_REF] Ma | Partial classification in the belief function framework[END_REF] considered an approach based on Ordered Weighted Average (OWA) operators [START_REF] Yager | On ordered weighted averaging aggregation operators in multicriteria decisionmaking[END_REF]. According to this latter approach, having fixed the utility function for the singleton acts, the extended utility function is controlled by a single parameter α, called imprecision tolerance, which interpolates between the maximum and the minimum OWA operators (see [START_REF] Ma | Partial classification in the belief function framework[END_REF] for further details).

Example 2.5. Starting from Table 1, we want to extend the corresponding utility function to D × 2 D . Assume that we adopt the OWA-based approach and set α = 0.75 (thus, we consider the OWA operator which is half-way between the maximum and the average), then the extended utility function is represented in Table 2. |f | (otherwise, a rational decision-making agent would always prefer choosing a precise act at random, rather than a partial assignment).

Assume, then, that the knowledge of a decision-making agent is expressed through a bba m : 2 D → [0, 1] on the power set of the classifications. In the standard decision-theoretic setting, a preference among acts can be determined by means of the expected utility criterion. Different generalizations of this criterion to the setting of belief function theory [START_REF] Denoeux | Decision-making with belief functions: A review[END_REF] have been considered, here we recall the following:

-Lower Expected Utility :

E(f ) = B⊆2 D m(B) min d∈B U (d, f ); -Upper Expected Utility : E(f ) = B⊆2 D m(B) max d∈B U (d, f ); -Hurwicz Expected Utility: E β (f ) = βE(f ) + (1 -β)E(f ), with β ∈ [0, 1]
Each of these criteria determines a total preorder over the acts: namely, given an expected utility function

E among {E, E, E β }, f 1 ≥ f 2 iff E(f 1 ) ≥ E(f 2 )
. A decision rule can then be obtained by selecting (one of) the acts with maximal expected utility.

Example 2.6. Consider the utility function given in Table 2 and let m be the bba defined by m(1

) = 0.2, m({1, 3}) = 0.4, m({2, 3}) = 0.2, m(D) = 0.2.
Based on the lower and upper expected utility criteria we get that:

-E(1) = 0.2, E(1) = 0.8; -E(2) = 0, E(2) = 0.4; -E(3) = 0, E(3) = 0.8; -E({1, 2}) = 0.15, E({1, 2}) = 0.75; -E({1, 3}) = 0.45, E({1, 3}) = 0.75; -E({2, 3}) = 0.15, E({2, 3}) = 0.75; -E(D) = 0.67, E(D) = 0.67;
So, according to the lower expected utility criterion we have:

D > {1, 3} > 1 > {1, 2} = {2, 3} > 2 = 3
while, based on the upper expected utility criterion we have:

1 = 3 > {1, 2} = {1, 3} = {2, 3} > D > 2
Thus, according to the Hurwicz expected utility criterion we get that 1 is the optimal act as long as β ≤ 2 9 , while if β > 2 9 the optimal act is D (i.e., the most imprecise classification).

Evidential Clustering

In this section we recall the basic definitions of evidential clustering. Let X = {x 1 , . . . , x N } be a set of objects, and C = {c 1 , ..., c n } a set of clusters. Then, a credal partition [START_REF] Denoeux | EVCLUS: evidential clustering of proximity data[END_REF] is a collection of bbas {m x } x∈X , where for each x it holds that m x : 2 C → [0, 1] and A∈2 C m x (A) = 1. If for some x ∈ X it holds that m x (∅) = 0, then we say that the credal partition is unnormalized. Irrespective of the specific evidential algorithm used (see e.g. [START_REF] Antoine | CECM: Constrained evidential c-means algorithm[END_REF][START_REF] Denoeux | Calibrated model-based evidential clustering using bootstrapping[END_REF][START_REF] Denoeux | NN-EVCLUS: Neural network-based evidential clustering[END_REF][START_REF] Denoeux | EK-NNclus: a clustering procedure based on the evidential k-nearest neighbor rule[END_REF][START_REF] Denoeux | EVCLUS: evidential clustering of proximity data[END_REF][START_REF] Li | k-CEVCLUS: Constrained evidential clustering of large dissimilarity data[END_REF][START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF][START_REF] Masson | RECM: relational evidential c-means algorithm[END_REF][START_REF] Zhang | Dynamic evidential clustering algorithm[END_REF], or also the recent review [START_REF] Denoeux | Evidential clustering: a review[END_REF]), the main goal of evidential clustering models is to induce a credal partition from the data [START_REF] Denoeux | Beyond fuzzy, possibilistic and rough: An investigation of belief functions in clustering[END_REF]. This credal partition can be interpreted as a soft clustering of the data, i.e., the bbas represent the uncertain assignment of the objects to the clusters.

Example 2.7. Let X = {x 1 , . . . , x 5 } and C = {c 1 , c 2 , c 2 }. Then, an example of evidential clustering is the following:

-m x1 ({c 1 }) = 1; -m x2 ({c 1 }) = 0.8, m x2 (C) = 0.2; -m x3 ({c 2 , c 3 }) = 1; -m x4 ({c 2 }) = 1; -m x5 ({c 3 }) = 0.4, m x5 (C) = 0.6.
It has been shown [START_REF] Denoeux | Beyond fuzzy, possibilistic and rough: An investigation of belief functions in clustering[END_REF] that evidential clustering is a very general framework, extending other clustering approaches, obviously including hard clustering, but also many other soft clustering approaches like fuzzy clustering [START_REF] Bezdek | Fuzzy Models and Algorithms for Pattern Recognition and Image Processing[END_REF], rough clustering (see Section 2.2.3) and possibilistic clustering [START_REF] Krishnapuram | A possibilistic approach to clustering[END_REF]. In Section 4.1, we will explore the relationships among evidential clustering and rough clustering, as well as related approaches.

Basic Notion on Rough Sets

The classical model of rough set theory, first defined by Pawlak [START_REF] Pawlak | Rough sets[END_REF], is based on the study of so-called information tables, namely: [START_REF] Pawlak | Rough sets[END_REF][START_REF] Pawlak | Rough Sets: Theoretical Aspects of Reasoning about Data[END_REF]). An information table is a tuple S = (X, Att, V, F ) where X is a finite set of objects, Att is a finite set of attributes, V = ∪ a∈Att V a where V a is the set of values of attribute a and |V a | > 1, F is a function mapping objects and attributes to values, that is F :

Definition 2.3 ([
X × A → V .
A decision table is an information table where the attributes are divided into two groups C ∪ D, with C condition attributes, which represent the covariates or predictors, and D decision attributes, which represent the target features.

Example 2.8. An example of decision table is given in Table 3, where condition attributes are {Temperature, Pressure, Headache, Muscle Pain} and the decision attribute is Disease. Given an information (or decision) table, the most basic notion in rough set theory is that of an indiscernibility relation I B with respect to a set of attributes B ⊆ Att. Such a relation intuitively represents the fact two distinct objects may be indistinguishable as a consequence of the chosen representation language (i.e., the selected set of attributes B). Thus, this can be formally defined as

∀x, y ∈ X, xI B y iff ∀a ∈ B, F (x, a) = F (y, a).
This relation is an equivalence one, which partitions X into equivalence classes [x] B that constitute granules of information. Due to lack of knowledge, we are not able to distinguish objects inside the granules, thus, it can happen that not all subsets of X can be precisely characterized in terms of the available attributes B.

Example 2.9. Let us consider the table in Example 2.8 and let B = {P ressure, Headache}.

Then, we have three equivalence classes: {p 1 , p 4 , p 5 },{p 2 } and {p 3 }. The set of patients {p 1 , p 2 } cannot be completely characterized, in the sense that it is not the union of equivalence classes. That is to say, the two attributes in B are not sufficient to describe the two patients p 1 and p 2 .

However, any set H ⊆ X can be approximated by a lower and an upper approximation. Intuitively, the lower approximation L(H) of a set H collects all objects which are surely contained in H: that is, L(H) contains all objects whose equivalence class is inside H. On the other hand, the upper approximation U (H) collects all objects which are compatible with H: that is, U (H) contains all objects whose equivalence class is not disjoint from H. Formally, the two approximations can be defined as

L B (H) = {x : [x] B ⊆ H}, (10a) 
U B (H) = {x : [x] B ∩ H = ∅}. (10b) 
The pair (L B (H), U B (H)) is called a rough set 1 . Clearly, we have L(H) ⊆ H ⊆ U (H), which justifies the names lower/upper approximations. Moreover, the boundary is defined as the collection of objects belonging to the upper approximation but not to the lower approximation, i.e., Bnd(H) = U (H) \ L(H), while the exterior is the collection of objects not belonging to the upper approximation: E(H) = U c (H). The interpretation attached to these regions is that the objects in the lower approximation surely belong to H, the objects in the exterior surely do not belong to H and the objects in the boundary possibly belong to H. Hence, the boundary represents the uncertainty on the domain we are describing due to the insufficient ability of the attributes to discern among objects.

Other forms of imprecision arise in decision tables, when considering the decision attributes D. Indeed, it may happen that two objects with same conditions have different decision. In this case the decision table is said to be nondeterministic, and it is useful to introduce the generalized decision. Assume for simplicity that we have a single decision attribute, that is D = {d}. Then, the generalized decision for an object x, based on the attribute set B ⊆ Att, is the set of all decisions that have been associated to objects that are B-indiscernible from x, that is they have the same values as x on all attributes in B. Formally, the generalized decision is defined as:

δ B (x) = {i ∈ V d : ∃y ∈ X s.t. F (y, d) = i and xI B y},
that is, for a given set of conditions, it collects all the possible decisions.

Example 2.10. The generalized decision of Table 3 with respect to the whole collection of condition attributes is δ(

x 1 ) = {A}, δ(x 2 ) = {B}, δ(x 3 ) = {N O}, δ(x 4 ) = δ(x 5 ) = {A, N O}.
Thus, in a non-deterministic situation, only a subset of objects can be precisely classified. These objects form the so-called positive region of the decision table, defined as

P OS B (X, d) = x∈X L B ([x] {d} ) = {x ∈ X : |δ B (x)| = 1}. ( 11 
)
Example 2.11. Let us consider objects p 4 , p 5 in Table 3. Clearly, using the available symptoms (the condition attributes), we are not able to distinguish them, but on the other hand it is known that they have a different disease (the decision attribute). The positive region captures this uncertainty by not considering p 4 and p 5 . Indeed, once fixed X = {p 1 , . . . , p 5 } and Att the set of all condition attributes, we have

P OS Att (X, d) = {p 1 , p 2 , p 3 }.
Finally, the Coefficient of Dependence of a decision d, given a set of attributes B ⊆ Att represents the relative size of the positive region, thus providing a numeric representation of the granularity of the indiscernibility relation. This is defined as:

Dip(B, d) = |P OS B (X, d)| |X| . (12) 

Rough Sets: generalizations

Several generalizations of the basic rough set model have been introduced in the literature [START_REF] Yao | Generalized rough sets[END_REF][START_REF] Yao | Generalized rough set models[END_REF]. They are motivated by applications, e.g., to weaken the requirement of equivalence when generating the approximations, or by theoretical consideration. For instance, by interpreting the approximations as operators in a modal logic, we can obtain in a straightforward manner several new rough set models [START_REF] Yao | Generalization of rough sets using modal logics[END_REF]. In the following, we recall the models that are the most relevant to the forthcoming discussion.

Generalized relation. The classical model recalled in Section 2.2 is based on an equivalence relation, i.e. a reflexive, symmetric and transitive relation. By weakening or getting rid of some of these properties we obtain generalized models [START_REF] Kondo | On the structure of generalized rough sets[END_REF][START_REF] Yao | Generalization of rough sets using modal logics[END_REF][START_REF] Zhu | Generalized rough sets based on relations[END_REF]. Particularly interesting are similarity (reflexive and symmetric) relations [START_REF] Vanderpooten | Similarity relation as a basis for rough approximations[END_REF], which can account for not exactly equal instances but similar ones. For instance, we can group objects with at least 80% of equal attributes or we can impose that two objects are similar if their distance (on a set of numerical features) is less than a fixed threshold. Moreover, dominance (reflexive and transitive) relations give rise to the so-called Dominance Based Rough Set approach (DRSA) [START_REF] Slowinski | Rough set methodology for decision aiding[END_REF], which can handle ordinal attributes. In general, given any binary relation R ⊆ X × X, the granule associated to x ∈ X is defined as R(x) = {y ∈ X : (x, y) ∈ R}. Thus, R(x) collects all objects that are R-related to x. Then, lower and upper approximation operators L, U : 2 X → 2 X are defined as:

L(H) = {x ∈ X : R(x) ⊆ H}, (13) 
U (H) = {x ∈ X : R(x) ∩ H = ∅}. (14) 
Interval Rough Sets. Interval structures (also called interval algebras) represent another possible generalization of the classical model [START_REF] Wong | On modeling uncertainty with interval structures[END_REF]. In interval rough sets, which are directly inspired by the multi-valued mapping in Dempster's original study of belief functions [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF], the approximation operators (i.e., the lower and upper approximations) are determined by a multi-valued mapping between two universe sets, or, equivalently, by a compatibility relation on the same two universes. Namely, let X, Y be two sets and R ⊆ X × Y be a binary relation. Relation R defines a multi-valued mapping r :

X → 2 Y s.t., for each x ∈ X, r(x) = {y ∈ Y : (x, y) ∈ R}. Approximation operators L, U : 2 Y → 2 X
can then be defined as:

L(H) = {x ∈ X : r(x) ⊆ H}, U (H) = {x ∈ X : r(x) ∩ H = ∅},
where H ⊆ Y . Usually, it is required that relation R is at least serial, in order to be consistent with models of rough sets based on generalized relations. In particular, it is easy to observe that the interval rough set model extends the model based on generalized relations: in particular, generalized relation models coincide with interval rough sets when the two universe sets are the same, i.e. X = Y (in which case R is a binary relation on X).

Approximation spaces. An approximation space [START_REF] Cattaneo | Investigation about time monotonicity of similarity and preclusive rough approximations in incomplete information systems[END_REF][START_REF] Cattaneo | Abstract approximation spaces for rough theories[END_REF] is an abstraction of the environment of rough set theory. Basically, the granulation of the universe is given for granted and it is the starting point, instead of being built from data. It is no longer necessarily a partition, but it can be a covering or a partial covering, or even a more complex structure. Generally, it comes with a set of axioms that the granules or the induced approximations should satisfy.

Definition 2.4. An approximation space is a pair (X, G(X)), where G(X) is a granulation of the universe, i.e., a collection of sets

G(X) = {G(x) : x ∈ X}, such that x∈X G(x) = X.
Obviously, the approximation space and generalized relation models are related. Indeed, the neighborhood generated by any relation forms a granulation. In the particular case where the approximation space is generated by a binary relation R, we will denote it as (X, R).

While approximation spaces represent a generalization of information tables, the same idea can be applied to generalize decision tables instead: Definition 2.5. A decision approximation space is a triple (X, G(X), D(X)), where (X, G(X)) is an approximation space and D(X) is a partition of X into decision classes. That is, D(X) = {X 1 , ..., X d }, where the decision classes X 1 , . . . X d are pairwise disjoint and cover X.

Compared to approximation spaces, in decision approximation spaces only the sets corresponding to the decision classes are deemed relevant.

Several definitions of approximation have been studied on approximation spaces. Only considering covering-based rough sets (i.e., approximation space models in which the granulation is a covering), more than 30 approximations are known [START_REF] Yao | Covering based rough set approximations[END_REF]. In the following, we will not assume a particular definition of approximation, but we will require that the approximation operators satisfy the following three axioms:

(R1) L(H c ) = [U (H)] c ; (R2) L(H) ⊆ X; (R3) If H ⊆ K then L(H) ⊆ L(K).
Fuzzy Rough Sets. Fuzzy rough sets [START_REF] Dubois | Rough fuzzy sets and fuzzy rough sets[END_REF] represent another possible generalization of the Pawlak's equivalence relation-based model. In the Fuzzy Rough Set model, the relation R is assumed to be a fuzzy relation, that is a function R : X × Y → [0, 1], and then the triple F = (X, Y, R) is called a fuzzy approximation space. Since X and Y are allowed to be different, fuzzy approximation spaces can be understood as a generalization of the previously described Interval Rough Set model. Based on a fuzzy approximation space F , the lower and upper approximations of any fuzzy set H : Y → [0, 1] can be defined as [START_REF] Wu | On characterizations of (i, t)-fuzzy rough approximation operators[END_REF][START_REF] Wu | On generalized fuzzy belief functions in infinite spaces[END_REF]:

L(H)(x) = y∈Y (R(x, y) =⇒ H(y)) (15) 
U (H)(x) = ¬L(¬H)(x) (16) 
where =⇒ is a fuzzy implication, ∧ is a t-norm and ¬ is a negation operator.

For each fuzzy set H, the pair (L(H), U (H)) is called a fuzzy rough set. Fuzzy rough sets keep many relevant properties of classical rough set models, and have been subject to a rich theoretical development in the recent years. Though we do not provide further details in this sense, as such a topic could be the subject of another review due to its scope, we refer the interested reader to [START_REF] Cornelis | Fuzzy rough sets: from theory into practice[END_REF][START_REF] Vluymans | Applications of fuzzy rough set theory in machine learning: a survey[END_REF][START_REF] Wu | On characterizations of (i, t)-fuzzy rough approximation operators[END_REF][START_REF] Wu | On generalized fuzzy belief functions in infinite spaces[END_REF] for further details and developments. As a final note, we remark that the notion of fuzzy rough sets generalizes the definition of an interval rough set. Indeed, if H is a crisp set (i.e., for all x ∈ X, H(x) ∈ {0, 1}) and R is a crisp relation, then the two definitions coincide.

Feature Selection and Classification

Feature selection in rough set theory is based on the central notion of reduct. A reduct of a set of attributes (that is, features) is a subset of attributes that conveys the same information as the whole set, specifically, the same equivalence relation in the basic rough set model. Thus, a reduct can help in understanding which feature is relevant and which not and, as such, to perform feature selection and dimensionality reduction.

Definition 2.6 (Reduct in information table). Given an information table, a set of attributes B 1 is a reduct of B 2 , with B 1 ⊆ B 2 if: (R1) xI B1 y =⇒ xI B2 y, i.e.

the set of attributes B 1 gives an indiscernibility

relation R which is the same as (or finer than) the one given by B 2 ;

(R2) A minimality condition holds:

C ⊂ B 1 s.t. C satisfies condition (R1).
In general, multiple reducts may exist, but it can happen that some attributes belong to all the reducts. This set of attributes is named the core and it represents the set of indispensable features. We can thus divide the features in three categories: indispensable (the core), important but dispensable (belonging to some reducts but not to the core), useless (not belonging to any reduct). However, this clear-cut distinction may not be satisfying in many situations, where we may tolerate some error and thus define a grade of dispensability or otherwise stated importance of the different features. This leads to what are called approximate reducts [START_REF] Nguyen | Approximate reducts and association rules[END_REF]. Let us remark the following points on reducts:

-Computing the shortest reduct is a N P -hard problem, while computing the set of all reducts is a N P N P -hard problem [START_REF] Skowron | The discernibility matrices and functions in information systems[END_REF][START_REF] Umans | On the complexity and inapproximability of shortest implicant problems[END_REF]. Hence, several heuristic and approximation algorithms have been proposed to address the problem of finding reducts, see, e.g., the surveys [START_REF] Bello | Rough sets in machine learning: A review[END_REF][START_REF] Thangavel | Dimensionality reduction based on rough set theory: A review[END_REF].

-Several generalized definitions have been given, in particular in cases of inconsistent [START_REF] Zhang | Approaches to knowledge reductions in inconsistent systems[END_REF] and incomplete data [START_REF] Kryszkiewicz | Rough set approach to incomplete information systems[END_REF]. For a recent survey, see [START_REF] Jia | Generalized attribute reduct in rough set theory[END_REF].

When the available information is in the form of a decision table, reducts can be defined in different ways, e.g., based on the generalized decision, or on the positive region:

Definition 2.7 (Reduct in decision table -generalized decision). Given a de- cision table, a set of attributes B 1 is a reduct of B 2 , with B 1 ⊆ B 2 , if (RG1) B 1 and B 2 generate the same generalized decision: for all objects x ∈ X, δ B1 (x) = δ B2 (x); (RG2) Minimality: C ⊂ B 1 s.t. δ C = δ B1 = δ B2 . Definition 2.8 (Reduct in decision table -positive region). Given a decision table, a set of attributes B 1 is a reduct of B 2 , with B 1 ⊆ B 2 , if (RP1) Dip(B 1 , d) = Dip(B 2 , d); (RP2) Minimality: ∃C ⊂ B 1 such that Dip(C, d) = Dip(B 1 , d).
Example 2.12. Consider the decision table given in Table 3. The set of attributes R = {T emperature, P ressure} is a generalized decision-based reduct of Att. Indeed, for Att we have that δ Att ([

p 1 ] Att = {p 1 }) = {A}, δ Att ([p 2 ] Att = {p 2 }) = {B}, δ Att ([p 3 ] Att = {p 3 }) = {N O}, δ Att ([p 4 ] Att = {p 4 , p 5 }) = {N O, A}.
The same equivalences can be shown to hold also for R. More generally, it can be shown that the only other reduct is {T emperature, Headache}. Thus, in particular, the core is equal to {T emperature} The same conclusion also holds for positive region-based reducts. Indeed, the positive region determined by Att is P OS Att (X, d) = {p 1 , p 2 , p 3 }. Thus, the set of attributes R = {T emperature, P ressure} is a reduct, since P OS R (X, d) = P OS Att (X, d) = {p 1 , p 2 , p 3 }. Similarly, the set {T emperature, Headache} is also a reduct and thus, also in this case, the core is equal to {T emperature}.

Many other definitions of a reduct exist [START_REF] Jia | Generalized attribute reduct in rough set theory[END_REF][START_REF] Slezak | Dynamic and discernibility characteristics of different attribute reduction criteria[END_REF]: the relationships among these different models have recently been explored in [START_REF] Slezak | Dynamic and discernibility characteristics of different attribute reduction criteria[END_REF].

Finally, we note that reducts can be useful not only for feature selection but also to perform classification [START_REF] Bello | Rough sets in machine learning: A review[END_REF][START_REF] Stefanowski | On rough set based approaches to induction of decision rules[END_REF]. Indeed, classification rules can be deduced from a reduct. Let us consider a reduct R = {a 1 , a 2 , . . . , a n }. Then, for any object equivalence class [x] R , we can define the rule

If (a 1 = F (x, a 1 )) and . . . and (a n = F (x, a n )) then d ∈ δ R (x).
Intuitively, such a rule can be used for classifying new objects: if the new object x to be classified fits the pattern described by the antecedent of a given rule (i.e., x belongs to some equivalence class [y] R , where R is a reduct), then its decision should be one of those in the associated generalized decision (i.e., the correct classification for x lies in δ R (y)).

that "certainly" belong to the cluster, and an upper cluster u(c), i.e., the elements that "possibly" belong to the cluster. Thus, rough clustering (similarly to evidential clustering reviewed in Section 2.1.2) is a soft clustering model, since the assignment of objects to clusters is not necessarily clear-cut.

Multiple rough clustering approaches have been considered in the literature [START_REF] Lingras | Evolutionary rough k-means clustering[END_REF][START_REF] Lingras | Applying rough set concepts to clustering[END_REF][START_REF] Murugesan | A new initialization and performance measure for the rough k-means clustering[END_REF][START_REF] Peters | Rough clustering utilizing the principle of indifference[END_REF][START_REF] Peters | Is there any need for rough clustering?[END_REF][START_REF] Sivaguru | Performance-enhanced rough k-means clustering algorithm[END_REF][START_REF] Ubukata | Objective function-based rough membership c-means clustering[END_REF], see also the section on clustering in the review by Bello and Falcon [START_REF] Bello | Rough sets in machine learning: A review[END_REF]. Nonetheless, the rough clustering model itself has been formalized by Lingras and Peters in [START_REF] Lingras | Applying rough set concepts to clustering[END_REF], using the following three axioms: (RC1) Any instance x belongs to at most one lower approximation:

∀x ∈ X, ∃ l(c), u(c) s.t. x ∈ l(c) ⇒ ∃! l(c), u(c) s.t. x ∈ l(c);
(RC2) For each cluster, the lower approximation is contained in the upper one:

∀ l(c), u(c) , l(c) ⊆ u(c);
(RC3) If an object x does not belong to any lower approximation, then it belongs to at least two upper approximations:

∀x ∈ X, l(c), u(c) s.t. x ∈ l(c) ⇒ ∃ l(c i ), u(c i ) , l(c j ), u(c j ) , i = j s.t. x ∈ u(c i ), u(c j ).
Example 2.14. Let X = {x 1 , ..., x 5 } and

C = {c 1 , c 2 , c 2 }. Then l(c 1 ) = {x 1 , x 2 }, u(c 1 ) = {x 1 , x 2 , x 3 }, l(c 2 ) = {x 4 }, u(c 2 ) = {x 3 , x 4 , x 5 } and l(c 3 ) = ∅, u(c 3 ) = {x 5 } is a rough clustering.
Yao et al. in [START_REF] Yao | Interval set cluster analysis: A re-formulation[END_REF] introduced interval-set clustering and Yu in [START_REF] Yu | A framework of three-way cluster analysis[END_REF] introduced three-way clustering. As in rough clustering, in both interval-set clustering and three-way clustering (which are equivalent, from a formal point of view) each cluster c is approximated by a lower and an upper approximation [c l , c u ]. However, they impose different conditions on the clusters: (IC1) The lower approximation of any cluster cannot be empty: ∀c, c l = ∅;

(IC2) The upper approximations are a covering of the universe: c c u = X;

(IC3) All lower approximations are disjoint: ∀i, j, i = j ⇒ c i l ∩ c j l = ∅. Example 2.15. Let X = {x 1 , ..., x 5 } and C = {c 1 , c 2 , c 2 }.
Consider the rough clustering defined in Example 2.14. Then, the latter one is not a three-way clustering, since l(c 3 ) = ∅. On the other hand, consider

c 1 l = {x 1 , x 2 }, c 1 u = {x 1 , x 2 , x 3 }, c 2 l = c 2 u = {x 4 } and c 3 l = c 3 u = {x 5 }.
Then, this is a three-way clustering. Notice, however, that this is not a rough clustering: indeed x 3 belongs only to a single boundary set, namely c 1 u .

The two sets of axioms are related. Indeed, obviously, IC3 is equivalent to axiom RC1. Also, it can be easily seen that axioms IC1, IC2, IC3 imply axiom RC2 while, conversely, axioms RC1, RC2, RC3 imply axiom IC2. However, the two systems are not equivalent. Indeed, rough clustering allows lower approximations to be empty (and in this case, the corresponding objects are required to belong to at least two upper approximations), which is not allowed in three-way clustering due to axiom IC1. On the other hand, three-way (and interval-set) clustering allows objects to be in only one upper approximation, which is not allowed in rough clustering due to axiom RC3. Nonetheless, in [START_REF] Campagner | Orthopartitions and soft clustering: soft mutual information measures for clustering validation[END_REF], it has been shown that any three-way clustering can be represented as an equivalent rough clustering by including a noise cluster, i.e., a cluster to which the object that belong to only a single upper approximation are assigned. For recent work on interval-set and three-way clustering see [START_REF] Afridi | Variance based three-way clustering approaches for handling overlapping clustering[END_REF][START_REF] Afridi | A three-way clustering approach for handling missing data using GTRS[END_REF][START_REF] Wang | CE3: a three-way clustering method based on mathematical morphology[END_REF][START_REF] Yu | An efficient three-way clustering algorithm based on gravitational search[END_REF][START_REF] Yu | A three-way density peak clustering method based on evidence theory[END_REF][START_REF] Yu | A three-way clustering method based on an improved DBSCAN algorithm[END_REF], as well as the section on clustering in the recent review by Campagner et al. [START_REF] Campagner | Three-way decision for handling uncertainty in machine learning: A narrative review[END_REF].

Knowledge representation

In this section, we review the most relevant results concerning the theoretical relationship between rough set belief function theories, focusing, in particular, on the knowledge representation aspect of these two frameworks. In Section 3.1 we recall the basic results relating Pawlak's rough set model with belief functions, while in Section 3.2 we consider extensions of these results to more general rough set models. Finally, in Section 3.3, we consider knowledge representation models that combine rough sets and belief functions to represent uncertain and imprecise data.

Pawlak rough sets

The link between Pawlak rough sets and belief functions is evident from their definitions, and it was already recognized in the first years after Pawlak seminal work on rough sets. Indeed, in the introduction of "Rough sets and probability" [START_REF] Pawlak | Rough probability[END_REF], we can read: the inner and outer probabilities considered in this paper may be viewed as a special case of lower and upper probabilities introduced by Dempster and as a special case of Shafer's belief theory.

Formally, given the lower and upper approximations, defined as in Pawlak's rough set model, we can define a pair of belief and plausibility functions, as stated in the following proposition.

Proposition 3.1 ([77]

). Let L, U be the lower and upper approximations induced by an equivalence relation, according to [START_REF] Campagner | The three-way-in and three-way-out framework to treat and exploit ambiguity in data[END_REF], on a universe X. Then, for all H ⊆ X,

Bel(H) = |L(H)| |X| , (17a) 
P l(H) = |U (H)| |X| (17b)
are a pair of dual belief and plausibility functions. The corresponding bba is:

m(H) = |H| |X| if H is an equivalence class 0 otherwise. . (18) 
Conversely, given a pair of belief and plausibility functions we can give the conditions in order to obtain a pair of lower and upper approximations. Then, there exists an equivalence relation R such that the derived lower and upper approximations satisfy [START_REF] Chen | Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[END_REF]. More precisely, R is defined as:

R = {(x, y) ∈ X 2 : ∃H ∈ F m s.t.
x, y ∈ H}.

Example 3.1. Consider the decision table given in Table 3, and let B = {Headache, P ressure}. Then, the equivalence classes are

[p 1 ] B = {p 1 }, [p 2 ] B = {p 2 }, [p 3 ] B = {p 3 } and [p 4 ] B = {p 4 , p 5 }. Thus, B determines the mass function m B s.t. m B ({p 1 }) = m B ({p 2 }) = m B ({p 3 }) = 1 5 and m B ({p 4 , p 5 }) = 2 5 . If we let H = {p 1 , p 2 , p 4 }, it holds that Bel(H) = 2
5 and P l(H) = 4 5 . The interpretation of the relation between, on the one hand, the lower/upper approximations L, U and, on the other hand, the belief/plausibility functions Bel, P l is particularly intuitive when we consider a decision table. In this setting [START_REF] Skowron | From rough set theory to evidence theory[END_REF], the following result holds: [START_REF] Skowron | From rough set theory to evidence theory[END_REF]). Let S = (X, Att, d, V, F ) be a decision table, let B ⊆ Att and let δ B be the generalized decision defined by B. Denote with X i = {x ∈ X : F (x, d) = i} the decision class corresponding to decision i. Then, we can define a bba m B S : 2

Proposition 3.3 ([
V d → [0, 1], s.t. ∀∆ ⊆ V d : m B S (∆) = |{x ∈ X : δ B (x) = ∆}| |X| (19a) Bel B S (∆) = |L( i∈∆ X i )| |X| (19b) P l B S (∆) = |U ( i∈∆ X i )| |X| (19c)
Thus, the belief (resp., plausibility) of a set of decision values can be interpreted naturally as the probability of its lower (resp., upper) approximation, while the bba can be naturally interpreted as assigning to each possible set of decision values the corresponding probability (or, frequency). Furthermore, the authors of [START_REF] Skowron | From rough set theory to evidence theory[END_REF] also show an interesting relationship between Dempster's rule of aggregation and the independent product of two decision tables defined as follows:

Definition 3.1. Let S 1 = (X 1 , Att 1 , d 1 , V 1 , F 1 ), S 2 = (X 2 , Att 2 , d 2 , V 2 , F 2 )
be two decision tables. The independent product S 1 S 2 is defined as the decision table S = (X, Att, d) given by:

(i) X = (X 1 × X 2 ) \ (X 1 ⊗ X 2 ); (ii) d((x 1 , x 2 )) = δ Att1 (x 1 ) ∩ δ Att2 (x 2 ); (iii) Att = Att 1 + Att 2 = (Att 1 × {1}) ∪ (Att 2 × {2}); (iv) V = V 1 ∪ V 2 ; (v) For (a, i) ∈ Att and (x 1 , x 2 ) ∈ X, F ((x 1 , x 2 ), (a, i)) = F i (x i , a)
where

X 1 ⊗ X 2 = {(x 1 , x 2 ) ∈ X 1 × X 2 : δ Att1 (x 1 ) ∩ δ Att2 (x 2 ) = ∅}.
Under the definition given above, the bba obtained from the independent product of two decision tables is shown in [START_REF] Skowron | From rough set theory to evidence theory[END_REF] to be equivalent to the Dempster combination of the corresponding bbas. That is, the following result holds: [START_REF] Skowron | From rough set theory to evidence theory[END_REF]). Let S 1 , S 2 be two decision tables. Then:

Proposition 3.4 ([
m S1 S2 = m S1 ⊗ m S2 .
This result implies that, intuitively, Dempster's rule of combination (at least when restricted to bbas that can arise from Pawlak's rough sets, that is bbas for which the collection of focal sets is a partition) can be interpreted as an operation of combination on the underlying sources of information (that is, the decision tables).

Remarks and Prospects. About the interpretation of the link shown above, Pawlak stated [START_REF] Pawlak | Rough sets[END_REF]:

Rough set theory is objective -for a given information table, qualities of corresponding approximations are computed. On the other hand, the Dempster-Shafer theory is subjective -it is assumed that values of belief (or plausibility) are given by an expert. This comment highlights how the rough set-theoretic approach, at least as originally conceived by Pawlak, can be understood as being of value only insofar as it is directly linked with, and grounded on, the available data, which should guide the application of the theory in practical scenarios. This is contrasted with Dempster-Shafer theory, in which knowledge (as represented by a belief/plausibility function) is elicited by a human expert (hence, subjective). Although this comment is correct in highlighting the fact that rough sets and belief functions may have different interpretations and semantics, it neglects the fact that, in practical applications, belief functions are not necessarily expertelicited but can also be computed from the data (in the same way as reducts or decision rules in rough set theory). In this sense, the equivalences in [START_REF] Skowron | The rough sets theory and evidence theory[END_REF][START_REF] Yao | Interpretation of belief functions in the theory of rough sets[END_REF] can be interpreted as a way to compute belief and plausibility functions based on available data, by means of rough set theory. This semantics has been considered, e.g., also in [START_REF] Wierzchoń | Empirical models for the Dempster-Shafer theory[END_REF][START_REF] Skowron | From rough set theory to evidence theory[END_REF] where the authors also provide an interpretation of the Dempster's rule of combination, in terms of a combination operator on information tables which is conceptually similar to a join between relations (in the sense of relational algebra). Despite these interesting links and interpretations, we believe that further research should be devoted at understanding the relationship between other fundamental concepts in belief function theory (such as, e.g., other combination rules, marginalization, vacuous extension, etc.) and Pawlak's rough set model.

Generalized rough sets

Starting from the initial results regarding the connection between Pawlak's model and belief functions, similar results have also been explored for generalized rough set models. Proposition 3.5 ([118]). Let us consider an approximation space (X, R), where R is at least a serial relation, with the lower and upper approximation defined according to (13)- [START_REF] Cattaneo | Abstract approximation spaces for rough theories[END_REF]. Then, a pair of dual belief and plausibility functions can be defined as in [START_REF] Chen | Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[END_REF]. The corresponding bba is defined as

m(H) = |{x ∈ X : R(x) = H}| |X| . (20) 
So, to any serial relation corresponds a belief assignment such that the mass can assume only rational values. Indeed, the converse of the above proposition exactly confirms this relationship.

Proposition 3.6 ([118]

). Let Bel and P l be a belief and plausibility such that for all subsets H ⊆ X, m(H) is a rational number with denominator |X|. Then, there exists a serial relation R such that the derived lower and upper approximations satisfy [START_REF] Chen | Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[END_REF]. In particular, we can define

R(x) = {y ∈ X : ∃H ∈ F m s.t. {x, y} ⊆ H}.
More recently, Zhang et al. [START_REF] Zhang | Relationships between relation-based rough sets and belief structures[END_REF] also showed that the properties of the relation R uniquely determine the properties of the collection F of focal sets for the corresponding belief function, and vice-versa. Namely, the following result holds: Proposition 3.7 ( [START_REF] Zhang | Relationships between relation-based rough sets and belief structures[END_REF]). Let (X, R) be an approximation space, with R being at least serial, and let F be the collection of focal sets determined by the belief function induced by (X, R) according to [START_REF] Chen | Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[END_REF]. Then:

-R is symmetric iff ∃φ : X → F s.t. ∀x, y ∈ X, x ∈ φ(y) iff y ∈ φ(x); -R is transitive iff ∃φ : X → F s.t. ∀x, y ∈ X, x ∈ φ(y) =⇒ φ(x) ⊆ φ(y); -R is reflexive iff ∃φ : X → F s.t. ∀x ∈ X, x ∈ φ(x).
In order to consider any rational number, we have to take into account interval rough sets. Indeed, in this case, similar propositions as the previous ones can be obtained by substituting the approximations obtained by a serial relation with the ones obtained by a relation in interval rough sets. Namely, the following result holds: Proposition 3.8 ( [START_REF] Yao | Interpretation of belief functions in the theory of rough sets[END_REF]). Let (X, Y, R) be an interval structure, with R ⊆ X × Y being at least a serial relation. Then a pair of dual belief and plausibility functions can be defined as in [START_REF] Chen | Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[END_REF].

As in the previous cases, also the converse result holds, namely: Proposition 3.9. Let Bel and P l be a belief and plausibility functions such that, for each subset H ⊆ X, m(H) is a rational number. Then, there exists an interval structure (X, Y, R) such that the derived lower and upper approximations satisfy [START_REF] Chen | Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[END_REF]. In particular, assume that there exists a mapping Γ : X → 2 Y and a probability distribution P on X s.t. for all A ⊆ Y ,

m(A) = x∈X:Γ(x)=A P (x).
Then, the compatibility relation R can be defined by (x, y) ∈ R ⇐⇒ y ∈ Γ(x).

As already noted in Section 2.2.1, this relationship is not particularly surprising, since the definition of interval rough sets has been directly inspired by belief function theory [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF]. The same results have also been extended to general continuous belief function by means of random information systems [START_REF] Wu | Knowledge reduction in random information systems via Dempster-Shafer theory of evidence[END_REF], in which a probability distribution P on the objects (or, on the σ-algebra determined by the given relation) is also given.

More recently, Tan et al. [START_REF] Tan | A unified framework for characterizing rough sets with evidence theory in various approximation spaces[END_REF] also investigated the relationship between general approximation spaces and belief functions. Definition 3.2. Let (X, G(X)) be an approximation space. Given an element a ∈ X, we define:

-The approximated set of a as the collection of sets for which a belongs to the corresponding lower approximation, that is G(a) = {A ⊆ X : a ∈ L(A)};

-The minimal approximated set of a as the collection of sets, within the approximated set of a, for which no subset is also in the approximated set of a. That is,

M G (x) = {A ∈ G(a) : ∀B ∈ G(a), B ⊆ A ⇒ B = A}.
For each set H, we then define j(H) = {x : H ∈ M G (x)}, that is j(H) is the set of all objects for which H is in the corresponding minimal approximated set.

In case of an approximation space the following proposition can be proved.

Proposition 3.10 ([89]

). Given an approximation space and a pair of lowerupper approximations on (X, G) satisfying properties (R1)-(R3), 1. We can define a basic belief assignment on the universe X as

m(H) = 0 j(H) = ∅ 1 |X| x∈j(H) 1 |M G (x)| otherwise; 2. ∀x, |M G (x)| = 1 iff ∀H ⊆ X, Bel(H) = |L(H)| |X| and P l(H) = |U (H)| |X| .
In case of a decision approximation space, we need similar definitions as before, but referred to a decision class. Definition 3.3. Let (X, G(X), D(X)) be a decision approximation space. Given an element a ∈ X, we define -The approximated set of a as the set G(a) = {A ⊆ X : a ∈ A, A ⊆ L(X i ) for some decision class X i };

-The minimal approximated set of a as the set

M G (x) = {A ∈ G(a) : ∀B ∈ {G}(a), B ⊆ A ⇒ B = A}; -j(H) = {x ∈ X : H ∈ M G (x)}.
Then, the following result holds.

Proposition 3.11 ([89]

). Given a decision approximation space and a pair lower-upper approximations on (X, G(X), D(X)) satisfying properties (R1)-(R3), 1. We can define a basic belief assignment on the universe X as

m(H) = 0 j(H) = ∅ 1 |P os| x∈j(H) 1 |M G (x)| otherwise ; 2. For all decision class X i , Bel(X i ) = |L(Xi)| |P os| and P l(X i ) = |U (Xi)| |P os| .
Finally, the relationship between belief function theory and rough set theory has been explored also in the fuzzy setting, by drawing a connection between fuzzy rough set models [START_REF] Dubois | Rough fuzzy sets and fuzzy rough sets[END_REF][START_REF] Wu | On generalized fuzzy belief functions in infinite spaces[END_REF] and fuzzy belief functions [START_REF] Biacino | Fuzzy subsethood and belief functions of fuzzy events[END_REF][START_REF] Lucas | Generalization of the Dempster-Shafer theory: a fuzzy-valued measure[END_REF][START_REF] Denoeux | Belief functions induced by random fuzzy sets: A general framework for representing uncertain and fuzzy evidence[END_REF]. In particular, Wu et al. [START_REF] Wu | On generalized fuzzy belief functions in infinite spaces[END_REF] proved that, given a fuzzy approximation space (X, Y, R) and a fuzzy set H, the lower and upper probabilities of H,

P (H) = x∈X L(H)(x) (21) 
P (H) = x∈X U (H)(x) (22) 
are exactly the belief and plausibility of the fuzzy event H [START_REF] Biacino | Fuzzy subsethood and belief functions of fuzzy events[END_REF][START_REF] Denoeux | Belief functions induced by random fuzzy sets: A general framework for representing uncertain and fuzzy evidence[END_REF]. Furthermore, they show that Propositions 3.8, 3.10 and 3.11 similarly apply to the fuzzy case, and can also be extended to the case where X is infinite, by noting that P (H), P (H) are always, respectively, a fuzzy monotone Choquet capacity and a fuzzy alternating Choquet capacity of infinite order (hence, they always defined fuzzy belief and fuzzy plausibility functions). Furthermore, the results obtained by Wu et al. [START_REF] Wu | On generalized fuzzy belief functions in infinite spaces[END_REF] have also been more recently extended to more general families of fuzzy approximation spaces, including fuzzy converings [START_REF] Feng | The reduction and fusion of fuzzy covering systems based on the evidence theory[END_REF].

Remarks and Prospects. In regard to the interpretation of these results, the same comments made for Pawlak rough sets hold. A particularly important direction of research is to determine in which cases (both practical and theoretical) the above mentioned relationships can be proved useful. So far, results in this sense have been proposed only for generalized relation models: for example, the relationship between similarity-based rough sets (i.e. rough set models in which the underlying relation is symmetric and reflexive) and belief functions has been studied in the setting of feature selection with missing or set-valued data (see Section 4.2). Similar relationships and practical applications for the more general results presented in this section have not been considered in the literature. Consequently, similarly to the case of Pawlak's rough sets model, the semantics and usefulness of the presented results should be further clarified. Further, in this survey we only provided a short account of the results dealing with the fuzzy case: this is a necessary consequence of the broadness of this topic. Nonetheless, due to recent interest in this area, also from an applicationoriented point of view (see, e.g., [START_REF] Denoeux | Belief functions induced by random fuzzy sets: A general framework for representing uncertain and fuzzy evidence[END_REF][START_REF] Lu | Belief and plausibility functions of type-2 fuzzy rough sets[END_REF][START_REF] Hu | Representation of multigranularity fuzzy rough sets and corresponding belief structure[END_REF]), further work should be devoted at exploring this rich subject.

Uncertain Decision Tables

An uncertain decision table [START_REF] Trabelsi | Classification systems based on rough sets under the belief function framework[END_REF] is a decision table where the decision attribute is not exactly known and the uncertainty is expressed in the form of a belief basic assignment on the possible values. Definition 3.4. An uncertain decision table (UDT) is a structure (X, Att ∪ {d}, V al, F, {m x } x∈X ), where (X, Att∪{d}, V al, F ) is a decision table according to Definition 2.3 and, for each x ∈ X, m x : 2 V al d → [0, 1] is a basic belief assignment on the set of decision values.

Example 3.2. In Table 4, we illustrate an example of an UDT.

Due to this generalized definition, a new definition of decision classes is required. In [START_REF] Trabelsi | Classification systems based on rough sets under the belief function framework[END_REF], they are defined according to a tolerance (that is, similarity) relation based on the distance between two bbas. Given a decision value v ∈ V al d , let m v be a bba s.t. m v ({v}) = 1. Then, given a threshold θ, the θtolerance class X v represents the collection of all objects x whose bba-valued decision is not too dissimilar from the bba associated to the decision v. Formally, this can be defined as where dist denotes Jousselme's distance [START_REF] Jousselme | Distances in evidence theory: Comprehensive survey and generalizations[END_REF] 

X v = {x ∈ X : dist(m v , m x ) < 1 -θ},
defined as dist(m 1 , m 2 ) = 1 2 ( -→ m 1 2 + -→ m 2 2 -2 -→ m 1 , -→ m 1 ), (23) 
with

-→ m 1 , -→ m 1 = |2 V al d | i=1 |2 V al d | j=1 m 1 (A i )m 2 (A j ) |A i ∩ A j | |A i ∪ A j | , (24) 
and A i , A j ∈ 2 V al d . In [START_REF] Denoeux | Decision-making with belief functions: A review[END_REF], the sum is over all the possible subsets of values that the decision attribute can assume.

Example 3.3. Consider the UDT defined in Example 3.2. Then, if we select θ = 0.75, the θ-tolerance classes are defined as:

X A = {p 1 }, X B = {p 2 }, and 
X N O = {p 3 , p 4 }.
In order to compute the approximations, we first need to combine the bbas inside each equivalence class defined on the condition attributes. In [START_REF] Trabelsi | Classification systems based on rough sets under the belief function framework[END_REF], averaging is proposed for performing this operation. Denote the equivalence class defined according to a set B of condition attributes as [x] B and the aggregated bbas as m [x] B . Then, the lower approximation of the tolerance class X v collects all the objects for which the equivalence class is surely contained in X v and, furthermore, the corresponding averaged bba is not too dissimilar from the bba associated to v. Thus, for each decision class X v , the lower approximation is defined as

L(X v ) = {x ∈ X : [x] B ⊆ X v and dist(m v , m [x] B ) ≤ 1 -θ}. ( 25 
)
The definition of the upper approximation is unchanged. As we show in Section 4.3, the notion of UDT and the above definitions of approximations have been used by Lingras et al. [START_REF] Trabelsi | Classification systems based on rough sets under the belief function framework[END_REF][START_REF] Trabelsi | Heuristic for attribute selection using belief discernibility matrix[END_REF][START_REF] Trabelsi | Belief discernibility matrix and function for incremental or large data[END_REF] to perform feature selection and classification based on uncertain (in particular, evidential) data. -

m [p1] C (A) = 0.67; -m [p1] C (B) = 0.08; -m [p1] C ({A, B}) = 0.05; -m [p1] C (N O) = 0.33; -m [p1] C ({A, N O}) = 0.03; -m [p1] C ({A, B, N O}) = 0.13.
On the other hand, m [p2] C = (m p2 + m p3 )/2, with:

-

m [p2] C (B) = 0.35; -m [p2] C ({A, B} = 0.15; -m [p2] C (N O) = 0.5. Therefore L(X A ) = L(X B ) = L(X N O ) = ∅, while U (X A ) = {p 1 , p 4 , p 5 }, U (X B ) = {p 2 , p 3 } and U (X N O ) = X.
A related, but different, approach to the representation and management of uncertain decision tables using rough sets and belief functions was also considered in [START_REF] Campagner | Rough set-based feature selection for weakly labeled data[END_REF]. In this work, the authors consider a specific form of UDT, in which the decision attribute is set-valued: this implies that the bbas attached to the objects are logical (i.e., they have a single focal set). Based on these definitions, for each equivalence class [x] B induced by a set of attributes B ⊆ Att, we can define a bba whose mass values are simply the relative frequency of each set of decisions, namely

m [x] B (A) = |{y ∈ [x] B : m y (A) = 1}| |[x] B | . ( 26 
)
The authors, however, do not provide a generalization of the approximations, focusing on the problem of finding reducts.

Remarks and Prospects. Interestingly, the definition of approximations in [START_REF] Trabelsi | Classification systems based on rough sets under the belief function framework[END_REF] is based on the average combination rule [START_REF] Murphy | Combining belief functions when evidence conflicts[END_REF] to combine the bbas of the instances in a given equivalence class, rather than Dempster's rule. This alternative rule of combination is also coherent with the semantics of belief functions (indeed, the average of belief functions is still a belief function) and has the effect that the aggregation is always possible, even when two bbas are in conflict. For this reason, the authors suggest that averaging may be better suited to this context than Dempster's rule. Nonetheless, we believe that further research could be devoted to exploring different notions of approximations based on other aggregation operators, such as Dempster's rule or the disjunctive rule (4), which could be useful to account for possible inconsistencies in the UDT.

Similarly, further research could investigate how the approximation defined in ( 25) changes if we consider different distance functions among bbas [START_REF] Jousselme | Distances in evidence theory: Comprehensive survey and generalizations[END_REF].

Applications to Machine Learning

In this section, we discuss the relationships between belief function and rough set theories in the field of Machine Learning, focusing on applications in which the two formalisms, and particularly the theoretical results shown in Section 3, have been related or combined to solve relevant uncertainty representation or management problems. In Section 4.1, we discuss the connections between rough clustering (and related formalisms, such as three-way clustering) and evidential clustering: we first discuss known results about the relationship between rough and evidential clustering, and we provide an original result extending the previously mentioned connection to three-way clustering. In Section 4.2, we focus on the use of rough set and belief function theories to model uncertainty and data missingness in the covariates, studying, in particular, the problem of feature selection. Finally, in Section 4.3, we continue the review of work related to UDTs (see Section 3.3), focusing on the problems of feature selection and rule induction.

Clustering

As highlighted in Section 2.1.2, evidential clustering [START_REF] Denoeux | Beyond fuzzy, possibilistic and rough: An investigation of belief functions in clustering[END_REF] is based on the concept of a credal partition, in which each object x i is assigned a mass function m i describing an uncertain assignment to clusters. It can easily be seen that rough clustering can be understood as a special case of evidential clustering. Indeed, we have the following result: More generally, given any evidential clustering , we can obtain from it a rough clustering. For example, a particularly simple approach to perform such a transformation is to apply the maximum mass rule [START_REF] Denoeux | Beyond fuzzy, possibilistic and rough: An investigation of belief functions in clustering[END_REF]. That is, for each object x, we take the set of clusters A to which the bba m x assigns maximal mass. Then, we say that x is in the upper cluster of every cluster in A: if, furthermore, |A| ≤ 1, then we also say that x is in the lower cluster of A. Formally, we define 

A x = arg max A m(A). Then, if A x = {c}, set x ∈ l(c). Otherwise, for each c ∈ A x , set x ∈ u(c) \ l(c).
(c 1 ) = {x 1 , x 2 }, u(c 1 ) = {x 1 , x 2 , x 5 }, l(c 2 ) = {x 4 }, u(c 2 ) = {x 3 , x 4 , x 5 }, l(c 3 ) = ∅, u(c 3 ) = {x 3 , x 5 }.
Consider, on the other hand, the rough clustering defined in Example 2.14. Then, this can equivalently be represented as the credal partition:

m x1 ({c 1 }) = m x2 ({c 1 }) = 1, m x3 ({c 1 , c 2 }) = 1, m x4 ({c 2 }) = 1, m x5 ({c 2 , c 3 }) = 1.
However, several different criteria can be applied [START_REF] Denoeux | Decision-making with belief functions: A review[END_REF]: in the following example, we show that the decision-theoretic framework described in Section 2.1.1 can be used for this purpose.

Example 4.2. Consider the credal partition introduced in Example 2.7 and let D = {1, 2, 3}, where classification i corresponds to assigning an object to cluster c i . Let U be the utility function described in Table 2, corresponding to the OWA operator with imprecision tolerance α = 0.75. Suppose we select the lower expected utility criterion, then:

-The optimal act for object x 1 is 1, thus x 1 ∈ l(c 1 ); -The optimal act for object x 2 is 1, thus x 2 ∈ l(c 1 ); -The optimal act for object x 3 is {2, 3}, thus x 3 ∈ u(c 2 ) and x 3 ∈ u(c 3 ); -The optimal act for object x 4 is 2, thus x 4 ∈ l(c 2 ); -The optimal act for object x 5 is D, thus x 5 ∈ u(c 1 ), x 5 ∈ u(c 2 ) and

x 5 ∈ u(c 3 ).

By contrast, the problem of finding a relationship between three-way clustering and evidential clustering, to our knowledge, has not been previously studied in the literature. As previously noted, the axioms for rough and three-way clustering are in general incompatible, and this complication obviously arises also in the case of evidential clustering. Nonetheless, in [START_REF] Campagner | Orthopartitions and soft clustering: soft mutual information measures for clustering validation[END_REF], it has been shown that three-way clustering can be represented in terms of rough clustering by adding a so-called noise cluster. Based on this relationship, a correspondence between three-way clustering and evidential clustering can also be found. Namely, let C * = C ∪ {c η }, where c η represents a noise cluster. If C = {m x } x∈X is a credal partition where every bba m x is defined on C * , then we say that C is an extended credal partition. Then, the following result holds: Theorem 4.2. Let C = {m x } x∈X be an extended credal partition satisfying the following conditions:

1. ∀x ∈ X, ∃A x = ∅ s.t. m x (A x ) = 1 and either A x ⊆ C, or A x = {c, c η } for some c ∈ C 2. ∀c ∈ C, ∃x ∈ X s.t. m x ({c}) = 1
Then C corresponds to a unique three-way clustering. Conversely, if T is a threeway clustering, then there is a unique extended credal partition C corresponding to T .

Proof. If C satisfies the two conditions, then we can construct a three-way clustering T C as follows. First, if m x ({c}) = 1, set x ∈ c l . Condition (2) guarantees that, for each cluster c, at least one such object exists. For any other object x, denote as A x the set defined as in condition [START_REF] Afridi | Variance based three-way clustering approaches for handling overlapping clustering[END_REF]. Then, if

|A x | > 1, with A x ⊆ C, set x ∈ c u \ c l for all c ∈ A x . Otherwise (i.e., A x = {c, c η } for some c ∈ C), set x ∈ c u \ c l .
The converse follows in a similar way.

We note that the equivalence expressed in Theorem 4.2 and, more particularly, the transformation from a three-way clustering to the corresponding evidential clustering respects the semantics of belief function theory. Indeed, we can note that, for any given c ∈ C and x ∈ X, it holds that Bel x ({c}) = 1 iff x ∈ c l , and, similarly, P l x ({c}) = 1 iff x ∈ c u .

Example 4.3. Consider the three-way clustering defined in Example 2.15. It is easy to see that this can be equivalently represented as the following extended evidential clustering:

m x1 ({c 1 }) = m x2 ({c 1 }) = 1, m x3 ({c 1 , c η }) = 1, m x4 ({c 2 }) = 1, m x5 ({c 3 }) = 1.
In regard to methods for transforming a general evidential clustering to a three-way clustering, we note that the same techniques used for rough clustering cannot be directly used due to the differences between rough clustering and three-way clustering. In particular, in three-way clustering we need to guarantee that, for each cluster c, at least one object x ∈ X belongs to the lower cluster c l . Nevertheless, we propose a relatively simple transformation criterion based on the decision-theoretic approach introduced in Section 2.1.1.

Basically, we initially set the imprecision tolerance degree α = 1: in this way all objects are assigned to the upper cluster of all clusters. Then, iteratively, we reduce the imprecision tolerance until we obtain an assignment that satisfies the constraints of three-way clustering: namely, we continue decreasing α as long as there is some cluster whose lower cluster is empty. This procedure is guaranteed to stop: in the worst case we reach α = 0, in which case we obtain a hard clustering (which, indeed, is a special case of three-way clustering).

We note that, following this procedure, it may happen that even with α = 0 some of the clusters end up being empty (i.e., the corresponding lower and upper clusters are both empty). Even though this situation is not problematic from a procedural perspective (i.e., the empty clusters can simply be removed), it may indicate that the original evidential clustering algorithm was not able to find a significant clustering structure. As a consequence, such a situation could suggest to apply again the clustering algorithm with different parameter settings (e.g., reducing the number of clusters).

Example 4.4. Consider the credal partition introduced in Example 2.7 and let D = {1, 2, 3}, where classification i corresponds to assigning an object to cluster c i . We have shown in Example 4.2 that the value α = 0.75 does not result in a three-way clustering, since the lower cluster of cluster c 3 is empty. Thus, we need to select a value of α < 0.75. It can easily be shown that for α = 0.55 we obtain the following assignment:

-The optimal act for object x 1 is 1, thus x 1 ∈ c 1 l ; -The optimal act for object x 2 is 1, thus x 2 ∈ c 1 l ; -The optimal act for object x 3 is {2, 3}, thus x 3 ∈ c 2 u and x 3 ∈ c 3 u ; -The optimal act for object x 4 is 2, thus x 4 ∈ c 2 l ; -The optimal act for object x 5 is 3, thus x 5 ∈ c 3 l . Thus, in this case, we obtain a three-way clustering since all lower clusters are non-empty. Furthermore, the obtained three-way clustering is not hard, since object x 3 does not belong to any lower cluster. It can be easily shown that for any α > 0.55, object x 5 is assigned to the upper cluster of all clusters. Thus, the above described procedure would stop at the optimal value α = 0.55.

Remarks and Prospects. Beyond the formal relationships shown above among evidential, rough and three-way clustering, the relative advantages and strengths of the different approaches have rarely been considered. Joshi and Lingras [START_REF] Joshi | Evidential clustering or rough clustering: The choice is yours[END_REF] showed, through a set of illustrative examples on simple toy datasets, that evidential clustering may be more effective at identifying outliers, due the increased flexibility of bbas. By contrast, the main advantage of rough clustering (and, by extension, three-way clustering) is its simplicity [START_REF] Denoeux | Beyond fuzzy, possibilistic and rough: An investigation of belief functions in clustering[END_REF][START_REF] Peters | Soft clustering-fuzzy and rough approaches and their extensions and derivatives[END_REF]: rough clustering techniques are usually more computationally efficient, and also more interpretable (e.g., for visualization). Also, rough clustering was found to be more resistant than evidential clustering to the so-called curse of dimensionality [START_REF] Joshi | Evidential clustering or rough clustering: The choice is yours[END_REF]. Nonetheless, these comments being based on small toy datasets, we believe that future work should be devoted at comparing rough, three-way and evidential clustering from an empirical perspective on real-world datasets, both in terms of performance, and in terms of the possible relationship between rough partitions induced by rough (resp., three-way) clustering algorithms and the rough partitions obtained as approximations to an evidential clustering. A particularly important problem, in this sense, regards the study and design of general evaluation criteria that can be used to compare different forms of soft clustering, such as those proposed in [START_REF] Campagner | Orthopartitions and soft clustering: soft mutual information measures for clustering validation[END_REF][START_REF] Denoeux | Evaluating and comparing soft partitions: An approach based on Dempster-Shafer theory[END_REF][START_REF] Depaolini | External indices for rough clustering[END_REF]. Evaluation criteria can be useful also for the purpose of transforming evidential clustering into rough (resp. three-way) clustering, and vice-versa: namely, given an evidential clustering one could select the rough (resp. three-way) clustering which is maximally similar to it. In particular, we believe that such criteria could be particularly useful for the case of three-way clustering: indeed, we remark that even though the procedure we proposed is conceptually simple, it can be computationally inefficient if implemented naively. While binary search or search heuristics can be used to make searching for the optimal α more efficient, we believe that further research should be devoted at exploring alternative transformation strategies.

Uncertainty in the conditions: Belief reducts

The correspondence between generalized relation-based rough set models and belief functions [START_REF] Yao | Interpretation of belief functions in the theory of rough sets[END_REF][START_REF] Zhang | Relationships between relation-based rough sets and belief structures[END_REF] has been exploited in the literature as a foundation for studying the problem of reduct search (i.e., feature selection) in the presence of missing or set-valued data [START_REF] Wu | Attribute reduction based on evidence theory in incomplete decision systems[END_REF]. The starting point, in this setting, is the possibility to define belief and plausibility functions from a similarity relation-based rough approximation. The similarity relation S is used to take into account missing values and partially specified values. Indeed, given an information table such that the condition attributes can be set-valued, and a subset of attributes B ⊆ Att, a similarity relation S can be easily defined by declaring two objects x, y ∈ X to be B-similar when, for each attribute in B, the set values for the two objects are compatible (i.e., they are not disjoint). Formally:

S B = {(x, y) ∈ X × X : ∀a ∈ B, F (a, x) ∩ F (a, y) = ∅}. (27) 
Then, belief and plausibility reducts can be defined as follows.

Definition 4.1. Let B ⊆ Att a set of attributes, and S B the similarity relation defined by B as in Eq [START_REF] Denoeux | NN-EVCLUS: Neural network-based evidential clustering[END_REF]. Let Bel B , P l B be the corresponding belief and plausibility functions defined as in [START_REF] Chen | Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[END_REF]. Then, given two attribute subsets

B 1 ⊆ B 2 ⊆ Att, B 1 is a belief reduct of B 2 if 1. For all similarity classes [x] S , Bel B1 ([x] S ) = Bel B2 ([x] S ); 2. A minimality condition hold: C ⊂ B 1 s.t. Bel C ([x] S ) = Bel B1 ([x] S ).
Given two attribute subsets The following result holds: [START_REF] Wu | Attribute reduction based on evidence theory in incomplete decision systems[END_REF]). B ⊆ Att is a reduct iff it is a belief reduct. Furthermore, if B ⊆ Att is a reduct then it is a plausibility reduct.

B 1 ⊆ B 2 ⊆ Att, B 1 is a plausibility reduct of B 2 if
Theorem 4.3 ([
Interestingly, the converse of the second statement above in general does not hold. In case of a decision table, the following definition of reducts is given: In contrast to the case of reducts, for the case of relative reducts the following results hold: Theorem 4.4. If the decision table is consistent, then B ⊆ Att is a relative reduct iff it is a relative belief reduct iff it is a relative plausibility reduct. If the decision table is not consistent, then B ⊆ Att is a relative reduct iff it is a relative plausibility reduct.

Definition 4.2. Given two attribute subsets B 1 ⊆ B 2 ⊆ Att , B 1 is a relative belief reduct of B 2 if 1. For all decision classes [x] d , Bel B1 ([x] d ) = Bel B2 ([x] d ); 2. A minimality condition hold: C ⊂ B 1 s.t. Bel C ([x] d ) = Bel B1 ([x] d ). An attribute subset B 1 ⊆ B 2 ⊆ Att, A is a relative plausibility reduct of B 2 if 1. For all decision classes [x] d , P l B1 ([x] d ) = P l B2 ([x] d ); 2. A minimality condition hold: C ⊆ B 1 s.t. P l C ([x] d ) = P l B1 ([x] d ).
The results of [START_REF] Wu | Attribute reduction based on evidence theory in incomplete decision systems[END_REF] have been extended to other generalized rough set models. First, the same authors [START_REF] Wu | Knowledge reduction in random information systems via Dempster-Shafer theory of evidence[END_REF] considered the application of belief and plausibility reducts to random information systems, showing that Theorems 4.3 and 4.4 hold also in this setting. Furthermore, the extension to the case of continuous and interval-valued data has been widely studied [START_REF] Chen | Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[END_REF][START_REF] Peng | Feature selection for interval-valued data based on ds evidence theory[END_REF][START_REF] Tan | Evidence-theory-based numerical characterization of multigranulation rough sets in incomplete information systems[END_REF], and it has been shown that the equivalence between belief and classical reducts holds also in these settings.

Considering different generalized relations, Du et al. [START_REF] Du | Attribute reduction in ordered decision tables via evidence theory[END_REF] studied the case of dominance-based rough sets, in which the relation induced by the condition attributes is a dominance (i.e., reflexive and transitive) relation, showing that the above described methodology can also be applied to ordinal data. Similarly, Syau et al. [START_REF] Syau | On variable precision generalized rough sets and incomplete decision tables[END_REF] considered the extension to reflexive (but not necessarily symmetric) relations, in order to model two different types of missing values (don't know vs doesn't exist). While in all these models the definitions of belief and plausibility reducts are the same as in (4.1) and (4.2), it has not yet been shown whether Theorems 4.3 and 4.4 similarly hold. Finally, the definition of belief and plausibility reducts has also been extended to the fuzzy case by Yao et al. [START_REF] Yao | Attribute reduction based on generalized fuzzy evidence theory in fuzzy decision systems[END_REF] and Zhang et al. [START_REF] Zhang | Fuzzy belief measure in random fuzzy information systems and its application to knowledge reduction[END_REF]. Remarkably, in this latter setting it has been shown that the extension of Theorem 4.4 to fuzzy information tables and fuzzy approximation spaces holds.

Interestingly, a similar approach has also been proposed for the management of more general forms of uncertainty in the condition attributes. More in particular, Trabelsi et al. [START_REF] Trabelsi | Ensemble enhanced evidential k-nn classifier through rough set reducts[END_REF] studied the problem of reduct search where the uncertain condition attributes are expressed as bbas. In this case, which is inspired by the definition of tolerance relations used in UDTs (see Section 3.3), the similarity relation can be defined by declaring two objects to be B-similar if they have the same decision and, for each attribute in B the corresponding bbas for the two objects are not too distant. Formally, this can be defined as:

S B = {(x, y) ∈ X×X : d(x) = d(y)∧∀a ∈ B ⊆ Att, dist(m a x , m a y ) < 1-θ}, (28) 
where, for any object x ∈ X and attribute a ∈ Att, m a x is the bba for x corresponding to attribute a, and the distance function is defined as in Eq [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence[END_REF]. We note that the obtained similarity relation is certainly symmetric and reflexive, but it is not, in general, guaranteed to be transitive.

Then, reduct search can be performed through standard techniques based on the discernibility matrix [START_REF] Trabelsi | Ensemble enhanced evidential k-nn classifier through rough set reducts[END_REF], or through belief and plausibility reducts. We note, however, that the theoretical properties of these latter types of reducts have not yet been studied in this setting.

Remarks and Prospects. Even though reduct search is a practical task, due to its relation with feature selection, all the above mentioned contributions had a primarily theoretical focus. Indeed, none of the mentioned articles investigates the performance and efficacy of algorithms for searching reducts in real applications. Therefore, future work should be devoted at assessing the performance (in terms of reduct size, as well as classification accuracy) of the different notions of evidence theory-based reducts. In particular, it would be interesting to assess the practical implications of Theorems 4.3 and 4.4: namely, since plausibility (resp., relative belief) reducts do not coincide with standard reducts in information (resp., decision) tables, the application of these definitions to real data should be further evaluated. Finally, it would be interesting to evaluate whether Theorems 4.3 and 4.4 hold also for the more general similarity-based approaches proposed in [START_REF] Chen | Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[END_REF][START_REF] Du | Attribute reduction in ordered decision tables via evidence theory[END_REF][START_REF] Syau | On variable precision generalized rough sets and incomplete decision tables[END_REF][START_REF] Tan | Evidence-theory-based numerical characterization of multigranulation rough sets in incomplete information systems[END_REF], as well as in the bba-based approach proposed in [START_REF] Trabelsi | Ensemble enhanced evidential k-nn classifier through rough set reducts[END_REF].

Uncertainty in the decision: Decision rules in UDT

Feature selection and rule induction tasks have also been studied in the context of UDTs (see Section 3.3). In particular, following the general reductionrule process, Trabelsi et al. [START_REF] Trabelsi | Classification systems based on rough sets under the belief function framework[END_REF] propose the simplification of an UDT and generation of belief decision rules. So, as usual, the first step is reduct generation. The authors of [START_REF] Trabelsi | Classification systems based on rough sets under the belief function framework[END_REF] specifically consider the positive region-based reduct model, which is defined in the standard way according to (11) by using the lower approximation of [START_REF] Denoeux | Calibrated model-based evidential clustering using bootstrapping[END_REF]. The definition of a reduct is not changed, i.e, it is the same as in Def. 2.8. In particular, to search for the reducts of an UDT (and hence perform feature selection), the same authors provide a heuristic algorithm based on a generalized definition of the discernibility matrix [START_REF] Trabelsi | Heuristic for attribute selection using belief discernibility matrix[END_REF]. In [START_REF] Trabelsi | Belief discernibility matrix and function for incremental or large data[END_REF][START_REF] Trabelsi | Exhaustive search with belief discernibility matrix and function[END_REF], they also propose a parallel algorithm for application to big data.

Example 4.6. Consider the UDT defined in Example 3.2. Obviously, S 1 = {Headache} is not a reduct, since P OS S1 (X, d) = ∅, while P OS Att (X, d) = {p 1 , p 2 , p 3 }. In the same way, S 2 = {T emperature} is not a reduct, since P OS S2 (X, d) = {p 1 , p 2 }. Thus, the only reduct is the full set of features Att.

After performing feature reduction, decision rules can be induced. To do so, redundant objects and attribute values are eliminated. In particular, concerning objects, the bbas of objects that are in the same equivalence class (i.e., they have the same values for the reduced conditional attributes) are aggregated by means of the averaging combination rule. Decision rules can then be generated by reading directly in the simplified table the values of the condition attributes and the corresponding decision, in the form of the averaged bba on V al D . A major limitation of this definition of rules, is that their accuracy and performance cannot be easily evaluated, as the decision is represented in the form of a bba. For this reason, Trabelsi et al. propose [START_REF] Trabelsi | Belief rough set classifier[END_REF][START_REF] Trabelsi | Classification systems based on rough sets under the belief function framework[END_REF] to convert the bba for each rule into a probability distribution, by means of the pignistic transform (6): accuracy can then be evaluated as a weighted average or by selecting the single decision with maximal probability. As previously mentioned in Section 3.3, a different approach to the definition of reducts and rules in UDT is taken in [START_REF] Campagner | Rough set-based feature selection for weakly labeled data[END_REF], based on the notion of an entropy reduct [START_REF] Slezak | Approximate entropy reducts[END_REF] and the generalized risk minimization [START_REF] Hüllermeier | Learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization[END_REF] principle. In this setting, given a set of attributes B ⊆ Att the entropy of the reduced UDT is computed as

H(B) = [x] B 1 |[x] B | min P ∈P(m [x] B ) H(P ),
where m [x] B is the bba determined by the equivalence class of x as defined in [START_REF] Denoeux | Belief functions induced by random fuzzy sets: A general framework for representing uncertain and fuzzy evidence[END_REF] After the reduct search, decision rules can be induced: in contrast to the rule induction procedure studied in [START_REF] Trabelsi | Classification systems based on rough sets under the belief function framework[END_REF], the approach proposed in [START_REF] Campagner | Rough set-based feature selection for weakly labeled data[END_REF] directly provides rules with single-valued decision, by using the maximum plausibility criterion [START_REF] Denoeux | Decision-making with belief functions: A review[END_REF]. This approach to feature reduction was compared to state-ofthe-art algorithms for feature selection on set-valued data, showing significant improvements on different datasets.

Remarks and Prospects. While the authors of [START_REF] Trabelsi | Belief discernibility matrix and function for incremental or large data[END_REF] studied the performance of the discussed feature reduction and classification methods and reported promising empirical results, no comparison with other classifiers for evidential data [START_REF] Bahri | Rule-based classification for evidential data[END_REF][START_REF] Côme | Learning from partially supervised data using mixture models and belief functions[END_REF][START_REF] Denoeux | A new evidential k-nearest neighbor rule based on contextual discounting with partially supervised learning[END_REF][START_REF] Geng | ARC-SL: Association rule-based classification with soft labels[END_REF][START_REF] Quost | Parametric classification with soft labels using the evidential EM algorithm: linear discriminant analysis versus logistic regression[END_REF] has so far been evaluated in the literature. Furthermore, similarly to the remarks in Section 3.3, also for the case of feature reduction and rule induction it would be interesting to evaluate the behavior and performance of different aggregation as well decision rules. In respect to this latter aspect, while the authors of [START_REF] Trabelsi | Belief discernibility matrix and function for incremental or large data[END_REF] considered only the pignistic transform, other decisionmaking criteria such as mentioned in Section 4.1 or disambiguation methods [START_REF] Hüllermeier | Learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization[END_REF] should also be evaluated. A final remark regards the relationships among the methods for feature selection proposed in [START_REF] Trabelsi | Classification systems based on rough sets under the belief function framework[END_REF] and [START_REF] Campagner | Rough set-based feature selection for weakly labeled data[END_REF]. While this has not been previously evaluated, it is clear that the two approaches are not equivalent when applied to set-valued data and may thus end up providing different results. Thus, future work should aim at studying possible conditions for the equivalence between the two approaches, as well as generalizations of the approach described in [START_REF] Campagner | Feature selection and disambiguation in learning from fuzzy labels using rough sets[END_REF][START_REF] Campagner | Rough set-based feature selection for weakly labeled data[END_REF] to general bbas, and their comparison on real datasets.

Conclusion

In this article, we provided a survey of the literature on belief functions and rough sets. While our contribution is not intended to be systematic, we drew a map of the links and cross-fertilizations among these two different research communities, so as to illustrate the most relevant relationships, their interpretation and semantics, as well as to highlight open problems, prospects and directions for future research. To this end, we reviewed the known theoretical results relating the rough set and belief function theories, as well as their applications to knowledge representation and machine learning. We hope that this paper will stimulate further research and investigations at the cross-road of the two research communities. To this purpose, we proposed some particularly relevant open problems related to each covered application, both of a theoretical as well as of an empirical or practical nature. In particular, to summarize, we recall and highlight the following relevant open issues:

-While the mathematical picture connecting the basic notions within rough set theory (i.e., approximations) and belief function theory (i.e., belief and plausibility functions) has been widely studied, the interpretation of these connections is much less clear and should be further investigated. Furthermore, the connections between other relevant concepts in the two theories (e.g., granule refinements or joins of decision tables in rough set theory, Dempster combination rule or coarsenings in belief function theory) should be explored.

-While the theoretical results for Pawlak and generalized relation models have been applied in practical problems (either in knowledge Representation or Machine Learning), the results for more general rough set models (e.g., interval rough sets or general approximation spaces) have not yet seen practical applications. Therefore, it would be interesting to further explore the applications of these results.

-In this review we only provided a brief introduction to the extension of the mentioned relationships between rough set theory and belief function theory to the fuzzy case, due to space constraints. Nonetheless, we believe that more research should be devoted at further exploring this important topic, as well as its possible applications.

-In our summary of theoretical results, we focused on a static picture of the relationship between rough set theory and belief function theory: namely, we assumed the information/decision tables and corresponding belief/plausibility functions to be already given and fixed in time.

Nonetheless, it could be interesting to study the relationships between these mathematical structures also in so-called dynamic or incremental settings, in which the available knowledge evolves and changes with time. Although this issue has been explored within rough set theory [START_REF] Bello | Rough sets in machine learning: A review[END_REF][START_REF] Ciucci | Temporal dynamics in information tables[END_REF][START_REF] Liu | Belief c-means: An extension of fuzzy c-means algorithm in belief functions framework[END_REF], we believe that further attention should be devoted at studying the connections between rough approximation and the corresponding belief/plausibility functions in the dynamic setting.

-The comparative performance and properties (e.g., with respect to interpretability or ease of visualization) of rough and evidential clustering algorithms should be further evaluated, by means of experiments on realworld benchmark datasets. To this end, a particularly interesting open problem regards the definition of appropriate clustering quality metrics that could be applied to evaluate different types of soft clustering [START_REF] Denoeux | Evaluating and comparing soft partitions: An approach based on Dempster-Shafer theory[END_REF].

-The practical performance of belief and plausibility reducts (see Section 4.2) has not yet been evaluated in experimental settings. Furthermore, several theoretical problems related to this approach remain open. These include finding theoretical conditions for equivalence between the two reduct definitions, the study of rule induction algorithms, as well as studying the properties of these definitions of reducts in the other generalized relation-based models that have been more recently considered in the literature [START_REF] Chen | Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets[END_REF][START_REF] Du | Attribute reduction in ordered decision tables via evidence theory[END_REF][START_REF] Peng | Feature selection for interval-valued data based on ds evidence theory[END_REF][START_REF] Syau | On variable precision generalized rough sets and incomplete decision tables[END_REF][START_REF] Tan | Evidence-theory-based numerical characterization of multigranulation rough sets in incomplete information systems[END_REF][START_REF] Trabelsi | Ensemble enhanced evidential k-nn classifier through rough set reducts[END_REF].

-The relationships between two existing approaches for dealing with UDTs (see Sections 3.3 and 4.3) should be further studied, both in theoretical terms (e.g., when do the two approaches coincide? When they they give different results?) and experimental ones. To this end, a particularly interesting open problem regards the extension of the approach proposed in [START_REF] Campagner | Feature selection and disambiguation in learning from fuzzy labels using rough sets[END_REF][START_REF] Campagner | Rough set-based feature selection for weakly labeled data[END_REF] to general UDTs.

-Finally, while in this article we reviewed a broad and representative selection of possible applications of the links between rough sets and belief functions, obviously many others have been considered in the literature that could not be covered within the scope of this article. In particular, the connections between belief functions and rule induction in rough set theory seems to be particularly worthy of investigation: indeed, since rough set theory allows the induction of so-called non-deterministic rules [START_REF] Marsza L-Paszek | Classifiers based on nondeterministic decision rules[END_REF] (i.e., rules in which either the consequent or antecedent are underspecified), it would be interesting to study the connections between quality measures for such rules (e.g., the support) and measures arising from belief function theory.
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 23 Let m be the bba defined in Example 2.1. Then P Betm (a) = 0.2 3, P Betm (b) = 0.48 3 and P Betm (c) = 0.28 3. On the other hand, P P lm (a) = 0.24, P P lm (b) = 0.43 and P P lm (c) = 0.33.

F ⊆ 2 D

 2 , where f ∈ F with |f | > 1 represents a partial classification (or, partial assignment). We consider a utility function U : D × F → [0, 1], where the entry U (d, f ) corresponds to the utility of selecting act f when the true class is d. We will assume that, for each d ∈ D, U (d, {d}) = k, and, for d = d, U (d, {d}) > U (d, {d }). The information about the utility function can be expressed in matrix notation, as shown in the following example. Example 2.4. Let D = {1, 2, 3} and F = {1, 2, 3}. Then, Table 1 represents the utility function defined by U (d, d) = 1 and, for d = d, U (d, d ) = 0.

Proposition 3 . 2 (

 32 [START_REF] Yao | Interpretation of belief functions in the theory of rough sets[END_REF]). Let Bel and P l be a belief and plausibility functions satisfying the following two conditions:1. The set of focal elements forms a partition;2. m(H) = |H||X| for every focal set H.

  ) = 0.2, m(B) = 0.2, m(N O) = 0.2, m({A, B, N O}) = 0.4
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 34 Let C = {Headache}. Then, m [p1] C = (m p1 + m p4 + m p5 )/3and, for the decision classes, it holds that:

Theorem 4 . 1 (

 41 [START_REF] Denoeux | Beyond fuzzy, possibilistic and rough: An investigation of belief functions in clustering[END_REF]). To each evidential clustering where all mass functions are logical (i.e., ∀x ∈ X, ∃A ∈ 2 C s.t. m x (A) = 1) corresponds a unique rough clustering. Vice-versa, to each rough clustering corresponds a unique evidential clustering where all mass functions are logical and normalized (i.e., ∀x ∈ X, ∃A ∈ 2 C \ {∅} s.t. m x (A) = 1).

Example 4 . 1 .

 41 Finally, all x s.t. A x = ∅ are assigned to the lower cluster of a noise cluster (thus, in general the rough clustering may have one additional cluster as compared to the starting evidential clustering) Consider the credal partition M = {m x1 , ..., m x5 } introduced in Example 2.7. Applying the maximum mass rule, we obtain the following rough clustering: l
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 1 For all similarity classes [x] R , P l B1 ([x] S ) = P l B2 ([x] S ); 2. A minimality condition hold: C ⊂ B 1 s.t. P l C ([x] S ) = P l B1 ([x] S ).

  The similarity classes determined by S Att are [p 1 ] Att = {p 1 , p 2 , p 3 } and [p 2 ] Att = {p 2 }. The partition determined by d is [p 1 ] d = {p 1 , p 4 } and [p 2 ] b = {p 2 , p 3 }. Thus, the similarity relation S B determines the bba m B ({p 1 , p 3 , p 4 }) = 1/2, m B ({p 2 , p 3 }) = 1/4 and m B (X) = 1/4. By contrast, the equivalence relation given by Att determines the bba m Att ({p 1 , p 3 , p 4 }) = 3/4 and m Att ({p 2 }) = 1/4. Since it holds that Bel B ({p 1 , p 4 }) = Bel Att ({p 1 , p 4 }) = 0, Bel B ({p 2 , p 3 }) = Bel Att ({p 2 , p 3 }) = 1/4, we have that B is a relative belief reduct. Furthermore, since P l B ({p 1 , p 4 }) = P l Att ({p 1 , p 4 }) = 3/4, P l B ({p 2 , p 3 }) = P l Att ({p 2 , p 3 }) = 1, B is also a relative plausibility reduct.

Example 4 . 7 .

 47 Consider the UDT defined in Table4. In Example 4.6, we showed that Att is the only reduct. Thus, decision rules are in the form:If T emperature =very high and Headache = yes then m(A) = 0.8, m(B) = 0.05, m({A, B}) = 0.15 If T emperature = high and Headache = no then m(B) = 0.7, m({A, B}) = 0.3 If T emperature = normal and Headache = no then m(N O) = 1 If T emperature = high and Headache = yes then m(A) = 0.15, m(B) = 0.1, m(N O) = 0.5, m({N O, A}) = 0.05, m({N O, A, B}) = 0.2 Based on [92, 94], the decisions of the previous rules can be transformed into single-valued decisions by applying the pignistic transform and then selecting the value with maximum probability. The resulting rules are If T emperature = very high and Headache = yes then A If T emperature = high and Headache = no then B If T emperature = normal and Headache = no then N O If T emperature = high and Headache = yes then N O

Table 1 :

 1 An example of utility matrix

Table 2 :

 2 An example of extended utility matrix

	F	D	1	2	3
	1		1	0	0
	2		0	1	0
	3		0	0	1
	{1, 2}	0.75 0.75	0
	{1, 3}	0.75	0	0.75
	{2, 3}	0	0.75 0.75
	{1, 2, 3} 0.67 0.67 0.67

In any case, as long as d ∈ f , it must hold that U (d, f ) ≥ 1

Table 3 :

 3 Example of decision table.

	Patient Temperature Pressure Headache Muscle Pain Disease
	p 1	very high	2	yes	yes	A
	p 2	high	3	no	yes	B
	p 3	normal	1	yes	no	NO
	p 4	high	2	yes	yes	NO
	p 5	high	2	yes	yes	A

Table 4 :

 4 Uncertain decision table.

Table 5 :

 5 Example of decision table with set-valued conditions. Consider the decision table given in Table 5. Define B = {T emperature, Headache} and let the decision attribute be d = {Disease}. Then the similarity relation determined by B is S B = {(p 1 , p 3 ), (p 1 , p 4 ), (p 3 , p 4 ), (p 2 , p 3 )} sr , where, given a relation R ⊆ X × X, R sr represents the symmetric and reflexive closure of R. The similarity classes determined by S B are [p 1 ] B = {p 1 , p 3 , p 4 }, [p 2 ] B = {p 2 , p 3 }, [p 3 ] B = {p 1 , p 2 , p 3 , p 4 } and [p 4 ] B = {p 1 , p 3 , p 4 }. By contrast, the similarity relation determined by Att is S Att = {(p 1 , p 3 ), (p 1 , p 4 ), (p 3 , p 4 )} sr .

	Patient	Temperature	Pressure Muscle Pain Disease
	p 1	{very high, high}	2	yes	YES
	p 2	{normal, high}	1	no	NO
	p 3	high	{1, 2}	yes	NO
	p 4	high	2	{no, yes}	YES
	Example 4.5.				

  , P(m [x] B ) is the set of probability measures compatible with m [x] B as defined in[START_REF] Bahri | Rule-based classification for evidential data[END_REF], and H(P ) =p p • log(p) is the Shannon entropy. Thus, for each equivalence class [x] B , a bba m [x] B is obtained and the entropy for this bba is simply computed as the lowest possible entropy for all probability distributions that are compatible with it. Then, B is said to be an entropy reduct if H(B) ≤ H(Att) and the minimality condition (i.e., D ⊂ B s.t.

H(D) ≤ H(C)) holds.

Notice that sometimes with rough set it is meant a set H which cannot be described by means of the equivalence classes, in contrast with an exact set K such that L B (K) = K = U B (K)[START_REF] Chakraborty | On some issues in the foundation of rough sets: the problem of definition[END_REF].

Example 2.13. Consider the decision table in Table3. As shown in Example 2.12, the two reducts of the decision table are R 1 = {T emperature, P ressure} and R 2 = {T emperature, Headache}. Thus, R 1 induces the following rules: If T emperature = very high and P ressure = 2 then A If T emperature = high and P ressure = 3 then B If T emperature = normal and P ressure = 1 then N O If T emperature = high and P ressure = 2 then A or N O On the other other hand, R 2 induces the following set of rules: If T emperature = very high and Headache = yes then A If T emperature = high and Headache = no then B If T emperature = normal and Headache = no then N O If T emperature = high and Headache = yes then A or N O2.2.3. Rough ClusteringThe concept of rough clustering[START_REF] Peters | Evolutionary rough k-medoid clustering[END_REF] is a generalization of classical clustering, incorporating some of the principles of rough set theory. In this clustering model, each cluster c is approximated by a lower cluster l(c), i.e., the elements