
HAL Id: hal-03598396
https://hal.science/hal-03598396

Submitted on 5 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Multi-Versioning Ordered Key-Value Stores
with Persistent Memory Support

Bogdan Nicolae

To cite this version:
Bogdan Nicolae. Scalable Multi-Versioning Ordered Key-Value Stores with Persistent Memory Sup-
port. The 36th IEEE International Parallel &Distributed Processing Symposium (IPDPS 2022), IEEE,
May 2022, Lyon (virtuel), France. �hal-03598396�

https://hal.science/hal-03598396
https://hal.archives-ouvertes.fr


Scalable Multi-Versioning Ordered Key-Value
Stores with Persistent Memory Support

Bogdan Nicolae
Argonne National Laboratory, USA

Email: bogdan.nicolae@acm.org

Abstract—Ordered key-value stores (or sorted maps/dictionar-
ies) are a fundamental building block in a large variety of
both sequential and parallel/distributed algorithms. However,
most state-of-art approaches are either based on ephemeral in-
memory representations that are difficult to persist and/or not
scalable enough under concurrent access (e.g., red-black trees,
skip lists), and/or not lightweight enough (e.g. database engines).
Furthermore, there is an increasing need to provide versioning
support, which is needed in a variety of scenarios: introspection,
provenance tracking, revisiting previous intermediate results. To
address these challenges, we propose a new lightweight dictionary
data structure that simultaneously provides support for multi-
versioning, persistency and scalability under concurrent access.
We demonstrate its effectiveness through a series of experiments,
in which it outperforms several state-of-art approaches, both in
terms of vertical and horizontal scalability.

Index Terms—key-value store; ordered dictionary; versioning
control; scalable access under concurrency; persistent memory

I. INTRODUCTION

The increasing convergence between high-performance
computing (HPC), big data analytics and machine learning is
leading a rapid evolution of data management requirements:
we are facing an abundance of heterogeneous data, which
requires rich metadata to describe it (labels, attributes, rela-
tionships, etc.). Unfortunately, data repositories have seen a
relatively static evolution. For example, supercomputer storage
is still dominated by parallel file systems, which are based on
the aging POSIX model to represent and manipulate data as
files. Despite an increasing transition towards more scalable
repositories such as object stores and key-value stores [1], a
majority of applications still treat data as an external entity that
needs to be loaded into memory, transformed, and then written
back to the repository. Given limited I/O bandwidth under
concurrent access at scale, this pattern frequently leads to I/O
bottlenecks that degrade the performance of the applications.

Once the data is loaded into memory, a fundamental data
structure frequently used by applications is an ordered key-
value store (also referred to as sorted map or dictionary).
In a nutshell, it is a collection of key-value pairs in which
each key can appear only once. Users can insert a new key-
value pair, remove an existing key-value pair, find the value
corresponding to a given key, or iterate over all key-value
pairs in sorted order. The latter is an important property
that distinguishes ordered from unordered key-value stores,
and is instrumental in a variety of scenarios. For example,
consider a deep learning (DL) application whose learning

models are represented as a set of key-value pairs (id, tensor)
that define layers. Most operations that involve such mod-
els (training/inference, mutations such insertions or removal
of layers, comparisons using the longest common prefix or
longest common substring to facilitate transfer learning [2],
etc.) need to preserve the order of the tensors.

Despite significant progress in optimizing the performance
and scalability of key-value stores, both vertically (i.e., key-
value store in shared memory accessed by multiple threads
or processes concurrently), and/or horizontally (i.e., key-value
store partitioned and distributed across multiple compute
nodes), a majority of such optimizations were explored for
ephemeral implementations that do not outlive the processes
that created them, under the assumption that persistency can
be achieved separately by writing the key-value store in a
serialized form to an external storage repository (which is
subject to I/O bottlenecks).

On top of this, an entire new level of challenges is raised
by the need for multi-versioning, i.e., the ability to capture
intermediate snapshots of the key-value store for a wide
range of use cases [3]: introspection, provenance tracking,
understand data evolution, revisit previous intermediate results,
share intermediate results with other workflow components,
roll back in case of failures, branch off in a different direction
(e.g., DNN network architecture search techniques that try
different model variations starting from a common ancestor).
Multi-versioning is a feature typically only available in spe-
cialized external data repositories.

On the other hand, the emergence of persistent memories [4]
presents an opportunity to create and manage key-value pairs
directly as byte-addressable objects on the compute nodes,
which reduces (if not eliminates) the need to serialize key-
value pairs to external storage in order to achieve persistency,
thereby greatly reducing potential I/O bottlenecks at scale.
However, this opportunity has not been sufficiently explored
in the context of ordered key-value stores.

In this paper, we introduce an ordered key-value store
proposal that simultaneously provides native multi-versioning
support and vertical/horizontal scalability under concurrent
access, while leveraging persistent memories to provide dura-
bility. We summarize our contributions as follows:

• We formulate the problem of native multi-versioning
and persistency for ordered key-value stores that remain
scalable under concurrent access, both vertically and hor-



izontally. In this regard, we propose versioning-oriented
API (Section II).

• We introduce several key design principles that underline
the main idea of our proposal: compact representation
of snapshots using a persistent per-key version history,
hybrid indexing using ephemeral skip lists, a persistent
key block chain to enable parallel reconstruction, lazy
tail, distributed partitioning with multi-threaded merge
support (Section IV-A).

• We discuss several algorithms and considerations that en-
able an efficient implementation of the design principles
(Section IV-B).

• We evaluate our proposal in a series of experiments that
involve both vertical (up to 64 threads) and horizontal (up
to 512 nodes) scalability. We focus on a comprehensive
set of scenarios that compare our proposal with five other
approaches (Section V).

II. PROBLEM STATEMENT

Consider a regular ordered key-value store (e.g. a C++
sorted std::map) that enables the following operations: insert
a new key-value pair, remove an existing key-value pair, find
the value of a given key, or iterate over all key-value pairs in
sorted order.

TABLE I: Comparison of supported operations

Regular dictionary Multi-version dictionary
insert(key, value) insert(key, value)

remove(key) remove(key)
find(key) find(key, version)

for all(key, value) extract snapshot(version)
extract history(key)

tag(version)

Multi-versioning: we extend the ordered key-value store
with support to capture an immutable virtual snapshot, labeled
with a version number, using the tag primitive. This snap-
shot reflects the history of all insert and remove operations
since the beginning, up to the moment when tag is called
(but none of the operations issued afterwards). Tagging is
similar to committing a set of changes in a revision control
system. We call this snapshot virtual, because it is exposed
like an independent, immutable copy of the key-value store
at user-level, but the underlying implementation is free to
optimize its storage (e.g., record incremental changes between
snapshots). Unlike unordered key-value stores, find and iterate
over all key-value pairs (denoted extract snapshot) can refer
to any past snapshot version, in addition to the current state.
Furthermore, a dedicated primitive, extract history, allows the
inspection of the evolution of a specified key. It returns a list
of insert or remove operations and the corresponding version
when they were issued. These operations are summarized in
Table I.

Persistency: in addition to multi-versioning, another im-
portant desired property is persistency, i.e., all virtual snap-
shots captured by the ordered key-value store (including the
current state) need to survive after the processes that created

them finished or terminated unexpectedly, without losing con-
sistency.

Scalability under concurrency: at scale, applications
consist of multiple processes and threads that are distributed
across multiple nodes. Since key-value stores are often used
to maintain a common state, they need to remain scalable
under concurrent access, both vertically (i.e., shared memory
accessed by multiple concurrent threads) and horizontally (i.e.,
key-value pairs partitioned across multiple nodes).

Our goal is to design and implement an efficient ordered
key-value store that satisfies all three requirements simulta-
neously: multi-versioning support, persistency and scalability
under concurrent access.

III. RELATED WORK

Fundamental data structures: hash tables and KV
stores [5], red-black trees [6], AVL trees [7], skip lists [8],
B-trees [9] are known for decades. With the rise of multi-
core systems, techniques emerged to enable efficient concur-
rent operations on such data structures, either by fine-grain
locking [10], [11], or by using lock-free approaches based on
compare-and-swap [12], [13]. Despite being lightweight and
highly optimized for concurrent access, such data structures
lack at least one of the following requirements: ordered keys,
persistency, multi-versioning support.

Database engines: General purpose databases provide
rich indexing and persistency support for key-value pair col-
lections. They are either based on SQL (e.g., traditional DB en-
gines like POSTGRES [14]) or NoSQL (e.g. Cassandra [15]).
However, such solutions are not lightweight enough to act as
a replacement for fundamental data structures, nor do they
provide native multi-versioning support.

Storage repositories: Traditionally, POSIX file systems
are the backbone of data storage. They are used both to
leverage node-local storage devices (e.g., F2F2 or ext4), as
well as to mount shared repositories at large scale (e.g.,
parallel file systems such as Lustre [16] and GPFS [17]).
Unfortunately, the aging POSIX model limits the performance
and scalability under concurrency. To alleviate this issue,
object storage systems such as DAOS [1] and RADOS [18]
are a popular alternative. However, such repositories are not
byte-addressable and require explicit read/write interactions to
serialize and deserialize data, which introduces both complex-
ity and performance overheads.

Persistent memory: A need emerged to efficiently persist
data structures in a lightweight fashion using byte-addressable
constructs. In this regard, persistent memories [4] are rapidly
gaining traction. Most practical implementations, such as In-
tel’s PDMK allow applications to allocate basic data structures
(structs, arrays, etc.) and manipulate them through persistent
pointers and primitives that enable concurrency control (trans-
actions, compare-and-swap).

Multi-versioning: Revision control systems such as
GIT [19] are widely used to keep track of changes to source
code during software development. They feature native support
to manipulate snapshots through operations such as commits,

2



roll-back, branch, merge, etc. However most optimizations
revolve around compact representation of incremental changes
to textual data, with little attention dedicated to performance,
scalability and binary data. To address this issue, several efforts
emerged to bring multi-versioning to binary large objects
(e.g., BlobSeer [20]), SQL databases [21], NoSQL (e.g., Delta
Lakes [22]), machine learning (e.g., DLHub [23]). However,
such approaches cannot be used a as lightweight drop-in
replacements of ordered key-value stores.

To our best knowledge, we are the first to consider the prob-
lem designing ordered key-value stores that simultaneously
provide multi-versioning, persistency and scalability under
concurrent access.

IV. PROPOSED APPROACH

A. Design principles

Our proposal is based on the following key ideas:
Compact persistent memory representation: In a ma-

jority of scenarios, a large number of key-value pairs will
remain unchanged from one snapshot to another. Therefore,
as noted in Section II, it is not necessary to create a full copy
for every snapshot. Instead, it is possible to obtain a compact
representation by associating each key with a version history,
i.e., a list of pairs (version, value) that records the versions
at which the key was updated (either by inserting a new value
or by removing the key, in which case a special marker is
used as the value). Using this approach, insert and remove
operations simply need to atomically append the new value
or marker to the version history, while find operations need
to perform a binary search in the version history to identify
the tuple with the highest version smaller than the requested
version number. Similarly, extract snapshot needs to iterate
over all keys in sorted order and perform the same binary
search to determine the corresponding value (or ignore the key
if it was removed). The extract key history operation is trivial
and simply needs to return a pointer to the version history.
To persist such a compact representation without serialization
overheads, we propose to store it directly in persistent memory.
To this end, we only need to leverage basic constructs, such
as allocating (and potentially reallocating) persistent pointers
to contiguous arrays that store the version history.

Hybrid ephemeral indexing to enable high performance
under concurrent access: Without efficient indexing, a com-
pact representation performs poorly. On the other hand, a
persistent index capable of maintaining a sorted key order
has a high performance overhead. Therefore, we propose a
hybrid approach based on a lightweight, ephemeral skip list
that resides in main memory. A skip list is a probabilistic
data structure that maintains a hierarchy of linked lists, orga-
nized into levels, each of which skips over more elements
than the one below it. An example of how this works is
illustrated in Figure 1, where we have a collection with six
keys (0, 3, 6, 7, 9, 13) and the corresponding persistent pointers
to their version histories (A,B,C,D,E, F ). The keys are
organized into a skip list with five levels (left hand side). Each
key has a height obtained by random coin toss: 1/2 chance to

reach level 2, 1/4 to reach level 3, etc. By starting from the
top level, a key can be found in logarithmic time by skipping
over all lower keys in the same level, then going one level
deeper. For example, to reach key 7, we start from the head
H at level 5, go to level 3, skip to key 6, go to level 2, skip to
key 7. At the lowest level, we obtain the version history D of
key 7, which can be used to obtain the value corresponding to
the desired version using binary search. A skip list can take
advantage of cheap compare-and-swap operations to efficiently
handle concurrency (as detailed later in Section IV-B). This not
only solves the problem of scalability under concurrent access,
but but it also reduces the persistent memory utilization at the
same time, because no indexing information needs to be stored
persistently. Instead, the compact representation is enough to
reconstruct the skip list on restart. However, this inevitably
introduces an overhead, which can be mitigated efficiently as
discussed next.

Persistent key block chain to enable parallel recon-
struction: To reconstruct an ephemeral skip list from the
compact representation residing in the persistent memory, we
need to re-insert all keys and pointers to the version histories.
Fortunately, this can be achieved using multiple reconstruction
threads efficiently. Unfortunately, it is not-trivial to organize
the (key, pointer) pairs in persistent memory such that: (1)
they can be easily distributed in bulk among the reconstruc-
tion threads; (2) the insert performance after reconstruction
remains efficient. For example, if the (key, pointer) pairs are
stored in an array, then the array can be easily partitioned
among the reconstruction threads but this may cause high
reallocation overheads when inserting new keys. Conversely,
if the (key, pointer) pairs are organized as a linked list, then
insertions of new keys are efficient but the pairs are scattered
and thus difficult to assign to the reconstruction threads. To
solve this trade-off, we propose to organize the pairs using a
persistent block chain, which is a data structure inspired by
the ledgers used by crypto-currencies. Specifically, we create
a linked list of blocks represented by fixed-sized arrays, which
grows only when the tail block is fully filled. Thus, insertions
of new keys remain efficient as a new block is only rarely
allocated. On the other hand, each reconstruction thread tid
can simply walk the linked list in parallel with the other
threads and insert all keys of all blocks i for which i mod
tid = 0, while skipping over the other blocks (which are
claimed by the other threads). Using this approach, the pairs
are evenly distributed among the reconstruction threads and
can be inserted concurrently in bulk. An example is illustrated
in Figure 1 (bottom-right): there are two blocks, each of which
holds three pairs. Two threads coordinate as follows: the first
thread claims the first block and ignores the second, the second
thread ignores the first block and claims the second.

Lazy tail to enable concurrent version history up-
dates: Another important related aspect is how to enable
efficient appends of new values (or removal markers) to the
version history of each key. A straightforward solution that
simply executes the append in a transaction may have a
high overhead, because the transactions will be serialized.

3



Fig. 1: Data structures in a nutshell: ephemeral skip list, version history with lazy tail, key chain organized into blocks

To alleviate this issue, we propose a new data structure we
call lazy tail, which works as follows: each append of a new
(version, value) pair claims a slot from the version history
by atomically incrementing a pending counter. If there are
multiple concurrent appends, they can proceed writing their
pairs to persistent memory in parallel. When an append has
finished, the corresponding slot is marked as finished. Note
that the appends can finish in random order, therefore it is not
guaranteed that the finished slots form a contiguous region,
nor should they be exposed to any find or extract query
for consistency reasons (an insert or remove is considered
finished only when all inserts or removes of lower versions
have finished). In fact, a find or extract query does not need
to know where the tail of the version history is, unless it
affects the outcome of the query. For example, consider the
version history of key 7 illustrated in Figure 1 (top-right):
the key was first inserted at version 0, removed at version 2
(using M as the removal marker), then re-inserted at version 3,
which is the tail. If there are three concurrent appends due to
inserts/removes at versions (5, 7, 8), then each will claim a slot
by incrementing pending up to 6. If the append for version
5 has finished and is marked as finished while at the same
time another concurrent find query arrives for version 2, then
it is not necessary to discover the new tail and the find query
can simply proceed with the binary search using the original
tail. This not only avoids the extra overhead of discovering the
new tail, but also makes the binary search faster. Only when
a find query for a version higher than 5 arrives, then the tail
needs to be extended iteratively as long as there are finished
consecutive slots. Using this approach, the tail is updated only
when necessary and only by the query operations, not by the
insert or remove operations (hence the reason for calling the
tail lazy).

Hierarchic multi-threaded merge to enable scalable
extract snapshot: In a horizontal scalability scenario, the key-
value pair collection is partitioned among K compute nodes,
each of which is responsible for a different key range. In this
case, most operations except extract snapshot can be imple-
mented in an embarrassingly parallel fashion by redirecting
them to the compute node responsible for their keys. However,
in the case of extract snapshot, two steps are involved: (1)
perform extract snapshot on each compute node in parallel;

(2) gather and merge the key-value pairs. A straightforward
solution to solve this problem is to simply gather the key-
value pairs on a compute node and perform a K-way merge.
However, this leads to high overheads. Therefore, we propose
two optimizations. First, we perform a hierarchic merge using
recursive doubling, which runs in K = log(N) rounds, where
N is the number of distributed processes (e.g., MPI ranks).
In each round, the odd ranks send their key-value pairs to the
even ranks (in parallel), who perform a merge (in parallel) and
survive in the next round. The result is eventually collected on
a single rank in the last round. Second, we introduce a multi-
threaded merge approach on each rank that works as follows:
assuming two arrays A and B that need to be merged, first
we partition A evenly among the threads so that each thread
i is assigned a partition Ai. Then each thread i uses binary
search to find the position pi in B whose key is larger than
the maximum key of Ai (last element, because the keys are
sorted). Since thread i − 1 did the same in parallel, thread
i knows that all keys in Ai are between pi−1 and pi in B.
Therefore, all threads can determine in parallel what range
from B to merge with and what offset to use in the final
result.

B. Algorithms

In this section, we briefly zoom on some of the high-level
algorithms that illustrate the design principles introduced in
Section IV-A.

First we focus on Algorithm 1, which illustrates how the
lazy tail of the version history works. The insert operation
simply grabs the next free slot and persists the new value (or
removal marker), then marks the slot as finished by increment-
ing a global pending counter pc. The find operation extends the
tail only if needed, i.e., the insert operation has finished, it does
not come before any other non-finished insert operation from
any other key (tracked by a global finished counter fc, which
is incremented if possible), and the requested version is smaller
than the inserted version. Using this approach, the version
histories remain both consistent and resilient to failures (on
restart, it is enough to count the length of all contiguous non-
zero finished sequences of all keys to recover fc, then prune
all finished entries larger than fc and adjust tail and pending
accordingly for each key). Another important observation is
that the binary search does not need to necessarily divide

4



Algorithm 1: Version history
1 Function insert(version, value):
2 slot← atomic inc(pending)
3 if slot = size(history) then
4 extend(history)

5 history[slot]← (version, value)
6 finished[slot]← atomic inc(pc)

7 Function remove(version):
8 insert(version,marker)

9 Function find(version):
10 t← tail
11 while 0 < finished[t] ≤ fc+ 1 and

history[t].version < version do
12 t← t+ 1
13 if finished[t] = fc+ 1 then
14 fc.compare exchange(fc, fc+ 1)

15 if t > tail then
16 tail.compare exchange(tail, t)

17 left← 0
18 right← t− 1
19 while left <= right do
20 middle← (left+ right)/2
21 if t < history[middle].version then
22 right getsmiddle− 1

23 else if t > history[middle].version then
24 left← middle+ 1

25 else
26 return history[middle].value;

27 return marker if right < 0 else history[right].value;

the history in the middle. Instead, it can be biased towards
older or newer versions, depending on what type of queries
are expected to be dominant.

Next, we focus on our ephemeral skip list, which is or-
ganized as a multi-level linked list holding the keys and
their persistent pointers to the version histories. Each pair
has multiple successors, one for each level. We use a helper
function FindSkip, listed in Algorithm 2, that returns the
predecessors and successors at each level for a given key,
and, if the key exists, a pointer to the pair. Using this helper
function, find operations simply need to obtain a pointer to
the version history pointer, then use binary search to find the
value in the version history. Similarly, extract snapshot simply
needs to walk the last level of the skip list and associate each
key with the corresponding value at the given version.

The predecessor and successors at each level are needed
in order to implement the insert operation, which is detailed
by Algorithm 3. We base our design on compare-and-swap,
which enables efficient access under concurrency [12]. Two
important persistency-related observations need to be made
in this context. First, the insert operation needs to be able
to either create a new version history when a new key is
inserted or to use an existing persistent pointer ptr if the insert
is performed due to restart (in which case, no new value is
added to the history). Secondly, it can happen that concurrent

Algorithm 2: FindSkip
Input : key k
Output: predecessors preds, successors succs

1 level← max level(head)
2 pred← head
3 curr ← pred.next[level]
4 while true do
5 succ← curr.next[level]
6 if curr.key < k then
7 pred← curr
8 curr ← succ

9 else
10 preds[level]← pred
11 succs[level]← curr
12 if level = 0 then
13 break
14 curr ← pred.next[level]
15 level← level − 1

16 return (preds, succs, curr if curr = k else NULL)

insert operations compete to set the next pointer of the same
predecessors. In this case, a thread needs to check if it is still
the successor of its predecessor, and, if it is not, it needs to
retry. Furthermore, it can also happen that two threads compete
to allocate the data structures for the same key. In this case,
the slower thread needs to detect this situation and clean up
accordingly, then reuse the pointer of the faster thread.

Complexity analysis: Assuming the total number of
inserted keys is Nk, the complexity of extract key history
is O(log(Nk). Find operations on the version history are
logarithmic in the number of changes between snapshots Nc,
but also linear in the number of inserts Ni by which the tail can
be extended. Therefore, given a total of Nk keys, the overall
complexity of find operations is O(log(Nk) · (log(Nc)+Ni)).
However, in practice, Ni is not likely to dominate. Similarly,
the complexity of extract snapshot is O(Nk · (log(Nc)+Ni)).
Note that Nk continuously grows as more snapshots are added,
which is a limitation of our proposal if some keys are only
valid in certain versions that are rarely accessed. In this case,
we can imagine garbage collection and/or aging mechanisms
that move keys between multiple skip lists. However, such
optimizations are outside the scope of this work.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our experiments were performed on Argonne’s Theta super-
computer, a 11.69 petaflops pre-Exascale Cray XC40 system
based on the second-generation KNL Intel Xeon Phi 7230
SKU. The system has 4392 nodes, each equipped with 64 core
processors (256 hardware threads), 16 GB of high-bandwidth
MCDRAM (300-450 GB/s), 192 GB of main memory (DDR4
RAM, 20 GB/s), and a 128 GB SSD (700 MB/s). The
interconnect topology is based on Dragonfly with a total
bisection bandwidth of 7.2 TB/sec.

The system was configured to run in caching mode (MC-
DRAM caches DRAM at hardware level). We emulate per-

5



Algorithm 3: Insert operation
Input : key k, value v, persistent ptr to version history

1 while true do
2 node← NULL
3 found, preds, succs← FindSkip(k)
4 if found ̸= NULL then
5 if node ̸= NULL then

// somebody inserted the same key
faster, clean up

6 if node.history ̸= ptr then
7 delete persistent node.history
8 delete node

9 node← found

10 else if node = NULL then
// height determined using fist

significant bit of random number
11 node←new node(key, fsb(random))

12 if ptr = NULL then
13 if node.history = NULL then
14 new persistent node.history
15 node.history.insert(curr version, value)

16 else
17 node.history ← ptr

18 succ← succs[0];
19 if succ = node then
20 return
21 for level← 0..max level(node.next) do
22 node.next[level]← succs[level]

23 pred← preds[0]
24 if pred.next[0].compare exchange(succ, node) then
25 if ptr = NULL then
26 key chain.append(key, node.history)

27 break

28 level← 1
29 while level < max level(node.next) do
30 pred← preds[level]
31 succ← succs[level]
32 if ¬pred.next[level].compare exchange(succ, node)

then
33 ( , preds, succs)← FindSkip(k)
34 continue
35 level← level + 1

36 return;

sistent memory by using the /dev/shm/ mountpoint, which
provides an in-memory, POSIX-compatible temporary file
system that we configure as a backing store for the Intel PDMK
v.1.10 toolkit, which provides the transactional object store
used by our approach. To facilitate easier integration of our
code with PDMK, we use the libpmemobj-cpp v.1.12 library,
which provides a set of convenient C++ abstractions.

B. Compared Approaches

Throughout our evaluations, we compare five approaches:
SQLiteReg: This approach implements the API intro-

duced in Section II using a traditional database engine. To
this end, we have chosen SQLite v.3.28, which provides

a lightweight SQL engine that is available on most Linux
distributions out-of-the box and can be directly embedded into
an application by linking with a library. The collection of key-
value pairs is represented by table, whose rows correspond to
insertions and removals. Each row is composed of version
number, key and value. In the case of removals, the value
is a special marker outside of the allowable range of valid
values. Find and extract queries are implemented by using
select statements over this table. These statements are highly
optimized by combining several best practices: (1) multi-
column indexing over both version number and key; (2)
prepared statements that allow us to bind the variables directly
into a pre-compiled binary form; (3) write-ahead logging,
which allows performance improvements under concurrency
while maintaining ACID transactional properties. Any thread
is allowed to issue any kind of query. The concurrency control
is managed internally by the DB engine using fine-grain
locking. The database backing file is stored in /dev/shm, same
as for our approach. We use this approach as a reference
baseline that provides both multi-versioning and persistency.

SQLiteMem: This approach is similar to SQLiteReg,
except that the database is created in-memory and does not
have a backing file, which means there is no persistency
support and I/O overheads are limited to memory page man-
agement only. Furthermore, we configure SQLite to use a
shared page cache across all threads, which further reduces
overheads by eliminating extra copies. SQLiteMem is impor-
tant complement to SQLiteReg, because it is representative of
the best performance that can be achieved by using a database
engine to provide multi-versioning, at the expense of removing
persistency support.

LockedMap: This approach extends a C++ ordered
std::map (whose underlying implementation is typically a red-
black tree) with support for multi-versioning (but no persis-
tency). To achieve this, each key is associated with a version
history, implemented using a lock-free ephemeral vector with
binary search support, as introduced in Section IV-A. The
overall concurrency control is enforced by means of locking.
We are including this approach in the comparison for two
reasons: (1) it provides an alternative to database engines that
is easy to implement on top of standard data structures; (2)
it enables us to study the impact of our concurrency control
strategy for key indexing vs. naive lock-based approaches.

ESkipList: This approach improves on the previous im-
plementation by using a lock-free skip list instead of std::map.
Since there is no need to support removal from the skip
list itself, the implementation can be simplified to use raw
pointers in compare-and-exchange operations. Overall, this
approach combines all optimizations proposed by our work
except that it uses ephemeral instead of persistent pointers
and data structures, thereby lacking persistency support. We
use it as an upper bound in our comparisons to study how
much performance degradation is due to persistency support.

PSkipList: This approach implements our core proposal,
combining all design principles introduced in Section IV-A.
Unlike ESkipList, it provides full persistency support thanks

6



to our hybrid solution that combines a compact persistent
representation with ephemeral indexing based on a lock-
free skip list. PSkipList fulfills all requirements mentioned in
Section II and aims to offer performance levels as close as
possible to ESkipList.

C. Methodology

We designed a set of benchmarks to compare the approaches
introduced in Section V-B. These benchmarks measure the
performance and scalability of all supported operations (in-
sert, remove, find, extract snapshot, evolution of key) under
concurrency, both at the level of a single node (in which case
we vary the number of concurrent threads) and multiple nodes
(in which case we keep the number of threads per node fixed).

Our goal is to stress the compared approaches as much
as possible under concurrency. To this end, we use a large
number of tiny key-value pairs, where each key and value
are represented by integers. For the purpose of this work,
we generate the content of the keys and values randomly.
However, to facilitate a fair comparison, we fix the random
seeds used by each thread on each node, which allows us
to construct reproducible scenarios. Furthermore, we tag after
each insert and remove operation, which means each operation
generates its own snapshots, thereby resulting in a large
number of snapshots.

The benchmarks were implemented using a combination of
MPI (one MPI rank per node) and OpenMP (multiple threads
per MPI rank). The key-value pairs to be inserted and removed
are pre-generated using a pseudo-random number generator
(Mersenne Twister) and cached, which minimizes the impact
of accessing the input data during our experiments.

D. Single Node: Concurrent Insert and Remove

Our first series of experiment studies the scalability of the
insert and remove operations on a single node, starting from
an empty state. We study both insert and remove because there
is an important difference between them: insert operations
may encounter new keys, in which case it is necessary to
instantiate a new history and add a corresponding key-value
pair, in addition to appending a new value to the version
history (which is the only step relevant for remove operations).
To emphasize this difference, we ensure the pre-generated
key-value pairs have unique keys, thereby forcing the insert
operations to exhibit a worst-case scenario. In the case when an
insert operation is used to update an existing key, its behavior
is equivalent to a remove operation and therefore we do not
need to study it separately.

The experiment runs in two phases. First, we pre-generate
N = 1000000 key-value pairs, we evenly distribute them to
T threads, then we let the T threads insert them concurrently.
Second, we create a random shuffling of the keys that are
evenly distributed to the T threads, then we let the T threads
remove them concurrently. We record the total time taken by
all threads to finish. We repeat this experiment for each of
the five compared approaches using a variable T = 1..64.

Note that N remains fixed, therefore this is a strong scalability
study.

The results are depicted in Figure 2. In the case of a
single thread, LockedMap is the fastest, thanks to its opti-
mized red-black tree implementation. It is followed closely
by ESkipList, whose lock-free skip list introduces higher over-
heads. Surprisingly, SQLiteMem performs almost 10x slower
than LockedMap and 5x slower than ESkipList, which indicates
that database engines have too many additional overheads to
be competitive versus specialized data structures. Moreover,
these overheads are not due to I/O operations: we can observe
that adding persistency has significant performance impact:
SQLiteReg is 4x slower than SQLiteMem, while PSkipList is
12x slower than ESkipList. However, PSkipList is ultimately
still 35% faster than SQLiteReg, therefore it is the fastest
persistent approach.

When increasing the number of threads, we can observe
clear scalability trends. SQLiteMem and SQLiteReg are not
scalable and actually exhibit lower performance for an in-
creasing number of threads. The same is true for LockedMap,
whose performance degradation is significant: 64 threads take
3x longer to finish than a single thread. All three approaches
are locking based, which ultimately is the cause of this slow-
down. On the other hand, ESkipList and PSkipList are highly
scalable thanks to their lock-free design: 64 threads are 6.6x
and, respectively, 20x faster than a single thread. This gives
PSkipList a significant edge against the other approaches: it is
30x faster than SQLiteReg, 10x faster than SQLiteMem, 2.6x
faster than LockedMap and only 4x slower than ESkipList, all
while delivering full persistency.

E. Single Node: Concurrent Key History and Find

Our next series of experiments focuses on key history and
find queries. Starting from the state obtained after running
the previous set of experiments (i.e., N = 1000000 inserts
followed by N removes), we run a third step that inserts
another N different pre-generated key-value pairs. Therefore,
we have a total of P = 2 ·N keys, each of which is holding
a version history reflecting one insert or an insert followed by
a remove.

Next, each of the T threads chooses N/T random keys out
P and extracts the version history / runs a find query (using
a random version) for each key. We measure the total time
needed by all threads to finish. Similarly to the previous set of
experiments, we perform a strong scalability study by keeping
N fixed and varying T in the range 1..64.

The results are reported in Figure 3. As expected, key
history and find queries have similar behavior for all five
approaches, with one notable exception for SQLiteMem, which
exhibits performance degradation with increasing number of
threads, especially visible in the case of key history. To explain
this effect, remember that SQLiteMem shares the memory
pages between all threads. Therefore, an increasing number
of threads causes higher access competition, which ultimately
translates to a bottleneck. Key history queries further amplify
this competition because they involve multiple rows in the

7



 0

 50

 100

 150

 200

1 2 4 8 16 32 64

T
im

e
 (

s
)

Number of threads

SQliteReg
SQLiteMem
LockedMap

ESkipList
PSkipList

(a) Insert operations (unique keys). Lower is better.

 0

 50

 100

 150

 200

1 2 4 8 16 32 64

T
im

e
 (

s
)

Number of threads

SQliteReg
SQLiteMem
LockedMap

ESkipList
PSkipList

(b) Remove operations. Lower is better.

Fig. 2: Strong scalability of insert and remove operations on a single node using a variable number of threads.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64

T
im

e
 (

s
)

Number of threads

SQliteReg
SQLiteMem
LockedMap

ESkipList
PSkipList

(a) Extract key history. Lower is better.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64

T
im

e
 (

s
)

Number of threads

SQliteReg
SQLiteMem
LockedMap

ESkipList
PSkipList

(b) Find queries. Lower is better.

Fig. 3: Strong scalability of extract key history and find queries on a single node using a variable number of threads.

table (unlike the case of find queries where single rows are
involved).

As expected, LockedMap is much faster than the other
approaches for a single thread but experiences increasingly
larger performance degradation under concurrency, which be-
comes especially visible for 64 threads. On the other hand,
the other approaches see performance improvement for an
increasing number of threads, including SQLiteReg (which un-
like SQLiteMem keeps a separate page cache for each thread).
However, the performance of SQLiteReg quickly flattens start-
ing with 8 threads, while ESkipList and PSkipList continue
to scale all the way up to 64 threads. Interesting to note
is that PSkipList has no performance penalty compared with
ESkipList, despite storing the version histories in persistent
memory. At the maximum of 64 threads, both ESkipList and
PSkipList are 130x, 420x, and 75x faster than SQLiteReg,
SQLiteMem and LockedMap.

F. Single Node: Concurrent Extract Snapshot

Next we focus on extract snapshot queries. Recall that these
are complex operations that need to extract a sorted set of
all key-value pairs if a given snapshot version number. To
evaluate this scenario, we start from the previous state (P =

 1

 10

 100

 1000

 10000

1 2 4 8 16 32 64

T
im

e
 (

s
)

Number of threads

SQliteReg
SQLiteMem
LockedMap

ESkipList
PSkipList

Fig. 4: Weak scalability of extract snapshot on a single node
using a variable number of threads. Lower is better. Note the
Y axis is represented using logscale.

2000000 distinct keys). Then, we run T concurrent extract
snapshot queries, one per thread and measure the time taken
by all threads to finish. The version number of the snapshot
is randomly chosen by each thread. Unlike the previous set of
experiments, this is a weak scalability study: the amount of

8



work per thread is similar but the overall work increases for
an increasing number of threads.

The results are reported in Figure 4. As can be observed,
SQLiteReg and SQLiteMem are lagging behind even for a
single thread. ESkipList is almost 2x faster than LockedMap,
which can be explained by the fact that walking over a red-
black tree is not as efficient as iterating over the last level of
a skip list. PSkipList is close but has slightly higher overheads
due to reading from persistent memory.

For an increasing number of threads, only ESkipList and
PSkipList maintain perfect weak scalability, while the other
approaches are struggling. At 64 threads, the differences are
so high that it was necessary to use a log scale for the Y axis.
Specifically, ESkipList is 2.4x faster than PSkipList, 1260x
faster than SQLiteReg, 1575x faster than SQLiteMem and 110x
faster than LockedMap.

G. Single Node: Concurrent Find after Restart

Next, we evaluate the performance of PSkipList when
restarting from a persisted snapshot. Since we adopt a hybrid
approach that requires the reconstruction of the skip list on
restart, the first set of experiments focuses on this aspect. To
this end, we save the state of the dictionary after inserting
P = 2000000 distinct keys (same state used in the previous
experiments). Then, we measure the time needed to reconstruct
the skip list for an increasing number of threads T .

As can be observed in Figure 5a, the reconstruction process
is highly scalable, dropping from 17s for one thread to a little
over 2s for 64 threads. Given that restart is an infrequent oper-
ation, such a low overhead is more than justified considering
the performance gain and storage space reduction it provides
during normal operation.

Note that after the skip list was reconstructed, only the
persistent pointer to the history of each key is cached in-
memory. Therefore, find queries will have a slight performance
penalty to access the version history. To evaluate this effect,
repeat the same find experiment presented in Section V-E
(each of the T threads chooses N/T random keys out P ).
We compare our approach with SQLiteReg, which persists
both the table and indices after shutdown, therefore it has all
required information readily available on restart. The results
are depicted in Figure 5b.

As expected, SQLiteReg remains efficient after restart,
showing no significant difference compared with its counter-
part in Figure 3b. Our approach shows a similar behavior:
compared with the case when the cache is warm, the perfor-
mance overhead is less than 9% even at the maximum of 64
threads. This allows our approach to maintain a growing ad-
vantage over SQLiteReg for an increasing number of threads,
reaching a speed-up of up to 150x speedup at 64 threads. In
fact, even if we add the rebuild overhead to the duration of the
find queries, our approach is still 10x faster than SQLiteReg.

H. Multiple Nodes: Distributed Find/Extract Snapshot

Our final series of experiments studies the behavior of our
proposal at large scale. To this end, we deploy a set of K

processes (MPI ranks), each of which runs on a separate
compute node and is responsible to manage a distinct partition
of N key-value pairs. Each partition was pre-generated and
its entries were inserted in a local key-value store. We are
interested in the horizontal scalability of find and extract
snapshot queries across all MPI ranks. To this end, rank 0 acts
as the initiator and broadcasts the query to all other ranks, then
collects the results.

We fix N = 100000, an order of magnitude lower than
in the previous experiments, which is necessary in order to
compensate for the fact that we are using a large number
of nodes. To emphasize the horizontal scalability, we issue
only one query at a time, therefore it is enough to use only
one thread per MPI rank. However, it is important to note
that queries can also run in bulk mode (multiple queries in
a single broadcast) or in parallel by different ranks (by using
different communicators). In this case, the queries can take
advantage of the multi-threaded vertical scalability sustained
by our approach, as shown in the previous sections. Since this
aspect is complementary, we limit our study to a single thread.

First, we focus on find queries, which are implemented
in two steps using MPI collectives: broadcast the query to
all nodes, then reduce the replies of all ranks to obtain the
final answer. Specifically, we let rank 0 execute N queries
and measure the throughput. The key and version number of
each query is randomly chosen. The results are depicted in
Figure 6. As can be observed, with an increasing number of
nodes, the throughput drops from up to 20K queries/second to
7K queries/second. This effect is more noticeable for a small
number of nodes but quickly stabilizes. It can be explained by
the fact that a large part of the overhead can be attributed to
the MPI collectives, whose scalability bounds the throughput
of the queries. Nevertheless, the overhead of the individual
find queries is still significant, despite the fact that their
execution on the MPI ranks is embarrassingly parallel. This is
visible when comparing SQLiteReg and PSkipList: the latter
consistently achieves as 25% better throughput regardless of
the number of nodes.

Next, we focus on extract snapshot queries, which are
implemented using two approaches: (1) a naive approach
(NaiveMerge) that first gathers the results of executing the
extract snapshot queries on all MPI ranks individually, then
performs a K-way merge on rank 0; (2) an optimized approach
(OptMerge) that combines recursive doubling with multi-
threaded merge (as described in Section IV-A). We use the
highest version number for the queries, which means each
rank contributes its whole partition, thus a total of N ·K pairs
need to be gathered and merged.

First, we study the gather performance, which represents
the lowest possible overhead of accessing the whole snapshot
without preserving a globally sorted key order. As can be
observed in Figure 7, PSkipList maintains a speedup over
SQLiteReg ranging from 2x (512 nodes) to 5x (8 nodes),
which shows that the performance of extract snapshot queries
on individual nodes plays a crucial role at scale, despite an
increasing communication overhead needed to collect all query

9



 0

 5

 10

 15

 20

1 2 4 8 16 32 64

T
im

e
 (

s
)

Number of threads

PSkipList

(a) Skip list reconstruction overhead after restart. Lower is better.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 32 64

T
im

e
 (

s
)

Number of threads

SQliteReg
PSkipList

(b) Find queries with cold cache after restart. Lower is better.

Fig. 5: Scalability of skip list reconstruction and find queries on a single node after restart using a variable number of threads.

 0

 5

 10

 15

 20

8 64 128 256 512

T
h
ro

u
g
h
p
u
t 
(K

q
u
e
ri
e
s
 /
 s

e
c
o
n
d
)

Number of nodes (1 thread per node)

SQliteReg
PSkipList

Fig. 6: Find throughput for an increasing number of nodes
using one thread. Higher is better.

 0.1

 1

 10

 100

8 64 128 256 512

T
im

e
 (

s
)

Number of nodes (1 thread per node)

SQLiteReg-Gather
PSkipList-Gather

SQLiteReg-NaiveMerge
PSkipList-NaiveMerge
SQLiteReg-OptMerge

PSkipList-OptMerge

Fig. 7: Scalability of extract snapshot for an increasing number
of nodes using NaiveMerge and OptMerge, with MPI Gather
as reference. Lower is better. Note the Y axis is represented
using logscale.

results (implemented using MPI Gather collective operations).
Attempting to merge the results on a single node after gather-
ing them leads to poor scalability, as can be observed in the
trend of SQLiteReg−NaiveMerge and PSkipList−NaiveMerge:

both approaches become at least two orders of magnitude
slower for 512 nodes. On the other hand, our optimized merge
approach exhibits much better scalability: for 512 nodes, it is
50x faster than the naive approach. Furthermore, this overhead
is small enough to emphasize the performance benefit of
PSkipList over SQLiteReg, which reaches 20% for 512 nodes.

VI. CONCLUSIONS

In this paper we focus on the problem of designing ordered
key-value stores with multi-versioning support that are scal-
able under concurrent access (vertically and horizontally) and
leverage persistent memories to provide durability. To this end,
we propose a hybrid data structure and associated algorithms
that combine ephemeral indexing based on lock-free skip
lists with a compact incremental representation optimized for
persistent memories.

We conducted extensive vertical scalability experiments that
compare our proposal with several other implementations
based on SQL database engines, lock-based red-black trees
and lock-free skip lists. Under concurrency, our proposal is
several orders of magnitude faster (30x for insert, 130x for
find, 520x for extract snapshot) than SQL database engines.
Furthermore, it is also faster than ephemeral lock-based red-
black trees (2.6x for insert, 75x for find, 45x for extract
snapshot). Additionally, we studied the horizontal scalability
of our proposal by comparing it with a naive merge approach,
in which case we obtained a 50x speedup, which is enough to
maintain a lead over SQL databases even when using a single
thread per node.

Encouraged by these promising results, in future work we
plan to explore how to leverage the proposed data structures as
a building block for data management systems that emphasize
versioning and intermediate representations of datasets, such
as DataStates [3]. Furthermore, we are also planning to
address one of the limitations of our work regarding the need
to traverse the whole set of keys even if they are not pertinent
to the requested version. To this end, we are considering
extensions to the ephemeral index based on a lock-free skip
list.

10



ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy (DOE), Office of Science, Office of
Advanced Scientific Computing Research, under Contract DE-
AC02-06CH11357.

REFERENCES

[1] J. Lofstead, I. Jimenez, C. Maltzahn, Q. Koziol, J. Bent, and E. Barton,
“Daos and friends: A proposal for an exascale storage system,” in
SC ’16: The 2016 International Conference for High Performance
Computing, Networking, Storage and Analysis, Salt Lake City, Utah,
2016, pp. 50:1–50:12.

[2] H. Liu, B. Nicolae, S. Di, F. Cappello, and A. Jog, “Accelerating
DNN Architecture Search at Scale Using Selective Weight Transfer,”
in CLUSTER’21: The 2021 IEEE International Conference on Cluster
Computing, Portland, USA, 2021.

[3] B. Nicolae, “DataStates: Towards Lightweight Data Models for Deep
Learning,” in SMC’20: The 2020 Smoky Mountains Computational
Sciences and Engineering Conference, Nashville, United States, 2020.

[4] A. Baldassin, J. a. Barreto, D. Castro, and P. Romano, “Persistent
memory: A survey of programming support and implementations,” ACM
Comput. Surv., vol. 54, no. 7, 2021.

[5] K. Ouaknine, O. Agra, and Z. Guz, “Optimization of rocksdb for
redis on flash,” in ICCDA ’17: The 2017 International Conference
on Compute and Data Analysis. Lakeland, USA: Association for
Computing Machinery, 2017, p. 155–161.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed., 2001.

[7] R. Sedgewick and K. Wayne, Algorithms (Fourth edition deluxe).
Addison-Wesley, 2016.

[8] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,”
Commun. ACM, vol. 33, no. 6, p. 668–676, 1990.

[9] R. Bayer and E. McCreight, “Organization and maintenance of large or-
dered indices,” in SIGMOD ’70: The 1970 ACM SIGFIDET (SIGMOD)
Workshop on Data Description, Access and Control. Houston, USA:
Association for Computing Machinery, 1970, p. 107–141.

[10] H. Park and K. Park, “Parallel algorithms for red–black trees,” Theoret-
ical Computer Science, vol. 262, no. 1, pp. 415–435, 2001.

[11] G. Graefe, “A survey of b-tree locking techniques,” ACM Trans.
Database Syst., vol. 35, no. 3, 2010.

[12] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming,
Revised Reprint, 1st ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2012.

[13] A. Natarajan, L. H. Savoie, and N. Mittal, “Concurrent wait-free red
black trees,” in Stabilization, Safety, and Security of Distributed Systems.
Cham: Springer International Publishing, 2013, pp. 45–60.

[14] M. Stonebraker and G. Kemnitz, “The postgres next generation database
management system,” Commun. ACM, vol. 34, no. 10, p. 78–92, 1991.

[15] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
2010.

[16] “Lustre: A parallel file system that supports many requirements of
leadership class hpc simulation environments,” https://www.lustre.org/.

[17] M.-A. Vef, V. Tarasov, D. Hildebrand, and A. Brinkmann, “Challenges
and solutions for tracing storage systems: A case study with spectrum
scale,” ACM Trans. Storage, vol. 14, no. 2, 2018.

[18] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, “Rados: A
scalable, reliable storage service for petabyte-scale storage clusters,” in
PDSW ’07: The 2nd International Workshop on Petascale Data Storage:
Held in Conjunction with Supercomputing ’07, Reno, Nevada, 2007, p.
35–44.

[19] S. Chacon and B. Straub, Pro Git, 2nd ed. Berkely, CA, USA: Apress,
2014.

[20] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-Amarie,
“BlobSeer: Next-generation data management for large scale infrastruc-
tures,” J. Parallel Distrib. Comput., vol. 71, pp. 169–184, 2011.

[21] “Dolt: A sql database that supports clone, branch, and merge,” https:
//www.dolthub.com/.

[22] M. Armbrust, T. Das, L. Sun, B. Yavuz, S. Zhu, M. Murthy, J. Tor-
res, H. van Hovell, A. Ionescu, A. undefineduszczak, M. undefined-
witakowski, M. Szafrański, X. Li, T. Ueshin, M. Mokhtar, P. Boncz,
A. Ghodsi, S. Paranjpye, P. Senster, R. Xin, and M. Zaharia, “Delta
lake: High-performance acid table storage over cloud object stores,”
Proc. VLDB Endow., vol. 13, no. 12, p. 3411–3424, 2020.

[23] R. Chard, L. Ward, Z. Li, Y. Babuji, A. Woodard, S. Tuecke, K. Chard,
B. Blaiszik, and I. Foster, “Publishing and serving machine learn-
ing models with dlhub,” in PEARC ’19: Practice and Experience in
Advanced Research Computing on Rise of the Machines (Learning),
Chicago, USA, 2019.

11


