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In this paper, we analyze various classes of multi-dimensional Besicovitch almost automorphic type functions, working with general Lebesgue spaces with variable exponents. We provide several illustrative examples and applications to the abstract Volterra integro-differential equations.

Introduction and preliminaries

The notion of almost automorphy was discovered by the American mathematician S. Bochner in 1955 while he was studying problems related to differential geometry ( [START_REF] Bochner | Curvature and Betti numbers in real and complex vector bundles[END_REF]). The study of almost automorphy on (semi-)topological groups starts presumably with the papers of W. A. Veech [START_REF] Veech | Almost automorphic functions on groups[END_REF][START_REF] Veech | On a theorem of Bochner[END_REF], which were published during the period 1965-1967. For more details about almost automorphic functions on semi-topological groups, we refer the reader to [START_REF] Chávez | Multi-dimensional almost automorphic type functions and applications[END_REF]Section 4].

Suppose that F : R n → X is a continuous function, where (X, • ) is a complex Banach space. Then we say that the function F (•) is almost automorphic if and only if for every sequence (b k ) in R n there exist a subsequence (a k ) of (b k ) and a mapping G : R n → X such that lim k→∞ F t + a k = G(t) and lim k→∞ G t -a k = F (t), (1.1) pointwisely for t ∈ R n . The range of an almost automorphic function F (•) is relatively compact in X, and the limit function G(•) is bounded on R n but not necessarily continuous on R n . If the convergence of limits appearing in (1.1) is uniform on compact subsets of R n , resp. the whole space R n , then we say that the function F (•) is compactly almost automorphic, resp. almost periodic. It is well known that an almost automorphic function F (•) is compactly almost automorphic if and only if F (•) is uniformly continuous. For more details about almost periodic functions, almost automorphic functions, various generalizations and applications, we refer the reader to the research monographs and articles [START_REF] Bedouhene | Almost automorphy and various extensions for stochastic processes[END_REF][START_REF] Besicovitch | Almost Periodic Functions[END_REF][START_REF] Diagana | Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces[END_REF][START_REF] Diagana | Generalized almost automorphic and generalized asymptotically almost automorphic type functions in Lebesgue spaces with variable exponents L p(x)[END_REF][START_REF] Fei | Almost automorphic solutions in the sense of Besicovitch to nonautonomous semilinear evolution equations[END_REF][START_REF] Fink | Almost Periodic Differential Equations[END_REF][START_REF] N'guérékata | Almost Periodic and Almost Automorphic Functions in Abstract Spaces[END_REF][START_REF] Kostić | Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations[END_REF][START_REF] Levitan | Almost Periodic Functions[END_REF][START_REF] Zaidman | Almost-Periodic Functions in Abstract Spaces[END_REF]; see especially [START_REF] Chávez | Multi-dimensional almost automorphic type functions and applications[END_REF], [START_REF] Kostić | Selected Topics in Almost Periodicity[END_REF] and the lists of references quoted therein.

Various classes of multi-dimensional almost automorphic functions have been analyzed by A. Chávez et al. in the above-mentioned paper [START_REF] Chávez | Multi-dimensional almost automorphic type functions and applications[END_REF]. This research study has recently been continued in [START_REF] Kostić | Stepanov multi-dimensional almost automorphic type functions and applications[END_REF] and [START_REF] Kostić | Weyl almost automorphic functions and applications[END_REF], where we have analyzed the Stepanov classes and the Weyl classes of multi-dimensional almost automorphic functions, respectively (let us recall that, in the one-dimensional setting, the notion of Stepanov almost automorphy was introduced by V. Casarino [START_REF] Casarino | Almost automorphic groups and semigroups[END_REF] in 2000 and later reconsidered by G. M. N'Guérékata and A. Pankov [START_REF] N'guérékata | Stepanov-like almost automorphic functions and monotone evolution equations[END_REF] in 2008, while the notion of Weyl almost automorphy was introduced by S. Abbas [START_REF] Abbas | A note on Weyl pseudo almost automorphic functions and their properties[END_REF] in 2012). The main aim of this study is to introduce and analyze the multi-dimensional Besicovitch almost automorphic functions as well as to present certain applications in the analysis of the existence and uniqueness of the Besicovitch almost automorphic type solutions for various classes of the abstract Volterra integro-differential equations and the partial differential equations. Some classes of Besicovitch almost automorphic functions introduced here seem to be new even in the one-dimensional setting. On the other hand, the research article [START_REF] Kostić | Besicovitch multi-dimensional almost automorphic type functions and applications[END_REF], from which we have taken the material of this section, is probably the first research article which seeks for spatially Besicovitch almost automorphic solutions of (abstract) PDEs.

The organization and main ideas of this paper can be briefly described as follows. The main part of paper is Section 2, in which we analyze various notions of multidimensional Besicovitch almost automorphy in Lebesgue spaces with variable exponent. In Definition 2.1, we introduce the notion of Besicovitch-(F, φ, p(u), R, B)multi-almost automorphy, [weak Besicovitch-(F, φ, p(u), R, B)-multi-almost automorphy, Besicovitch-(F, φ, p(u), R, B)-multi-almost automorphy of type 1, weak Besicovitch-(F, φ, p(u), R, B)-multi-almost automorphy of type 1]. Proposition 2.2 states that any Besicovitch-(F, φ, p(u), R, B)-multi-almost automorphic function Some applications of our results to the abstract Volterra integro-differential equations and the partial differential equations are provided in Section 3. It is worth noticing that, in Definition 3.1, we introduce the class of Besicovitch-(F, φ, p(u), R, w)-multi-almost automorphic type functions, in which we aim to control the growth order of limit function F * (•) by the weight function w(•). This idea seems to be completely new and not explored elsewhere even in the one-dimensional setting. The notion introduced in Definition 3.1 plays a fundamental role in Proposition 3.2, where we investigate the invariance of Besicovitch almost automorphy under the actions of the infinite convolution products, and Theorem 3.3, where we investigate the convolution invariance of multi-dimensional Besicovitch almost automorphy. Because of a certain similarity with our previous investigations of the existence and uniqueness of Besicovitch almost periodic solutions of the abstract nonautonomous differential equations of first order and the classical wave equation, we have skipped here some irrelevant details concerning the existence and uniqueness of Besicovitch almost automorphic solutions for these classes of PDEs ( [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]). The final conclusions and remarks about the introduced classes of functions are given in Section 4; in addition to the above, we also provide many useful comments, illustrative examples and propose some open problems. It is also worth noting that we give some new definitions, observations and examples regarding multi-dimensional Weyl almost automorphic type functions.

F (•; •) is Besicovitch-(R, B, φ, F) -B p(•) -normal,
We use the standard notation throughout the paper. We assume henceforth that (X, • ), (Y, • Y ) and (Z, • Z ) are complex Banach spaces. By L(X, Y ) we denote the Banach algebra of all bounded linear operators from X into Y with L(X, X) being denoted L(X). If A is a closed linear operator on X, then its domain and range are denoted by D(A) and R(A), respectively. For further information concerning the Lebesgue spaces with variable exponents L p(x) , we refer the reader to the research monograph [START_REF] Diening | Lebesgue and Sobolev Spaces with Variable Exponents[END_REF] by L. Diening, P. Harjulehto, P. Hästüso and M. Ruzicka, as well as to [START_REF] Fan | On the spaces L p(x) (O) and W m,p(x) (O)[END_REF], [START_REF] Kostić | Selected Topics in Almost Periodicity[END_REF] and [START_REF] Nguyen | On variable Lebesgue spaces[END_REF]. We will only note here that P(R n ) denotes the space of all Lebesgue measurable functions p :

R n → [1, ∞].
We need to recall the following definitions: 

φ F (t + b km ; x) -F (t + b k m ; x) Y L p(t) (Λt)
< .

Multi-dimensional Besicovitch almost automorphy in Lebesgue spaces with variable exponent

The main aim of this section is to introduce and analyze various classes of multi-dimensional Besicovitch almost automorphic functions in Lebesgue spaces with variable exponent. Unless stated otherwise, we will always assume henceforth that Ω

:= [-1, 1] n ⊆ R n , p ∈ P(R n ) and F : (0, ∞) × R n → (0, ∞).
We start by introducing the following notion:

Definition 2.1. Suppose that F : R n × X → Y . Let for every B ∈ B and (b k = (b 1 k , b 2 k , • • •, b n k )) ∈ R there exist a subsequence (b km = (b 1 km , b 2 km , • • •, b n km )) of (b k ) and a function F * : R n × X → Y such that for each x ∈ B, l > 0 and t ∈ R n we have φ(F (t + u + b km ; x) -F * (t + u; x)) ∈ L p(u) (lΩ : Y ), φ(F * (t + u -b km ; x) - F (t + u; x)) ∈ L p(u) (lΩ : Y ), as well as: (i) lim m→+∞ lim sup l→+∞ F(l, t) sup x∈B φ F (t + u + b km ; x) -F * (t + u; x) Y L p(u) (lΩ) = 0 (2.1)
and

lim m→+∞ lim sup l→+∞ F(l, t) sup x∈B φ F * (t + u -b km ; x) -F (t + u; x) Y L p(u) (lΩ) = 0, (2.2) 
pointwise for all x ∈ B and t ∈ R n , or (ii)

lim m→+∞ lim inf l→+∞ F(l, t) sup x∈B φ F (t + u + b km ; x) -F * (t + u; x) Y L p(u) (lΩ) = 0
and

lim m→+∞ lim inf l→+∞ F(l, t) sup x∈B φ F * (t + u -b km ; x) -F (t + u; x) Y L p(u) (lΩ) = 0,
pointwise for all x ∈ B and t ∈ R n , or (iii)

lim l→+∞ lim sup m→+∞ F(l, t) sup x∈B φ F (t + u + b km ; x) -F * (t + u; x) Y L p(u) (lΩ) = 0 and lim l→+∞ lim sup m→+∞ F(l, t) sup x∈B φ F * (t + u -b km ; x) -F (t + u; x) Y L p(u) (lΩ) = 0,
pointwise for all x ∈ B and t ∈ R n , or (iv)

lim l→+∞ lim inf m→+∞ F(l, t) sup x∈B φ F (t + u + b km ; x) -F * (t + u; x) Y L p(u) (lΩ) = 0 and lim l→+∞ lim inf m→+∞ F(l, t) sup x∈B φ F * (t + u -b km ; x) -F (t + u; x) Y L p(u) (lΩ) = 0,
pointwise for all x ∈ B and t ∈ R n . If (i), resp. [(ii), (iii), (iv)] holds, then we say that the function Trivially, if the requirements in (i), resp. (iii), of Definition 2.1 hold, then the requirements in (ii), resp. (iv), of Definition 2.1 hold. The notion introduced in [18, Definition 8.3.17, Definition 8.3.32] is a special case of the notion introduced in Definition 2.1. The interested reader may simply clarify some sufficient conditions ensuring that the spaces introduced in Definition 2.1 are translation invariant or have a linear vector structure with the usual operations (see also the items [19, (i)-(iv)] clarified at the beginning of the second section). An analogue of [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Proposition 2.13] holds in our new framework.

F (•; •) is Besicovitch- (F, φ, p(u), R, B)-multi-almost automorphic, resp. [weakly Besicovitch- (F, φ, p(u), R, B)-multi-almost automorphic, Besicovitch-(F, φ, p(u), R, B)-multi-al- most automorphic of type 1, weakly Besicovitch-(F, φ, p(u), R, B)-multi-almost au- tomorphic of type 1]. By AAB F,φ,p(u) (R,B) (R n × X : Y ), resp. [w -AAB F,φ,p(u) (R,B) (R n × X : Y ), AAB F,φ,p(u),1 (R,B) (R n × X : Y ), w -AAB F,φ,p(u),1 (R,B) (R n × X : Y )]
Case φ(x) ≡ x, p(u) ≡ p ∈ [1, ∞) and F(l, t) ≡ l -n/p is the most important, when we say that the function F : R n × X → Y is (weakly) Besicovitch p-(R, B)-multi-almost automorphic (of type 1). If, in addition to the above, we have that the collection B consists of bounded subsets of X, then the notion of Besicovitch p-(R, B)-multi-almost automorphy is equivalent with the notion Besicovitch-(R, B) -B p -normality since, in this case, an extension of the well known result of J. Marcinkiewicz [START_REF] Marcinkiewicz | Une remarque sur les espaces de M. Besicovitch[END_REF] holds (see [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Theorem 2.5]) and the equations (2.1)-(2.2) hold for arbitrary t ∈ R n if and only the equations (2.1)-(2.2) hold with t = 0 (the value of lim sup l→+∞ • in these equations does not depend on t ∈ R n ; see the proof of [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Proposition 3.3]). Furthermore, these two notions are equivalent in the case that φ(x) ≡ x α for some α ∈ (0, 1]. If we replace the all operations lim sup and lim inf in Definition 2.1 with the classical limits, then we obtain the corresponding notion of Weyl p-almost automorphy (of type 1).

If the function F : R n × X → Y is Besicovitch p-(R, B)-multi-almost automorphic, for example, and R denotes the collection of all sequences in R n , then we omit the term "R" from the notation; furthermore, if X = {0}, then we omit the term "B" from the notation. This particularly means that the function F : R n → Y is Besicovitch-p-almost automorphic if and only if F (•) is Besicovitch-p-R-multialmost automorphic with R being the collection of all sequences in R n . In [21, Theorem 2.9], we have constructed an example of a Weyl (Besicovitch)-p-almost automorphic function which is not Besicovitch-p-bounded and therefore not Besicovitchp-almost periodic (p ≥ 1). Further on, if p = 1, then we say that the function F (•) is Besicovitch almost periodic, automorphic etc.

The proof of following result is not difficult and can be omitted:

Proposition 2.2. Suppose that the function F (•; •) is Besicovitch-(F, φ, p(u), R, B)- multi-almost automorphic, and F(l) ≡ F(l, 0). Then the function F (•; •) is Besicovitch-(R, B, φ, F) -B p(•) -normal.
We continue by providing the following illustrative examples (the first one is in support of our recent investigation of Weyl almost automorphy [START_REF] Kostić | Weyl almost automorphic functions and applications[END_REF]):

Example 2.3. (based on the example of D. Brindle [7, Example 2.2]) Let l ∞
denote the Banach space of all bounded numerical sequences, equipped with the sup-norm. Consider the function f : R → l ∞ by f (t) := (e -|t|/k ) k∈N , t ∈ R. We know that this function is uniformly continuous, bounded, slowly oscillating and has no mean value so that f (•) is not Besicovitch almost periodic (for the notion and more details, see [START_REF] Kostić | Selected Topics in Almost Periodicity[END_REF]Example 9.0.20]). On the other hand, we can simply prove that the function f (•) is not Stepanov almost automorphic. In actual fact, if we assume the contrary, then the function f (•) needs to be almost automorphic (see, e.g., [START_REF] Kostić | Selected Topics in Almost Periodicity[END_REF]Lemma 2.3.4]) since it is uniformly continuous. This is not the case because we can use the sequence (b k ≡ k) in the corresponding definition of almost automorphy, with t = 0, in order to conclude that for each ∈ (0, e -1 ) there exists an integer k 0 ∈ N such that sup k∈N e -l/k -e -m/k < , l, m ∈ N.

If we plug k = k 0 = l here, then we obtain e -1 -e -m/k0 ≤ sup k∈N e -l/k -e -m/k < , which gives a contradiction since the first term tends to e -1 as m → +∞. Moreover, we can simply prove that the function f (•) is Weyl-p-almost automorphic for any finite real exponent p ≥ 1; in actual fact, for every sequence (b k ) in R we can take the same subsequence (b km ) = (b k ) and the limit function f * ≡ f in the corresponding definition since the function f (•) is slowly oscillating and bounded. It can be also proved that the function f (•) is Weyl-p-almost automorphic of type 1 (jointly Weyl-p-almost automorphic; see [21, Definition 2.5] for the notion) for any finite real exponent p ≥ 1 since for any sequence (b k ) tending to plus infinity or minus infinity we can take the limit function f * ≡ 0 in the corresponding definition (the situation is much simpler for bounded sequences (b k ) when we can take an appropriate translation of function f (•) as the limit function f * (•)). This example is important because the vector-valued function f (•) satisfies that the limit 

lim t→+∞ t -1 t 0 f (s) ds does not exists in l ∞ but lim t→+∞ t -1 t 0 f (s) ds = 0. Example 2.4. (i) Suppose that ω ∈ R n \ {0}, φ(0) = 0 and a continuous function F : R n → Y is ω-periodic, i.e., F (t + ω) = F (t) for all t ∈ R n . Let R
F 0 : {(x, y) ∈ R 2 : 0 ≤ x + y ≤ 2} → [0, ∞) is any continuous function such that F 0 (x, y) = F 0 (x + 1, y + 1) for every (x, y) ∈ R 2 with
x + y = 0, as well as that the following condition holds: ( ) A sequence (a k ) in N and a sequence (r k ) in (0, ∞) satisfy lim k→+∞ a k = lim k→+∞ r k = +∞, a k +3r k < a k+1 -3r k+1 for all k ∈ N, and the value of function F 0 (•; •) on the projection of the rectangle

a k + [-r k , r k ] 2 to the strip {(x, y) ∈ R 2 : 0 ≤ x + y ≤ 2} is greater or equal than k.
After that, we extend the function F 0 (•; •) to a continuous (1, 1)-periodic function defined on the whole space R 2 in the usual way. Then it can be simply shown that for each l > 0 we have lim

k→+∞ [-l,l] 2 F (x + a k , y) p dx dy = +∞.
This simply implies the required conclusion with R being a collection of all sequences in {(k, 0) : k ∈ N}.

The following result, extending [21, Proposition 2.10], can be also formulated in the multi-dimensional setting: Proposition 2.5. Suppose that p ≥ 1, σ > 0, F(l) ≡ l -σ , f ∈ L p loc (R : X) and there exist a strictly increasing sequence (l k ) of positive real numbers tending to plus infinity, a sequence (b k ) of real numbers and a positive real number 0 > 0 such that, for every k ∈ N and for every subsequence of (b km ) of (b k ), we have

lim m→+∞ l -σ k b km +l k b km -l k f (x) p dx = +∞. (2.3) Then the function f (•) is not Besicovitch-(F, x, p)-almost automorphic of type 1.
Proof. Suppose that the function f (•) is Besicovitch-(F, x, p)-almost automorphic of type 1. Let > 0 be arbitrary. Then there exist a subsequence (b km ) of (b k ), a function f * ∈ L p loc (R : X) and a finite real number l 0 > 0 such that, for every l ≥ l 0 , there exists an integer m l ∈ N such that, for every integer m ≥ m l , we have

l -σ l -l f x + b km -f * (x) p dx < .
Let k ∈ N be such that l k ≥ l 0 . Then, due to (2.3), we have:

> l -σ k l k -l k f x + b km -f * (x) p dx ≥ l -σ k 2 1-p l k -l k f x + b km p dx - l k -l k f * (x) p dx = l -σ k 2 1-p l k +b km -l k +b km f x p dx - l k -l k f * (x) p dx → +∞, m → +∞.
We can simply reformulate [START_REF] Kostić | Weyl almost automorphic functions and applications[END_REF]Example 3.6] in our new framework, as well as the conclusions established in [21, Proposition 3.7, Proposition 3.8]. Further on, the convergence of limits in Definition 2.1 is pointwise, for any x ∈ B and t ∈ R n . For our further work, it will be important to note that we can impose further requirements about the convergence of limits in Definition 2.1 and consider, in such a way, several new classes of multi-dimensional Besicovitch almost automorphic type functions. For example, consider the class AAB

F,φ,p(u) (R,B) (R n × X : Y ) and assume that for each B ∈ B and (b k = (b 1 k , b 2 k , • • •, b n k )) ∈ R we have that W B,(b k ) : B → P (P (R n )) and P B,(b k ) ∈ P (P (R n × B)).
Then we can introduce the following notion (cf. also [START_REF] Chávez | Multi-dimensional almost automorphic type functions and applications[END_REF]Definition 2.2] and the example following it): Definition 2.6. We say that a function F : We similarly define the W B,R -classes and the P B,R -classes of multi-dimensional Besicovitch almost periodic functions from the parts (ii)-(v) of Definition 2.1. We can also introduce the corresponding classes of Weyl almost automorphic functions considered in [START_REF] Kostić | Weyl almost automorphic functions and applications[END_REF]; we only need to replace the operations lim sup and lim inf in Definition 2.1 with the usual limits. In connection with Definition 2.6 and the above observations, we will present the following example (cf. also [START_REF] Chávez | Multi-dimensional almost automorphic type functions and applications[END_REF]Example 5] and [START_REF] Kostić | Stepanov multi-dimensional almost automorphic type functions and applications[END_REF]Example 2.4]):

R n × X → Y is: (a) Besicovitch-(F, φ, p(u), R, B, W B,R )-multi-
Example 2.7. Suppose that ϕ : R → C is an almost automorphic function, and (T (t)) t∈R ⊆ L(X, Y ) is an operator family which is strongly locally integrable and not strongly continuous at zero. Suppose, further, that there exist a finite real number M ≥ 1 and a real number γ ∈ (0, 1) such that

T (t) L(X,Y ) ≤ M |t| γ , t ∈ R \ {0},
as well as that R is the collection of all sequences in ∆ 2 ≡ {(t, t) : t ∈ R} and B is the collection of all bounded subsets of X. Define

F (t, s; x) := e t s ϕ(τ ) dτ T (t -s)x, (t, s) ∈ R 2 , x ∈ X,
and assume that for each bounded subset B of X and for each sequence Proposition 2.8. Suppose that p, q, r ∈ [1, ∞), 1/r = 1/p + 1/q, F 1 (l, t) ≡ l -n/p , F 2 (l, t) ≡ l -n/q , F(l, t) ≡ l -n/r , and φ(x) ≡ x α for some real number α > 0. If for each sequence in R any its subsequence also belongs to R, the function

(b k = (b k , b k )) in R the colection P B,(b k ) consists of all sets of form {(t, s) ∈ R 2 : |t -s| ≤ L} × B,
F 1 : R n → C is Besicovitch-(F, φ, p, R, B, P B,R )-multi-almost automorphic [weakly Besicovitch-(F 1 , φ, p, R, B, P B,R )-multi-almost automorphic], F 2 : R n → Y is Besicovitch-(F, φ, q, R, B, P B,R )-multi-almost automorphic [weakly Besicovitch- (F 1 , φ, q, R
, B, P B,R )-multi-almost automorphic], and for each set B ∈ B we have the existence of finite real numbers l 0 > 0 and m B > 0 such that sup t∈R n ;x∈B [φ(|F 1 (t+

•)|)] L p (lΩ) ≤ m B l n/p , l ≥ l 0 and sup t∈R n ;x∈B [φ( F 2 (t + •) Y )] L q (lΩ) ≤ m B l n/q , l ≥ l 0 [
there exists a strictly increasing sequence (l k ) of positive real numbers tending to plus infinity such that sup t∈R n ;x∈B;k∈N [φ(|F

1 (t + •)|)] L p (l k Ω) ≤ m B l n/p k and sup t∈R n ;x∈B;k∈N [φ( F 2 (t + •) Y )] L q (l k Ω) ≤ m B l n/q k ], then the function F : R n × X → Y, given by F (t; x) := F 1 (t; x)F 2 (t; x), t ∈ R n , x ∈ X, is Besicovitch- (F, φ, r, R, B, P B,R )-multi-almost automorphic [weakly Besicovitch- (F, φ, r, R, B, P B,R )-multi-almost automorphic].
Proof. We will consider the Besicovitch-(F, φ, p, R, B, P B,R )-multi-almost automorphic functions, only. Let (b k ) ∈ R and B ∈ B be given. Since for every sequence in R any its subsequence also belongs to R, we can extract a subsequence (b km ) of (b k ) such that

lim m→+∞ lim sup l→+∞ F1(l) sup x∈B φ F1(t + u + b km ; x) -F * 1 (t + u; x) L p (lΩ) = 0, (2.4) lim m→+∞ lim sup l→+∞ F1(l) sup x∈B φ F * 1 (t + u -b km ; x) -F1(t + u; x) L p (lΩ) = 0, (2.5)
as well as Our assumption simply implies that for each set B ∈ B we have the existence of finite real numbers l 0 > 0 and m B > 0 such that sup

t∈R n ;x∈B [φ(|F * 1 (t + •)|)] L p (lΩ) ≤ m B l n/p , l ≥ l 0 and sup t∈R n ;x∈B [φ( F * 2 (t + •) Y )] L q (lΩ) ≤ m B l n/q , l ≥ l 0 .
Keeping in mind these estimates, the equality 1/r = 1/p + 1/q, the required first limit equality follows using (2.4)-(2.6), the existence of a finite real number c α > 0 such that

φ F 1 (t + u + b km ; x)F 2 (t + u + b km ; x) -F * 1 (t + u; x)F * 2 (t + u; x) Y ≤ c α φ F 1 (t + u + b km ; x) -F * 1 (t + u; x) • φ F 2 (t + u + b km ; x) Y + φ F * 1 (t + u; x) • φ F 2 (t + u + b km ; x) -F * 2 (t + u; x) Y , t ∈ R n ,
and the Hölder inequality. The second limit equality can be proved analogously, by using (2.5) and (2.7).

Example 2.9. It is worth noting that Proposition 2.8 can be applied for the construction of multi-dimensional almost automorphic functions of the form

F (t) := F 1 (t 1 ) • F 2 (t 2 ) • ... • F n (t n ), t = (t 1 , ..., t n ) ∈ R n
, where all functions F j (•) are Besicovitch-p-almost automorphic in a certain sense (see also [START_REF] Kostić | Selected Topics in Almost Periodicity[END_REF]Example 8.1.6] and [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Example 2.8]).

We close this section by stating and proving a composition principle for Besicovitch-(F, φ, p, R, B)-multi-almost automorphic functions of type 1, which continues our analysis from [START_REF] Chávez | Multi-dimensional almost automorphic type functions and applications[END_REF]Theorem 2.20] and [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Theorem 2.10]. We consider here the Besicovitch-p-almost automorphy of the multi-dimensional Nemytskii operator W : R n × X → Z, given by

W (t; x) := G(t; F (t; x)), t ∈ R n , x ∈ X, (2.8)
where F : R n × X → Y and G : R n × Y → Z.

Theorem 2.10. Suppose that 1 ≤ p, q < +∞, α > 0, p = αq, F(t) ≡ t -n/p , φ(x) ≡ x ζ for some real number ζ > 0, F (•; •) is Besicovitch-(F, φ, p, R, B)-multialmost automorphic of type 1 and satisfies that, for every B ∈ B and (b k ) ∈ R, the subsequence (b km ) of (b k ) and the function F * : R n × X → Y from Definition 2.1 satisfy F * (t; x) ∈ s∈R n F (s; x), t ∈ R n , x ∈ X. Define B := t∈R n F (t; B) for each set B ∈ B, and B := {B : B ∈ B}. Assume that, for every sequence from R, any its subsequence also belongs to R. Then we have the following:

(i) Suppose that G : R n × Y → Z is uniformly (R, B )-almost automorphic and there exists a finite real constant a > 0 such that

G(t; y) -G(t; y ) Z ≤ a y -y α Y , t ∈ R n , y, y ∈ Y. (2.9)
Then the function W (•; •), given by (2.8), is Besicovitch-(F p/q , φ, q, R, B)multi-almost automorphic of type 1. (ii) By AAB F,φ,q,1,a,α (R,B ) (R n × Y : Z) we denote the class of all functions G 1 ∈ AAB F,φ,q,1 (R,B ) (R n ×Y : Z) such that for each set B ∈ B there exists a sequence of uniformly (R, B )-multi-almost automorphic functions (G k 1 (•; •)) such that (2.9) holds with the function G(•; •) replaced therein by the function G k 1 (•; •) for all k ∈ N, as well as that for each > 0 there exist a sufficiently large real number l 0 > 0 and an integer k 0 ∈ N such that, for every l ≥ l 0 and k ≥ k 0 , we have

sup t∈R n ;y∈B F(t, l) p/q [-l,l] n G k (t + u; y) -G(t + u; y) ζq Z du 1/q < . If G ∈ AAB F,φ,q,1,a,α (R,B ) (R n × Y : Z), then the function W (•; •) is Besicovitch- (F p/q , φ, q, R, B)-multi-almost automorphic of type 1.
Proof. Let the set B ∈ B and the sequence (b k ) ∈ R be given. By definition, there exist a subsequence (b km ) of (b k ) and a function F * : R n × X → Y such that the requirements of Definition 2.1(iii) hold and F * (t; x) ∈ s∈R n F (s; x), t ∈ R n , x ∈ X. Since we have assumed that, for every sequence from R, any its subsequence also belongs to R, we may assume that the limit function G * : R n × Y → Z satisfies the corresponding limit equations pointwisely for t ∈ R n , uniformly on the set B , and with the functions F (•; •) and F * (•; •) replaced therein with the functions G(•; •) and G * (•; •), respectively. Using (2.9) and the first limit equation for G(•; •) and G * (•; •), we get that

G * (t; y) -G * (t; y ) Z ≤ a x -y α Y , t ∈ R n , y, y ∈ B . (2.10)
In order to see that the function W (•; •) is Besicovitch-(F p/q , φ, q, R, B)-multi-almost automorphic of type 1, we first observe that (here we designate (τ m := b km ), m ∈ N), for every t ∈ R n , x ∈ B and m ∈ N, we have:

G t + τ m ; F t + τ m ; x -G * (t; F * (t; x)) Z ≤ G t + τ m ; F t + τ m ; x -G(t + τ m ; F * (t; x)) Z + G(t + τ m ; F * (t; x)) -G * (t; F * (t; x)) Z ≤ a F t + τ m ; x -F * (t; x) α Y + G(t + τ m ; F * (t; x)) -G * (t; F * (t; x)) Z .
Since x ∈ B and F * (t; x) ∈ B for all t ∈ R n , we simply deduce the required conclusion from an elementary argumentation involving the fact that, for every fixed real number l > 0, we have:

lim m→+∞ [-l,l] n sup y∈B G t + u + τ m ; y -G(t + u; y) αq Z du = 0, t ∈ R n ,
which follows from a simple application of the dominated convergence theorem. Keeping in mind (2.10) and the estimate

G * t -τ l ; F * t -τ l ; x -G(t; F (t; x)) Z ≤ G * t -τ l ; F * t -τ l ; x -G * (t -τ l ; F (t; x)) Z + G * (t -τ l ; F (t; x)) -G(t; F (t; x)) Z , l ∈ N,
the proof of the second limit equation is quite analogous, finishing the first part of theorem. The second part of theorem follows using the first part of theorem and a simple approximation argument.

Before we switch to the next section, let us only note that an analogue of Theorem 2.10 can be formulated, under certain extra conditions, for the functions spaces introduced in Definition 2.6; see [START_REF] Chávez | Multi-dimensional almost automorphic type functions and applications[END_REF]Theorem 2.20] for more details.

Applications to the abstract Volterra integro-differential eqautions

The main aim of this section is to furnish some applications of our results to the abstract Volterra integro-differential equations and the partial differential equations.

1. In this issue, we will first continue our analysis of the invariance of Besicovitch almost periodicity under the actions of infinite convolution product

t → F (t) := t -∞ R(t -s)f (s) ds, t ∈ R; (3.1)
as mentioned in the first application of [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Section 4], this result can be also given in the multi-dimenisonal setting and applied to a wide class of the abstract (degenerate) Volterra integro-differential equations without initial conditions. For example, we can apply this result in the analysis of the existence and uniqueness of Besicovitch-p-almost automorphic type solutions of the fractional Poisson heat equation in L p (R n ), and a class of the abstract fractional differential equations with the higher-order elliptic operators in the Hölder spaces ( [START_REF] Kostić | Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations[END_REF]).

We assume that the operator family (R(t)) t>0 ⊆ L(X, Y ) satisfies that there exist finite real constants M > 0, β ∈ (0, 1] and γ > 1 such that

R(t) L(X,Y ) ≤ M t β-1 1 + t γ , t > 0, (3.2) 
Before stating our result, we need to introduce the following notion, which can be constituted in a much more general situation, for the classes introduced in Definition 2.1:

Definition 3.1. Suppose that the function F : R n → X is Besicovitch-(F, φ, p(u), R)- multi-almost automorphic [Besicovitch-(F, φ, p(u), R, W R )-multi-almost automor- phic, Besicovitch-(F, φ, p(u), R, P R )-multi-almost automorphic]. Let w : R → (0, ∞). Then we say that F (•) is Besicovitch-(F, φ, p(u), R, w)-multi-almost automorphic [Besicovitch-(F, φ, p(u), R, W R , w)-multi-almost automorphic, Besicovitch-(F, φ, p(u), R, P R , w)-multi-almost
automorphic] if and only if for each sequence (b k ) ∈ R the corresponding limit function F * : R → X from Definition 2.1 satisfies that there exists a finite real number M > 0 such that

F * (t) ≤ M w(|t|), t ∈ R n .
The idea of controlling the growth order of limit function F * (•) by the weight function w(•) seems to be new within the theory of almost automorphic functions, and it is generally applicable in the analysis of many other classes of (generalized) almost automorphic functions known in the existing literature. Now we are ready to formulate the following analogue of [19, Proposition 4.1, Proposition 4.2]: Proposition 3.2. Suppose that the operator family (R(t)) t>0 ⊆ L(X, Y ) satisfies (3.2), as well as that a > 0, α > 0, 1 ≤ p < +∞, αp ≥ 1, ap ≥ 1, αp(β -1)/(αp -1) > -1 if αp > 1, and β = 1 if αp = 1. If b ∈ [0, γ -β), w(t) := (1 + |t|) b , t ∈ R and the function f : R → X is Besicovitch-(t -a , x α , p, R, w)-multialmost automorphic [Besicovitch-(t -a , x α , p, R, W R , w)-multi-almost automorphic, Besicovitch-(t -a , x α , p, R, P R , w)-multi-almost automorphic] and there exists a finite real constant M > 0 such that f (t) Y ≤ M w(t), t ∈ R, then the function F (•), given by (3.1), is continuous, Besicovitch-(t -a , x α , p, R, w)-multi-almost automorphic [Besicovitch-(t -a , x α , p, R, W R , w)-multi-almost automorphic, Besicovitch-(t -a , x α , p, R, P R , w)-multi-almost automorphic] and there exists a finite real constant M > 0 such that F (t) Y ≤ M w(t), t ∈ R.

Proof. We will consider the class of Besicovitch-(t -a , x α , p, R, w)-multi-almost automorphic functions, only. Since we have assumed that exists a finite real constant M > 0 such that f (t) Y ≤ M w(t), t ∈ R, the function F (•) is well-defined and there exists a finite real constant M > 0 such that F (t) Y ≤ M w(t), t ∈ R; its continuity can be shown following the argumentation contained in the proof of [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Proposition 4.2]. Let a sequence (b k ) ∈ R be given. Then there exist a subsequence (b km ) of (b k ), a function f * : R → X and a finite real constant M > 0 such that f * (t) ≤ M w(t), t ∈ R and the equations (2.1)-(2.2) hold with the prescribed parameters, and the meaning clear. Define F * : R → Y by F * (t) := t -∞ R(t -s)f * (s) ds, t ∈ R. Then it is clear that F * (•) is well-defined as well as that there exists a finite real constant M > 0 such that F * (t) ≤ M w(t), t ∈ R. In order to see that the estimate (2.2) holds for the functions F (•) and F * (•), take any real number ζ ∈ ((1/(αp)) + b, (1/(αp)) + γ -β). Then we can argue as in the computation carried out in the proof of [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Proposition 4.1]:

1 2l ap l -l F (s + b km + t) -F * (s + t) αp ds ≤ 1 2l ap l -l 0 -∞ R(-z) • F (s + b km + t + z) -F * (s + t + z) dz αp ds ≤ M 2l ap l -l 0 -∞ |z| β-1 (1 + |z|) ζ (1 + |z| γ ) • (1 + |z|) -ζ F (s + b km + t + z) -F * (s + t + z) dz αp ds ≤ M1 2l ap l -l 0 -∞ 1 (1 + |z| αζ ) p F (s + b km + t + z) -F * (s + t + z) αp dz ds = M1 2l ap l -l l z-s 1 (1 + |z -s| αζ ) p F (b km + t + z) -F * (t + z)
αp ds dz

+ M1 2l ap -l -∞ l -l 1 (1 + |z -s| αζ ) p F (b km + t + z) -F * (t + z) αp ds dz ≤ M1 l ap l -l F (b km + t + z) -F * (t + z) αp dz • +∞ -∞ ds (1 + |s| ζ ) αp + M1 2l ap -3l -∞ l -l 1 (1 + |z -s| αζ ) p F (b km + t + z) -F * (t + z) αp ds dz + M1 2l ap 3l -3l l -l 1 (1 + |z -s| αζ ) p F (b km + t + z) -F * (t + z) αp ds dz ≤ M1 l ap l -l F (b km + t + z) -F * (t + z) αp dz • +∞ -∞ ds (1 + |s| ζ ) αp + M1 l ap 3l -3l F (b km + t + z) -F * (t + z) αp dz • +∞ -∞ ds (1 + |s| ζ ) αp + cM1l 2l ap -3l -∞ 1 (1 + |z/2| αζ ) p F (b km + t + z) -F * (t + z) αp dz,
for any t ∈ R; here we have used the Hölder inequality, the Fubini theorem and an elementary change of variables in the double integral. The estimate (2.2) for the functions F (•) and F * (•) can be proved analogously, finishing the proof.

It is worth noting that Proposition 3.2 can be reformulated for all other classes of one-dimensional Besicovitch almost automorphic type functions introduced in Definition 2.1 but not for multi-dimensional Weyl almost automorphic functions considered in [START_REF] Kostić | Weyl almost automorphic functions and applications[END_REF] since it is not clear how one can prove the existence of the right limits (classical ones) in the equations from Definition 2.1. Using the method proposed in the proofs of [START_REF] Kostić | Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations[END_REF]Theorem 3.7.1] and Proposition 3.2, we can consider the existence and uniqueness of Besicovitch-p-almost automorphic solutions for a class of the abstract nonautonomous differential equations of first order; see also [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Theorem 4.5].

2. Concerning the convolution invariance of multi-dimensional Besicovitch almost automorphy, the notion introduced in Definition 3.2 plays a crucial role again. We need to control the growth order of limit functions in order to obtain any relevant result. The conclusions established in this application can be also formulated for all other classes of functions introduced in Definition 2.1.

We will consider first the actions of the Gaussian semigroup

F → (G(t)F )(x) ≡ 4πt -n/2 R n e -|y| 2 /4t F (x -y) dy, t > 0, x ∈ R n . (3.3)
Assume that there exist two finite real numbers b ≥ 0 and c > 0 such that |F (x)| ≤ c(1 + |x|) b ≡ cw(x), x ∈ R n as well as that a > 0, α > 0, 1 ≤ p < +∞, αp ≥ 1, 1/(αp) + 1/q = 1 and F (•) is Besicovitch-(t -a , x α , p, R, w)-multi-almost automorphic, where R is a general collection of sequences in R n . Let us fix a real number t 0 in (3.3). Then the mapping x → (G(t 0 )F )(x), x ∈ R n is welldefined and has the same growth as the inhomogeneity F (•). Writing the term e -|y| 2 /4t0 = e -|y| 2 /8t0 • e -|y| 2 /8t0 and applying the Hölder inequality, we may conclude that the function F (•) is Besicovitch-(t -a , x α , p, R, w)-multi-almost automorphic; see, e.g., the argumentation given in the fourth application of [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Section 4].

We can similarly prove the following analogue of [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Theorem 4.6] (see also [21, Theorem 3.9, Theorem 3.13]):

Theorem 3.3. Suppose that b ≥ 0, α > 0, a > 0, 1 ≤ p < +∞, αp ≥ 1, 1/(αp) + 1/q = 1, f : R n → Y is Besicovitch-(t -a , x α , p, R, w)-multi-almost auto- morphic [Besicovitch-(t -a , x α , p, R, W R , w)-multi-almost automorphic, Besicovitch- (t -a , x α , p, R, P R , w)-multi-almost automorphic], where w(t) ≡ (1 + |t|) b , t ∈ R. If there exist two functions h 1 : R n → C and h 2 : R n → C such that h = h 1 h 2 , h 1 ∈ L q (R n ) and |h 1 (•)| α [1 + | • |] ζ ∈ L p (R n ) with ζ = max(bα, a), then the function F (•), given by F (x) ≡ R n h(x -y)f (y) dy, x ∈ R n , is Besicovitch-(t -a , x α , p, R, w)-multi-almost automorphic [Besicovitch- (t -a , x α , p, R, W R , w)-multi-almost automorphic, Besicovitch-(t -a , x α , p, R, P R , w)- multi-almost automorphic].
The notion introduced in Definition 3.2 is important if we want to reconsider the fifth application and the sixth application of [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Section 4]. We will only note that the analysis of the existence and uniqueness of Besicovitch-p-almost automorphic type solutions of the wave equation whose solutions are given by the famous d'Alembert formula [the Kirchhoff formula; the Poisson formula] can be carried out in almost the same way as in the almost periodic case, and the same conclusions can be achieved; the analysis of existence and uniqueness of Besicovitch-p-almost automorphic type solutions connected with the use of evolution systems considered in the above-mentioned sixth application of [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Section 4] and the final application of [18, Section 6.3, pp. 426-428] can be carried out as in the almost periodic case as well.

The notion introduced in Definition 3.2 is important if we want to reconsider the application from [5, Example 1], given directly before Subsection 1.1 of this paper. More precisely, suppose that A generates a strongly continuous semigroup (T (t)) t≥0 on a Banach space X whose elements are certain complex-valued functions defined on R n . Under some assumptions, we have that the function u(t, x) = T (t)u 0 (x) + t 0 [T (t -s)f (s)](x) ds, t ≥ 0, x ∈ R n is a unique classical solution of the abstract Cauchy problem u t (t, x) = Au(t, x) + F (t, x), t ≥ 0, x ∈ R n ; u(0, x) = u 0 (x), where F (t, x) := [f (t)](x), t ≥ 0, x ∈ R n . In many concrete situations (for example, this holds for the Gaussian semigroup on R n ), we have the existence of a kernel (t, y) → E(t, y), t > 0, y ∈ R n which is integrable on any set [0, T ] × R n (T > 0) and satisfies that [T (t)f (s)](x) = R n F (s, x -y)E(t, y) dy, t > 0, s ≥ 0, x ∈ R n .

If a real number t 0 > 0 is fixed and the above requirement holds, then we have observed, in [4, Example 0.1], that the almost periodic behaviour of function x → u t0 (x) ≡ t0 0 [T (t 0 -s)f (s)](x) ds, x ∈ R n depends on the almost periodic behaviour of function F (t, x) in the space variable x. The argumentation given there is applicable not only for almost periodicity but also for almost automorphy and various generalizations of these concepts provided that the exponent p(•) has a constant value 1. For example, if the function F (t, x) is Besicovitch-(F, x, 1, R, 1)multi-almost automorphic with respect to the variable x ∈ R n , uniformly in the variable t on compact subsets of [0, ∞), the solution u t0 (•) will be Besicovitch-(F, x, 1, R, 1)-multi-almost automorphic, as well; see, e.g., the computations carried out on [18, pp. 402-403] for more details.

3. Without going into full details, we will only note that Theorem 2.10 can be applied in the analysis of the existence and uniqueness of bounded, continuous, Besicovitch-(F, φ, p, R, B)-multi-almost automorphic of type 1, solutions for a various classes of the abstract (fractional) semilinear Cauchy problems; here B = B can be chosen to be the collection consisting of all bounded subsets of the Banach space X and p ≥ 1 is any finite real exponent. See also the third application of [START_REF] Kostić | Multi-dimensional Besicovitch almost periodic type functions and applications[END_REF]Section 4] for more details.

Conclusions and final remarks

In this paper, we have introduced and investigated various classes of multidimensional Besicovitch almost automorphic type functions. We have presented many illustrative examples and certain applications to the abstract Volterra integrodifferential equations, working with general Lebesgue spaces with variable exponents.

Concerning certain drawbacks and possibilities for further investigations of multidimensional Besicovitch almost automorphic type functions, we want to mention first that, besides the above-introduced classes of functions, we can also consider some else. For example, in parts (i) and (ii) of Definition 2.1 we can operate with lim inf m→+∞ in place of lim m→+∞ , while in parts (i) and (ii) of Definition 2.1 we can operate with lim inf l→+∞ in place of lim l→+∞ ; the notion introduced in [18, Definition 8.3.18, Definition 8.3.28] can be extended only if we use the function φ(•) in the analysis. We have not considered these topics here, as well as the integration and differentiation of multi-dimensional Besicovitch (Weyl) almost automorphic type functions.

Concerning some open problems, we would like to recall first that we have asked, in [21, Question 5.1], whether for a given real exponent p ≥ 1 we can find a Weyl p-almost automorphic function of type 1 which is not Weyl p-almost automorphic? The same question can be proposed for the Besicovitch almost automorphic type

  where F(l) ≡ F(l, 0); Proposition 2.5 continues our analysis from[START_REF] Kostić | Weyl almost automorphic functions and applications[END_REF] Proposition 2.10]. After that, in Definition 2.6, we introduce the notions Besicovitch-(F, φ, p(u), R, B, W B,R )-multi-almost automorphy, the Besicovitch-(F, φ, p(u), R, B, P B,R )-multi-almost automorphy and explain how these notions can be introduced for all other classes of functions from Definition 2.1. In Proposition 2.8, we consider the pointwise products of Besicovitch-(F, φ, p(u), R, B, P B,R )-multi-almost automorphic functions with the scalar Besicovitch almost automorphic functions of a similar type. A composition principle for Besicovitch-(F, φ, p, R, B)-multi-almost automorphic of type 1 is deduced in Theorem 2.10.

  we denote the collection of all Besicovitch-(F, φ, p(u), R, B)-multi-almost automorphic, resp. [weakly Besicovitch-(F, φ, p(u), R, B)-multi-almost automorphic, Besicovitch-(F, φ, p(u), R, B)-multi-almost automorphic of type 1, weakly Besicovitch-(F, φ, p(u), R, B)-multi-almost automorphic of type 1] functions F : R n × X → Y.

  denote the collection of all sequences in the set ω • Z. Then the function F (•) is Besicovitch-(F, φ, p(u), R)-multi-almost automorphic, resp. [weakly Besicovitch-(F, φ, p(u), R)-multi-almost automorphic, Besicovitch-(F, φ, p(u), R)-multi-almost automorphic of type 1, weakly Besicovitch-(F, φ, p(u), R)-multi-almost automorphic of type 1]. (ii) Let p(•) ≡ p ∈ [1, ∞). Then it is very simple to construct an example of an ω-periodic continuous function F : R n → Y which is not weakly Besicovitch-(F, φ, p, R)-multi-almost automorphic of type 1. Suppose, for simplicity, that φ(x) ≡ x, n = 2, Y := C, and F(•; •) is arbitrary. Suppose, further, that

F t+u 1

 1 where L > 0. Define F * (t, s; x) := e t s ϕ * (r) dr T (t -s)x, (t, s) ∈ R 2 , x ∈ X.If the function ϕ(•) is almost periodic, then it is not difficult to show, with the help of computation established in [5,Example 5], that the function F (•, •; •) is Stepanov (Ω, 1)-(R, B, P B,R )-multi-almost automorphic; see[START_REF] Kostić | Stepanov multi-dimensional almost automorphic type functions and applications[END_REF] for the notion. But, this is no longer possible to be done if the function ϕ(•) is only almost automorphic but not almost periodic. If this is the case, then we can simply prove that the functionF (•, •; •) is Weyl-(F, x, 1, R, B, P B,R )-multi-almost automorphic of type 1, since for each fixed real number l > 0 we have: lim m→+∞ [-l,l] 2 sup x∈B +b km , s+u 2 +b km ; x -F * t+u 1 , s+u 2 ; x Y du 1 du 2 = 0, which follows from an application of the dominated convergence theorem and a simple calculation. Now we will state and prove the following result for the class of Besicovitch-(F, φ, p(u), R, B, P B,R )-multi-almost automorphic functions; the same result holds for the Besicovitch-(F, φ, p(u), R, B, W B,R )-multi-almost automorphic functions, and the interested reader may try to formulate this result for the functions introduced in parts (iii)-(iv) of Definition 2.1:

2 (

 2 t + u + b km ; x) -F * 2 (t + u; x) t + ub km ; x) -F2(t + u; x)

  almost automorphic if and only if (2.1)-(2.2) hold pointwisely for all x ∈ B and t ∈ R n , as well as that for each x ∈ B the convergence in t is uniform for any element of the collection W

B,(b k ) (x); (b) Besicovitch-(F, φ, p(u), R, B, P B,R )-multi-almost automorphic if and only if (2.1)-(2.2) hold pointwisely for all x ∈ B and t ∈ R n , as well as that the convergence in (2.1)-(2.2) is uniform in (t; x) for any set of the collection P B,(b k ) .

functions. Moreover, in [21, Question 5.3], we have asked whether an almost automorphic function is automatically Weyl-p-almost automorphic? But, it is also not clear whether an almost automorphic function is Besicovitch-p-almost automorphic for some finite real exponent p ≥ 1.
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