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Abstract

We present two explicit combinatorial constructions of finitely summable reduced
”Gamma’-elements v, € KK(C}(T'),C) for any word-hyperbolic group (I',.S) and ob-
tain summability bounds for them in terms of the cardinality of the generating set S C I’
and the hyperbolicity constant of the associated Cayley graph.

1 Introduction

Hyperbolic groups form a large and quite rich class of finitely generated discrete
groups. They are characterized by the fact that geodesic triangles in the Cayley-
graph G(I',S) of a hyperbolic group I" with respect to a finite symmetric set of
generators S are d-thin, where the hyperbolicity constant § depends on I' and S.
Several conjectures which are completely open in general have been established for
hyperbolic groups: Kasparov’s strong version of the Novikov Conjecture [CM], [KS],
the Baum-Connes Conjecture [Lall, [MY], and even the Baum-Connes Conjecture
with coefficients [La2] are now known to hold for such groups.

In most of these cases the key ingredient of the proof is the construction of a well
behaved Fredholm module
E=(H,m F) (1.1)

over the hyperbolic group I'. This module is supposed to represent the ”Gamma’-
element

v € KKr(C,C) (1.2)

in Kasparov’s equivariant bivariant K-theory. Recall that a Fredholm module over
[' is given by an even unitary representation of I' on the Z/2Z-graded separable
Hilbert space H, and an odd bounded linear operator F' on H, whose image in the
Calkin algebra L(H)/IC(H) is selfadjoint, unitary, and commutes with 7(I"). The
homotopy classes of such bimodules form then Kasparov’s bivariant K-group.
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None of these modules are known to possess the property of finite summabil-
ity, which demands the previous conditions to hold already modulo some ideal of
Schatten-operators P(H) C IC(H). Finitely summable Fredholm modules possess
nice regularity properties. In particular, the Chern character of a finitely summable
Fredholm module in cyclic cohomology can be given by a simple formula [Co|. It is
therefore an interesting question whether a given K-homology class can be realized
by a finitely summable Fredholm module.

In this paper we propose two explicit constructions of finitely summable Fredholm
modules over C*(I") representing the class of Kasparov’s reduced ” Gamma”-element

v € KK(C*T),C). (1.3)

This element maps to the ”Gamma”-element (1.2) under the pull-back along the
canonical morphism C*(I') — C*(I"). Our result solves a problem posed in [ENJ.

For discrete isometry groups of hyperbolic space such Fredholm modules were ex-
hibited by Connes [Co]. Their construction is based on the existence and uniqueness
of geodesic segments and the fact that angles in a geodesic triangle in hyperbolic
space decay exponentially with the distance from the opposite side.

None of these properties is inherited by general d-hyperbolic metric spaces but
Mineyev’s ideas about homological bicombings [M] allow to find appropriate substi-
tutes for them. Instead of geodesic segments joining a base vertex x and an auxiliary
vertex y in the Cayley graph of a d-hyperbolic group we consider the family €2, ,
of all regular sequences (beginning at = and ending at y). The elements of such a
sequence lie uniformly close to the locus geod{z,y} of all geodesic segments joining
x and y and the distance between two consecutive elements is almost fixed and large
compared to . By Mineyev’s work €2, , carries a natural probability measure. The
set €27, , of tails of regular sequences of length at most r inherits a natural probability
measure and the mass of the symmetric difference of €27 and 2}, ~decays expo-
nentially with the distance between geod{x, 2’} and the r-ball Centered at y. This
replaces the exponential decay condition for triangles in hyperbolic space mentioned
above.

We use regular sequences as a tool to modify two well known constructions of re-
duced ”Gamma”-elements for word-hyperbolic groups. Both of them are given by
operators on the closed subspace

o0
@ €wo N sy N oo Neg,, {x0,..., 2} CT, d(x;,z;) <R, 0<14,j <n)
n=0

(1.4)
of the Hilbert space A*(¢*(T")) for R > 0 sufficiently large. The Hilbert space H%(T")
is a completion of the alternating Rips chain complex, which provides a finite free
resolution of the constant I'-module C.

In his proof of the Baum-Connes Conjecture with coefficients for word-hyperbolic



groups [La2] Lafforgue gave a detailed analysis of K-cycles of the form
£, = (HAT), Ty 47 0 (9 + Lo91) 0 145"7) (15)

representing the reduced ”Gamma”-element for R and ¢ sufficiently large. Here
0 is the simplicial differential of the Rips chain complex and ht%/7 is a simplicial
homotopy operator of square zero contracting the Rips complex to the base point
x. Such an operator is given by a filling procedure for cycles. We use an alternative
algorithm given by projecting the given cycle ”orthogonally” onto a nearby regular
sequence and filling its image inside that sequence. This only requires a good filling
of cycles in the metric space N and a classical homotopy formula for Rips complexes
to correct the committed error. The natural measure on the set of regular sequences
permits to average the obtained fillings and thus to get rid of their dependence on
the choices made. The diagonal operator d*// in (1.5) multiplies a basis vector
corresponding to a Rips simplex with a "twisted” distance to the origin. This
twisted distance is quasiisometric to the word metric but satisfies in addition the
decay condition

lim sup |d(£l§', y) - d(xla y) - d([lf, y/) + d($,> y/)| =0 (16)
r—o0 d(x,x;)(:dgg,y’):l

We replace Lafforgue’s metric by the metric of Mineyev-Yu, whose construction is
also based on Mineyev’s bicombing. The modified Lafforgue-bimodules obtained in
this way still represent the reduced ”Gamma”-element and turn out to be in addi-
tion finitely summable due to the behavior of regular sequences.

The first construction of Fredholm modules representing the ” Gamma”-element of
general hyperbolic groups goes actually back to Kasparov and Skandalis [KS]. They
use the same Hilbert space, but their operator is local and given by Clifford multi-
plication

oo Nz N Neg, = cl((ag,zn})(€ap A€oy Ao Neg,) (1.7)

with suitable vectors (g, 2.} € CI'. We replace these vectors by an average (using
Mineyev’s measure) of the appropriate tails of all regular sequences starting at the
base vertex end ending in {xy,...,x,}. The modified Fredholm modules represent
again the reduced ”Gamma”-element but are in addition p-summable for

p > 206 -log(1+[S]) - (1+|S])* (1.8)

In fact much better (and presumably optimal) bounds are known in certain cases.
Emerson and Nica [EN] give, by using the Gysin-sequence in K-homology relating
the trivial and the boundary action of I', a very elegant abstract existence proof
of finitely summable ” Gamma”-elements over the maximal group C*-algebra of a
word-hyperbolic group of Euler-Poincaré characteristic zero. They obtain in this
case the geometric summability bound p > Maz(visdim(9l'), 2), where visdim(I")
denotes the Hausdorff dimension of the boundary of I' with respect to a visual metric.



It should be noted that the finite summability of ”Gamma”-elements is a rather
exceptional phenomenon. Higher rank lattices for example behave very differently
in this respect: no nontrivial K-homology class of the reduced group C*-algebra of
a higher rank lattice can be finitely summable over the group algebra [Pul.

Finally we express our hope that the construction of "nice” Fredholm modules rep-
resenting ”Gamma”-elements might lead in the future to simplified proofs of the
Baum-Connes Conjecture with coefficients for hyperbolic groups following the lines
of Lafforgue’s monumental paper [La2]. This was our key motivation and explains
why we put the main emphasis on Lafforgue’s bimodule.

This work is based on the first authors thesis supervised by the second author.

Georges Skandalis observed that a short alternative proof of the existence of finitely
summable ” Gamma”-elements for hyperbolic groups might be obtained by applying
Mineyev’s ideas to the Fredholm modules used by him and Kasparov in their work
on the Novikov conjecture [KS]. We thank him heartily for his suggestion and for
enlightening discussions about his work with Kasparov.
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2 Rips complexes of hyperbolic groups

2.1 Hyperbolic spaces

For a subset Y C X of a metric space (X, d) and R > 0 we note

BY.R) = {re X.d«,Y) < R} = {r € X,Infd(x.y) <R}  (21)

and
geod(Y) = {x € X, Jy,y' €Y : d(y,x) +d(z,y) = d(y,y")}. (2.2)

Recall that a metric space (X, d) is geodesic if any pair of points z,y € X can be
joined by a geodesic segment, i.e. if there exists an isometric map v : I — X from
a bounded closed interval to X such that v(0I) = {x, y}. A geodesic triangle with
vertices x,y,z € X is given by three geodesic segments [x,y], [y, 2], [z, 2], joining
the denoted endpoints.

Definition 2.1. (Gromov) |G1l],|GH]
A geodesic metric space (X,d) is S-hyperbolic (for some § > 0) if each edge in a
geodesic triangle is contained in the tubular §-neighbourhood of the union of the two
other edges:

(2,2] € B(lz,y]Uly, 2),0) (2.3)

The Gromov product of three points x, ¥y, z in a metric space is defined as

(aly)- = 5(d(r2) + d(y, 2) — d(z,y)) (24)

It is quite useful in d-hyperbolic metric spaces because of the estimate

(zly). < d(z,geod{z,y}) < (z]y), + 26, Vz,y,z € X. (2.5)

2.2 Hyperbolic groups [Gr],[GH]

Let (I', .S) be a finitely generated group with associated word length function /g and
word metric dg. The corresponding Cayley graph G(I', S) with vertices G(I', S)g =T’
and edges G(I',S); =T x S, dy(g,s) = g, D1(g,$) = gs is a proper geodesic metric
space on which I' acts properly, isometrically and cocompactly by left translation.
The group I is called hyperbolic if its Cayley graph with respect to some (and
thus to every) finite, symmetric set of generators is hyperbolic in the sense of 2.1.
(The constant ¢ depends of course on the choice of S.) By abuse of language we
call the pair (I', S) a é-hyperbolic group if G(I', S) is a d-hyperbolic space. We
suppose in the sequel that § is a strictly positive integer.

Convention 2.2. We fix for every element g € G a word w(g) € S“9 of minimal
length representing it. Such a choice defines for any v € I' a geodesic path Ty in
G(I', S) joining x andy = xg. Its edges are labeled by the consecutive letters of w(g).
This construction is equivariant i.e. it commutes with left-multiplication by I'. For
0 <t <d(x,y) we denote by Ty(t) the point of Ty lying at distance t from x.
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2.3 Bar complexes and Rips complexes
We recall a few facts about standard resolutions of modules over group rings.
Definition 2.3. The Bar-complex A,(X) of a set X is the simplicial set with
n-simplices A, (X) = X" face maps
Oi([To, -+ -y Tn)) = [T0oy- oy T, Tig1s - - -, T, (2.6)

and degeneracy maps

si([xo, .- zn]) = 20, .-, xj, x5, ..., 2] for 0 <i,j <neN. (2.7)
The support of a Bar-simplex is Supp([xg, ..., z,]) = {zo,...,xn} C X.

Definition 2.4. Let (X, d) be a metric space and let R > 0. The Rips-complex
AR(X) of (X,d) is the simplicial subcomplex of the Bar-compler A (X) given by
the Bar-simplices of diameter at most R :

AKX) = {[xo,. ., 20) € X" d(2i,75) <R, 0<14,5 <n}. (2.8)
Every map of sets f : X — Y gives rise to a simplicial map

fo: Ad(X) = Ad(Y), [0, ... xn] = [f(z0), ..., f(zn)]. (2.9)

In particular, every group action on the set X gives rise to a simplicial action on
the Bar-complex A,(X) and every isometric group action on a metric space (X, d)
gives rise to a simplicial action on the Rips-complexes AF(X) for any R > 0.

Definition 2.5. The Bar chain complex C,(X,Z) of a set X is given by the free
abelian group with basis A, (X)) modulo the subspace spanned by degenerate simplices.
Its differentials are given by the alternating sum of the linear operators induced by
the face maps. The Rips chain complexes C(X,7Z) of a metric space are defined
similarly. They are subcomplexes of the Bar chain complex.

The support of a Bar-chain is the union of the support of the simplices occuring
in it with nonzero multiplicity.

The augmentation map Co(X,Z) — Z of the Bar-(resp. Rips-)complex sends any
zero simplex to 1. The augmented Bar-complex is contractible (but there is no
natural contraction). If x € X is a base point, then

s.: Cu(X,Z2) — Ci1(X,2)
(2.10)
[0, ..., Tn] — [x,20,..., 2]

is a contracting homotopy of the augmented Bar-complex:
Id = Dos, + s,00.

In particular, the homology of the Bar-complex is of rank one and concentrated in
degree zero. The augmentation map identifies it canonically with Z.
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Proposition 2.6. (Gromov) [G1l] pp.101,96. Let (I',S) be a d-hyperbolic group.
Then the augmented Rips chain complex CE(T',7Z) is contractible for R > 45.

The following two lemmata are easily verified by direct calculation.

Lemma 2.7. Let ., 1, : Cu(X,Z) — C.(Y,Z) be chain maps of Bar complexes
which induce the identity in homology (i.e. which are compatible with the augmen-
tations). Then the linear operator which vanishes in degree -1 and equals

o) CUX,Z) — Coa (Y, 2)

[z, s an] = iz:%(_l)i[%‘(%7---7$z’)7¢n—z‘(xi,...,xn)] (2.11)

in nonnegative degrees defines a natural chain homotopy between ¢ and ) :

Ve — @ = 00 h(p,¥) + h(p,) 0 0. (2.12)

In particular, if G is a group acting on X andY , and if v, and 1, are G-equivariant,
then h(p,v) is G-equivariant as well.

Lemma 2.8. The antisymmetrization operator

Talt - C*(X> @) — Ci (X’ Q)

(2.13)
[an-~->xn] = ﬁ Z (_1)6(0) [xo'(())?"'axo(n)]
0EY 41
1s a chain map which preserves the Rips subcomplexes and equals the identity in
degree zero. In particular it is naturally chain homotopic to the identity by the
previous lemma.

2.4 Filling cycles near geodesic segments

How to find a contracting chain homotopy of the Rips complex 7 In degree zero one
would expect an operator which attaches to a given vertex a geodesic segment joining
it to a fixed origin or base vertex. Following an idea of Mineyev [M] we use instead
of a single geodesic a weighted average of regular sequences of equidistant vertices
close to such geodesic segments. The advantage of this procedure is that it depends
in a strictly controlled way on the choice of the origin. In fact, the difference of the
weights of a given vertex of a regular sequence with respect to two different origins
decays exponentially with the distance from the origins. This exponential decay
property will be responsible for the finite summability of the Fredholm modules
we are going to construct. To obtain the contracting homotopy in higher degrees
it suffices then to fill cycles supported near a regular sequence of vertices in the
Cayley-graph. Taking up an idea of Bader, Furman and Sauer [BES]|, we project a
given cycle "orthogonally” onto the regular sequence and obtain a cycle supported
in this sequence. The latter may be viewed as a Rips cycle of positive degree in the
metric space N and can be filled canonically. The committed error depends on the
distance of the initial cycle from the regular sequence and will be corrected using
the classical homotopy formula for maps of Bar-complexes.
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2.4.1 Filling cycles in segments

Lemma 2.9. There exists a contracting chain homotopy
o Cu(N,Z) = Coi1(NJZ), % > —1, (2.14)
of the augmented Bar-complex of (the metric space) N such that
Supp(o.(a)) C geod(Supp ) (2.15)

and
| o.(a) |1 < diam(Supp(a)) (2.16)

for all Bar-simplices o € A,(N) of dimension x > 1. In fact
o(CR(N,Z)) € CF\(N,Z) 2.17)

for x > —1 and every R € N*. The same assertions hold for the subcomplexes
CE{o,...,m},Z), m € N.

Proof: Put o_;(1) = [0] and o¢(|[n]) = [0, 1]+. . .+[n—1,n] and define inductively
on([To,y .y Tn)) = Sz 0 (Id — 0p—q 00)([T0, ..., 2n]), n > 1.

(See (2.10) for the definition of s,,.) One verifies easily that o 0 9 + 0 o 0 = id and
that

Tn

«_1)n E: [x07"'7xn—17k'_'17k]7 Ty > Tp_1,
k=xn_1+1

on([xo, ..., 2p]) = (2.18)
Tn—1
(—1)n_1 Z [l’o,...,l’n_l,k‘—l,k’], Ty < Tp—1
k=x,+1

modulo degenerate simplices. In particular

Supp(on([zo, ..., x0))) = {x0s - - -, Tpo1} U geod{x,—_1,x,} C geod{xy,...,x,}

and || o.([xo, ..., x.]) [|= |vn — 2| < diam{xo, ..., x,} so that Supp(o.(a)) C
(geod(Supp(a)) and || 0. () ||< diam(Supp(a)) for all o« € A, (N), * > 0 as desired.
U

2.4.2 Regular sequences

Remark 2.10. In the sequel various constants will come up in our statements.
These are viewed as functions of vartous parameters and are monotone increasing
as functions of the numerical parameters among them. In particular, they depend
exclusively on the mentioned parameters, which will be the main point of interest.



We recall a construction of Mineyev, which will play a crucial role in the sequel.
Let us begin with a few motivating remarks. If x,y are two points in hyperbolic
space there is a unique point @;(x, y) situated at distance t < d(z, y) from y and lying
on the unique geodesic segment joining x and y. Moreover, if 2’ is a further point,
the distance between ¢;(x,y) and (2, y) decays exponentially with the distance
of these points from the geodesic segment joining x and 2.

This no longer holds for d-hyperbolic spaces, but Mineyev constructs for any two
vertices x, y in the Cayley graph of a §-hyperbolic group and every integer k < %
a 0-chain (in fact a convex combination) ¢y (x,y) of vertices at distance 10kd from y
and located d-close to geod{x,y}, which has similar properties as the points ;(x, )
considered above.

The scale 106 used by Mineyev could be replaced by any other scale strictly larger
than . On scales above ¢ the d-hyperbolicity condition gives a very precise hold on
the geometry of the Cayley graph. Mineyev uses clever averaging procedures to get
rid of the individual geometry of the Cayley graph on scales below §. In this way
he obtains the exponential decay condition (2.22) below.

Proposition 2.11. (Mineyev )[M] Let (I',S) be a 6-hyperbolic group. For each
integer k > 0 there exists a map

er: I'x I = Cy(T,Q),

" (2.19)
(z,y) = g ()]
satisfying the following conditions for all x,2',y,z € I':
e oi(z,y) is a convexr combination of vertices:
. '(2) 20, Yep¥(z) = 1. (2.20)

o oz, y) = [z] if d(z,y) < 10k0.

Supp or(z,y) C S(y,10k0)NB(7Y,6) = {2 € B(77,6),d(z,y) = 10ké} (2.21)

if d(z,y) > 10ko.
o ¢y, is I'-equivariant: oi(gz, gy) = gpi(z,y), Vg € T.
There exist constants C1(6,|S|) > 0, A1 = A\1(9,|S]) < 1, such that

I on(@,y) — r(a’,y) [ < Oy A1 (2.22)

Proof: We put ¢;(z,y) = f(y,x) in the notations of Mineyev [M], Proposition
3, pp.812-818, which we adopt from now on. We define the map ¢ for &k > 1 as
follows: ¢(x,y) = x if d(x,y) < 10ké and ¢y(z,y) = wr(pry(z),y) if d(z,y) > 10k



is not an integer multiple of 104. If finally d(x,y) > 10kd is an integer multple of

100 put
1

er(,y) = er(pry(2),y).
1FI(y, x) Ele(: !
z€Fl(y,x)
The proof of Mineyev’s proposition applies to the maps ¢, k > 1, as well and shows
that the assertion holds with the same constants as in Mineyev’s paper. 0J

We will use Mineyev’s result in our construction of a contracting homotopy of
te Rips complex as follows. Instead of working with the badly behaved family of all
geodesic segments joining two vertices x and y of the Cayley graph we will consider
the family of all sequences (z = xg, x1, .. ., T, = y) such that z,,, . € Supp(pr(x,y))
for 0 <k < dg%?). Each such sequence has a weight (or multiplicity), derived from
the coefficients coming up in 2.11. This provides a probability measure on the space

of all these "regular” sequences which allows to take averages in a sensible way.

Definition 2.12. Let (I', S) be a §-hyperbolic group and let z,y € T.

e Denote by Q,, be the set of finite sequences of pairwise different vertices in
Go([', S) =T beginning with x and ending with y. The weight of a sequence

W = (.CL’(), L1y .. ,Im> S Q%y (223)

18 .
o = [[ ¥ (@ms) (2.24)

k=1

where the coefficients on the right hand side are those of (2.19).

o A sequence w € Q,,, is called regular if its weight is strictly positive.

Remark 2.13. .

e The weights of all sequences sum up to one :

> =1 (2.25)

wGQz,y

o Ifw= (xg,...,%y) is a reqular sequence, then d(zy,y) = 10(m—k)d fork >0
and d(zg, x1) = d(x,z1) < 100. In particular, its length equals

l(w) = m < d(z,y). (2.26)
o Let Ty be the distinguished geodesic segment joining x and y. Then
Supp(w) C B(Ty, ) (2.27)
for every reqular sequence w € Qg ,,.

This is clear from 2.11 and (2.24).

10



2.4.3 Orthogonal projections onto regular sequences

Definition 2.14. Let w = (xg, x1,...,Tn) be a sequence of pairwise different ver-
tices of G(I',S) =T.

o Letp,: I' = {0,...,m} be the map which sends z € T to the smallest index

j €40,...,m} of an element of Supp(w) situated at minimal distance from z:
d(z,z;) > d(z,2z;), 0 <i<j, d(zx;) <d(z,zp), 0 < kE<m
o Putui,: {0,...,m} =T, i~ x; and let 7, = 1, © P,,-

For a hyperbolic space the ”orthogonal projection” has the following properties.

Lemma 2.15. Let z,y, 2,2 € ' and let Ty be the distinguished geodesic segment
joining x and y. Let w € €, be a reqular sequence. Then

d(m,(2), 7o (") < d(z,2") + 244. (2.28)

Proof: Let w = (zg,...,x,) € Q4 and 2,2 € I'and note u = 7, (2), v’ = m,(2).
We may suppose that d(z,u) > d(z',u’). Let w € geod{u,u'}. Hyperbolicity implies
that d(w,7y) < 39 as Supp(w) C B(wy,d) by (2.27). Pick w' € Ty such that
d(w,w") < 39. If k is the smallest integer such that |d(w’,y) — 10kd| < 56 then
d(w, Tpm—r) < d(w,w") + d(w', yz(10k6)) + d(gz(10k6), Tp—i) < 36 + 50 4 26 = 10§
and d(z,w) > d(z, Tp—g)—d(w, Tpm—k) > d(z,u)—100. Altogether d(z, geod{u,u'}) >
d(z,u) — 100 and (2.5) implies then d(z,u) < (u|u’), + 126. Thus

d(z,u) < (ulu). + 125 = %(d(z, )+ d(z ) — dlu, o)) + 126

< () (=, )+ d( ) — dlu,u')) 4125
<d(z,u) + %(d(z, 2 —d(u,u')) + 126

d(u,u') = d(m,(2), m,(2")) < d(z,2") + 240.

2.4.4 Filling cycles near regular sequences

We attach to any finite sequence of vertices an auxiliary contracting chain homotopy
of the augmented Bar complex of I'. This is inspired by [BEFS], 4.3.

Definition 2.16. Let (I',S) be a §-hyperbolic group.

o For any sequence w = (To, T1,...,Tm) € Qyy let
LY = lyat1 00, 0Py + h(my,id), 1 Cu(I,Z) — Coy (I, Z). (2.29)
o forxz,yel put

w =Y el GUT,Q) = Con(I,Q). (2.30)

weﬂz,y
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Lemma 2.17. .
Let (T, S) be a §-hyperbolic group and let x,y € T.

e The linear operators plY, x,y € I, introduced in the previous definition are
contracting chain homotopies of the augmented Bar complex of T'.

e The family of maps {u?Y, x,y € T'} is equivariant in the sense that the diagram

(i
C*(Fv @) — C*+1(F7 Q)

m(g) } } 7(g) (2.31)

commutes for all g € T'.

Supp(ug®([2])) € Blgeod{z,y},0) U{z}, (2.32)

and
| 10" ([2]) [ < d(z,2) + 1 (2.33)

forall z €T.

Supp(py* (@) C Supp(a) U (B(Supp(e), C2) N B(geod{x,y},0))  (2.34)

and

| (@) L < C3(6,n, diam(a)) (2.35)

forallz,y €T, k> 1 and a € A,(T'), and some universal constants
Cy = Cy(0, n, diam(«), d(Supp(«), geod{x,y})) and Cy = C5(0, n, diam(w)).

Proof: Lemma 2.7 and lemma 2.9 imply that y,, is a contracting chain homotopy
of the augmented Bar complex for any finite sequence w. It sends the canonical
generator of the complex in degree -1 to the vertex [z¢] in degree zero. As a convex
combination of contracting homotopies is still a contracting homotopy it follows that
e,y 1s a contracting homotopy as well.

The equivariance claim is clear because only metric properties were used in the
definition of the linear operators in question.

Let w = (x0,...,%m) € 4, be a regular sequence and let z € I'. Suppose that
Pw(2) = k. Then by definition

po([2]) = (w0000 py + h(my,id))([2]) = <Z [xi—l,xi]) + log, 2] (2:36)

In particular || () || < d(z, y) + 1 by (2.26) and thus || g5*([2]) | < d(z,y) +1
because ;¥ is a convex combination of the operators u*,w € €1 ,.
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The assertion about the support of u™¥(c,) follow from (2.27) and (2.28).

Let us estimate the ¢*-norm of u¥(«). We obtain for any regular sequence w € €2,

I () [l <[ e 0 0n 0 po(@) [ln + || A, id) (an) la

< diam(m,(a)) + (n+1) < diam(a) + 246 + (n+ 1).

The same bound holds then for the norm of p*¥(cy,) by definition of u*¥ as convex
combination of the operators pu“, w € €1, . O

For r > 0 let m,, : C.(I',C) — C.(I',C) be the linear operator which leaves a
simplex invariant if its support is contained in B(y,r) and annihilates it otherwise.

Proposition 2.18. Let (I, S) be a 0-hyperbolic group and let x,x' € T.
a) There exists a constant Cy = Cy(0, A1) > 1 such that

| 7y 0 (Y — ) ([y]) 1 < Cy - AT (2.37)

forally €T and 0 < r < (z|2'), with A\; <1 as in (2.22).
b) Let a € A, ('), n > 1. Then

| 7y 0 (i = 1) 0 (@) 1 S Cs (6, M, m, diam(e)) - A7 (2.38)
forally € T and0 < r < (z|z"),—240 and some constant Cs = C5(6, A1, n, diam(«)).
y

Proof: Let w = (2o, ..., 2Tn) € Oy, be a regular sequence. Then

m—1
E Zlfz, xz—i—l
=0

by (2.36) and

Ed

Ty 1)) = 3 [t i)

where £k is the largest integer such that 100k < r as d(x,,_;,y) = 10id for i < m. So

Il
=)

w

-1

(13 (1) AR

<.
Il
o

where

Q; = {(a,0) € T*, d(a,y) = 10(j + 1)d,d(b, y) = 106}
and for (a,b) € Q;

“’ (a,b) Z Co = Z (H Cf’y(xm—i)> = C?fl(a) 'C;c’y(b)

wEQJ 1ab



where Q290 = {(20,...,2m) € Uy, Tm_j—1 = a, Tpj = b}. Similarly

Ty (1Y ([y]) = g (z ¥ (a,b)[a, b]) with ¢ ¥(a,b) = ¢i;%(a) - ¢ ¥(b). Thus

J

k-1

Ty (™Y — Z Y(a,b) — ¢ ¥(a,b))la, Y

Jj=0 Q;

and

k-1
| 7y G = 1) () = D> 1e5(a,b) — & ¥(a,b)

j=0 Q;
k-1
- €t (@) - ¢ (b) = ¢ (@) - V)
j:(] Qj
k—1
> (Iegta) = 8@l - V) + ¢ba) - 16V (1) = & 0))
j=0 Q;
k-1

Zol )\(x\x y—10(j+1)d + )\ —10]6) < 04(5, )\1) ) )\gx‘xl)y_
Jj=

Let now o € A, (') be a simplex whose support is contained in B(y,r) and let k
be the largest integer such that 10kd < r + 240. Now 7, (Supp(«a)) C B(y,r + 249)
by (2,28), applied with z’ = y, and p“(a) depends therefore only on the last k + 1
elements of w. Therefore

Mw,y(a) = Z Co /f"(a) = Z C:f’y(zl) . C§7y(zz) A szy(zk) e zl,y(a>

WEQCL‘,y Z1yeeey Zk
and
/ / /
=) @) =30 () e (o) = () oy (o)1 ) |
21502k
/ /
< D E () ) = V(=) @) () [

k
< (Z S le(z) - cf”y<zi>|> - Cy(6,m, diam(a)

k
< C5(6,n, diam(e)) - Cy - Z Aple)y=10i8

S 03 : C4 : )\:(Lx‘xl)y " (Z >\]> < C5 5 )\1’7’], dzam( )) Agxlx,)y_r.
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2.5 Controlled contractions of Rips complexes

It is well known that the augmented Rips complex CE(T', C) of a §-hyperbolic group
is contractible if R >> 0 is large enough (for example R = 44 suffices). It defines
then a resolution of the constant I'-module C by finitely generated free I'-modules.
Therefore the Rips chain complex is an equivariant deformation retract of the Bar
chain complex: there exists a I'-equivariant chain map 7, : C,(I',C) — CE(T,C)
whose restriction to CE(T', C) equals the identity and such that its composition with
the inclusion CE(T',C) — C,(T, C) is equivariantly chain homotopic to the identity.
Moreover, in a fixed degree, each such map is of uniformly bounded propagation and
has uniformly bounded matrix coefficients because AZ(T") consists only of finitely
many [-orbits in each degree. We fix such an equivariant deformation retraction 7.

Recall that the matrix coefficients of a linear operator ¢ : C,,(I',C) — C,(I",C)
are the unique scalars (p(«), 5), o € A, ('), 8 € A,(I), satisfying

pla) = Y (pla),B)- B, VYa € Ay(I). (2.39)

BEAL(T)

Our first main result is

Theorem 2.19. Let (I, S) be a §-hyperbolic group and let R > 126 be an even inte-
ger so that the augmented Rips-complex CE(T, C) is contractible. Letn, : C.(T,C) —
CE(T,C) be a T-equivariant deformation retraction of the Bar complex onto the Rips
complex of scale R.

o There exists a family of linear operators
hY: CHI,Q) — CE (T,Q), z€T, x> -1, (2.40)
on the augmented Rips-complex satisfying the identity
hi o0+ 0dohi = id, (2.41)

and such that the following assertions hold.

e The operators (h*).er are compatible with the group action in the sense that
the diagrams

h
CHr,Q) — C&L,(IQ)
7(g) } } 7(g) (2.42)
Cf(rv Q) - Cf—i—l(rv @)
hg®

commute for all g € I" and all x € X.
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e The matriz coefficients (hZ(a), B) vanish unless

Supp(B) C B(geod((Supp a) U{x}), Cs(6, R, n,n)) (2.43)

and satisfy the estimates
(B (@), B)] < C+(5,15], Ry, m) (2.44)
for suitable constants Cs = Cg(d, R,n,n) and C7 = C7(4,|S], R,n,n).

e The homotopy operators depend only weakly on the choice of the base point in
the sense that

(B — BZ)(a), B)] < Cs(6,]S], B,m, Ay, m, d(z, 7)) - A7 (2.45)

with (z]|2')s = ]S\Mn(ﬁ) (z]2), for all z,2' € T, « € AK(T), f € AE (') and
zeSupp
for a suitable constant

CS = 08(67 |S|7R7777 )‘17”7 d(x,x/))

Proof: We construct the operator A*” by induction over the degree. We put
h*,(1) = [z] in degree -1. Suppose now that h? has been defined up to degree
* =n—1and let a = [xg,...,2,] € AR(T). Then (id — hZ_, 0 d)(«) is a cycle in
CE (T). We put

h(@) = Ty 0 ™ o (id — by, 0 0)(a). (2.46)

Then
dohy(a) = nuyr 0 (id — hy_y 0 0)(a) = (id — hy_; 0 9)(a)

by the induction assumption because p**° is a contracting chain homotopy of the
Bar-complex and 7, is a chain map which equals the identity on the Rips complex
CE(,C). This shows our first claim. The second follows from (2.31) and the
equivariance of 7,. Concerning our third claim note first that

ho([wol) = mo g™ ([xo] = [2]) = po™ ([o])

because piy™"°([zo]) is a linear combination of edges of length at most 120 < R. Thus
Supp(h§([zo])) C B(geod{z,zo},d) by (2.32). Assertion (2.43) follows now by in-
duction from (2.34) and the fact that 7, is of uniformly bounded propagation in
each degree.

The matrix coefficients of hf are bounded by 1 according to (2.36). Suppose that
claim (2.44) has been verified up to degree n — 1 and let a = [zg,...,z,] €
AR(), n > 0. The estimate (2.35) shows that the restriction of the operator e
to any Rips-subcomplex of the Bar-complex is bounded w.r.t £!-norms. The same
holds for the operator n because it is of uniformly bounded propagation and has

uniformly bounded matrix coefficients in a fixed degree. Thus

(R (@), B)] <) [ 0 ™ (8), B) - [((id = h_y 0 D) (a), )]
7
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<[ g - Cs(0,m, R) - (1 + (n 4 1) - C2(6,[S], R,m,n = 1))

B € AT, (s 0 ™ (B'), B) - ((id — R _y 0 ) (), 5) # 0} (2.47)

by our induction hypothesis. For every simplex 8 € A%(T') in this set the distance
d(Supp(5'), geod{z, Supp(a)}) is bounded in terms of d, R, n,n by (2.43). Assertion
(2.34) and the fact that 7, is of uniformly bounded propagation imply then that
the distance d(Supp(B), Supp(’)) is bounded in terms of §, R,n,n. This implies
that the cardinality of the set (2.47) is bounded in terms of 4, |S|, R,n,n and fin-
ishes the proof of (2.44).
We come now to the key estimate (2.45) and establish it first in degree zero.
So let & = [y] and B = [xg,21] be such that ((h% — h¥)(a),8) # 0. Then
{z0, 21} C B(geod{z,y},d)UB(geod{x’, y},0) by (2.32). Suppose that (z|z")z > 40.
Then {zg, x1} C B(geod{x,y},20)NB(geod{z',y},2J) by hyperbolicity and a simple
calculation shows that

(x|$,)6 < ($|x/)y - mai’f(d(i’fo, y)> d(xb y)) + 40.
We may apply (2.37) with r = maz(d(z,y),d(z1,y)) and find
{(h® = hZ ) (a), B)| < C4- )\gw\:wy—mam(d(mo,yxd(wl,y>) < Cu(8,\) - )\gx\x’)ﬁ—%'

If (z]2")s < 40 we may choose Cy sufficiently large to ensure (2.45). Suppose now
that our claim has been verified up to degree n—1 and let o = [z, ..., z,] € AZ(T).
Then

(hy — hil)(a) = Npy1 0 u= o (id — hy_; 0 d) () — Npt1 © ,ux/’xo o (id — hfll_l 0 0)(x)

= fs1 © (50 — i) 0 (id — hiy_y 0 9)(a) + s © 17 0 (g — hip_y) 0 (@)

The induction assumption and the same reasoning as in the proof of (2.44) show
that the second term in the previous sum satisfies (2.45). So it remains to bound
the first term. One finds

[t 0 (70 — p*0) 0 (id — Iy © 9) (), B))]

<Y Mg o (5 = 7)), B)] - [{(id = by 0 D) (), B)-
7

Let 8 € AR(T') be a simplex such that

(s1 0 (570 — p™%0)(8), B) - {(id — hi;_y 0 9)(a), B') # 0.

Then the support of 5’ is contained in a tubular neighbourhood of geod(Supp(a)U
{z}) whose width is controlled in terms of (0, R,n,n — 1) by (2.43). Consequently

Supp(B) C Supp(nps1 0 (W™ — " ")(8) C B(Supp(B'), Co(d,n,1, R))

by (2.34) and the finite propagation of 7 in each degree provided that (z|z’) > 0.
The same calculation as before yields the estimate

(] < (x]|2))ey — mazx d(xg,2) + Cio(d,n,n, R, d(z,z"))
z€Supp(B)
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for a suitable constant Cg = C10(0,n,n, R, d(x,z’)). Suppose now that
(z|z")g > Cy+ R+ Cyp + 240 and put

ro = maz d(zg,z) + Ce(d,n,n, R, d(x,z")) + R.

z€Supp(B)

Then Supp(B) U Supp(B') C B(zg,10) and
ro < (z|2")y, — (z|2")g 4+ Cy + R+ Cro < (z|2')sy — 246
so that we may apply (2.38) to conclude that

Mt 0 (50— 1#0)(8), )] < Cua(8, M, Ry, d(, ') - AT 0

S C'11(57 )‘17 R7 n,n, d(fﬁ, ZIJ'/)) : >\§I|x/)ﬁ_09_R_CIO S 012(57 )‘17 R7 n,n, d(flf, LU/)) . >\§I|x/)6

If (z|2')s < Cy+ R+ Cip + 240 the same bound can be derived, after possibly
enlarging C1o, from (2.35). Assertion (2.44) and the same counting argument as in
its proof allow to conclude (2.45). O]

3 The bimodule of Lafforgue

3.1 Continuous metrics and Lafforgue’s operator

Let (', S) be a §-hyperbolic group. For a metric d on T which is quasiisometric to
the word metric d = dg put

~ ~ ~

07t Ry = Ry, 04(r) = Swpld(w,y) —d(a',y) —d(z,y) +d(«,y)l,  (3.1)
where the supremum is taken over all z, 2", y, 3 € T satisfying d(z,2") = d(y,y’) = 1

and d({z, 2}, {y,y'}) > r.
As observed by various authors, it is possible to replace the word metric on a hyper-

bolic group by a ”continuous” metric, quasiisometric to the original one, for which
the difference of the distances of two adjacent vertices from a base point far away
becomes almost independent of the choice of the base point. In other words, for
such a metric the function ¢ ; vanishes at infinity. It is this continuity property,
which, apart from the particular choice of the contracting homotopy, assures that
the Lafforgue-triple is actually a Kasparov-bimodule.

The ”continuous metrics” we have to deal with are the following.

Theorem 3.1. (Mineyev-Yu)[MY] Let (I', S) be a 6-hyperbolic group. There exists
a I'-equivariant distance dyry : I' x I' = Q., which is quasi-isometric to the word
metric and such that

Odnry (T> < 013(57 |S|) ’ )‘2(57 |S|>T (32)

for suitable universal constants Ao = \o(9, |S]) < 1 and C13 = C13(6,|S|). Moreover,
there exists a universal constant Cyy = C14(9,|S]) > 0 such that

duy (2, 2) + duy (2,y) < duy(2,y) + Cu (3.3)
whenever z € geod(z,y), x,y,z € I
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Proof: In view of the definition of the Mineyev-Yu metric d in terms of the
functions s and r introduced in [MY], pp. 115-116, the I'-equivariance of d and
assertions (3.2) follows from [MY], Theorem 6. Assertion (3.3) is an immediate
consequence of [MY], Proposition 10 b).

O

Theorem 3.2. (Lafforque)[LaZ], Section 3.5 Let (I',S) be a §-hyperbolic group.
There exists a I'-equivariant distance dpqapy : I' X I' = Q4 quasi-isometric to the
word-metric such that

Ci5(9,]5])
1+r
for a suitable universal constant C15 = C15(6,|S]).

Odpasy (T) < (34)

Lafforgue’s metric also satisfies an estimate similar to (3.3).
So the characteristic function o3 decays polynomially for the Lafforgue-metric, but
exponentially for the metric of Mineyev-Yu. It is this exponential decay, which, to-
gether with the results of section 1, guarantees the finite summability of the modified
Lafforgue-bimodules.

Definition 3.3. (Lafforgue) [La2], p.69, 4.4. Let (I',S) be a §-hyperbolic group.
Letd:T'xT'— Ry be a metric on I" and let x € I' be a base point.

a) Fort e R put

et C(I'R) = C.(I,R)
(3.5)

o = [ZI}‘(], C. ,,’L‘n] — etf/l\(x,xo) ..

b) Let h* : CE(,C) — CE (T',C) be a contracting chain homotopy of the aug-
mented Rips complex as constructed in 2.19. Fort > 0 put

Tt = etde o h o e~tde . C.(I'LR) — Ciuq(I,R) (3.6)

3.2 Estimates of matrix coefficients

Proposition 3.4. Let (I',S) be a §-hyperbolic group and let x,x' € T'. Let h*,
xz € I, be a contracting chain homotopy of the Rips chain complex as constructed
in Theorem 2.19. and let d : ' x I' — Q be a I'-equivariant distance on I' quasi-
isometric to the word metric and satisfying (3.3). Then

(@ (a), B)] < Ci6(6,]S], B,t,m, d,m) - e dzom)t (3.7)

and

(@ = 2")(a), )] <
< Cup () o, go) 0 (g (ale')s = Cu) + N7) - (38)
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fOT all ZZJ',LU, € F7 t> 07 o = [x()a"'vxn] S ArIL%( ) B [y07"'7yn+1] S ArIL%—I—l(F)
and suitable constants Cyg = C16(6,|S|, R, t,m,d,n), As = As(d) < 1,
017 = 017(5, |S|, R, t, n, d, n, d(l’, ZL’/)) and 018 = 018(5, R, n,n )

Proof: Let a = [zg,...,x,) € AET) and 8 = [yo,...,Unt1] € AF(T) be
Rips-simplices. Then

(@34(a), ) = (M o hfoe " (a), B) = U=t (hi(a), )

According to (2.43) the distance d(yo, geod{z, z(}) is bounded in terms of 6, R, 7, n
So we may find z € geod{z, zo} such that d(yo,z) < C(d, R,n,n). Then

~ ~ ~

d(z,y0) — d(z, 7o) < d(z,2) — d(z, z0) + d(z, yo)

< _C/Z\(IO’ )_I_ 014(6/1\) + 0(5 R mn ) < )\3(/\) d(l’o,yo) + CY19(57 R,T],?’L,C/Z\) (39)

~

because d < Ag - d + C' for suitable A3 = A3(d), C" = C/(C/Z\) and (3.3) holds. The
assertion follows then from (2.44).

We consider now the operator
’ ’ T 7 ’ 7 T ’ T
(I)gc,t . CI)m it tdz (hx hf ) o e—tdz + (etdz o hi o 6—tdz o 6tdz/ o hi o e—tdz/)

and estimate the matrix coefficients of the two terms separately. We may suppose
without loss of generality that (z|z’)s > . On the one hand we derive from (2.45)
by the previous argument

(% 0 (= )oe ™ (@), )] < Cao(&,]S] Av,m,m, dod(ir, 2, e s o)t \ 7172
On the other hand

(e 0 by o™t — e o i 0 ) (), B)
= |etld@)=—d@ao) _ gtdla'wo)=dla" )| . |(h7' (), B)|.

The inequality
‘eb _ea‘ — |/€sd8‘ < emam(a,b)‘b_a‘7
valid for any a,b € R and the bound

Maz ((d(z, yo) — d(x, 20)), (d(x',yo) = (&', 20))) < =Aaed(w0, yo) + Ca(0, Ry, d, ),

which follows from (3.9) because (z|z')z > 0 lead then to the estimate

|etdl@yo)—d(z.w0)) _ tdlawo)=dla"20))| . | (12" (@), B
< Co(8, Rodyn,t) - |(dl, yo) — d(z,0)) — (', yo) — d(a’, z))| - e Awdleom),
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Fix geodesic segments xz’ and Toyy with consecutive vertices
T =Up, ..., W,...u, =2 and yo = vo,...,Vj,..., U = To. The estimates

o~ ~ ~ o~

[(d(wi, v;) — d(ui, vjy1)) = (d(Wiv1, v5) = d(Uirr,v541))| < og(d(wi, vy)),

0 <i<k,0<j <, which hold by definition allow to obtain the bound

~ ~ ~ ~

|(d(, yo) —d(x, w0)) = (d(2, yo) —d(a', mo))| < d(,2")-d(yo, x0)-  Maz  o5((x|z").)

z€geod{yo,zo}

< d(z,2") - d(yo, o) - 07((z|2")y, — C1s(5, R, m,m))

where we used the fact that the characteristic function g7 is monotone decreasing.
Our claim follows now from (2.44). O
Similarly one obtains

Lemma 3.5.

(e 0d0 e — el 0904 (a), B)] < Co-d(x,a') - 07 ((x]a)s — R) (3.10)
and

(e omgroe™ — ' om0~ ) (a), B)| < Cop-d(w,2')- 07 ((z|a')s—R) (3.11)

forallz, 2’ €T, t >0, a=[zo,..., 7], 8 = [Yo, .-, yn) € AZ(T),
B= 1Yo, Yn_1] € AR |(T') and a suitable constant Cyy = Cos(R, d,1).

Lemma 3.6. Let x,2’ € I" andn > 0. Ift >> 0 is sufficiently large the linear maps
(5.6) extend to bounded linear operators

Ot C(A(TD) = (A (T)).

o~

If moreover lim o(d)(r) = 0, then

r—00
ort - @ € K(P(AKD), C(AL, (1)),

Proof: Every linear map T : C¥(I",C) — CE(T",C) is determined by its matrix
coefficients T'(a) = 3 cap- B, @ € AR(T), B € AR(T). For an integer r > 0 we define
B

a linear map T'(r) : CE(I',C) — CE(I",C), T(r)(a) = > cgﬁ) - 3, by the condition
B

for a = [xg,..., 0], B = [Yo, .-, Ym), Where d'(a, 5) = d(x0,y0). So T(r) is the
component of propagation r of T'and 7" = ) T'(r) pointwise. We are interested in

the case T' = ®*' and want to estimate the operator norm of T'(r).
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One finds for { = ). &y -aandn= >, n-f

aEAR(T) peal . (r)

(T = 1> &)l < 1&al - 1] - Ins|
a,f a,B

r) L r), 1
= > " (l&al - 1e12) - (11 - [ma])
a?ﬁ

1 1
2 2
< <Z €af? - |cgg|> : (Z |- W)

CY,/B O/,B/
by the Cauchy-Schwarz inequality. Now
{6 € AR(T), d'(a, B) = r}| < [S]"- (14 [S)THDA (3.12)

for all & € AZ(T) so that

(Z €l |c;gl> < Cug- e S (14 |S)E  € |12
a,B

by (3.7). Similarly
{o € AJ(D), d'(a, B) =7} < [S]"- (1+|S)"" (3.13)
for all 3 € AZ(T) so that

(Z - |ma/|2> < Chg- eS| (L4 S |y |2

a/’ﬁ/

and
2n+1)R

“Daer r (@2nt+DR
(TEm| < Crg-e?™ - [SI"-(L+[S) = -1 €l -Inll-
Thus

2n+1)R

1 D5 (r) || < Cro(6,IS], Byt dym) - e[S (14 [S]) "2

So the linear maps ®2'(r) extend to bounded linear operators on the corresponding
(2-spaces. If moreover t > A3 -log(|S|) the series Y ®%¢(r) converges in
T

LC(AET)), *(AE_(T))) to a bounded linear operator which extends P

Let now m € L((*(AL,(T'))) be the orthogonal projection onto the linear span
of the finitely many simplices 8 € A%, (') satisfying (z|2)g < 7. The previous
argument and (3.8) show then that for t > A\;* - log(|S|)

lim || (Id —m) o (@ — ;) || = 0

r’'—00

which implies that ®%f — &2 is a compact operator in this case. O
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Proposition 3.7. Suppose that o(d)(r) = O(X") for some A < 1. Then
O — @y e P((AND)), (AT (D))
fort >> 0 and p >> 0 sufficiently large.

Proof: The notations are the same as in the proof of the previous proposition.
We want to estimate the Schatten p-norm of the operators T'(r) = ®t(r) — & ()
forr > 0,t > 0 and p = 2N >> 0 sufficiently large. To this end we study the matrix
coefficients of the operators (T*(r)T'(r))". We write in the sequel c,4 instead of cgﬁ)
One has

|<(T*(T)T(T))N(O‘)a a>| = Z Capy - 0;1062 *CanBs * C220@ “eesCanpy CENQ

= § : Capy " CazpBy " CagPa " CasPy - -+ CanBn * CaBn| - (314>
Q2. an€A,
Blseens BNEAmM

Now (3.8) and our assumptions imply

lcwsr| < Coa(8,1S], Bymym, ot d(z, a'), Ag) -1 - et 70

and
(z|2")g > (x]2")zy —2NT — R

with Ay = maz(\, A1) < 1 and a suitable constant Cy3 for every matrix coefficient
in (3.14) because the mutual distance of the first vertices of consecutive simplices in
(3.14) equals r. The number of summands in (3.14) is bounded according to (3.12)

and (3.13) by (|S]*"- (1+ |S|)(2"+1)R)N = (C9(]S|, R,n) - |S|")?". Therefore
(@ TE) (@) )] < C3 - (r- (18] - e A7) X (3.15)
Suppose now that N is so large that A3V < (1+|S|)~L. As
{wo, (@|2)ag = '} < (L+d(2,a')) - (1+]S))"H
by (2.5) we deduce from (3.15)

[Trace(T(r) T(r)™)] < (Ca -7+ (IS]- e 271 ™ (Z AP+ |5|)T'>

and
| T() o < (Trace((TT)N))Y < Cor-r - (IS]- e A7) (3.16)

for p > 2N. This shows that the operators (®** — ®*"*)(r) lie in the Schatten class
for these values of p. For t > \3' - (log|S| — log A4) the series > (&% — &*'1)(r)

converges in P((2(AR(T)), (AL, (I))) and its limit coincides with ®** — ="t [
Similarly we get
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Lemma 3.8. If o(d)(r) = O(X\") for some A < 1, then

e 0 9o et _ a6 9o et ¢ CP(CP(AKT)), (AF ()
and R - N -
e oy 0Tt — et oy, 0 et € (P(P(AR(T)))

forallx,2’ € ', n >0 and t >> 0, p >> 0 large enough.

3.3 The Fredholm module

For a given integer R let
HE = ATHED) N E(ART)) c 2(A(D)). (3.17)

This graded Hilbert space coincides with the image of the antisymmetrization pro-
jector my; (2.13) on £2(AR(T)) and is spanned by the canonical orthonormal basis

{egy Neg, Ao . Neg,, [T, ..., 2,) € AR(T), n € N}. (3.18)
We denote by H% the associated Z/2Z-graded Hilbert space.

Theorem 3.9. Let (I',S) be a §-hyperbolic group and let R > 126 be an integer.
Let d™Y be the Mineyev-Yu metric (see 3.1) on I'. For a given base point x € T’
let h® be a contracting chain homotopy of the augmented Rips complex CE(T',C) as
constructed in 2.19. Fort >> 0 put, following Lafforgue [La2/, 4.4,

—tdMY

Fop = e 0@+ maoh®0domyoh)oe (3.19)

Then
SR,(E,t = (Hiv Tregs sz,t) (320)

is a finitely summable weak Fredholm module over C*(T').

For the notion of Fredholm module see section 5.
Proof: Lemma 3.6 shows that the operators

QY MY Y tdMY Y —taMY
) Y

oh®oe O Tyt ©€

are bounded on £2(AZ(T)) in each degree for t >> 0. As HZ vanishes in high degrees
because Rips simplices cannot have pairwise different vertices in large dimensions,
this implies that F; is in fact an odd bounded operator on H% if t >> 0. Now

MY 4 MY _ MY 4 MY
m(g) o (etdw o h® o ¢t ) om(g)”! = eMor o h9¥ o e7Mor |

MY 4 MY _ MY 4 MY
0o (4 000 MY oty = T e

and
MY 4 MY _ MY 4 MY
m(g) o (etd’” 0 Tt 0 €' ) om(g)™ = eor’ oy 0 e Mo

24



Therefore Proposition 3.7. and Lemma 3.8 imply for ¢ >> 0 and p >> 0 large

enough that for every g € I' that the operators

([r(g), 2™ oo™, [r(g), 2" odoe "] [r(g), & omuoc "]} € O(A(AN(T))
are in the Schatten ideal ¢7(¢2(AZ(T))) for * > 0. It follows that

(7(g), Frp] € P(HEY), Vg el

By construction A” is a contracting chain homotopy of the augmented Rips complex
CE(T",C). The operator m,; o h® is therefore a contracting chain homotopy of the
augmented alternating Rips complex CE(T", C)q;. The map H® = 7y, 0h*0domy0h®
is then still a contracting chain homotopy of this complex but satisfies in addition
(H*)?> = 0. On the non-augmented alternating Rips complex, which is graded by
the non-negative integers, this implies that

O+ mgpoh®odomy oh®)? = Qo H*+ H*0d = Id— H*, 00
1

and therefore

Id—F?, = el o H* o0o e~ = [d—p,
where
Dz - Co(r,(C) — C(](F,(C),
mo] o et 0

is a bounded linear operator of rank one for ¢ >> 0. This finishes the proof of the
theorem.
O

4 The bimodule of Kasparov-Skandalis

We adopt the construction of a ” Gamma”-element by Kasparov and Skandalis [KS].
Following their notation one puts for 7' C I’

Ur = () B(z.R) = {y €T, diam(T U {y}) < R}. (4.1)

Note that Up is empty if diam(T") > R. For y € I" note e, the corresponding basis
vector of CI'. The following is a slightly modified version of the "radial vector field”
introduced in [KS], Section 7.

Definition 4.1. Let (I',S) be a d-hyperbolic group and let T C T .
a) If x ¢ Ur let

G=> D =) |e ecCr (4.2)

yeUr \z¢Ur

where the notations are those of 2.11.
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b) Define (7. € CI' by
Tk @ ¢ Un, & #0,
(¢ =10, 2¢Up & =0, (4.3)
[ x € Ur.

Proposition 4.2. There exists a constant Co; = Co7(6, S|, R, A1) such that
| G = G [l < Con(8, IS, R ) - 277 (4.4)
for all x,2’ € T" and all T CT.

Proof: As the vectors (% and (% are of norm zero or one, the assertion holds for
(z|2")r < Rif C > 2A7%. So we may assume (z|2')r > R and have {z,2'}NUp = 0.

Then
G=> 1D =) |e
yeUr \z¢Ur
and
G=> 1D )| e
yeUr ZQUT
so that
T =& =1 )" [ D (@) = (2) | ey |
yeUr Z¢UT
< 3 Sl - )
yEUngUT
|z )y — x|z’ —108
< NS 18D AT < U] - 06, 1S]) - A
yeUr
by (2.22)

< (14 ISR Ci(6,18]) - AT = Cg(6,18], B M) - AT

Let y € Ur be a point at minimal distance from x. As d(z,2) < d(z,y) for all

z € Supp(p1(z,y)) because x ¢ Ur by 2.11 we deduce Y ¢"Y(z) = 1 and therefore
z¢Ur

| &7 ||2> 1. Consequently

T z’ é-m é—m’ T z/ x|z’
1= o= L — =L ||< 2| €2 — €& || < 205 - A7,
Tl e |

In the sequel the following fact about hyperbolic spaces will be needed.
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Lemma 4.3. Let (X, d) be a 0-hyperbolic geodesic metric space, let R,r > 0 and let
v,y € B(z, R) for some z € X. Then

min(d(u,y),d(u,y)) >r = du,z) < R—r+2§ (4.5)
for all u € geod{y,y'}.

Proof: By hyperbolicity d(u, geod{y,z}) < § or d(u,geod{y’,z}) < 6. Asy
and 3’ play a symmetric role we may suppose that the first assertion holds. So let
v € geod{y, z} be such that d(u,v) <. Then

d(u,z) < d(v,z) + d(u,v) = d(y,z) — d(v,y) + d(u,v)

< d(y,z) —d(y,u) + 2d(u,v) < R—r+20.

O
Definition 4.4. For T C I such that x ¢ Ur put
Vi = {z € Up, Supp(pi(x,2)) € Ur} (4.6)
in the notations of 2.11.
Lemma 4.5.
diam(Vy) < 220. (4.7)

Proof: Let y,y’ € V# and suppose that d(y,y’) > 225. Put u = yy’(105).
Then d(u,yz) < 0 or d(u,y’r) < & by hyperbolicity. Suppose that d(u,7z) < 4.
By assumption there exists v € Supp(p1(z,y)), v ¢ Ur. We have d(u,v) < 49 by
(2.21). Lemma 4.3 implies d(z,v) < d(z,u)+d(u,v) < R—100+20+40 < R for all
z €T asy,y € Ur and min(d(u,y),d(u,y’) > 104, so that v € Ur. Contradiction
' So d(u y'z) < & and v/ = y'y(106) satisfies d(u', y'x) < § by hyperbolicity because

d(u,u’) > 2§. By assumption there exists v' € Supp(p1(z,y’)), v ¢ Ur. We have
d(u, v’ ) < 49 as before. Lemma 4.3 leads again to a contradiction because it implies
d(z,v") < d(z,u')+ d(u,v') < R—100+ 26+ 40 < R for all z € T, which is
impossible as v" ¢ Ur. O

Lemma 4.6. Let T C T" be such that x ¢ Ur. Then
s=> [ 2da'@]e (4.8)
yeVE \ z¢vi

Proof: If y € Ur — V¥ then > ¢7Y(z) = 0 by definition of V5. Therefore
z¢Ur

G= | 2a'@]e=3 |2 d'@ e

yEUT ZgUT yEVj"f Z¢UT
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Let now y,z € I be such that y € V¥, z ¢ V¥ and ¢Y(z) # 0. We have to show
that z ¢ Ur. Suppose on the contrary that z € Ur. As y € V we may find 2’ €
Supp(p1(x,y)), 2/ ¢ Ur. Moreover z € Supp(p1(x,y)) because ¢ (2) #0. As z # x
by assumption we have d(z,y) > 100 and d(gz(100), z) < 20, d(yz(106),2") < 260
and d(z,2') < 46. Let v € Supp(p1(z,2)). As z ¢ Vi one has v € Up. Therefore
v # x and d(zz(106),v) < 24. By hyperbolicity, applied to the triangle with vertices
7z(100), 2,z we may find w € yZ such that d(zz(109), w) < ¢. Then

d(7z(100), w) > d(Fz(108), 27(100)) — d(w, ZT(105)) >

> d(zz(106), 2) — d(FE(106), 2) — d(w, Z7(100)

)
Let z; € T. By assumption d(y, z;) < R and d(w, z;) <
Lemma 4.3 implies

100 =20 =6 =70

>
d(w,v) +d(v,2z;) <35+ R.

d(yz(100),2) < (R+35) —704+20 < R—26

so that d(2/,z;) < d(2/,9z(106)) + d(gz(100), z;) < 20 + R — 2§ < R. But this is
impossible as 2’ ¢ Ur. O

Lemma 4.7. Let R > 33). Let T C I' be such that x ¢ Ur and let y € V. Then
& Urugyy U Un\gyy and

Proof: Let v € V¥ C Ur. Then d(v,y) < diam(V}¥) < 226 < R by 4.5,
so that v € Urugyy € Up. On the other hand Supp(pi(z,v)) € Ur implies
Supp(p1(z,v)) & Urugyy so that v € Vivgy- Thus Vi C Vi, Let now v €
Vivgy- Then v € Uryyy C Ur and d(y,v') < diam(Vy5,,,) < 226 because
y € Vi C Viyyg,- But then Supp(pi(z,v')) C B(v',100) C B(y,330) C B(y, R), so
that Supp(p1(z,v") € Urugyy implies Supp(p1(x,v’) € Ur and o’ € V. This proves
the first equality.

We want to apply it now to T\{y}, y € T NVF C Up\gy. For this we have to show
that z ¢ Ur\gyy and y € Vp(,,. Suppose that z € Ur\. Then d(z,z) < R and
d(y,z) < Rfor z € T\{y}, but d(x,y) > R > 339 because = ¢ Ur. Applying Lemma
4.3 to the point 77(10§) and using (2.21) as before shows that Supp(p1(z,y)) C Ur
which would contradict y € V. So « ¢ Up\yy. By definition Supp(¢i(z,y)) C
B(y,100) C B(y,R) and as y € V¥ we may find v € Supp(p1(z,y)) such that
v ¢ Ur. But then d(v,z) > R for some z € T, which is necessarily different from
y, so that z € T\{y} and y € VA (- So we may deduce from the first part of the
lemma that V., = V7. O

Recall that exterior multiplication with £ € CI' defines a bounded operator
(&) A1) = AFHEI)), w = EAw. (4.10)
" Clifford multiplication” by & is given by the selfadjoint odd bounded operator
cl(§) = p(&) + ()" A*((I)) — A (*(I). (4.11)

28



It satisfies the identity
cl()* = £ |I* Id. (4.12)

The main result of this section is

Theorem 4.8. Let (I, .S) be a §-hyperbolic group and let R > 486. Let x € T' be a
base vertex of the Rips complex AE(T).

a) The linear map

F, : A*(3(T)) o AL (2(T))
(4.13)
xg N sy Ao Neg, = d(C, oy )(exy Aesy Ao Aeg,)

.....

defines an odd bounded, selfadjoint linear operator on HE (see section 3).

b) The triple
Eon = (HE, Treg, ) (4.14)

defines a finitely summable Fredholm module over C(T").

c) This Fredholm module is p-summable for
p > 200 -log(1+[S]) - (1 +]3])* (4.15)

Proof: Let
Hy = Vect{ea, BS AR(F), YIS USupp(a)}

and put for every subset W C I' of diameter at most 226
a/ = V€Ct{€5, ﬁ S AR(P)’ T ¢ USUPP(B)’ Vgupp(ﬁ) = W}

Then H% is the Hilbert sum of the finite dimensional subspaces Hg and H§,,, W C T.
Lemma 4.6 and 4.7 show that these subspaces are invariant under F), and that its
restriction to each of these subspaces is given by Clifford multiplication with a
real unit vector (y € (*(W) or with e,. Therefore F, is a bounded selfadjoint
linear operator of norm one which satisfies F? = Id in strictly positive degrees.
To understand the operator in degree 0 we adjoin a copy of C in degree -1 and
may thus calculate in the full Clifford module A*(¢*(T")) N ¢2(AE [(T)), * > 0. For
a Rips O-simplex [zo] Uy, = B(zo, R). So, if d(z,z9) > R one has zy ¢ V{; , and
id = A(Ch,)? = p(CEy)" 0 1) = F2 on iy, W = Ve and F2(eq,) = e4.
If d(z,79) < R, x # x¢, then e,, € HY and F2([xo]) = ples)* o p(ew)(€xy) = €up-
Finally F,(e,) = 0. Thus

F’=1-m, (4.16)

where 7, is the orthogonal projection onto the subspace spanned by e,.

Proposition 4.2 and the argument used in the proof of Proposition 3.7 permits
to conclude that the operators [Fy,7(g)] = (Fy — Fy:) om(g™"), g € T are finitely
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summable. A closer look at the proof of 3.7 allows to deduce from 4.2 that (4.14) is
p-summable for every p satisfying the inequality

M o< (1419 (4.17)

According to Mineyev [M], pp. 815-816

N = <1 - W) (4.18)

is an admissible choice for his constant (note that it depends only on ¢ and |S| as
claimed in (2.22)). One has

1 - 1
x105:<1—7) > 14—
' (L+|S)* (L+|S)*

and therefore
1 1
log(A{ ™) > log(L+ (1 +[S)™) > (1+|S)7* = S(1+[S)™" > ST+ 7.
So if
p > 206 -log(1+1S]) - (1+1S))*
as proposed in (4.15) one gets

_ _ 1 _
log(A") = 165-108(A"™) > 2log(1+]S])- (1+]S)?- S(L+]S) 7 = log(1+]S])

or

MNo< (L+|S)™
as desired. This finishes the proof of the theorem. O

5 The Gamma element

We recall a few facts about Kasparov’s bivariant K-theory [Ka]. Let G be a lo-
cally compact second countable group. There is a universal stable and split-exact
homotopy bifunctor

KK : G-C*-Alg x G-C*-Alg — Ab (5.1)

from the category of separable G-C*-algebras to the category of abelian groups. It
comes equipped with a bilinear and associative product

KKC%(A,B) ®; KK(B,C) - KK¢(A,C), YA, B,C € G-C*-Alg.  (5.2)

The product turns the groups K K%(A, A) into unital associative rings. Equivariant
K K-theory generalizes Kasparov’s bivariant K-theory KK,(—,—) of C*-algebras
which corresponds to the case G = 1. The universal property implies that every
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homomorphism H — G of locally compact groups gives rise to a natural transfor-
mation

res$ . KK(A, B) — KK"(A, B), (5.3)
as well as to natural transformations
j: KKC(A,B) - KK(AxG,BxG) (5.4)
and
jr: KK%(A,B) - KK(Ax,G,Bx, Q) (5.5)

from equivariant bivariant K-theory to the K-theory of the full and the reduced
crossed products, respectively. All these transformations preserve Kasparov prod-
ucts. The full and the reduced crossed product coincide for proper G-C*-algebras.

A bivariant K-theory class v € KK%(C,C) is a ”Gamma”-element [Ka], [Tul
for GG if it is in the image of the Kasparov product

KK%(C,A) @, KKY(A,C) - KK“(C,C) (5.6)
for a proper G-C*-algebra A and satisfies
res$(y) = 1 € KK¥(C,C) (5.7)
for all compact subgroups K C G. This implies
aof =1¢cKKCP(A, A) (5.8)

for every factorization v = Boa, a € KKY(A,C), 8 € KKY(C, A) with A proper.
A ”Gamma”-element is unique if it exists [Tul.

For G =T a discrete group and a I'-C*-algebra A there exists a tautological isomor-

phism
1 KKY(A,C) ~ KK(AxT,C) (5.9)

between the equivariant K-homology of A and the K-homology of the universal (or
full) crossed product C*-algebra A x I'. It equals the composition

L KKT(A,C) L KK(AxT,CT) = KK(AxT,C) (5.10)
where 7 : C*I" — C is the trivial representation. In particular the diagram
KK"(A',B") ®, KK'(B',C) s KKU(A',C)
=y ! ! L (5.11)
KK(AxT,B xT)®, KK(B'xI',C) — KK(A' xT,C)
commutes for all I'-C*-algebras A’, B'.
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Proposition 5.1. Let I" be a countable discrete group and suppose that a ”Gamma”-
element v € KKY(C,C) exists. Then there is a unique class v, € KK(C*(T),C)
such that

Y = Jr(B) o t(e) € KK(C;T,C) (5.12)

for any factorization v = Boa,a € KKY(A,C), 3 € KKY(C,A) of v with A
proper. It satisfies
psovy. = uly) € KK(C'T,C) (5.13)

where p : C*T" — C*(I') is the canonical epimorphism. The class 7y, is called the
reduced ” Gamma”-element” of I'.

Proof: It only has to be shown that the class on the r.h.s. of (5.12) is indepen-
dent of the factorization of . So let v = faoas = Bpoap, ay € KKY(A,C), B4 €
KKY(C,A), ap € KK (B,C), s € KK (C, B) be two factorizations of v with A
and B proper. The associativity of the Kasparov product and the uniqueness of the
”Gamma”-element imply

ay =loay = (g0fa)oas = aso(Baocay) = aso(Boag) e KK'(A,C),
and
Bp = Bpol = PBpo(apofp) = (Bpoap)ofp = (Bacaa)ofpe KK'(C,B).
Moreover

jlaaofp) =jr(lasofp) € KK(AXT BxIl') = KK(Ax,.I[',Bx,TI)
because A and B are proper so that

Jr(Ba) o vlaa) = jr(Ba) o l(aac fp) 0 ap) = jr(Ba) ojlasc fp) o vas)

= Jr(Ba) 0 jr(aa o fBp)otlag) = j(Baoasofp)oilag) = j(Bs)oilap).

Concerning the claim (5.13) we note that

P« o jr(Ba) = j(Ba)

because A is proper, so that
pe oy = pxo (Jr(Ba) 0 tlaa)) = j(Ba)olaa) = j(Ba)ot(aaol)

= (j(Ba)oj(aa)) ou(l) = j(Baoaa)ou(l)
= j(y)ou(l) = ().
O

Kasparov’s bivariant K-theory is realized as the group of homotopy classes of
Kasparov-bimodules (with addition induced by the direct sum of bimodules). For
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our needs it suffices to give a description of Kasparov (A, B)-bimodules in the case
B = C, the C*-algebra of complex numbers. These are called Fredholm modules.

An even Fredholm-module over a unital C*-algebra A is a triple

E = Hy, 0, F), (5.14)

where Hy is a Z/2Z-graded complex Hilbert space, o : A — L£(H), is an even non-
degenerate representation of A on Hy, and F' € L(H)_ is an odd, bounded linear
operator satisfying

F? —id € K(H), (5.15)
F—-F" e K(H), (5.16)

and
[F,0(a)] € K(H), Va € A. (5.17)

A weak Fredholm module is a triple as above satisfying only conditions (5.15)
and (5.17), but not necessarily (5.16). As every weak Fredholm module is canon-
ically homotopic to a genuine Fredholm module, Kasparov’'s K-homology groups
may as well be defined as the group of homotopy classes of weak Fredholm modules
[BI] (see also Lemma 5.3).

Following [Col, Appendix 2, and [EN],2.2, we call a weak Fredholm module (Fred-
holm module) over A p-summable over the dense subalgebra A C A if

F? —id € (*(H), [F,o(a)] € /(H), (and F — F* € (P(H)) (5.18)

for all a’ € A. Here (?(H) C K(H) denotes the Schatten ideal of compact operators
in ‘H with p-summable sequence of singular values. It is called finitely summable
over A if it is p-summable for p >> 0.

An operator homotopy between p-summable (weak) Fredholm modules over (A, A)
is a family & = (Hy, o, Fi), t € [0,1], of (weak) Fredholm modules over A, which
are p-summable over A and such that ¢ — F, € L(#) is continuous in the strong
x-topology.

Finitely summable Fredholm modules possess nice regularity properties. In par-
ticular, the Chern character of a finitely summable Fredholm module in cyclic co-
homology can be given by a simple formula. It is therefore an interesting question
whether a given K-homology class can be realized by a finitely summable Fred-
holm module. We are going to answer this question affirmatively for the reduced
v-element of a word-hyperbolic group. This settles a problem posed [EN], section 1.

Theorem 5.2. Let (I',S) be a -hyperbolic group, where 6 > 0 is supposed to be
an even integer. Let R > 480 . The modified Lafforgue-bimodules of Theorem 3.9
and the modified Kasparov-Skandalis-bimodules of Theorem 4.8 represent the reduced
"Gamma”-element of T'.
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Proof: For the proof of the first assertion we adopt the notations of section 3.
For 0 <s<1let

&\(S) = (1—8)'dMy + S'dLaff: I'xI' — ]R_,_ (519)

be a convex combination of the Mineyev-Yu and the Lafforgue metric on I". The
proof of 3.9 and Lemma 3.6 show that

ER,m,t(S> = <H£7 Treg s etgz(S) © (8 + Tait © h* o a O Tqlt © hx) © e—tc@(s)) (52())

is a family of weak Fredholm modules over C*(I'). As s — F,(s) is strongly *-
continuous we learn that the weak Fredholm modules £, = Er . (0) and

Laff _gqLaff
Erat(1) = (Hi, Tregs e 0 (O 4 a0 h* 0D 0Ty 0 h¥) 0 et )

are operator homotopic for ¢ >> 0 sufficiently large.
Let now
he(s') = (1 = &) a0 B + 8'hi4zp, 5" €[0,1]. (5.21)

As convex combinations of contracting chain homotopies these are again contract-
ing chain homotopies of the augmented alternating Rips complex t for R >> 0
sufficiently large. Moreover

g;%,x,t(sl) _ (Hﬁ, Treg, etdéaff o (8 + hx(sl) 0do hx(sl)) o e—tdﬁaff) (5'22>

is a family of weak Fredholm modules over C(I'). As s' +— Fp,  ,(s') is continuous
in operator norm we learn that the weak Fredholm modules £g,+(1) = &p,,(0)
and &, (1) =& Lo/ are operator homotopic for R and ¢ >> 0 large enough. The

, T,
Lafforgue-bimodule £ }Lf;f [ represents the reduced ”Gamma”-element by [La2|, Sec-

tion 5, so that the same is true for our bimodule £g, ; of 3.9.

For the proof of the second assertion we adopt the notations of section 4. Let
R > 486 and put k& = 3. With these choices the conditions (C1), (C2) and (C3) of
[KS] , pages 187 and 190 are satisfied. Fix W C I' such that d(z, W) > R and let
T C I satisfy VjF = W. It follows from (2.21) that

{y € Ur,d(z,y) < d(z,Ur) + 86} C Vi =W. (5.23)
This implies

[ ]
7. = Sup I(d(x, W)) =30 = ry, < d(x, W) —300 (5.24)
(see [KS], page 191, line 14),

Yrer = | {a €W d(z,a) <d(x,W)+20} = Yy, (5.25)
yEB(z,r)
for 0 <7 <y, (see [KS], page 189, lines 14 and 17),
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/
TW,z

JT,I = -fI,/V,x,O + / fI,/V,x,tdt CHw = QZ{/V,:(: (526)
0

where fiy,, . = Xyy,  (see [KS], page 191, line 27),

so that the operator F¥¥ is given on the subspace H{;, by Clifford multiplication
with the unit vector ¢,y attached to vy, as in [KS], page 191, line 29 and page
192, line 34. Because Supp(¢), ) C W the subspace H)' is invariant under F[*5.

Let now
"= € Hp (5.27)

W,d(z,W)>R

This is a closed subspace of H of finite codimension which is invariant under F,
and FES. For 0 <t < 1let F,(t) € L(HT) be the operator which vanishes on (H')*
and satisfies

& (1)

F@)lag, = cl(Gy(t)), Gu(t) = T T Gr(t) = (1=t -G+t &y (5.28)

if d(z, W) > R. This is a well defined operator because both vectors (jj, and @,W

are positive linear combinations of points of W so that no convex combination of
them vanishes. In fact

I &6 (8) ll2= (dim M) ™8 11 €6 (8) = (dimHi) (=) | G |+ 1l Gy 1)

> (dim M) (L= 0) 1| G o+t | o 1) = (dim M) ™% > Cao(IS|, R) > 0

which shows that ¢ — F(t) is continuous with respect to the operator norm. The
same estimate guarantees also that [F}(t), T, (I')] C K(HT) because
1' r 9T — 1 Py _ 7 —
d(m,I/IVIgl—mo (CW CW) d(w,VlVI?%oo (Cbx,w ¢gm,W) 0
for all g € I' by 4.2 and [KS], 6.9. This shows that our Fredholm module &, i of 4.8

is operator homotopic to the Kasparov-Skandalis bimodule [KS], p.192, 6.10, which
represents the reduced ” Gamma’-element. O

There is still a little difference between the two cases considered in the previous
theorem: whereas the Kasparov-Skandalis method yields genuine Kasparov bimod-
ules Lafforgue’s approach only leads to weak ones. This ambiguity can actually be
ignored because of the following result.

Recall [Pu], 2.3, 2.4, that for p > 1 the p-summable smooth K-homology groups
KK®((A, A),C) of the separable C*-algebra A with respect to the dense involutive
subalgebra A are defined as the abelian group of equivalence classes of Fredholm
modules over A which are p-summable over A with respect to the equivalence rela-
tion generated by unitary equivalence, addition of degenerate modules (i.e. modules
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for which the expressions (5.15), (5.16) and (5.17) are identically zero), and smooth
operator homotopy. Denote by ICICS gak((A, A), C) the corresponding group of equiv-

alence classes of weak Fredholm modules. Then we have

Lemma 5.3. Let A be a separable C*-algebra and let A be an involutive dense
subalgebra. Then the forgetful map
KK®P((4, A),C) — KKP

weak

((4,4),C) (5.29)
s an isomorphism of abelian groups.

Proof: Let F' € L(H) be a bounded linear operator on a Hilbert space. Then
(F — F*)(F — F*)* = (F — F*)(F* — F) is a positive operator, so that
1 + 1(F — F*)(F* — F) is invertible:
1

T =(1+ Z(F— F¥(F*—F))™' € L(H). (5.30)

Let (R, *) be an abstract unital involutive algebra and let F' € R satisfy F? = 1.
Suppose that 1+ 1(F — F*)(F* — F) is invertible with inverse T € R. Then

F = G(FF — F*F) + %(FJFF*)) TeR (5.31)

satisfies

F2—=1and F* = F
and . .
E:<1—|—§(F—I:;))F<1+§(ﬁ—F)>,teR (5.32)

is a one parameter family of elements satisfying F? = id such that Fy = F and
F, = F. The family is constant if F' itself is selfadjoint. This is Lemma 4.6.2 of
[BI], where we have used the canonical bijection e — F' = 2e — 1 between the set of
idempotents and of elements of square one in a unital algebra.

Let &€ = (H,0,F) be a weak Fredholm module over the C*-algebra B. Let 7 :
L(H) — L(H)/K(H) be the quotient homomorphism. Then 7(F') and 7 (F™) com-
mute with mo o(A). By step 1 the expressions (5.31) and (5.32) make sense in L£(H).
Moreover 7(F;) commutes with 7o o(A) for all t € R, equals 7(F) for t = 0 and is
selfadjoint for ¢ = 1. Thus & = (H, 0, F};), t € [0, 1] defines an operator homotopy
between £ and a genuine Fredholm module. This construction is invariant under
unitary equivalence, presrves operator homotopies and sends degenerate weak Fred-
holm modules to degenerate Fredholm modules. It therefore descends to equivalence
classes and shows that the forgetful map from the set of homotopy classes of genuine
Fredholm modules to the set of homotopy classes of weak Fredholm modules over A
is a bijection.
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If £ = (H,o0,F) is a weak Fredholm module over A which is p-summable over
the dense involutive subalgebra A C A, we may repeat the previous reasoning with
o replaced by its restriction ¢’ to A and 7 replaced by the quotient homomorphism
7' L(H) = L(H)/¢P(H) and obtain thus our claim. O

Altogether we have shown

Theorem 5.4. Let (', S) be a d-hyperbolic group. Then the reduced Gamma-element
v € KK(C:T,C) may be represented by a Fredholm module which is p-summable
over CI" for

p > 205 -log(1+ |S]) - (1+ |S])™. (5.33)
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