
HAL Id: hal-03598324
https://hal.science/hal-03598324

Submitted on 4 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local polynomial factorisation: improving the Montes
algorithm

Adrien Poteaux, Martin Weimann

To cite this version:
Adrien Poteaux, Martin Weimann. Local polynomial factorisation: improving the Montes algorithm.
International Symposium on Symbolic and Algebraic Computation, Jul 2022, Lille, France. �hal-
03598324�

https://hal.science/hal-03598324
https://hal.archives-ouvertes.fr

Local polynomial factorisation: improving
the Montes algorithm

Adrien Poteaux1 and Martin Weimann2

1Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000
Lille, France

2LMNO, Université de Caen-Normandie

Abstract

We improve significantly the Nart-Montes algorithm for factoring polynomials
over a complete discrete valuation ring A. Our first contribution is to extend the
Hensel lemma in the context of generalised Newton polygons, from which we derive
a new divide and conquer strategy. Also, if A has residual characteristic zero or high
enough, we prove that approximate roots are convenient representatives of types,
leading finally to an almost optimal complexity both for irreducibility and factori-
sation issues, plus the cost of factorisations above the residue field. For instance, to
compute an OM-factorisation of F ∈ A[x], we improve the complexity results of [3]
by a factor δ , the discriminant valuation of F .

1 Introduction

Let A be a complete discrete valuation ring with residue field F and consider F ∈ A[x],
monic and separable of degree d. The aim of this paper is to improve complexity bounds
for the factorisation of F . Such a polynomial factorisation is a fundamental task of
computer algebra with various applications in number theory and algebraic geometry.
As such, our complexity results allow to fasten various computational problems, such as
Okutsu frames, integral basis or genus of plane curves (see Section 6 for further details).
Our work is based on the seminal Montes algorithm [10], for which the best known
complexity is given in [3]. In [8], the authors conclude their paper by:

Probably, an optimal local factorisation algorithm would consist in the ap-
plication of the Montes algorithm as a fast method to get an Okutsu approx-
imation to each irreducible factor, combined with an efficient “Hensel lift”
routine able to improve these initial approximations by doubling the preci-
sion at each iteration. One may speculate that Newton polygons of higher
order might also be used to design a similar acceleration procedure.

1

With S. Pauli, Guardia and Nart answered partially to this question thanks to the single-
factor lifting algorithm [11], that can be viewed as a Newton-like method to lift a single
factor with a quadratic convergence. This led to the overall complexity analysis of [3].
In this paper, we answer more precisely to this question, by showing that the classical
Hensel algorithm can be adapted to the context of Newton polygon of higher order. We
also provide a new divide and conquer strategy using this adapted Hensel algorithm,
enabling us to lift all factors of F at the same time, with a complexity almost linear in
the size of the output. These two elements allow us to gain a factor d in comparison to
the complexity result of [3]. Moreover, following [27], we show that when char(F) - d, we
can use approximate roots as strongly optimal representatives of a type1. This induces an
irreducibility test with a complexity almost linear in δ the valuation of the discriminant
of F ; see Theorem 2. This improvement propagates for factorisation with a slightly
greater assumption

Assumption 1. char(F) = 0 or char(F) > d

leading a complexity almost linear in dn for a required precision n ≥ δ ; see Theorem 4.

Related work. Classical implemented algorithms for factoring polynomials over Qp (see
e.g. [4, 6, 24, 25]) are based on the Zassenhaus Round Four algorithm, suffering from loss
of precision in computing characteristic polynomials. In [11], the authors introduced a
new technique as a combination of the Montes algorithm [9, 10] which exploits the
Newton polygons of higher order (as initiated in [25]), and a Newton-like single factor
lifting. Further complexity improvements are obtained in [3]. The present work is in the
same vein, with the notable difference that we introduce a multi factor lifting, which is
used in course of the Montes algorithm whenever a non trivial factorisation is discovered.
For rings of Laurent series K((t)) of characteristic zero or high enough, Newton-Puiseux
like algorithms can be used. The best complexity in this context is softly linear [29], as
in the present paper, but more difficult to implement and slower for irreducibility issues.
This led us to introduce in [27] approximate roots à la Abhyankhar [1, 26] in order to
derive a faster and easy-to-implement irreducibility test, quite close to the algorithm
[3] à la Montes, although not dealing with the small characteristic. This was a first
step towards the present work, where we use now approximate roots in the factorisation
context, as allowed by a systematic use of our generalised Hensel lifting. Note that
the divide conquer in the present paper is quite different than the one of [29, Section
4.4]: in particular, the initialisation of the Hensel algorithm does not use the not yet
implemented generalisation of the half gcd algorithm described in [20].
Finally, let us insist that following [11], our algorithm computes as a byproduct an
Okutsu frame of each irreducible factors of F , containing the most significant arithmetic
informations [8] and closely related to various computational problems of number theory
and algebraic geometry, such as the computation of integral basis (see Section 6 for
further details).

1see Sections 2 and 3 for the definitions of these terms

2

Organisation of the paper. We start by a summary of important definitions related
to the Montes algorithm in Section 2. Then, we focus on the irreducibility test when
char(F) - d in Section 3, leading to Theorem 2. In Section 4, we show how to adapt the
Hensel algorithm in the context of Newton polygon of higher orders. Section 5 uses this
latter algorithm on a well chosen type in order to derive a divide and conquer algorithm,
leading to Theorem 4. Finally, we discuss some direct applications in Section 6.

Complexity model. Polynomials in A[x] considered in this paper are supposed given
in a dense representation, with coefficients available up to an arbitrary precision (e.g.
represented as tables, as we always use truncation bounds). We use the algebraic RAM
model of Kaltofen [16, Section 2], counting only the number of arithmetic operations in
the residue field F. We classically denote O() and Õ () to respectively hide constant and
logarithmic factors in our complexity results ; see e.g. [7, Chapter 25, Section 7]. We
additionally let Oε(d) = O(d1+ε(d)) with ε(d) → 0. We have Õ (d) ⊂ Oε(d), and freely
speak of almost linear in d for both notations. Fast multiplication in F[y] is used, i.e. we
multiply two polynomials of degree at most d within Õ (d) operations in F [7, Section
8.3]. We assume that univariate factorisation over F is available. Intermediate finite
extensions Fk of degree fk−1 of F will occur (see Section 2), naturally represented as a
quotient of F[y0, . . . , yk−1] by a triangular prime ideal (P0(y0), . . . , Pk−1(y0, . . . , yk−1)).

Lemma 1. An operation in Fk takes Oε(fk−1) operations over F.

Proof. If Card(F) ≥
(
d
2

)
, use [14, Theorem 4]. If Card(F) <

(
d
2

)
, proceed as in [27,

proof of Theorem 1] (roughly speaking, keep the first i levels of the triangular set so
that Card(F) fi−1 ≥

(
d
2

)
with i minimal, and apply [14, Theorem 4] over Fi ; as i ∈

O(log log d), an operation in Fi is Õ (fi−1) via [17, Proposition 2]).

Remark 1. Since some subroutines use the triangular representation of Fk (Remark
3), introducing a randomised Las Vegas subroutine to fasten the arithmetic in Fk via a
primitive representation would not a priori be sufficient to express our complexity results
in Õ () instead of Oε(), in contrast to [29].

2 Types and factorisation

Let L be a complete discrete valuation field, v : L → Z ∪ {+∞} any normalised and
surjective valuation on L and π an uniformiser. We denote by A ⊂ L the ring of integers
of (L, v) and by F = A/(π) the residue field of υ. The two fields we have in mind in this
paper are L = Qp the field of p-adic numbers and L = K((t)) the field of Laurent series
over any field K.

2.1 Types

We start with types of order 0, denoting the residue field F0 := F.

Definition 1. A type of order 0 is t0 = [P0], where P0 ∈ F0[y] is a monic irreducible
polynomial.

3

For anyG ∈ L[x], a type of order 0 comes together with the Gauss valuation v0(
∑

i ai x
i) :=

mini(υ(ai)) and the residual polynomial operator R0(G) := G(y)/πv0(G) mod π.
Types tk = [P0, (φ1, λ1, P1), . . . , (φk, λk, Pk)] of order k ≥ 1 are defined inductively below.
If 1 ≤ i ≤ k − 1, we denote ti = [P0, (φ1, λ1, P1), . . . , (φi, λi, Pi)]. For any field K and
P,Q ∈ K[y], we write P (y) ∼ Q(y) if there exists c ∈ K× such that P (y) = cQ(y). Also,
we denote P the semigroup of polygons (i.e. the set of all open convex polygons of the
plane, attached to finite formal sums of sides) and P− ⊂ P the semi-group of polygons
with negative slopes (principal polygons). See [10, Section 1.1] for details.
Assume that types of order k − 1 have been defined and that we can attach to a type
of order k − 1 a valuation vk−1 : L[x] → Z, a field extension Fk−1 of F and a residual
polynomial operator Rk−1 : L[x]→ Fk−1[y].

Definition 2. Let k ≥ 1. tk = [P0, (φ1, λ1, P1), . . . , (φk, λk, Pk)] is a type of order k if
tk−1 is a type of order k − 1 and

• φk ∈ A[x] is monic, irreducible and satisfies Rk−1(φk) ∼ Pk−1.

• λk = −mk/qk ∈ Q−, with (qk,mk) ∈ N2 coprime. We denote (αk, βk) s.t. αk qk −
βkmk = 1 with 0 ≤ βk < qk.

• Pk 6= y ∈ Fk[y] is monic, irreducible over Fk := Fk−1[y]/(Pk−1). We let `k :=
deg(Pk) and zk := y mod Pk(y) ∈ Fk+1.

We will denote ek := q1 . . . qk and fk := `0 . . . `k = [Fk+1 : F]2.

2.2 Associated operators and representatives

We fix a type t = [P0, (φ1, λ1, P1), . . . , (φk, λk, Pk)] of order k ≥ 1 and detail several
operators associated to it. If G ∈ L[x], we denote G =

∑
a′iφ

i
k−1 and G =

∑
aiφ

i
k their

φk−1 and φk-adic expansion3.

Augmented valuation. vk : L[x]→ Z is defined from vk−1 as

vk(G) := min
i

(qk−1vk−1(a
′
iφ
i
k−1) +mk−1i). (1)

This is indeed an “augmented valuation” as introduced by Mac Lane [18, 19] (see e.g. [10,
page 379] for a detailed explanation). Notice in particular that vk(G) = mini vk(a

′
iφ
i
k−1).

Newton polygon of higher order. The polygon operator Nk : L[x] → P associates to
G the lower convex hull of {(i, vk(aiφik), ai 6= 0}. We let N−k (G) ∈ P− stands for the
principal part of Nk(G).

2A reader used to the work of Nart et al should pay attention that the notations ek and fk in [10]
are here denoted qk and `k. We rather use ek and fk for the ramification index and residual degree
discovered so far, following [29].

3If k = 1, we let φ0 = x, q0 = 1 and m0 = 0, so that v1 = v0.

4

Residual polynomial operator. We need several intermediate operators. We let Sk(G) :=
{(i, j) ∈ Nk(G), mki + qkj is minimal}, Ik(G) := {i ∈ N, vk(aiφik)) ∈ Sk(G)} and

ik(G) := min(Ik(G)) (letting i0(G) = 0 additionally). We let τk,i :=
ik−1(ai)+βk−1vk(aiφ

i
k)

qk−1
∈

Z (see [10], after Definition 2.19). Then Rk : L[x]→ Fk[y] is defined inductively as

Rk(G) =
∑

i∈Ik(G)

z
τk,i
k−1Rk−1(aiφ

i
k)(zk−1) y

i−ik(G)

qk .

Remark 2. Let us summarise the dependencies of these operators: vk depends only of
vk−1, φk−1 and λk−1, thus only of tk−1. Nk depends of vk and φk. Finally, Rk depends
of Rk−1, φk and λk.

Representative of tk. They are defined as follows.

Definition 3. Let G ∈ A[x] be monic. We say that G is of type t if for 0 ≤ i ≤ k,
Ni(G) is one-sided of slope λi, and for 1 ≤ i ≤ k Ri(G) ∼ PNii for some Ni ∈ N×. We
denote by Gt the product of all monic irreducible factors of G of type t. We say that t
divides G is deg(Gt) > 1. Finally, G is said to be a representative of t if additionally
ordt(G) := ordPkRk(G) = 1.

2.3 Factorisation according to a type

The following theorem summarises the main results that led to the Montes algorithm:

Theorem 1. Let k ≥ 1 and t be a type of order k− 1 together with a representative φk.
Denote vk the associated augmented valuation and assume F ∈ A[x] monic.

1. (Theorem of the polygon, [10, Theorem 3.1]) Suppose that N−k (F) = S1 + · · ·+ Sg
where the polygons S1, . . . , Sg are one-sided of distinct slopes λk,1, . . . , λk,g. Denote
by Rk,i the residual polynomial operator associated to vk, φk and the slope λk,i. The
polynomial Ft admits a factorisation

Ft = Ft,1 · · ·Ft,g ∈ A[x]

where N−k (Ft,i) = Si up to translation and Rk,i(Ft,i) ∼ Rk,i(F).

2. (Theorem of the residual polynomial, [10, Theorem 3.7]) Let Rk,i(F) ∼ P a1k,i,1 · · ·P
ar
k,i,r

where the Pk,i,j are pairwise coprime irreducible polynomials. Then Ft,i admits a
factorisation

Ft,i = Ft,i,1 · · ·Ft,i,ri ∈ A[x]

where Nk(Ft,i,j) is straight of slope λk,i and Rk,i(Ft,i,j) ∼ P
aj
k,i,j.

3. (Irreducibility criterion) If aj = 1, then Ft,i,j is irreducible.

5

3 Testing irreducibility

3.1 Approximate roots

Proposition 1. Let F ∈ A[x] be monic of degree d, with char(A) - d. Let N ∈ N
dividing d. There exists a unique polynomial ψ ∈ A[x] monic of degree d/N such that
deg(F − ψN) < d − d/N . We call it the N th approximate roots of F , denoted by N

√
F .

It can be computed in less than Õ (d) operations in A.

Proof. See e.g. [26, Proposition 3.1] for the existence, and [27, Proposition 11] for their
computation.

Proposition 2. Let F ∈ A[x] be a monic separable polynomial of type t and denote
N = ordt(F). Suppose char(F) - N and let ψ = N

√
F .

1. ψ is a representative of t.

2. If F is of type t ∪ (ψ,−m/q, P), then q deg(P) > 1.

Proof. Point 1 can be shown with arguments similar to [27, Lemma 7]. Point 2 is a
direct consequence of the fact that the coefficient of ψN−1 in the ψ-adic expansion of F
is zero.

Without dealing with the precision of computations in A, this leads to the following
irreducibility test algorithm:

Algorithm: FastIrreducible(F)

Input: F ∈ A[x] monic separable s.t. char(F) - deg(F).
Output: A Boolean (is F irreducible ?), a type t and a representative φ of t.

1 if R0(F) is not some PN0
0 then return False, [];

2 t← [P0], k ← 1, N ← N0;
3 while N > 1 do

4 φk ← N
√
F ;

5 if N−k (F) is not one sided then return (False, t, φk);

6 if Rk(F) is not some PNkk then return (False, t, φk);
7 t← t ∪ (φk, λk, Pk); // λk the slope of Nk(F)
8 N ← Nk, k ← k + 1;

9 return (True, t, F)

This algorithm is similar to the one of Montes et al, with the exception of the way
we construct the representatives: approximate roots enable a quick computation of the
representative φk, together with the additional property qk`k > 1 which ensures k ∈
log(d).

6

3.2 Precision and complexity

It remains to deal with the necessary precision to conduct operations in A and get
complexity bounds for the computation of N−k (F) and Rk(F). We proceed as in [27,
Section 5.4]: starting with a small precision σ, we check at each iteration if σ is sufficient
to certify that the computed data of F mod πσ is truly the data of F . If the precision is
not sufficient, we double it and restart the whole computation. This process multiplies
the overall complexity by at most 2. We need a certificate that the current precision σ
is high enough and an upper bound for σ.
Assume that we computed a type tk−1 dividing F using a precision σ. Compute N−k (F)
with precision σ and denote λmin its right hand slope, with convention λmin(F) = +∞
if it is reduced to a vertex.

Lemma 2. Let F ∈ A[x] monic divisible by tk−1. If σ > vk(F)+N |λmin|
vk(π)

, then truncat-

ing computations modulo πσ+1 will compute the correct right hand edge of N−k (F). If

moreover F is of type tk−1, then vk(F)+N |λmin|
vk(π)

< 2δ
d .

Proof. This is [3, Lemmas 2.9 and 2.8].

Lemma 3. One can compute vk(F) in Õ (d) operations in A.

Proof. Compute the φk−1-adic expansion of F in Õ (d) operations in A [7, Theorem
9.15]. If k > 1, compute recursively each vk−1(aiφ

i
k−1). As there is a closed formula for

vk−1(φk−1) [10, Proposition 2.15], the bound deg(ai) < deg(φk−1) concludes.

Proposition 3. One can compute N−k (F) with precision σ in less than Õ (d σ) opera-
tions in F.

Proof. First compute the φk-adic expansion of F , then the different values vk(ai φ
i
k).

The complexity then comes from [7, Theorem 9.15] and Lemma 3.

Proposition 4. Up to the cost of operations already done while computing N−k (F), one
can compute Rk(F) in Oε(d fk−1) op. in F.

Proof. This is [3, Lemma 5.6].

Lemma 4. Let F ∈ A[x] monic of type tk−1 such that ordt0F > 1. Then fk−1d ≤ 2`0δ.

Proof. We know that F ≡ PN0
0 mod π for some irreducible polynomial P0 ∈ F[x] of

degree `0. Let θ be a root of F , say with minimal polynomial G (prime factor of F).
Thus θ mod π is a root of P0 and there are N0 − 1 other roots θ′ of F such that θ ≡ θ′
mod π. It follows that v0(θ− θ′) > 0, hence v0(θ− θ′) ≥ 1

eG
where eG is the ramification

index of G. Summing over all θ and all θ′, we get δ ≥
∑

G deg(G)(N0 − 1)/eG, the sum
over all prime factors of F . We have eGfG = deg(G) (fG residual degree) and fk−1|fG
for all G. It follows that δ ≥ fk−1(N0 − 1). Equality N0 `0 = d concludes.

Theorem 2. If char(F) - d, then there exists an algorithm that tests if F is irreducible
in less than Oε(δ`0) operations in F and at most log2(d) univariate irreducibility tests.

7

Proof. The algorithm is FastIrreducible with the above modification to deal with the
precision of the computations. As we use a precision σ ≤ 2δ/d, the complexity comes
from all the intermediate results of this section.

The case A = Zp. We say that F ∈ Zp[x] is Weierstrass if F ≡ xd mod p. Also, we
say that p is small if it is polynomial in d and δ .

Corollary 1. If p is small and does not divide d, we can test the irreducibility of a
separable Weierstrass polynomial F ∈ Zp[x] with Oε(δ) operations in Fp.

Proof. F being Weierstrass, we have `0 = 1 and d ≤ 2δ by Lemma 4. We can check if
Rk(F) ∈ Fk[x] is a prime power (and then compute Pk) within Oε(d log(p)) operations
in Fp using [15, Corollary 2]4 together with deg(Rk(F))fk−1 ≤ d.

Under the same hypothesis, Montes irreducibility test would require Oε(δ2) operations
in Fp, see [3, Theorem 5.10].

3.3 The case char(F) | d

When char(F) | d, approximate roots cannot be used as representatives of types. Fol-
lowing [3], we compute these representatives in another way (Proposition 6 below, in
Oε(dw(F)/w(π)) ⊂ Oε(δ) operations in F). Unfortunately, we might have now qk`k = 1
(refinement steps) and the number of iterations is not in O(log(d)) anymore. From [3,
Lemma 5.11], we can bound the number of recursive call by O(δ/`0)

5. This leads to a
complexity in Oε(δ2) operations in F, plus the univariate irreducibility tests. We can
still run only k ≤ log2(d) of them by first checking that Rk(F) has a single root (i.e.
qk`k = 1), using a univariate shift, in Õ (d) operations in F, and use the univariate
irreducibility test only when qk`k > 1. We proved the following:

Proposition 5. If char(F) divides d, one can check if F is irreducible in less than Oε(δ2)
operations in F and at most log2(d) univariate irreducibility test.

This result is very similar to [3, Theorem 5.10] (we just use some minor complexity
improvements in some intermediate results, described in Section 3.2). We still call
FastIrreducible the underlying algorithm.

4 Generalised slope factorisation

Algorithm FastIrreducible of the previous section will either prove that F is irre-
ducible, either provide a type tk−1 together with a representative φk such that either
Nk(F) has two or more distinct slopes, either Rk is not a power of an irreducible
polynomial. To summarise these two possibilities, it is convenient to consider a slight
modification of the residual polynomial operator Rk attached to the right hand slope
λk = −mk/qk of N−k (F):

4This result extends to towers of fields following the proof of [15, Corollary 3]
5Equation (5.4) of [3] actually shows that it is bounded by O(δ/fk−1)

8

Definition 4. The modified residual polynomial of G ∈ L[x] (attached to λk) is defined
by R̃k(G)(y) := yik(G)Rk(G)(yqk).

If F is not irreducible, we get

R̃k(F) = h0h1 · · ·hr

with h0 ∼ yik(F), h1, . . . , hr ∈ Fk[yqk] coprime, this factorisation containing at least two
different non trivial factors.
From Theorem 1, there exist F0, F1, · · · , Fr ∈ A[x] monic such that

F = F0F1 · · ·Fr with R̃k(Fi) ∼ hi, 0 ≤ i ≤ r.

This section describes a Hensel-like algorithm to compute such a factorisation up to an
arbitrary precision with complexity almost linear in the size of the output.

4.1 A (slightly) more general problem

We express our problem in a slightly more general context, that will be useful in Section
5. Let F ∈ A[x] be a monic polynomial, t = tk−1 be a type of order k−1 dividing F and
φ = φk a representative of t. We assume that either Ft is a proper factor of F , either
Ft admits a non trivial factorisation at order k induced by Theorem 1.
Let v = vk the augmented valuation built from t (i.e. from vk−1, φk−1 and λk−1) and
N (F) = Nk(F) the generalised Newton polygon defined by v and φ. Denote λ = −m

q ∈
Q− the right hand slope of N−(F) and R(F) (resp. R̃(F)) the (modified) residual
polynomial defined by t, φ and λ.

Lemma 5. Let G ∈ A[x] monic and g = R̃(G). If G is of type t, then

N (G) = N−(G), deg(G) = deg(φ) deg(g), lc(g) = R(φ)deg(g).

If t does not divide G then g ∈ F×k .

Proof. See e.g. [10].

Thanks to this lemma and our assumption on F , we get

R̃(F) = h0h1 · · ·hrh∞

with h0 = R(φ)sys, h∞ ∈ F×k and h1, . . . , hr ∈ Fk[yq] powers of some coprime irreducible
polynomials satisfying hi(0) 6= 0 and lc(hi) = R(φ)deg(hi). Moreover, there are uniquely
determined monic polynomials F0, . . . , Fr, F∞ ∈ A[x] such that

F = F0F1 · · ·FrF∞ with R̃(Fi) = hi, i = 0, . . . , t,∞.

In particular, we have Ft = F0F1 · · ·Fr and F = FtF∞.
Such a factorisation can be seen as a generalisation of the “slope factorisation” of [5]. It
is natural to express the precision using the augmented valuation w = vk+1 defined by
v, φ and λ following (1). Thanks to a dichotomic argument, we are reduced to compute
F = G̃H̃ (up to some precision w.r.t. w), with G̃, H̃ products of some of the Fi’s above.
We proceed as follows:

9

1. Initialisation. Compute G,H ∈ A[x] and U, V ∈ L[x] such that w(F − GH) >
w(F) and w(U G+ V H − 1) > 0.

2. Lifting. Run the classical Hensel Lemma with adapted truncations to compute G̃
and H̃ such that w(F − G̃H̃) ≥ w(F) + n for a given precision n.

4.2 Initialisation

A key point is to compute polynomials with prescribed (modified) residual polynomial.
We start with a definition.

Definition 5. A polynomial H ∈ A[x] is said monic in φ if it has φ-adic expansion
H =

∑N
i=0 aiφ

i with aN = 1. We say that H is strongly monic in φ (with respect to w)
if moreover w(H) = Nw(φ).

Proposition 6. Let h = ys h(yq) with h ∈ Fk[y] and W ∈ Z. We can compute H ∈ L[x]
of smallest degree such that

R̃(H) = h, w(H) = W, deg(H) < (deg(h) + 1) deg(φ).

It takes Õ
(

deg(H)(deg(h) + 1) w(φ)w(π)

)
operations in F. Furthermore:

1. If W ≥ deg(h)w(φ), then H ∈ A[x].

2. If W = deg(h)w(φ) and lc(h) = R(φ)deg(h), then H is strongly monic in φ.

Proof. First use [3, Lemma 5.7] to compute G ∈ A[x] such that R̃(G) = h and w(G) =

W +w(π)n with n =
⌈
deg(h)w(φ)−W

w(π)

⌉
. We can divide their complexity result by a factor

deg(h) by replacing Horner evaluation therein by a divide and conquer strategy (see e.g.
[12]). Finally, output H = π−nG.

Remark 3. The representation of Fk as a tower of fields as described before Lemma 1
is used in the proof of [3, Lemma 5.7]. In particular, no operations in Fk is performed,
so that the complexity can be expressed with Õ () and not Oε().

Lemma 6. Let G,H ∈ L[x] such that w(G) = w(H).

1. R̃k(G) = R̃k(H) if and only if w(G−H) > w(G).

2. If w(G+H) = w(G), then R̃k(G+H) = R̃k(G) + R̃k(H).

Proof. (1) Since R(G) and R(H) have non zero constant term, Definition 4 implies that
R̃(G) = R̃(H) if and only if R(G) = R(H) and ik(G) = ik(H). As w(G) = w(H), this
is equivalent to that R(G) = R(H) and S(G) = S(H). [10, Proposition 2.8] concludes.
(2) Equality w(G + H) = w(G) implies that Sk(G), Sk(H), Sk(G + H) lie on a same
segment T of slope λ. We conclude with [10, Lemma 2.23 and eq. (19)], together with
Definition 4.

10

Let us consider now our initialisation problem. By the discussion above, we can assume
that R̃(F) = g h with g, h coprime, g ∈ Fk[yq] and h(y) = ys h(yq), with h ∈ Fk[y],
h(0) 6= 0. We can additionally assume that lcy(h) = R(φ)deg(h). Notice that we might
have g ∈ F×k .

Proposition 7. Let g, h as above. One can compute G,H ∈ A[x] and U, V ∈ L[x]
such that H is strongly monic in φ, R̃(G) = g, R̃(H) = h, deg(G) + deg(H) ≤ deg(F),
w(F − GH) > w(F), deg(U) < deg(H), deg(V) < deg(G) and w(U G + V H − 1) > 0
in less than Õ (dw(F)/w(π)) operations in F.

Proof. Use Proposition 6 to compute G,H ∈ A[x] with H strongly monic in φ and such
that R̃(H) = h, R̃(G) = g, w(F) = w(GH) with Õ (dw(F)/w(π)) operations in F (this
bound being a consequence of w(F) = deg(R̃(F))w(φ)). Notice that deg(G)+deg(H) ≤
deg(F) as we construct G, H of minimal degrees. As w(GH) = w(F) and R̃(GH) =
R̃(F), point 1 in Lemma 6 gives w(F −GH) > w(F). For U, V , we first compute u, v in
Fk[y] such that u g+v h = 1, deg(u) < deg(h), deg(v) < deg(g) with Oε(deg(gh) fk−1) ⊂
Oε(d) operations in F [7, Corollary 11.9]. We necessarily have v ∈ Fk[yq] and u = yt u
with u ∈ Fk[yq], so we may apply again Proposition 6 to compute U, V ∈ L[x] such
that R̃(U) = u, R̃(V) = v, deg(U) < deg(H), deg(V) < deg(G), w(U) = −w(H)
and w(V) = −w(G) within the same complexity bound. We get R̃(UG) + R̃(V H) =
ug+vh = 1 6= 0 and Lemma 6 (point 1) implies that w(UG+V H) = w(UG) = w(V H),
so that R̃(UG+ V H) = R̃(UG) + R̃(V H) (point 2). We get R̃(UG+ V H) = 1 = R̃(1)
and w(UG+ V H) = 0 = w(1). Point 1 again gives w(UG+ V H − 1) > w(1) = 0.

4.3 Lifting: a valuated Hensel Lemma

Let QuoRem denotes the usual euclidean algorithm.

Lemma 7. Let A, B ∈ L[x] with B strongly monic in φ. Then, Q,R = QuoRem(A,B)
satisfies w(R) ≥ w(A) and w(Q) ≥ w(A)− w(B).

Proof. We focus on the computation of R. First note that it be computed as follows6:
write A =

∑N
i=0 ai φ

i the φ-adic expansion of A and B = φb + · · · . If N < b, we get
R = A ; otherwise, compute Ã = A − aN φN−bB, and apply recursively this strategy
to Ã. As Ã =

∑N−1
i=0 ãi φ

i, this procedure converges towards the unique remainder R.
We now prove the result by induction on the value N ≥ b. By linearity, we can assume
A = aN φ

N . We then have w(Ã) ≥ w(A) as w(aN φ
N−bB) = w(A) from the assumption

w(B) = bw(φ). By induction, this proves the lemma for R. Result for Q is then a
straightforward consequence, as w(QB) = w(A−R).

This lemma will enable us to prove that the classical Hensel lemma [7, Algorithm 15.10],
when starting with correct initial polynomials, “double the precision” according to an
extended valuation (w, φ). The only difference with the classical algorithm is the way we
truncate polynomials: for any polynomial F ∈ A[x] and n ∈ Z, we denote dF en = dF enk+1

6in practice, we use the classical algorithm of A[x], this is only for this proof purpose

11

the “truncation of F according to the valuation w = vk+1”, defined recursively as follows.
We let dF en0 the usual truncation of F up to precision πn and, if F =

∑
i ai φ

i
k and

k ≥ 0, then dF enk+1 =
∑

idaie
n−vk+1(φ

i
k)

qk
k φik. This is indeed a natural definition, as

deg(ai) < deg(φk) implies vk+1(ai) = qk vk(ai). In other words, we remove all terms
of F that have w-valuation greater than n in its (φ0, . . . , φk)-multiadic expansion [27,
Section 3].

Lemma 8. Let G ∈ L[x] with deg(G) ≤ d and n ∈ N. We can compute dGen in
Õ (d(n/w(π)− v0(G))) operations in F.

Proof. Compute dπ−v0(G)Gen−v0(G)w(π) with precision dn/w(π)e − v0(G) following the
recursive definition above. The main cost is to compute the φk-adic expansions, as in
the proof of Lemma 3.

Algorithm HenselStep below takes as input F,G,H ∈ A[x] with H strongly monic in
φ, U, V ∈ L[x] and n ∈ N× such that

• w(F −GH) ≥ w(F) + n, with deg(F) ≥ deg(G) + deg(H)

• w(U G+V H − 1) ≥ n, with deg(U) < deg(H), deg(V) < deg(G), w(U) = −w(G)
and w(V) = −w(H).

It computes G̃, H̃ ∈ A[x] with H̃ strongly monic in φ and Ũ , Ṽ ∈ L[x] such that

• w(F − G̃ H̃) ≥ w(F) + 2n, with deg(H̃) = deg(H), deg(F) ≥ deg(G̃) + deg(H̃),
w(H̃ −H) ≥ w(H) + n and w(G̃−G) ≥ w(G) + n.

• w(Ũ G̃+Ṽ H̃−1) ≥ 2n, with deg(Ũ) < deg(H̃), deg(Ṽ) < deg(G̃), w(Ũ) = −w(G̃)
and w(Ṽ) = −w(H̃).

Algorithm: HenselStep(F,G,H,U, V, n)

1 E ← dF −GHew(F)+2n;

2 Q,R← dQuoRem(U E,H)ew(F)+2n;

3 G̃← dG+ E V +QGew(G)+2n;

4 H̃ ← dH +Rew(H)+2n;

5 B ← dU G̃+ V H̃ − 1e2n;

6 C,D ← dQuoRem(U B, H̃)e2n;

7 Ũ ← dU −De2n−w(G);

8 Ṽ ← dV −B V − C G̃e2n−w(H);

9 return H̃, G̃, Ũ , Ṽ

Proposition 8. Algorithm HenselStep is correct. It takes less than Õ
(
n+w(F)
w(π) d

)
operations in F.

12

Proof. We start with the correctness. H being strongly monic in H, Lemma 7 ensures
w(R) ≥ w(H) + n > w(H) as w(E) ≥ w(F) + n by assumption. As deg(R) < deg(H),
this proves deg(H̃) = deg(H), w(H̃ −H) ≥ w(H) + n and H̃ strongly monic in φ. As
w(Q) ≥ n, we also get w(G̃−G) = w(V E +QG) ≥ w(G) + n. Using these results and
the equality

dF − G̃ H̃ew(F)+2n = dE (1− U G− V H)−R (E V +QG)ew(F)+2n,

we get dF − G̃ H̃ew(F)+2n = 0, i.e. w(F − G̃ H̃) ≥ w(F)+2n, from which we also deduce
deg(F) ≥ deg(G̃) + deg(H̃).
Similarly, using dC H̃ +De2n = dU Be2n, we get

dŨ G̃+ Ṽ H̃ − 1e2n = dU G̃+ V H̃ − 1−B (U G̃+ V H̃)e2n = dB2e2n = 0,

proving w(Ũ G̃+ Ṽ H̃ − 1) ≥ 2n. Using Lemma 7 once again, we can deduce easily the
remaining properties of the output.
Finally, the complexity is a direct consequence of Lemma 8 (and the usual complexity
of the Hensel algorithm [7, Theorem 15.11]).

Corollary 2. Let F ∈ A[x], t a type dividing F , a factorisation R̃(F) = h0 · · · hrh∞ and
n ∈ N. One can compute F0, . . . , Fr, F∞ such that R̃(Fi) = hi and w(F −F0 · · ·FrF∞) >

n+w(F) in Õ
(
n+w(F)
w(π) d

)
operations in F. If deg(Ft) > d/2, this is Õ (nd/w(π) + δ).

Proof. This algorithm is similar to the classical multifactor Hensel lifting [7, Algorithm
15.17]. We start by building a subproduct tree of the factorisation R̃(F) = h0 · · · hr h∞.
Then, for each node (from top to bottom), we initialise the polynomials G,H,U, V ,
and run HenselStep until we reach the required precision. Complexity and correctness

follows from Propositions 7 and 8. If deg(Ft) > d/2, Lemma 2 implies w(F)
w(π) <

4 δ
d .

In order to get a factorisation F = F0 · · ·FrF∞ mod πσ+1 for some given σ ∈ N, we
need to relate the valuations v0 and w:

Lemma 9. Let G ∈ L[x] and denote N = bdeg(G)/ deg(φ)c + 1. Then we have
v0(G)w(π) ≤ w(G) ≤ v0(G)w(π) +Nw(φ).

Proof. First inequality is clear. For the second inequality, we can safely suppose that
v0(G) = 0. We first consider the case deg(G) < deg(φ) (so N = 1) and we proceed by
induction (remind that φ = φk and w = vk+1). If k = 0, the claim is obvious. Assume
k ≥ 1. Then, from (1) and the assumption deg(G) < deg(φk), we have vk+1(G) =
qkvk(G). We also get vk+1(φk) = qkvk(φk) + mk. It is thus sufficient to show that
vk(G) ≤ vk(φk). Write G =

∑
0≤i<qk−1`k−1

a′iφ
i
k−1. As there is at least one a′i not

dividable by π, i.e. vk(a
′
i) ≤ vk(φk−1) by recursion, we get vk(G) ≤ qk−1`k−1vk(φk−1). As

vk(φk) = qk−1`k−1vk(φk−1) by [10, Theorem 2.11], this concludes. If deg(G) ≥ deg(φ),
we write G =

∑N−1
i=0 ai φ

i, deg(ai) < deg(φ). Let i such that υ0(ai) = 0. We get
w(G) ≤ w(aiφ

i) ≤ (i+ 1)w(φ) ≤ Nw(φ).

13

Theorem 3. There exists an algorithm SlopeFacto that given F ∈ A[x], t a type
dividing F , a factorisation R̃(F) = h0 · · · hrh∞ and σ ∈ N, computes a factorisation

F = F0 · · ·FrF∞ mod πσ+1 with R̃(Fi) = hi. It takes Õ
(
σ d+ d2 w(φ)

deg(φ)w(π)

)
operations

in F. If deg(Ft) > d/2, this is Õ (d σ + δ).

Proof. Let n = w(πσ) − w(F) + (bd/deg(φ)c + 1)w(φ) and apply Corollary 2 with n.
Then G = F −F0 · · ·FrF∞ satisfies deg(G) < d and w(G) > n+w(F), i.e. v0(G) > σ by
Lemma 9. The first complexity bound follows from Corollary 2. As Ft is strongly monic
in φ, we have w(φ)/ deg(φ) = w(Ft)/deg(Ft) and the second bound is a consequence of

Lemma 2, which implies w(Ft)
w(π) <

2 δ
deg(Ft)

.

5 A fast factorisation algorithm

From the previous two sections, we can easily deduce a factorisation algorithm. Let
n ≥ δ ([3, Theorem 3.13] shows that this is a sufficient precision to detect the whole
factorisation).

1. Run algorithm FastIrreducible with precision 2δ/d. We conclude that F is
irreducible (and return F) or we get a type tk−1.

2. Compute the factorisation R̃k(F) = h0h1 · · ·hr in Fk[y] (we have h∞ = 1 since F
is of type tk−1).

3. Use Algorithm SlopeFacto of Section 4 to get a factorisation F = F0F1 · · ·Fr with
precision n.

4. Go back to Step 1 for each Hi.

If ρ is the number of irreducible factors of F , this requires at most ρ univariate factori-
sations and log2(d) univariate irreducible tests over Fk[y], plus a number of operations
over F bounded by Oε(ρn d) under Assumption 1, and Oε(ρn d+ δ2) otherwise.
This section describes a divide and conquer strategy that will reduce the computations
over F to respectively Oε(dn) and Oε(dn+ δ2). The idea is the following:

1. Find a type t such that Ft has degree > d/2 and that either Ft is irreducible,
either any of its proper factor has degree ≤ d/2.

2. Use Algorithm SlopeFacto of Section 4 to get a factorisation F = F0 F1 · · ·FrF∞
with Ft = F0 F1 · · ·Fr.

3. Apply recursively this strategy to all factors that are not known irreducible.

5.1 Finding a dividing type

The aim of this section is to either find the irreducible factor of degree > d/2 if it exists,
either find a factorisation F = F0 F1 · · ·Fr F∞ with each factor of degree ≤ d/2, and to
do so with precision σ ≤ 4δ/d. We start with the algorithm.

14

Algorithm: DividingType(F, σ)

Input: F ∈ A[x] monic separable, σ ∈ N the precision used.
Output: A type t with the properties described above.

1 H ← F , d← deg(F);
2 while True do
3 (b, t)← FastIrreducible(H,σ);
4 if b =True then return t;

5 Compute R̃(H) = g h, h = hi with highest degree;
6 if deg(h) deg(φ) ≤ d/2 then return t;
7 (G,H)←SlopeFacto(H, t, [g, h], σ);

Remark 4. Note that the notation FastIrreducible(H,σ) means to run Algorithm
FastIrreducible with parameter H and precision σ. Also, at Line 5, H is always of
type t, so that the factorisation R̃(H) does not involve h∞.

Proposition 9. The function call DividingType(F, 4δ/d) is correct. It takes less than
Oε(ρ δ) operations in F if Assumption 1 is satisfied, and Oε(ρ δ + δ2) otherwise, plus at
most ρ factorisations and log2(d) irreducibility tests over some Fk.

Proof. Note first that deg(H) decreases at each loop (via the factorisation of Line 7),
proving the ending of the algorithm. Also, the test of Line 6 ensures deg(H) > d/2, so
that 2δ(H)/ deg(H) ≤ 4δ/d at any point of the algorithm. FastIrreducible(H, 4δ/d)
will thus return a correct answer thanks to Lemma 3. This precision is also sufficient
to compute R̃(H) at Line 5 (use Proposition 4). As the precision used is high enough,
correctness is straightforward: we output t when either Ft is irreducible (Line 4), either
all of its factor has degree ≤ d/2 (Line 6). Finally, the complexity is a direct consequence
of Theorems 2 and 3 (and Proposition 5).

Remark 5. There are various straightforward improvements to this algorithm: for in-
stance, one can provide the type computed so far to FastIrreducible to avoid some
already done computations. They do not appear to make the reading easier, but are
needed to run less than log2(d) irreducible tests over some Fk[y].

5.2 The divide and conquer algorithm

Thanks to this result, we derive a fast factorisation algorithm:

Remark 6. At Line 6, F0 and F∞ are known irreducible if they have degree ≤ 1 while
Fi is known irreducible if ordtFi = 1 for i = 1, . . . , r.

Theorem 4. Let n ≥ δ. A function call Factorisation(F, n) returns the correct
output. It requires at most ρ factorisations and log2(d) irreducibility tests in some Fk[y],
plus Oε(dn) operations in F if Assumption 1 is satisfied, and Oε(dn+ δ2) otherwise.

15

Algorithm: Factorisation(F, n)

Input: F ∈ A[x] monic separable, n ∈ N the precision.
Output: The list F1, · · · , Fρ of irreducible factors of F known with precision n.

1 t←DividingType(F, 4n/d);

2 Compute R̃(F) = h0 h1 · · ·hr h∞;
3 F0, · · · , Fr, F∞ ←SlopeFacto(F, t, [h0, · · · , hr, h∞], n);
4 R ← {};
5 for i ∈ {0, · · · , r,∞} do
6 if Fi is known irreducible then R ← R∪ {Fi};
7 else R ← R∪ {Factorisation(Fi, n)};
8 return R;

Proof. This is a direct consequence of Proposition 9 and Theorem 3, as
∑

i deg(Fi) = d
at Line 3, and deg(Fi) < d/2, so that the number of lines of the recursive calls tree is less
than log2(d). Precision δ is sufficient to detect all irreducible factors from [3, Theorem
3.13].

Remark 7. As in Section 3, we do not know in advance δ. We proceed similarly as
explained in Section 3.2.

When considering n ∈ O(δ), then up to the cost of the residual factorisations, Theorem
4 improves [3, Theorem 5.15] by a factor δ if Assumption 1 is satisfied, and by a factor
min(d, δ) otherwise.

5.3 Residual factorisations over finite fields

If Card(F) = q, we factorise F mod π with an expected Õ (d2+d log(q)) operations over
F by [7, Corollary 14.30]. The remaining residual factorisations performed by algorithm
Factorisation use then an expected Oε(dδ log(q)) operations in F, see the proof of [3,
Theorem 5.14]. Together with Theorem 4, this proves:

Corollary 3. Let F ∈ Zp[x], separable with p small. Given the univariate factorisation
of F mod p, we compute the irreducible factors of F with precision n ≥ δ with an
expected Oε(nd) operations over Fp if p > d and Oε(nd+ δ2) otherwise. The same result
holds for F ∈ Fp[[t]][x].

Corollary 3 improves significantly [3, Theorem 5.18] which leads to the complexity esti-
mate Oε(dδ2 + nd2) under the same hypothesis.

Remark 8. Corollary 3 requires a priori to compute a primitive representation of Fk
over F before applying the factorisation algorithm [7, Corollary 14.30] (this issue doesn’t
seem to be considered in [3]). To this aim, we may use a Las Vegas subroutine [29,
Proposition 4] whose complexity fits in our aimed bound. There are recent faster factori-
sation algorithms [15, Corollary 3] (both for primitive or triangular representation), but
not yet implemented.

16

5.4 Avoiding residual factorisations

If F has large cardinal, then the residual factorisations will probably dominate the cost
of the all algorithm. It might thus be preferable to rely on dynamic evaluation [14, 29]
: we allow the Pk’s to be square-free, hence the Fk’s to be product of fields. If at
some point we find a zero divisor (while computing some gcd’s), then we pursue over
each discovered summand of Fk (or we return false if we run an irreducibility test). At
the end, we perform a unique residual factorisation (of expected small degree) for each
discovered factor of F to deduce its irreducible factorisation. Notice that this last step
might be useless, depending on the arithmetic information we want to compute. It is not
needed for instance if we only want the ramification indices (e.g. for the computation
of the genus of a plane curve [29]), or the valuation δ of the discriminant of F [22], or
the equisingularity type of a germ of plane curve [28]. In these cases, we may only use
square-free residual factorisations (fast gcd’s) and the underlying algorithm is entirely
deterministic.

6 Direct Applications

Our complexity estimates have several direct consequences for various tasks of compu-
tational number theory and algebraic geometry. In what follows, the complexity results
are given up to the cost of the residual univariate factorisations.

OM-factorisation Let K = Q[x]/(F) be a number field and let p ∈ Z a prime. The first
main consequence of Theorem 4 is that we compute an Okutsu-Montes (OM) represen-
tation of the prime ideals dividing p with Oε(dδ) operations in Fp if p > d or Oε(dδ+δ2)
otherwise, improving [3, Theorem 5.15] respectively by a factor δ or min(d, δ). These
OM-representations carry on essential data about the corresponding extensions of local
fields and give useful tools for various local and global arithmetic tasks (see e.g. [9]).

Valuations of discriminants and resultants As a straightforward application of fast
OM-factorisation, we may use [22] to compute δ = vp(DiscF) with Oε(dδ) operations
in Fp if p > d or Oε(dδ + δ2) otherwise, improving [22, Theorem 2.5] respectively by
a factor δ or min(d, δ). If G,H ∈ Z[x] are coprime of degrees at most d, we compute
δ = vp(Res(G,H)) within the same bound, improving now [22, Theorem 3.3] by a
factor δ or min(d, δ). As mentioned in Section 5.4, we may rely on dynamic evaluation
for this task: only square-free residual factorisation is required and the algorithm is
deterministic.

Local integral basis Combined with Bauch’s algorithm [2], our results allow to compute
a Z(p)-basis of the integral closure of Z(p) in K with Oε(d2δ) operations in Fp if p > d

or Oε(d2δ + δ2) otherwise, improving Oε(d2δ + dδ2) of [2, Lemma 3.10]. This impacts
the computation of a global integral basis of K/Q, obtained from local ones via Hermite
normal forms and Chinese remaindering.

17

Function fields All complexity results above extend trivially to function fields satisfying
Assumption 1. In this context, we may use moreover the Riemann-Hurwitz formula to
compute the genus of a degree d plane curve over F within Oε(d3) operations in F
(following a similar strategy than in [29], but using the easier to implement algorithm
Factorisation). Here again, only square-free residual factorisation is required and the
algorithm is deterministic.

More applications There are several other computational consequences for global fields,
as computing the valuation at a prime ideal, factoring fractional ideals or Chinese re-
maindering [21], factoring bivariate polynomials [30], computing roots of polynomials
[23], or computing Riemann-Roch spaces [13], but going into these details is beyond the
scope of this paper.

References

[1] S. Abhyankar. Algebraic Geometry for Scientists and Engineers, volume 35 of Math-
ematical surveys and monographs. Amer. Math. Soc., 1990.

[2] J.-D. Bauch. Computation of integral bases. Journal of Number Theory, 165:382–
407, 2016.

[3] J.-D. Bauch, E. Nart, and H. Stainsby. Complexity of the OM factorizations of poly-
nomials over local fields. LMS Journal of Computation and Mathematics, 16:139–
171, 2013.

[4] D. G. Cantor and D. Gordon. Factoring polynomials over p-adic fields. In ANTS-IV,
volume 1838 of LNCS. Springer Verlag, 2000.

[5] X. Caruso, D. Roe, and T. Vaccon. Division and slope factorization of p-adic
polynomials. In Proceedings of the ACM on International Symposium on Symbolic
and Algebraic Computation, ISSAC ’16, pages 159–166, New York, NY, USA, 2016.
ACM.

[6] D. Ford, S. Pauli, and X.-F. Roblot. A fast algorithm for polynomial factorization
over Qp. Journal de Théorie des Nombres de Bordeaux, 14:151–169, 2002.

[7] J. v. z. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 3rd edition, 2013.

[8] J. Guàrdia, J. Montes, and E. Nart. Okutsu invariants and newton polygons. Acta
Arithmetica, 145:83–108, 2010.

[9] J. Guàrdia, J. Montes, and E. Nart. Higher Newton polygons in the computation of
discriminants and prime ideal decomposition in number fields. Journal de Théorie
des Nombres de Bordeaux, 23(3):667–696, 2011.

18

[10] J. Guàrdia, J. Montes, and E. Nart. Newton polygons of higher order in algebraic
number theory. Transsactions of the American Mathematical Society, 364:361–416,
2012.

[11] J. Guàrdia, E. Nart, and S. Pauli. Single-factor lifting and factorization of poly-
nomials over local fields. Journal of Symbolic Computation, 47(11):1318 – 1346,
2012.

[12] W. Hart and A. Novocin. Practical divide-and-conquer algorithms for polynomial
arithmetic. In V. P. Gerdt, W. Koepf, E. W. Mayr, and E. V. Vorozhtsov, editors,
Computer Algebra in Scientific Computing, pages 200–214, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[13] F. Hess. Computing riemann–roch spaces in algebraic function fields and related
topics. Journal of Symbolic Computation, 33(4):425–445, 2002.

[14] J. v. d. Hoeven and G. Lecerf. Directed evaluation. Journal of Complexity,
60:101498, 2020.

[15] J. v. d. Hoeven and G. Lecerf. Univariate polynomial factorization over finite fields
with large extension degree. Applicable Algebra in Engineering, Communication
and Computing, Jan 2022.

[16] E. Kaltofen. Greatest common divisors of polynomials given by straight-line pro-
grams. J. ACM, 35(1):231–264, Jan. 1988.

[17] R. Lebreton. Relaxed hensel lifting of triangular sets. Journal of Symbolic Compu-
tation, 68, Part 2:230 – 258, 2015. Effective Methods in Algebraic Geometry.

[18] S. Mac Lane. A construction for prime ideals as absolute values of an algebraic
field. Duke Math. J., 2(3):492–510, 1936.

[19] S. MacLane. A construction for absolute values in polynomial rings. Trans. Amer.
Math. Soc., 40(3):363–395, 1936.

[20] G. Moroz and É. Schost. A fast algorithm for computing the truncated resultant.
In ISSAC ’16: Proceedings of the twenty-first international symposium on Symbolic
and algebraic computation, pages 1–8, New York, NY, USA, 2016. ACM.

[21] E. Nart. Okutsu-montes representations of prime ideals of one-dimensional integral
closures. Publicacions Matematiques - PUBL MAT, 55, 07 2011.

[22] E. Nart. Local computation of differents and discriminants. Mathematics of Com-
putation, 83(287):1513–1534, 2014.

[23] V. Neiger, J. Rosenkilde, and E. Schost. Fast computation of the roots of polyno-
mials over the ring of power series. In ISSAC’17, pages 349–356. ACM, 2017.

[24] S. Pauli. Factoring polynomials over local fields. J. Symb. Comp., 32:533–547, 2001.

19

[25] S. Pauli. Factoring polynomials over local fields, ii. In ANTS-IX, LNCS. Springer
Verlag, 2010.

[26] P. Popescu-Pampu. Approximate roots. Fields Institute Communiations, 33:1–37,
2002.

[27] A. Poteaux and M. Weimann. A quasi-linear irreducibility test in K[[x]][y]. Preprint,
pages 1–21, 2018.

[28] A. Poteaux and M. Weimann. Computing the equisingularity type of a pseudo-
irreducible polynomial. Applicable Algebra in Engineering, Communication and
Computing, 31:435 – 460, 2020.

[29] A. Poteaux and M. Weimann. Computing Puiseux series: a fast divide and conquer
algorithm. Annales Henri Lebesgue, 4:1061–1102, 2021.

[30] M. Weimann. Bivariate factorization using a critical fiber. Journal of Foundations
of Computational Mathematics, pages 1–45, 2016.

20

	Introduction
	Types and factorisation
	Types
	Associated operators and representatives
	Factorisation according to a type

	Testing irreducibility
	Approximate roots
	Precision and complexity
	The case char(F)d

	Generalised slope factorisation
	A (slightly) more general problem
	Initialisation
	Lifting: a valuated Hensel Lemma

	A fast factorisation algorithm
	Finding a dividing type
	The divide and conquer algorithm
	Residual factorisations over finite fields
	Avoiding residual factorisations

	Direct Applications
	References.

