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Local polynomial factorisation: improving the Montes algorithm

We improve significantly the Nart-Montes algorithm for factoring polynomials over a complete discrete valuation ring A. Our first contribution is to extend the Hensel lemma in the context of generalised Newton polygons, from which we derive a new divide and conquer strategy. Also, if A has residual characteristic zero or high enough, we prove that approximate roots are convenient representatives of types, leading finally to an almost optimal complexity both for irreducibility and factorisation issues, plus the cost of factorisations above the residue field. For instance, to compute an OM-factorisation of F ∈ A[x], we improve the complexity results of [3] by a factor δ, the discriminant valuation of F .

Introduction

Let A be a complete discrete valuation ring with residue field F and consider F ∈ A[x], monic and separable of degree d. The aim of this paper is to improve complexity bounds for the factorisation of F . Such a polynomial factorisation is a fundamental task of computer algebra with various applications in number theory and algebraic geometry. As such, our complexity results allow to fasten various computational problems, such as Okutsu frames, integral basis or genus of plane curves (see Section 6 for further details). Our work is based on the seminal Montes algorithm [START_REF] Guàrdia | Newton polygons of higher order in algebraic number theory[END_REF], for which the best known complexity is given in [START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF]. In [START_REF] Guàrdia | Okutsu invariants and newton polygons[END_REF], the authors conclude their paper by: Probably, an optimal local factorisation algorithm would consist in the application of the Montes algorithm as a fast method to get an Okutsu approximation to each irreducible factor, combined with an efficient "Hensel lift" routine able to improve these initial approximations by doubling the precision at each iteration. One may speculate that Newton polygons of higher order might also be used to design a similar acceleration procedure.

With S. Pauli, Guardia and Nart answered partially to this question thanks to the singlefactor lifting algorithm [START_REF] Guàrdia | Single-factor lifting and factorization of polynomials over local fields[END_REF], that can be viewed as a Newton-like method to lift a single factor with a quadratic convergence. This led to the overall complexity analysis of [START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF]. In this paper, we answer more precisely to this question, by showing that the classical Hensel algorithm can be adapted to the context of Newton polygon of higher order. We also provide a new divide and conquer strategy using this adapted Hensel algorithm, enabling us to lift all factors of F at the same time, with a complexity almost linear in the size of the output. These two elements allow us to gain a factor d in comparison to the complexity result of [START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF]. Moreover, following [START_REF] Poteaux | A quasi-linear irreducibility test in K[END_REF], we show that when char(F) d, we can use approximate roots as strongly optimal representatives of a type1 . This induces an irreducibility test with a complexity almost linear in δ the valuation of the discriminant of F ; see Theorem 2. This improvement propagates for factorisation with a slightly greater assumption Assumption 1. char(F) = 0 or char(F) > d leading a complexity almost linear in d n for a required precision n ≥ δ ; see Theorem 4.

Related work. Classical implemented algorithms for factoring polynomials over Q p (see e.g. [START_REF] Cantor | Factoring polynomials over p-adic fields[END_REF][START_REF] Ford | A fast algorithm for polynomial factorization over Q p[END_REF][START_REF] Pauli | Factoring polynomials over local fields[END_REF][START_REF] Pauli | Factoring polynomials over local fields, ii[END_REF]) are based on the Zassenhaus Round Four algorithm, suffering from loss of precision in computing characteristic polynomials. In [START_REF] Guàrdia | Single-factor lifting and factorization of polynomials over local fields[END_REF], the authors introduced a new technique as a combination of the Montes algorithm [START_REF] Guàrdia | Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields[END_REF][START_REF] Guàrdia | Newton polygons of higher order in algebraic number theory[END_REF] which exploits the Newton polygons of higher order (as initiated in [START_REF] Pauli | Factoring polynomials over local fields, ii[END_REF]), and a Newton-like single factor lifting. Further complexity improvements are obtained in [START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF]. The present work is in the same vein, with the notable difference that we introduce a multi factor lifting, which is used in course of the Montes algorithm whenever a non trivial factorisation is discovered. For rings of Laurent series K((t)) of characteristic zero or high enough, Newton-Puiseux like algorithms can be used. The best complexity in this context is softly linear [START_REF] Poteaux | Computing Puiseux series: a fast divide and conquer algorithm[END_REF], as in the present paper, but more difficult to implement and slower for irreducibility issues. This led us to introduce in [START_REF] Poteaux | A quasi-linear irreducibility test in K[END_REF] approximate roots à la Abhyankhar [START_REF] Abhyankar | Algebraic Geometry for Scientists and Engineers[END_REF][START_REF] Popescu-Pampu | Approximate roots[END_REF] in order to derive a faster and easy-to-implement irreducibility test, quite close to the algorithm [START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF] à la Montes, although not dealing with the small characteristic. This was a first step towards the present work, where we use now approximate roots in the factorisation context, as allowed by a systematic use of our generalised Hensel lifting. Note that the divide conquer in the present paper is quite different than the one of [START_REF] Poteaux | Computing Puiseux series: a fast divide and conquer algorithm[END_REF]Section 4.4]: in particular, the initialisation of the Hensel algorithm does not use the not yet implemented generalisation of the half gcd algorithm described in [START_REF] Moroz | A fast algorithm for computing the truncated resultant[END_REF]. Finally, let us insist that following [START_REF] Guàrdia | Single-factor lifting and factorization of polynomials over local fields[END_REF], our algorithm computes as a byproduct an Okutsu frame of each irreducible factors of F , containing the most significant arithmetic informations [START_REF] Guàrdia | Okutsu invariants and newton polygons[END_REF] and closely related to various computational problems of number theory and algebraic geometry, such as the computation of integral basis (see Section 6 for further details).

Organisation of the paper. We start by a summary of important definitions related to the Montes algorithm in Section 2. Then, we focus on the irreducibility test when char(F) d in Section 3, leading to Theorem 2. In Section 4, we show how to adapt the Hensel algorithm in the context of Newton polygon of higher orders. Section 5 uses this latter algorithm on a well chosen type in order to derive a divide and conquer algorithm, leading to Theorem 4. Finally, we discuss some direct applications in Section 6. A[x] considered in this paper are supposed given in a dense representation, with coefficients available up to an arbitrary precision (e.g. represented as tables, as we always use truncation bounds). We use the algebraic RAM model of Kaltofen [START_REF] Kaltofen | Greatest common divisors of polynomials given by straight-line programs[END_REF]Section 2], counting only the number of arithmetic operations in the residue field F. We classically denote O() and O˜() to respectively hide constant and logarithmic factors in our complexity results ; see e. 8.3]. We assume that univariate factorisation over F is available. Intermediate finite extensions F k of degree f k-1 of F will occur (see Section 2), naturally represented as a quotient of F[y 0 , . . . , y k-1 ] by a triangular prime ideal (P 0 (y 0 ), . . . , P k-1 (y 0 , . . . , y k-1 )). 

Complexity model. Polynomials in

Lemma 1. An operation in F k takes O (f k-1 ) operations over F. Proof. If Card(F) ≥ d 2 ,
F i ; as i ∈ O(log log d), an operation in F i is O˜(f i-1 ) via [17, Proposition 2]).
Remark 1. Since some subroutines use the triangular representation of F k (Remark 3), introducing a randomised Las Vegas subroutine to fasten the arithmetic in F k via a primitive representation would not a priori be sufficient to express our complexity results in O˜() instead of O (), in contrast to [START_REF] Poteaux | Computing Puiseux series: a fast divide and conquer algorithm[END_REF].

Types and factorisation

Let L be a complete discrete valuation field, v : L → Z ∪ {+∞} any normalised and surjective valuation on L and π an uniformiser. We denote by A ⊂ L the ring of integers of (L, v) and by F = A/(π) the residue field of υ. The two fields we have in mind in this paper are L = Q p the field of p-adic numbers and L = K((t)) the field of Laurent series over any field K.

Types

We start with types of order 0, denoting the residue field F 0 := F. Definition 1. A type of order 0 is t 0 = [P 0 ], where P 0 ∈ F 0 [y] is a monic irreducible polynomial.

For any G ∈ L[x], a type of order 0 comes together with the Gauss valuation v 0 ( i a i x i ) := min i (υ(a i )) and the residual polynomial operator R 0 (G) := G(y)/π v 0 (G) mod π. Types t k = [P 0 , (φ 1 , λ 1 , P 1 ), . . . , (φ k , λ k , P k )] of order k ≥ 1 are defined inductively below. If 1 ≤ i ≤ k -1, we denote t i = [P 0 , (φ 1 , λ 1 , P 1 ), . . . , (φ i , λ i , P i )]. For any field K and P, Q ∈ K[y], we write P (y) ∼ Q(y) if there exists c ∈ K × such that P (y) = c Q(y). Also, we denote P the semigroup of polygons (i.e. the set of all open convex polygons of the plane, attached to finite formal sums of sides) and P -⊂ P the semi-group of polygons with negative slopes (principal polygons). See [10, Section 1.1] for details. Assume that types of order k -1 have been defined and that we can attach to a type of order k -

1 a valuation v k-1 : L[x] → Z, a field extension F k-1 of F and a residual polynomial operator R k-1 : L[x] → F k-1 [y]. Definition 2. Let k ≥ 1. t k = [P 0 , (φ 1 , λ 1 , P 1 ), . . . , (φ k , λ k , P k )] is a type of order k if t k-1 is a type of order k -1 and • φ k ∈ A[x] is monic, irreducible and satisfies R k-1 (φ k ) ∼ P k-1 . • λ k = -m k /q k ∈ Q -, with (q k , m k ) ∈ N 2 coprime. We denote (α k , β k ) s.t. α k q k - β k m k = 1 with 0 ≤ β k < q k . • P k = y ∈ F k [y] is monic, irreducible over F k := F k-1 [y]/(P k-1 ). We let k := deg(P k ) and z k := y mod P k (y) ∈ F k+1 .
We will denote e k := q 1 . . . q k and f

k := 0 . . . k = [F k+1 : F] 2 .

Associated operators and representatives

We fix a type t = [P 0 , (φ 1 , λ 1 , P 1 ), . . . , (φ k , λ k , P k )] of order k ≥ 1 and detail several operators associated to it.

If G ∈ L[x], we denote G = a i φ i k-1 and G = a i φ i k their φ k-1 and φ k -adic expansion 3 . Augmented valuation. v k : L[x] → Z is defined from v k-1 as v k (G) := min i (q k-1 v k-1 (a i φ i k-1 ) + m k-1 i). (1) 
This is indeed an "augmented valuation" as introduced by Mac Lane [START_REF] Lane | A construction for prime ideals as absolute values of an algebraic field[END_REF][START_REF] Maclane | A construction for absolute values in polynomial rings[END_REF] (see e.g. [10, page 379] for a detailed explanation). Notice in particular that v k (G) = min i v k (a i φ i k-1 ).

Newton polygon of higher order. The polygon operator

N k : L[x] → P associates to G the lower convex hull of {(i, v k (a i φ i k ), a i = 0}. We let N - k (G) ∈ P -stands for the principal part of N k (G).
Residual polynomial operator. We need several intermediate operators. We let

S k (G) := {(i, j) ∈ N k (G), m k i + q k j is minimal}, I k (G) := {i ∈ N, v k (a i φ i k )) ∈ S k (G)} and i k (G) := min(I k (G)) (letting i 0 (G) = 0 additionally). We let τ k,i := i k-1 (a i )+β k-1 v k (a i φ i k ) q k-1 ∈ Z (see [10], after Definition 2.19). Then R k : L[x] → F k [y] is defined inductively as R k (G) = i∈I k (G) z τ k,i k-1 R k-1 (a i φ i k )(z k-1 ) y i-i k (G) q k . Remark 2.
Let us summarise the dependencies of these operators:

v k depends only of v k-1 , φ k-1 and λ k-1 , thus only of t k-1 . N k depends of v k and φ k . Finally, R k depends of R k-1 , φ k and λ k .
Representative of t k . They are defined as follows.

Definition 3. Let G ∈ A[x] be monic. We say that G is of type t if for 0 ≤ i ≤ k, N i (G) is one-sided of slope λ i , and for 1 ≤ i ≤ k R i (G) ∼ P N i i for some N i ∈ N × . We denote by G t the product of all monic irreducible factors of G of type t. We say that t divides G is deg(G t ) > 1. Finally, G is said to be a representative of t if additionally ord t (G) := ord P k R k (G) = 1.

Factorisation according to a type

The following theorem summarises the main results that led to the Montes algorithm: 

F t = F t,1 • • • F t,g ∈ A[x]
where

N - k (F t,i ) = S i up to translation and R k,i (F t,i ) ∼ R k,i (F ).
2. (Theorem of the residual polynomial, [10, Theorem 3

.7]) Let R k,i (F ) ∼ P a 1 k,i,1 • • • P ar k,i,r
where the P k,i,j are pairwise coprime irreducible polynomials. Then F t,i admits a factorisation

F t,i = F t,i,1 • • • F t,i,r i ∈ A[x]
where

N k (F t,i,j ) is straight of slope λ k,i and R k,i (F t,i,j ) ∼ P a j k,i,j .
3. (Irreducibility criterion) If a j = 1, then F t,i,j is irreducible.

3 Testing irreducibility Proof. See e.g. [START_REF] Popescu-Pampu | Approximate roots[END_REF]Proposition 3.1] for the existence, and [27, Proposition 11] for their computation.

Proposition 2. Let F ∈ A[x] be a monic separable polynomial of type t and denote N = ord t (F ). Suppose char(F) N and let ψ = N √ F .

1. ψ is a representative of t.

2. If F is of type t ∪ (ψ, -m/q, P ), then q deg(P ) > 1.

Proof. Point 1 can be shown with arguments similar to [27, Lemma 7]. Point 2 is a direct consequence of the fact that the coefficient of ψ N -1 in the ψ-adic expansion of F is zero.

Without dealing with the precision of computations in A, this leads to the following irreducibility test algorithm:

Algorithm: FastIrreducible(F ) Input: F ∈ A[x] monic separable s.t.

char(F) deg(F ).

Output: A Boolean (is F irreducible ?), a type t and a representative φ of t.

1 if R 0 (F ) is not some P N 0 0 then return False, [ ]; 2 t ← [P 0 ], k ← 1, N ← N 0 ; 3 while N > 1 do 4 φ k ← N √ F ; 5 if N - k (F ) is not one sided then return (False, t, φ k ); 6 if R k (F ) is not some P N k k then return (False, t, φ k ); 7 t ← t ∪ (φ k , λ k , P k ); // λ k the slope of N k (F ) 8 N ← N k , k ← k + 1; 9 return (True, t, F )
This algorithm is similar to the one of Montes et al, with the exception of the way we construct the representatives: approximate roots enable a quick computation of the representative φ k , together with the additional property q k k > 1 which ensures k ∈ log(d).

Precision and complexity

It remains to deal with the necessary precision to conduct operations in A and get complexity bounds for the computation of N - k (F ) and R k (F ). We proceed as in [27, Section 5.4]: starting with a small precision σ, we check at each iteration if σ is sufficient to certify that the computed data of F mod π σ is truly the data of F . If the precision is not sufficient, we double it and restart the whole computation. This process multiplies the overall complexity by at most 2. We need a certificate that the current precision σ is high enough and an upper bound for σ. Assume that we computed a type t k-1 dividing F using a precision σ. Compute N - k (F ) with precision σ and denote λ min its right hand slope, with convention λ min (F ) = +∞ if it is reduced to a vertex.

Lemma 2. Let F ∈ A[x] monic divisible by t k-1 . If σ > v k (F )+N |λ min | v k (π)
, then truncating computations modulo π σ+1 will compute the correct right hand edge of

N - k (F ). If moreover F is of type t k-1 , then v k (F )+N |λ min | v k (π) < 2δ d .
Proof. This is [3, Lemmas 2.9 and 2.8]. Proof. This is [START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF]Lemma 5.6].

Lemma 3. One can compute v k (F ) in O˜(d) operations in A. Proof. Compute the φ k-1 -adic expansion of F in O˜(d) operations in A [7, Theorem 9.15]. If k > 1, compute recursively each v k-1 (a i φ i k-1 ). As there is a closed formula for v k-1 (φ k-1 ) [10, Proposition 2.15], the bound deg(a i ) < deg(φ k-1 ) concludes.
Lemma 4. Let F ∈ A[x] monic of type t k-1 such that ord t 0 F > 1. Then f k-1 d ≤ 2 0 δ.
Proof. We know that F ≡ P N 0 0 mod π for some irreducible polynomial P 0 ∈ F[x] of degree 0 . Let θ be a root of F , say with minimal polynomial G (prime factor of F ). Thus θ mod π is a root of P 0 and there are N 0 -1 other roots θ of F such that θ ≡ θ mod π.

It follows that v 0 (θ -θ ) > 0, hence v 0 (θ -θ ) ≥ 1
e G where e G is the ramification index of G. Summing over all θ and all θ , we get δ ≥ G deg(G)(N 0 -1)/e G , the sum over all prime factors of F . We have

e G f G = deg(G) (f G residual degree) and f k-1 |f G for all G. It follows that δ ≥ f k-1 (N 0 -1). Equality N 0 0 = d concludes.
Theorem 2. If char(F) d, then there exists an algorithm that tests if F is irreducible in less than O (δ 0 ) operations in F and at most log 2 (d) univariate irreducibility tests.

Proof. The algorithm is FastIrreducible with the above modification to deal with the precision of the computations. As we use a precision σ ≤ 2δ/d, the complexity comes from all the intermediate results of this section.

The case A = Z p . We say that F ∈ Z p [x] is Weierstrass if F ≡ x d mod p. Also, we say that p is small if it is polynomial in d and δ. 

The case char(F) | d

When char(F) | d, approximate roots cannot be used as representatives of types. Following [START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF], we compute these representatives in another way (Proposition 6 below, in O (dw(F )/w(π)) ⊂ O (δ) operations in F). Unfortunately, we might have now q k k = 1 (refinement steps) and the number of iterations is not in O(log(d)) anymore. From [3, Lemma 5.11], we can bound the number of recursive call by O(δ/ 0 )5 . This leads to a complexity in O (δ 2 ) operations in F, plus the univariate irreducibility tests. We can still run only k ≤ log 2 (d) of them by first checking that R k (F ) has a single root (i.e. q k k = 1), using a univariate shift, in O˜(d) operations in F, and use the univariate irreducibility test only when q k k > 1. We proved the following: This result is very similar to [3, Theorem 5.10] (we just use some minor complexity improvements in some intermediate results, described in Section 3.2). We still call FastIrreducible the underlying algorithm.

Generalised slope factorisation

Algorithm FastIrreducible of the previous section will either prove that F is irreducible, either provide a type t k-1 together with a representative φ k such that either N k (F ) has two or more distinct slopes, either R k is not a power of an irreducible polynomial. To summarise these two possibilities, it is convenient to consider a slight modification of the residual polynomial operator R k attached to the right hand slope

λ k = -m k /q k of N - k (F ): Definition 4. The modified residual polynomial of G ∈ L[x] (attached to λ k ) is defined by Rk (G)(y) := y i k (G) R k (G)(y q k ). If F is not irreducible, we get Rk (F ) = h 0 h 1 • • • h r with h 0 ∼ y i k (F ) , h 1 , . . . , h r ∈ F k [y q k ]
coprime, this factorisation containing at least two different non trivial factors.

From Theorem 1, there exist

F 0 , F 1 , • • • , F r ∈ A[x] monic such that F = F 0 F 1 • • • F r with Rk (F i ) ∼ h i , 0 ≤ i ≤ r.
This section describes a Hensel-like algorithm to compute such a factorisation up to an arbitrary precision with complexity almost linear in the size of the output.

A (slightly) more general problem

We express our problem in a slightly more general context, that will be useful in Section 5. Let F ∈ A[x] be a monic polynomial, t = t k-1 be a type of order k -1 dividing F and φ = φ k a representative of t. We assume that either F t is a proper factor of F , either F t admits a non trivial factorisation at order k induced by Theorem 1.

Let v = v k the augmented valuation built from t (i.e. from v k-1 , φ k-1 and λ k-1 ) and N (F ) = N k (F ) the generalised Newton polygon defined by v and φ. Denote λ = -m q ∈ Q -the right hand slope of N -(F ) and R(F ) (resp. R(F )) the (modified) residual polynomial defined by t, φ and λ.

Lemma 5. Let G ∈ A[x] monic and g = R(G). If G is of type t, then N (G) = N -(G), deg(G) = deg(φ) deg(g), lc(g) = R(φ) deg(g) . If t does not divide G then g ∈ F ×
k . Proof. See e.g. [START_REF] Guàrdia | Newton polygons of higher order in algebraic number theory[END_REF].

Thanks to this lemma and our assumption on F , we get

R(F ) = h 0 h 1 • • • h r h ∞ with h 0 = R(φ) s y s , h ∞ ∈ F × k and h 1 , . . . , h r ∈ F k [y q
] powers of some coprime irreducible polynomials satisfying h i (0) = 0 and lc(h i ) = R(φ) deg(h i ) . Moreover, there are uniquely determined monic polynomials F 0 , . . . , F r , F ∞ ∈ A[x] such that

F = F 0 F 1 • • • F r F ∞ with R(F i ) = h i , i = 0, . . . , t, ∞.
In particular, we have

F t = F 0 F 1 • • • F r and F = F t F ∞ .
Such a factorisation can be seen as a generalisation of the "slope factorisation" of [START_REF] Caruso | Division and slope factorization of p-adic polynomials[END_REF]. It is natural to express the precision using the augmented valuation w = v k+1 defined by v, φ and λ following (1). Thanks to a dichotomic argument, we are reduced to compute F = G H (up to some precision w.r.t. w), with G, H products of some of the F i 's above. We proceed as follows:

1. Initialisation. Compute G, H ∈ A[x] and U, V ∈ L[x] such that w(F -G H) > w(F ) and w(U G + V H -1) > 0.
2. Lifting. Run the classical Hensel Lemma with adapted truncations to compute G and H such that w(F -G H) ≥ w(F ) + n for a given precision n.

Initialisation

A key point is to compute polynomials with prescribed (modified) residual polynomial. We start with a definition.

Definition 5. A polynomial H ∈ A[x] is said monic in φ if it has φ-adic expansion H = N i=0 a i φ i with a N = 1.
We say that H is strongly monic in φ (with respect to w) if moreover w(H) = N w(φ).

Proposition 6. Let h = y s h(y q ) with h ∈ F k [y] and W ∈ Z. We can compute H ∈ L[x] of smallest degree such that R(H) = h, w(H) = W, deg(H) < (deg(h) + 1) deg(φ).

It takes O˜ deg(H)(deg(h) + 1) w(φ)

w(π) operations in F. Furthermore:

Let us consider now our initialisation problem. By the discussion above, we can assume that R(F ) = g h with g, h coprime, g ∈ F k [y q ] and h(y) = y s h(y q ), with h ∈ F k [y], h(0) = 0. We can additionally assume that lc y (h) = R(φ) deg (h) . Notice that we might have g ∈ F × k .

Proposition 7. Let g, h as above. One can compute G, H Corollary 11.9]. We necessarily have v ∈ F k [y q ] and u = y t u with u ∈ F k [y q ], so we may apply again Proposition 6 to compute

∈ A[x] and U, V ∈ L[x] such that H is strongly monic in φ, R(G) = g, R(H) = h, deg(G) + deg(H) ≤ deg(F ), w(F -G H) > w(F ), deg(U ) < deg(H), deg(V ) < deg(G) and w(U G + V H -1) > 0 in less than O˜(dw(F )/w(π)) operations in F. Proof. Use Proposition 6 to compute G, H ∈ A[x] with H strongly monic in φ and such that R(H) = h, R(G) = g, w(F ) = w(GH) with O˜(dw(F )/w(π)) operations in F (this bound being a consequence of w(F ) = deg( R(F )) w(φ)). Notice that deg(G)+deg(H) ≤ deg(F ) as we construct G, H of minimal degrees. As w(GH) = w(F ) and R(GH) = R(F ), point 1 in Lemma 6 gives w(F -GH) > w(F ). For U, V , we first compute u, v in F k [y] such that u g +v h = 1, deg(u) < deg(h), deg(v) < deg(g) with O (deg(gh) f k-1 ) ⊂ O (d) operations in F [7,
U, V ∈ L[x] such that R(U ) = u, R(V ) = v, deg(U ) < deg(H), deg(V ) < deg(G), w(U ) = -w(H) and w(V ) = -w(G) within the same complexity bound. We get R(U G) + R(V H) = ug + vh = 1 = 0 and Lemma 6 (point 1) implies that w(U G + V H) = w(U G) = w(V H), so that R(U G + V H) = R(U G) + R(V H) (point 2). We get R(U G + V H) = 1 = R(1) and w(U G + V H) = 0 = w(1). Point 1 again gives w(U G + V H -1) > w(1) = 0.

Lifting: a valuated Hensel Lemma

Let QuoRem denotes the usual euclidean algorithm. Proof. We focus on the computation of R. First note that it be computed as follows 6 : write A = N i=0 a i φ i the φ-adic expansion of A and

B = φ b + • • • . If N < b, we get R = A ; otherwise, compute à = A -a N φ N -b B,
and apply recursively this strategy to Ã. As à = N -1 i=0 ãi φ i , this procedure converges towards the unique remainder R. We now prove the result by induction on the value N ≥ b. By linearity, we can assume A = a N φ N . We then have w( Ã) ≥ w(A) as w(a N φ N -b B) = w(A) from the assumption w(B) = b w(φ). By induction, this proves the lemma for R. Result for Q is then a straightforward consequence, as

w(Q B) = w(A -R).
This lemma will enable us to prove that the classical Hensel lemma [7, Algorithm 15.10], when starting with correct initial polynomials, "double the precision" according to an extended valuation (w, φ). The only difference with the classical algorithm is the way we truncate polynomials: for any polynomial F ∈ A[x] and n ∈ Z, we denote F n = F n k+1 the "truncation of F according to the valuation w = v k+1 ", defined recursively as follows. We let F n 0 the usual truncation of F up to precision π n and, if

F = i a i φ i k and k ≥ 0, then F n k+1 = i a i n-v k+1 (φ i k ) q k k φ i k . This is indeed a natural definition, as deg(a i ) < deg(φ k ) implies v k+1 (a i ) = q k v k (a i ).
In other words, we remove all terms of F that have w-valuation greater than n in its (φ 0 , . . . , φ k )-multiadic expansion [START_REF] Poteaux | A quasi-linear irreducibility test in K[END_REF]Section 3]. Proof. Compute π -v 0 (G) G n-v 0 (G)w(π) with precision n/w(π) -v 0 (G) following the recursive definition above. The main cost is to compute the φ k -adic expansions, as in the proof of Lemma 3.

Algorithm HenselStep below takes as input F, G, H ∈ A[x] with H strongly monic in φ, U, V ∈ L[x] and n ∈ N × such that

• w(F -G H) ≥ w(F ) + n, with deg(F ) ≥ deg(G) + deg(H) • w(U G + V H -1) ≥ n, with deg(U ) < deg(H), deg(V ) < deg(G), w(U ) = -w(G)
and w(V ) = -w(H). Algorithm: HenselStep(F, G, H, U, V, n)

It computes G, H

1 E ← F -G H w(F )+2n ; 2 Q, R ← QuoRem(U E, H) w(F )+2n ; 3 G ← G + E V + Q G w(G)+2n ; 4 H ← H + R w(H)+2n ; 5 B ← U G + V H -1 2n ; 6 C, D ← QuoRem(U B, H) 2n ; 7 Ũ ← U -D 2n-w(G) ; 8 Ṽ ← V -B V -C G 2n-w(H) ; 9 return H, G, Ũ , Ṽ Proposition 8. Algorithm HenselStep is correct. It takes less than O˜ n+w(F ) w(π) d operations in F.
Proof. We start with the correctness. H being strongly monic in H, Lemma 7 ensures w(R) ≥ w(H) + n > w(H) as w(E) ≥ w(F ) + n by assumption. As deg(R) < deg(H), this proves deg( H) = deg(H), w( H -H) ≥ w(H) + n and H strongly monic in φ. As w(Q) ≥ n, we also get w( G -G) = w(V E + QG) ≥ w(G) + n. Using these results and the equality

F -G H w(F )+2n = E (1 -U G -V H) -R (E V + Q G) w(F )+2n ,
we get F -G H w(F )+2n = 0, i.e. w(F -G H) ≥ w(F ) + 2 n, from which we also deduce deg(F ) ≥ deg( G) + deg( H). Similarly, using C H + D 2n = U B 2n , we get

Ũ G + Ṽ H -1 2n = U G + V H -1 -B (U G + V H) 2n = B 2 2n = 0,
proving w( Ũ G + Ṽ H -1) ≥ 2 n. Using Lemma 7 once again, we can deduce easily the remaining properties of the output. Finally, the complexity is a direct consequence of Lemma 8 (and the usual complexity of the Hensel algorithm [START_REF] Gathen | Modern Computer Algebra[END_REF]Theorem 15.11]).

Corollary 2. Let F ∈ A[x], t a type dividing F , a factorisation R(F ) = h 0 • • • h r h ∞ and n ∈ N. One can compute F 0 , . . . , F r , F ∞ such that R(F i ) = h i and w(F -F 0 • • • F r F ∞ ) > n + w(F ) in O˜ n+w(F ) w(π) d operations in F. If deg(F t ) > d/2, this is O˜(n d/w(π) + δ).
Proof. This algorithm is similar to the classical multifactor Hensel lifting [7, Algorithm 15.17]. We start by building a subproduct tree of the factorisation R

(F ) = h 0 • • • h r h ∞ .
Then, for each node (from top to bottom), we initialise the polynomials G, H, U, V , and run HenselStep until we reach the required precision. Complexity and correctness follows from Propositions 7 and 8. If deg(F t ) > d/2, Lemma 2 implies w(F ) w(π) < 4 δ d .

In order to get a factorisation F = F 0 • • • F r F ∞ mod π σ+1 for some given σ ∈ N, we need to relate the valuations v 0 and w:

Lemma 9. Let G ∈ L[x] and denote N = deg(G)/ deg(φ) + 1. Then we have v 0 (G)w(π) ≤ w(G) ≤ v 0 (G)w(π) + N w(φ).
Proof. First inequality is clear. For the second inequality, we can safely suppose that v 0 (G) = 0. We first consider the case deg(G) < deg(φ) (so N = 1) and we proceed by induction (remind that φ = φ k and w = v k+1 ). If k = 0, the claim is obvious. Assume k ≥ 1. Then, from (1) and the assumption deg(G)

< deg(φ k ), we have v k+1 (G) = q k v k (G). We also get v k+1 (φ k ) = q k v k (φ k ) + m k . It is thus sufficient to show that v k (G) ≤ v k (φ k ). Write G = 0≤i<q k-1 k-1 a i φ i k-1 . As there is at least one a i not dividable by π, i.e. v k (a i ) ≤ v k (φ k-1 ) by recursion, we get v k (G) ≤ q k-1 k-1 v k (φ k-1 ). As v k (φ k ) = q k-1 k-1 v k (φ k-1 ) by [10, Theorem 2.11], this concludes. If deg(G) ≥ deg(φ), we write G = N -1 i=0 a i φ i , deg(a i ) < deg(φ). Let i such that υ 0 (a i ) = 0. We get w(G) ≤ w(a i φ i ) ≤ (i + 1)w(φ) ≤ N w(φ).

Avoiding residual factorisations

If F has large cardinal, then the residual factorisations will probably dominate the cost of the all algorithm. It might thus be preferable to rely on dynamic evaluation [START_REF] Hoeven | Directed evaluation[END_REF][START_REF] Poteaux | Computing Puiseux series: a fast divide and conquer algorithm[END_REF] : we allow the P k 's to be square-free, hence the F k 's to be product of fields. If at some point we find a zero divisor (while computing some gcd's), then we pursue over each discovered summand of F k (or we return false if we run an irreducibility test). At the end, we perform a unique residual factorisation (of expected small degree) for each discovered factor of F to deduce its irreducible factorisation. Notice that this last step might be useless, depending on the arithmetic information we want to compute. It is not needed for instance if we only want the ramification indices (e.g. for the computation of the genus of a plane curve [START_REF] Poteaux | Computing Puiseux series: a fast divide and conquer algorithm[END_REF]), or the valuation δ of the discriminant of F [START_REF] Nart | Local computation of differents and discriminants[END_REF], or the equisingularity type of a germ of plane curve [START_REF] Poteaux | Computing the equisingularity type of a pseudoirreducible polynomial[END_REF]. In these cases, we may only use square-free residual factorisations (fast gcd's) and the underlying algorithm is entirely deterministic.

Direct Applications

Our complexity estimates have several direct consequences for various tasks of computational number theory and algebraic geometry. In what follows, the complexity results are given up to the cost of the residual univariate factorisations.

OM-factorisation Let K = Q[x]/(F ) be a number field and let p ∈ Z a prime. The first main consequence of Theorem 4 is that we compute an Okutsu-Montes (OM) representation of the prime ideals dividing p with O (dδ) operations in F p if p > d or O (dδ + δ 2 ) otherwise, improving [START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF]Theorem 5.15] respectively by a factor δ or min(d, δ). These OM-representations carry on essential data about the corresponding extensions of local fields and give useful tools for various local and global arithmetic tasks (see e.g. [START_REF] Guàrdia | Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields[END_REF]).

Valuations of discriminants and resultants

As a straightforward application of fast OM-factorisation, we may use [START_REF] Nart | Local computation of differents and discriminants[END_REF] to compute δ = v p (DiscF ) with O (dδ) operations in F p if p > d or O (dδ + δ 2 ) otherwise, improving [START_REF] Nart | Local computation of differents and discriminants[END_REF]Theorem 2.5] respectively by a factor δ or min(d, δ). If G, H ∈ Z[x] are coprime of degrees at most d, we compute δ = v p (Res(G, H)) within the same bound, improving now [START_REF] Nart | Local computation of differents and discriminants[END_REF]Theorem 3.3] by a factor δ or min(d, δ). As mentioned in Section 5.4, we may rely on dynamic evaluation for this task: only square-free residual factorisation is required and the algorithm is deterministic.

Local integral basis Combined with Bauch's algorithm [2] Function fields All complexity results above extend trivially to function fields satisfying Assumption 1. In this context, we may use moreover the Riemann-Hurwitz formula to compute the genus of a degree d plane curve over F within O (d 3 ) operations in F (following a similar strategy than in [START_REF] Poteaux | Computing Puiseux series: a fast divide and conquer algorithm[END_REF], but using the easier to implement algorithm Factorisation). Here again, only square-free residual factorisation is required and the algorithm is deterministic.

More applications There are several other computational consequences for global fields, as computing the valuation at a prime ideal, factoring fractional ideals or Chinese remaindering [START_REF] Nart | Okutsu-montes representations of prime ideals of one-dimensional integral closures[END_REF], factoring bivariate polynomials [START_REF] Weimann | Bivariate factorization using a critical fiber[END_REF], computing roots of polynomials [START_REF] Neiger | Fast computation of the roots of polynomials over the ring of power series[END_REF], or computing Riemann-Roch spaces [START_REF] Hess | Computing riemann-roch spaces in algebraic function fields and related topics[END_REF], but going into these details is beyond the scope of this paper.

  g. [7, Chapter 25, Section 7]. We additionally let O (d) = O(d 1+ (d) ) with (d) → 0. We have O˜(d) ⊂ O (d), and freely speak of almost linear in d for both notations. Fast multiplication in F[y] is used, i.e. we multiply two polynomials of degree at most d within O˜(d) operations in F [7, Section

Theorem 1 .

 1 Let k ≥ 1 and t be a type of order k -1 together with a representative φ k . Denote v k the associated augmented valuation and assume F ∈ A[x] monic. 1. (Theorem of the polygon, [10, Theorem 3.1]) Suppose that N - k (F ) = S 1 + • • • + S g where the polygons S 1 , . . . , S g are one-sided of distinct slopes λ k,1 , . . . , λ k,g . Denote by R k,i the residual polynomial operator associated to v k , φ k and the slope λ k,i . The polynomial F t admits a factorisation

Proposition 3 .

 3 One can compute N - k (F ) with precision σ in less than O˜(d σ) operations in F.Proof. First compute the φ k -adic expansion of F , then the different values v k (a i φ i k ). The complexity then comes from [7, Theorem 9.15] and Lemma 3.

Proposition 4 .

 4 Up to the cost of operations already done while computingN - k (F ), one can compute R k (F ) in O (d f k-1 ) op. in F.

Corollary 1 .

 1 If p is small and does not divide d, we can test the irreducibility of a separable Weierstrass polynomial F ∈ Z p [x] with O (δ) operations in F p . Proof. F being Weierstrass, we have 0 = 1 and d ≤ 2δ by Lemma 4. We can check if R k (F ) ∈ F k [x] is a prime power (and then compute P k ) within O (d log(p)) operations in F p using [15, Corollary 2] 4 together with deg(R k (F ))f k-1 ≤ d. Under the same hypothesis, Montes irreducibility test would require O (δ 2 ) operations in F p , see [3, Theorem 5.10].

Proposition 5 .

 5 If char(F) divides d, one can check if F is irreducible in less than O (δ 2 ) operations in F and at most log 2 (d) univariate irreducibility test.

Lemma 7 .

 7 Let A, B ∈ L[x] with B strongly monic in φ. Then, Q, R = QuoRem(A, B) satisfies w(R) ≥ w(A) and w(Q) ≥ w(A) -w(B).

Lemma 8 .

 8 Let G ∈ L[x] with deg(G) ≤ d and n ∈ N. We can compute G n in O˜(d(n/w(π) -v 0 (G))) operations in F.

  ∈ A[x] with H strongly monic in φ and Ũ , Ṽ ∈ L[x] such that • w(F -G H) ≥ w(F ) + 2 n, with deg( H) = deg(H), deg(F ) ≥ deg( G) + deg( H), w( H -H) ≥ w(H) + n and w( G -G) ≥ w(G) + n. • w( Ũ G+ Ṽ H -1) ≥ 2 n, with deg( Ũ ) < deg( H), deg( Ṽ ) < deg( G), w( Ũ ) = -w( G)and w( Ṽ ) = -w( H).

  , our results allow to compute a Z (p) -basis of the integral closure ofZ (p) in K with O (d 2 δ) operations in F p if p > d or O (d 2 δ + δ 2 ) otherwise, improving O (d 2 δ + dδ 2 ) of [2,Lemma 3.10]. This impacts the computation of a global integral basis of K/Q, obtained from local ones via Hermite normal forms and Chinese remaindering.

  We call it the N th approximate roots of F , denoted by N √ F . It can be computed in less than O˜(d) operations in A.

3.1 Approximate roots

Proposition 1. Let F ∈ A[x] be monic of degree d, with char(A) d. Let N ∈ N dividing d. There exists a unique polynomial ψ ∈ A[x] monic of degree d/N such that deg(F -ψ N ) < d -d/N .

see Sections

and

for the definitions of these terms

A reader used to the work of Nart et al should pay attention that the notations e k and f k in[START_REF] Guàrdia | Newton polygons of higher order in algebraic number theory[END_REF] are here denoted q k and k . We rather use e k and f k for the ramification index and residual degree discovered so far, following[START_REF] Poteaux | Computing Puiseux series: a fast divide and conquer algorithm[END_REF].

If k = 1, we let φ0 = x, q0 = 1 and m0 = 0, so that v1 = v0.

This result extends to towers of fields following the proof of[START_REF] Hoeven | Univariate polynomial factorization over finite fields with large extension degree[END_REF] Corollary 3] 

Equation (5.4) of[START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF] actually shows that it is bounded by O(δ/f k-1 )

in practice, we use the classical algorithm of A[x], this is only for this proof purpose

Theorem 3. There exists an algorithm SlopeFacto that given F ∈ A[x], t a type dividing F , a factorisation R(F ) = h 0 • • • h r h ∞ and σ ∈ N, computes a factorisation

Proof. Let n = w(π σ ) -w(F ) + ( d/ deg(φ) + 1) w(φ) and apply Corollary 2 with n. Then G = F -F 0 • • • F r F ∞ satisfies deg(G) < d and w(G) > n + w(F ), i.e. v 0 (G) > σ by Lemma 9. The first complexity bound follows from Corollary 2. As F t is strongly monic in φ, we have w(φ)/ deg(φ) = w(F t )/ deg(F t ) and the second bound is a consequence of Lemma 2, which implies w(F t ) w(π) < 2 δ deg(F t ) .

A fast factorisation algorithm

From the previous two sections, we can easily deduce a factorisation algorithm. Let n ≥ δ ( [START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF]Theorem 3.13] shows that this is a sufficient precision to detect the whole factorisation).

1. Run algorithm FastIrreducible with precision 2δ/d. We conclude that F is irreducible (and return F ) or we get a type t k-1 .

Compute the factorisation Rk

3. Use Algorithm SlopeFacto of Section 4 to get a factorisation ). The idea is the following:

Go back to

1. Find a type t such that F t has degree > d/2 and that either F t is irreducible, either any of its proper factor has degree ≤ d/2.

Use Algorithm SlopeFacto of Section 4 to get a factorisation

3. Apply recursively this strategy to all factors that are not known irreducible.

Finding a dividing type

The aim of this section is to either find the irreducible factor of degree > d/2 if it exists, either find a factorisation

, and to do so with precision σ ≤ 4δ/d. We start with the algorithm.

Algorithm: DividingType(F, σ) Proof. Note first that deg(H) decreases at each loop (via the factorisation of Line 7), proving the ending of the algorithm. Also, the test of Line 6 ensures deg(H) > d/2, so that 2δ(H)/ deg(H) ≤ 4δ/d at any point of the algorithm. FastIrreducible(H, 4δ/d) will thus return a correct answer thanks to Lemma 3. This precision is also sufficient to compute R(H) at Line 5 (use Proposition 4). As the precision used is high enough, correctness is straightforward: we output t when either F t is irreducible (Line 4), either all of its factor has degree ≤ d/2 (Line 6). Finally, the complexity is a direct consequence of Theorems 2 and 3 (and Proposition 5).

Remark 5. There are various straightforward improvements to this algorithm: for instance, one can provide the type computed so far to FastIrreducible to avoid some already done computations. They do not appear to make the reading easier, but are needed to run less than log 2 (d) irreducible tests over some F k [y].

The divide and conquer algorithm

Thanks to this result, we derive a fast factorisation algorithm: Remark 6. At Line 6, F 0 and F ∞ are known irreducible if they have degree ≤ 1 while Algorithm: Factorisation(F, n)

Proof. This is a direct consequence of Proposition 9 and Theorem 3, as i deg(F i ) = d at Line 3, and deg(F i ) < d/2, so that the number of lines of the recursive calls tree is less than log 2 (d). Precision δ is sufficient to detect all irreducible factors from [3, Theorem 3.13].

Remark 7. As in Section 3, we do not know in advance δ. We proceed similarly as explained in Section 3.2.

When considering n ∈ O(δ), then up to the cost of the residual factorisations, Theorem 4 improves [START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF]Theorem 5.15] by a factor δ if Assumption 1 is satisfied, and by a factor min(d, δ) otherwise.

Residual factorisations over finite fields

If Card(F) = q, we factorise F mod π with an expected O˜(d 2 + d log(q)) operations over F by [START_REF] Gathen | Modern Computer Algebra[END_REF]Corollary 14.30] Remark 8. Corollary 3 requires a priori to compute a primitive representation of F k over F before applying the factorisation algorithm [START_REF] Gathen | Modern Computer Algebra[END_REF]Corollary 14.30] (this issue doesn't seem to be considered in [START_REF] Bauch | Complexity of the OM factorizations of polynomials over local fields[END_REF]). To this aim, we may use a Las Vegas subroutine [START_REF] Poteaux | Computing Puiseux series: a fast divide and conquer algorithm[END_REF]Proposition 4] whose complexity fits in our aimed bound. There are recent faster factorisation algorithms [15, Corollary 3] (both for primitive or triangular representation), but not yet implemented.