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Abstract

This paper proposes an approach that combines reduced-order models with machine learning
in order to create physics-informed digital twins to predict high-dimensional output quantities
of interest, such as neutron flux and power distributions in nuclear reactor cores. The digital
twin is designed to solve forward problems given input parameters, as well as to solve inverse
problems given some extra measurements. Offline, we use reduced-order modeling, namely, the
proper orthogonal decomposition (POD) to assemble physics-based computational models that
are accurate enough for fast predictive digital twin. The machine learning techniques, namely,
k-nearest-neighbors (KNN) and decision trees (DT) are used to formulate the input-parameter-
dependent coefficients of the reduced basis, whereafter the high-fidelity fields are able to be
reconstructed. Online, we use the real time input parameters to rapidly reconstruct the neu-
tron field in the core based on the adapted physics-based digital twin. The effectiveness of the
framework is illustrated through a real engineering problem in nuclear reactor physics - reac-
tor core simulation in the life cycle of HPR1000 governed by the two-group neutron diffusion
equations affected by input parameters, i.e., burnup, control rod inserting step, power level and
temperature of the coolant, which shows potential applications for on-line monitoring purpose.
Keywords. Digital twin; Model order reduction; Machine learning; Proper orthogonal decom-
position; Nuclear reactor physics

1 Introduction

A nuclear power plant is a complex physical system to produce electricity. The production of nuclear
energy is done under very high safety standards where tight criteria must be satisfied both at design
and operation levels. What is essentially required is the accurate knowledge of significant quantities
like temperature, neutron flux, power, irradiation etc. The quantities can be global outputs like the
maximum or average temperature or the total generated power but the knowledge of more detailed
information like temperature, flux and/or power maps in the whole reactor may also be required.

This knowledge can be achieved through measurements, and also through simulation / mathe-
matical / numerical models. Various numerical models have been developed, and give a very good
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estimation of the fine neutronic behavior of the core [1, 2]. Moreover, measurements, obtained in
operational context, allow to improve the quality of the knowledge of the whole core state. These
measures could also be used to correct the model bias that are difficult to be taken into account
in the real process. The digital twin paradigm ensembles simulation + measurements are consid-
ered together in order to get the best estimation of this complex system state. The digital twin
paradigm has received much attention in diverse industrial applications, such as aircraft sustain-
ment procedures and structural health monitoring [3], simulation-based vehicle certification and
fleet management [4], mitigating unpredictable, undesirable emergent behavior in complex systems
[5, 6].

As one of the key components of the digital twin, the simulation models involved in nuclear
engineering often consist of parameter-dependent Partial Differential Equations (PDEs) that are
usually expensive to solve [7, 8]. The Reduced basis (RB) methods [9, 10], manage to offer highly
advantageous reduction of computational effort without significant loss of precision, thus provide
new opportunities for simulations in nuclear engineering domain requiring i) many-queries e.g.,
optimal control, inverse problems, uncertainty quantification etc., ii) real-time evaluations e.g.,
online monitoring, parameter estimation, etc.

RB methods are generally functioning in an offline-online paradigm. In the offline stage, a set
of reduced basis, which represents the principal information of the underlying physical problem, is
extracted from a collection of conventional numerical solutions (also called snapshots) for different
inputs, usually with a high-fidelity numerical solver (also called full models). The reduced basis
can be obtained through a broad range of model reduction processes, such as Proper orthogonal
decomposition (POD) [11, 12], Proper Generalized Decomposition (PGD) [13], Information entropy
reduction[14], different kinds of weak greedy RB methods [9], or even the empirical interpolation
method (EIM) [15] and its generalized version (GEIM) [16] etc. Once the reduced basis are collected,
a reduced-order model, which maps the input parameter space into the output solution space (also
called input-output map), can be constructed in either an intrusive or a non-intrusive way. In the
online stage, for a given new parameter configuration, the corresponding reduced basis solution
is then derived as a linear combination of the reduced basis, and the coefficients of the reduced
basis are computed by running the reduced-order model. We refer to [17, 18, 19] for a complete
introduction to RB methods.

Most traditional RB methods are intrusive, requiring full knowledge of the governing equations
and the discretization strategy of the full model of the physical system. The intrusive reduced-
order model is generally constructed by projecting the full-order model onto the reduced space.
The most popular and the simplest choice is Galerkin projection, in which the reduced basis or
POD basis is used as the test functions [20, 21, 22]. In most of the real engineering applications,
access to the governing equations, discretization frame and solver generally are unavailable when
working with proprietary code or commercial software, in which the full model is implemented a
priori and is always viewed as a black-box solver by users [23, 24]. Thus the intrusive nature limits
the applications of traditional RB methods.

In contrast, non-intrusive RB methods aim to construct reduced order models from reduced
basis, by building the input-output map through interpolation, regression or machine-learning-
based methods. For example, the work in [25] reconstructs POD coefficients using a cubic spline
interpolation. The work in [26, 27] builds the non-intrusive reduced-order model of the Navier-Stokes
equations based on Radial Basis Function (RBF) interpolation. The Gaussian process regression
[28, 29], self-organizing maps [30] are also widely used to build the map from inputs to reduced
basis coefficients. The work in [31, 32] presents a non-intrusive model reduction method, which
learns operators for the linear and polynomially nonlinear dynamics via a least-squares problem.
The work in [33] builds non-intrusive reduced basis approach (NIRB) based on a two-grid finite
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element discretization scheme. Recently, different kinds of artificial neural networks [34, 35, 36]
are trained to learn the map from inputs to reduced basis coefficients with applications in different
domain. Because the reduced basis represents the physical model to some extent, this paradigm
is also viewed as physics-informed or physics-based or physics-constrained machine learning for
reduced-order modeling in some literature [37, 38, 39, 40, 41, 42].

RB methods also offer new opportunities for the integration of simulation models and measure-
ment data. This is also a non-intrusive data-driven paradigm in approximation of PDEs, motivated
by small-data scenarios, where simulation models are represented by reduced basis. These ap-
proaches are also regard as data assimilation [43, 44], where the data is incorporated into a model,
see recent works [45, 46, 47, 48, 49] for general description of this paradigm. In this paradigm,
RB provides actionable tools to compress prior knowledge about the system coming from the pa-
rameterized mathematical model into low-dimensional and more manageable forms, which makes
the combination with measurement data more efficient. In the off-line phase, RB provides a way
to learn the physical system, which allows extracting the principal component information of the
system and also providing a guideline to set the amount and locations of the measurement needed;
in the on-line phase, RB speeds up computations allowing better explorations of the parameter
space at an acceptable computational cost.

It is important to note here that a great deal of work has been done in the nuclear engineering
community to develop reduced order models alone or in the framework of data assimilation. The
method which seems to have been more extensively employed is POD. Examples of applications to
neutronics are [50] and [51, 52, 53]. In addition to these contributions, one can find in [54] an eval-
uation of the temperature reactivity feedbacks in a lead-cooled fast reactor with a POD basis. The
works [55, 56, 57] apply the method to nuclear reactor core spatial kinetics and dynamics. In partic-
ular, [58] models the motion of control rods by applying reduced bases to parametrized multi-group
neutron diffusion equations both in the time-dependent and stationary formulations. Further work
[59] gives a technical road map in reduced-order modeling of parameterized multi-group diffusion
k-eigenvalue problems, application of proper generalized decomposition to multigroup neutron dif-
fusion eigenvalue calculations can be found in [60]. Comparison of Reduced-Basis techniques for the
model order reduction of parametric incompressible fluid flows is shown in [61]. These approaches
are referred to as intrusive ROM, in which one has to access the complicated nuclear simulation
codes.

For the study of non-intrusive ROM, an early work [62] used polynomials to build the relation
of the input parameter space and the output. Recently, there has been extensive research on non-
intrusive ROM based on Gaussian Process Regression, examples can be found with application to
nuclear component degradation [63, 64], facility deployment decisions[65], state identification in
pressurized water reactors [66], and inverse uncertainty quantification [67, 68, 69]. Non-intrusive
ROM based on spectral technique finds its application to multi-physics problem in [70]. More
recent work [71] presents different methods such as regression and neural network-based training
to correlate the input and output in building ROM-Based Surrogate Systems of EBR-II. Non-
intrusive ROM using neural networks is studied in [72] for load follow operation, and Support
Vector Regression Model is presented in [73] for the prediction of the power peaking factor in a
Boron-Free Small Modular Reactor.

In the framework of data assimilation with reduced basis, the works in [45, 74, 47, 75, 76] build
a systematical framework in reconstruction the neutronic field by using reduced basis and small-
data measurement. Particularly, EIM [15, 77, 78] and GEIM [16, 79, 47], the gappy POD [74]
and the parameterized-background data-weak (PBDW) [45, 80] data assimilation formulation can
be adapted and integrated into this paradigm, large amounts of real engineering applications have
proofed the efficiency of the proposed paradigm. The goal of the above data assimilation paradigm
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is state estimation. In some circumstances, reactor operators may be more interested in what input
parameter caused the related observation or state. Thus input parameter identification (IPD) is
another task of interest.

So far, however, there has been little discussion about digital twin using non-intrusive ROM
for reactor operation support purpose. On behalf of non-intrusive ROM and observations, our
goal in this work is to develop a prototype of a data-enabled physics-informed digital twin for the
nuclear reactor physics applications, particularly for on-line monitoring purpose, aiming to predict
the operational parameters i.e. IPD, and the caused neutronic field. the digital twin is designed to
solve both forward and inverse problems. Specifically, the digital twin can solve forward problems
given input parameters, as well as inverse problems given some extra measurements. At the heart of
the digital twin is a non-intrusive reduced order model of the reactor core, the non-intrusive nature
is realized via machine learning to build the map from inputs to reduced basis coefficients. With
this non-intrusive machine learning reduced order model, the digital twin can solve forward problem
given input parameters in a second. With this digital twin as a foundation, we build a data-driven
digital twin by formulating an inverse problem in which online sensor data from a nuclear reactor
core is used to infer which input parameter should comprise the digital twin at the current state.
The framework of the machine learning reduced order modeling for data-enabled physics-informed
digital twin is sketched in Fig 1.

We demonstrate the proposed methodology and illustrate its benefits of our contributions by a
real engineering case study. We create a digital twin of HPR1000 reactor core from nuclear reactor
physics aspect, to predict the power evolution induced by four general parameters, i.e., burnup of
the nuclear fuel along the lifecycle, control rod movement, variation of temperature and pressure
of the coolant. We demonstrate how the reduced order model scales efficiently to the full model
of the reactor core, and how we construct a set of solution snapshot, extract a set of reduced
basis, thereafter train machine learning models designed to enable the rapid reconstruction of the
digital twin to a wide range of effective operation states. We then demonstrate how the reduced
model enables the data-driven model adaptation, and how near real-time estimates of the effect of
digital twin enables real-time decision-making for operation. We present simulation results for an
illustrative of HPR1000, which shows it potential applications for on-line monitoring purpose.

The remainder of the paper is organized as follows. In Section 2, we describe the details
of parametrization and the preparation of reduced model of neutronic field. In Section 3, we
introduce the methodologies including KNN and DT to build the map from input parameter to the
coefficients of the reduce models. In Section 4, we first describe the problem settings of the real
industry problem in nuclear reactor domain, then the forward and inverse models are build for field
reconstruction and input parameter identification. Numerous numerical results are also brought out
in this section to proof the effectiveness of the digital twin. A brief summary is then presented in
Section 5.
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Figure 1: A flow chart of the machine learning reduced order modeling for data-enabled physics-
informed digital twin.

2 Parametrization of neutronic fields

We consider systems in nuclear engineering particularly in nuclear reactor physics that respond to
inputs with physical fields, for example representing such physical quantities as fast flux, thermal
flux, power distribution, etc. This section establishes a physics-informed parametrization of such
fields via governing equations and the proper orthogonal decomposition.

2.1 Numerical approximation of physical fields

Consider a reactor core that maps an input parameter onto a physical field i.e. power distribution
field, which is our prediction quantity of interest. We notice here that the behavior of the reactor
core is characterized by physical laws and governing equations, which are often represented in the
form of partial differential equations, i.e., neutron transport equations or its approximations multi-
group neutron diffusion equations [2]. We denote the power field as a function: Φ : Ω×D → R, with
the spatial domain Ω ⊂ Rd which represents the reactor core of dimension d, and input parameter
domain D ⊂ Rp of dimension p. Thus, the power field u varies in space, and depends on the input
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parameter of the system.
In a classical computational setting, numerical models discretize the governing equations, ap-

proximating the solution fields in different ways. For example, the finite element method builds the
field using an expansion in a finite number of basis functions and the finite difference method builds
the field at a set of discrete points in the space-time domain, while for the proprietary code packages
such as CORCA-3D [23] and COCAGNE [24], different nodal methods are used which represent
the field with node average value followed by pin power reconstruction in each node. Whichever
numerical method is chosen, the result is a numerical model that embeds governing equations. For
practical nuclear engineering applications, the dimensionality of these numerical models is typically
high, e.g., in the range of thousands to millions of unknowns, or even more in three-dimensional
time-varying simulations [23, 24, 7]. This means that a large-scale system of equations has to be
solved to evaluate the physical model, which presents computational challenge in simulations re-
quiring i) many-queries e.g., optimal control, inverse problems, uncertainty quantification etc., ii)
real-time evaluations e.g., online monitoring, parameter estimation, etc.

The interest of this paper is on learning a non-intrusive approximate model of u from training
data (solution snapshots) S ⊂ {u(r,µ)| r ∈ Ω,µ ∈ D} in a way that respects the underlying physical
constraints of the reactor core, thus leading to the model endowed with physical interpretability and
predictive ability. In our digital twin setting, we seek to learn a numerical model from data both
from simulations offline and operation data online. We use the reduced order method, particularly
machine learning non-intrusive reduced order method, to overcome the computational challenge
which proprietary code faces. We then introduce the notion of the reduced order representation
and parametrization of the fields in a reactor core. Such a representation can be achieved using
reduced basis, particularly the POD basis [11, 74], which are typically computed using sampled
training data, i.e., snapshots sampled from S. The parametrization and the non-intrusive nature
of the reduced order representation can be achieved using machine learning method, which will be
introduced in next section.

2.2 Computing the reduced basis

The standard POD basis is computed via the method of snapshots [11]. Here, for self-consistency
of this paper, we recall the most important properties of POD for reduced-order modeling. We
consider a collection of N snapshots {u(µk)}Nk=1 ⊂ RM corresponding to the discrete parameter set
DN = {µ1, ...,µN} ⊆ D ⊂ Rp, where M is the discrete spatial dimension and p is the dimension
of the parameter space. These snapshots are numerical solutions generated by a numerical model,
i.e., the neutronic core code package CORCA-3D in this paper.

The correlation matrix C is formed by computing the inner product between each pair of snap-
shots, that is,

Ci,j =
1

N
(ui, uj), ∀1 ≤ i, j ≤ N, (2.1)

where (ui, uj) is the inner product between ui and uj . The eigenvalues {λi} and the corresponding
eigenvectors

{
vi
}
of C are computed. The j-th POD basis vector qj , which is independent of µ, is

given by a linear combination of snapshots

qj =
N∑
i=1

vjiφ
i, (2.2)

where vji denotes the i-th element of the j-th eigenvector. The magnitude of the j-th eigenvalue
λj describes the relative importance of the j-th POD basis vector. Define the snapshot matrix
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S ∈ RM×N which contains the snapshots u(µk) as its columns. Assemble the first n POD basis in a
matrix Vn = [q1, ..., qn] ∈ RM×n. Among all orthonormal bases of size n, the POD basis minimizes
the least squares error of the reconstruction of snapshot matrix S,

min
Vn

‖S − VnV T
n S‖2F =

N∑
k=n+1

λk . (2.3)

Thus the POD basis yields an orthonormal basis that provides an efficient low-dimensional
representation of the snapshots. For any u(µ) ∈ S, the n-dimensional representation of u(µ) is
approximated by

u(µ)n =
n∑
i=1

αi(µ)qi . (2.4)

3 Physics-informed machine learning of reduced-order model

Physics-based machine learning algorithms have been widely applied in high-dimensional industrial
problems, including aerodynamics [42], air pollution simulation [81], electrical power systems [82, 83]
or numerical weather prediction (NWP) [84]. Compared to traditional physics-based simulations,
machine learning techniques show a significant strength of efficiency, especially when coupling with
model reduction approaches, such as POD [81], domain localization [85] or image auto-encoder [86].
In this section, we describe the problem setup with a brief introduction to each machine learning
algorithm used in this study. Here we focus on two types of machine learning algorithms: decision
tree (DT) and k-nearest neighbors (KNN), widely adapted in industrial applications for regression
or classification. Recently, deep learning (DL) approaches have also been broadly used in physics-
based machine learning problems. However, DL methods often require massive amounts of data.
Recent work of [42] shows the limitation of DL for field reconstruction with a small number of input
variables. In this study, we look for efficient machine learning approaches to build the coefficients
map, yielding a compromise of accuracy and computational simplicity. Later we will find that, KNN
and DT are more fit for our specified complicated, non-linear, non-smooth and non-convexity real
industry problem.

It is important to note here that non-intrusive ROM using Gaussian processes (GP), artificial
neural network (ANN) and radial basis function (RBF) are also tested in this work though not shown
, but none of these methods presents satisfactory accuracy for our specific engineering problem. The
reason is that the model tested is non-smooth and non-continuous in the sense that the moving of
control rods is step by step and the burnup calculated by industry code is also step by step. Further
more, DT and KNN is more fit for limited data modelling approaches for engineering applications
[87], that is exactly the circumstances we are interested in this work. Note also that our digital
twin is problem dependent especially for the choice of machine learning method when constructing
non-intrusive ROM.

3.1 Setup of the experiment

Our objective is to build data-driven non-intrusive surrogate models to release the computational
burden for both forward and inverse simulations. More precisely, we attempt to predict POD modes
by observing µ in the forward model, leading to an efficient field reconstruction through u(µ). In
this study, the hyperparameters in machine learning models are chosen according to conducted
experiments. The determination of the optimal truncation parameter no (i.e. number of modes
in POD projection) is crucial for both the machine learning predictions and the posterior field

7



reconstruction [88]. no should be determined regarding both the aspects of reconstruction accuracy
and computational complexities. As for the inverse modelling, where only partial observations of
the entire physical field are available, Bayesian inference (BI) or data assimilation (DA) approaches
[77, 89] can be applied. However, these methods require either estimation of the posterior probability
density (for BI) or an explicit differentiable forward equation (for DA), which are cumbersome for
DT and KNN functions. In this work, we implement a naive approach where an ensemble of
samplings {µ}ρi is generated using Latin Hypercube sampling (LHS) around the initial guess µI.
The ensemble size ns is fixed to 100 or 1000 in this study, i.e. ρ = 1..ns. Therefore, the solution of
the inverse problem µ∗ can be obtained after applying the forward model to all samplings,

µ∗ = argmin
k=1..ns

(||HVnFML(µk)− Yo||2), (3.5)

where FML : R4 → Rn stands for the machine learning forward model which maps the parameter µ
to the POD coefficients space. Yo and H represent the observation vector and the state-observation
transformation function respectively.

As noted before, the naive approach using Latin Hypercube sampling (LHS) is fit for this work
because the discrete manifold provided by industry code is piecewise continuous, thus other smarter
methods which depend on continuous property of manifold performs not as well as KNN or DT.

3.2 Decision tree regression

Decision tree could be considered as a localization method [90, 91] by building regression models in a
tree structure [92]. Briefly speaking, It breaks down a dataset into smaller subsets while developing
an associated decision tree at the same time. Two types of nodes could be found in a decision tree:
decision nodes and leaf nodes. The former divides the tree structure into further branches while
the latter is associated with specific classes/clusters. Recent studies also demonstrate the good
performance of DT-based approaches when dealing with correlated input variables [93], which is
crucial when analyzing systems with uncertainties [94].

It is important to point out here that, DT is wildly use in nuclear engineering field, e.g., it can be
used for the reconstruction of the neutron noise source in the nuclear reactor cores [95], for nuclear
power plant performance optimization [96], for the prediction of 3D nuclear reactor’s operational
parameters from 2D fuel lattice design information [97] and for nuclear reactor transient diagnostics
[98] etc.

In this work, we use DT regression to predict αi(µ) A decision tree arrives at an estimation
by splitting the global dataset into several small ones, depending on the depth of the tree. More
precisely, the splits take place at each node of the tree regarding a threshold of an input variable
decide by the learning algorithm. This algorithm then learn a specific value of the regression
problem for each sub-dataset which is determined by the ensemble of nodes [92]. The quality of
split is quantified by the mean square error (MSE) εMSE, defined as :

εMSE =
1

ntrain
σ(αi(µ)− αpredicti (µ))2 (3.6)

where ntrain denotes the size of the training dataset. The minimum number of split regarding a
node is set to 2. The choice of this parameter is determined via experiments where the prediction
error is estimated on an independent validation dataset, which is not a part of training or test data,
as shown in Fig 2(b). We observe that the predicition error increases against the the minimum
number of split while the training time varies little (from 0.7s to 0.95s on the whole training set).
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3.3 k-nearest-neighbors regression

K-nearest neighbors algorithm is widely used for classification and regression problems (e.g [99]),
example used in nuclear reactor physics is shown in [100] for control rod position reconstruction,
with a similar application scenarios as in our work. The input and output variables in KNN are
established over a local set of training samples. As for evaluation, the prediction value of a certain
input is calculated as the average of the k(k ∈ N+) neighbours. The Euclidean metric is used
in this study. Since the complexity of KNN is proportional to the input dimension [42], from a
computational point of view, it is appropriate for coefficients mapping in this study. We refer to
[100] for the detail implementation of KNN in this work.

The non-parametric nature of KNN ensures the flexibility of the algorithm when dealing with
complex multivariate systems. In this work, the number of neighbors nneighbors used for updating
nKNN is fixed to 5, which is a reasonable choice for relatively small-scale systems. This choice
is confirmed by experiments on the validation data shown in Fig 2(a) where the minimum of the
prediction error is reached when nneighbors = 5. These experiments are carried out using a validation
dataset which includes 3000 samples different from the training and test dataset. The leaf size is
maximized by 30, considering a reasonable computer memory consuming. For more details about
DT and KNN models, interested readers are referred to [101].
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Figure 2: The averaged prediction error and standard deviation on the validation dataset of 3000
samples for KNN(a) and DT(b), against respectively the number of neighbors and the minimum
number of split.

4 Reactor physics application

4.1 Neutronic field simulation

In this part, we introduce the physical model that will be used to test the method introduced
above. This part is original introduced in [102] for the study of data assimilation. For the sake
of completeness, we repeat here the background of the two examples and give the detail problem
settings for the testing purpose. The engineering background it to reconstruct the neutronic field of
a 3D realistic nuclear reactor ,i.e., the Pressured Water Reactor (PWR) HPR1000 [103]. HPR1000
reactor core and primary loop is a third generation PWR system designed by Nuclear Power In-
stitute of China (NPIC) based on the experiences of research, design, manufacture, construction
and operation of existing pressurized water reactor power plants, and the experience feedback from
Fukushima nuclear accident, and considering the preeminent design concept of world-wide advanced
nuclear power plants. We refer to [102] for a glance at HPR1000 and the generic neutronic physical
model of the reactor. For the sake of completeness, we list here the description of the model with
minor modification.
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The core is filled with a total of 177 vertical nuclear fuel assemblies, among those 44 are instru-
mented with self powered neutron detectors (SPNDs) to measure the neutronic activity fields. A
horizontal slice of the HPR1000 core and an axial slice of an assembly are represented in Fig. 3.
Only one quarter is given because the rest can be inferred by symmetry along the x and y axis. The
fuel assemblies in gray represent the assemblies with control rod, and those marked with D present
the assemblies with SPNDs.

Figure 3: A quarter of the core in radial direction (white square: fuel assembly with SPNDs, gray
square: fuel assembly with control rods, D: fuel assembly with neutron detectors).

All the simulations of HPR1000 are based on the advanced node core code package CORCA-3D
[23]. CORCA-3D is one of the independent developed codes of NPIC for the nuclear reactor core
design. This package can calculate the few-group cross section, solve the 3D diffusion equations,
consider the thermal-hydraulic feedback, reconstruct the pin-by-pin power. It has lots of functions
such as changing core status calculation, critical searching, control rod value calculation, coefficient
calculation and so on.

In the simulation of nuclear reactor core in steady state, the neutron flux φ = (φ1, φ2) over
the core domain Ω is modeled by two-group neutron diffusion equation with suitable boundary
conditions. Index 1 denotes the high energy group and index 2 the thermal energy group. The flux
is the solution to the following eigenvalue problem (see [1]). To be precise, the flux φ satisfies the
following eigenvalue problem: Find (λ, φ) ∈ C× L∞(Ω)× L∞(Ω), s.t.{

−∇ (D1∇φ1) + (Σa,1 + Σ1→2)φ1 = λχ1 (νΣf,1φ1 + νΣf,2φ2) ,

−∇ (D2∇φ2) + Σa,2φ2 − Σ1→2φ1 = λχ2 (νΣf,1φ1 + νΣf,2φ2) ,
(4.7)

with the zero boundary condition φ1 = φ2 = 0 on ∂Ω. The generated nuclear power is P =
νΣf,1φ1 + νΣf,2φ2. The following parameters are involved in the above equation:

• Di: the diffusion coefficient of group i with i ∈ {1, 2};

• Σa,i: the macroscopic absorption cross section of group i;

• Σ1→2: the macroscopic scattering cross section from group 1 to 2;

• Σf,i: the macroscopic fission cross section of group i;

• ν: the average number of neutrons emitted per fission;

• χi: the fission spectrum of group i.
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Figure 4: Example of the 3D power distribution over the core in a realistic HPR1000 reactor at
CNNC, calculated by CORCA-3D code.

We make some comments on the coefficients and recall well-posedness results of the eigenvalue
problem Eq. (4.7). First of all, the first four coefficients (Di, Σa,i, Σs,1→2 and Σf,i) might depend on
the spatial variable. In the following, we assume that they are either constant or piecewise constant
so that our set of parameters is

U = {D1, D2,Σa,1,Σa,2,Σ1→2, ν,Σf,1,Σf,2, χ1, χ2}. (4.8)

Under some mild conditions on the parameters U, the maximum eigenvalue λmax is real and
strictly positive (see [104, Chapter XXI]). The associated eigenfunction φ is also real and positive
at each point r ∈ Ω and it is the flux of interest. In neutronics, it is customary to use the inverse
of λmax, that is called the multiplication factor keff := 1

λmax
. Here, for each parameter setting U,

keff is determined by the solution to the eigenvalue problem 4.7 with CORCA-3D code. Wr give an
example of the 3D power distribution in the core of HPR1000 reactor calculated by CORCA-3D in
Fig. 4.

4.2 Solution manifold

We adapt the example which was fist presented in [102] and later in [74] to simulate the typical
operation history of HPR1000 reactor. During the normal operation of HPR1000, two types control
rods are used to control the reactor, the first one is compensation rods, which used for coarse
control and/or to remove reactivity in relatively large amounts, in HPR1000, there are four subtypes
compensation rods, namely, G1,G2,N1,N2; the second one is regulating rods (R rods), which are
used for fine adjustments and to maintain desired power or temperature [103]. We consider the
power evolution induced by i ) the movement of the control rods, ii) the burnup of the nuclear fuel
in the whole core, iii) the variation of core coolant temperature at inlet and iv) the variation of
the power level of the reactor core. The evolution of the states (φ1, φ2 and P ) are modeled by
Eq. (4.7) with specific values of the coefficients as in Eq. (4.8). Thus, the entries of U vary in space
depending on the materials contained in each fuel assembly. In our simulation, their values are
limited to depend on four macroscopic parameters which give the stage of the life cycle:

• Bu: the average burnup of the fuel in the whole core. It is a measure of how much energy
is extracted from the fuel so it is an increasing function in time. It ranges between 0 (for
the beginning of the life cycle) and Bumax (the end of the life cycle, in this work, we set
Bumax=25000 MWd/tU) and its exact evolution depends on the operating history of the
reactor.
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• St: the inserting steps of control rods, it ranges from 0 to 615. Consider the movement of the
compensation rods from all rod clusters out (ARO) to fully inserted (615 steps, considering
the overlap steps).

• Pw: the power level of the reactor core. It ranges between 0.3 and 1.

• Tin: core coolant temperature at inlet.

Therefore, the parameter U depends on the vector of “general” parameters

µ := (Bu, St, Pw, T in). (4.9)

We analyze the power field, although the methods in this article could be applied to fast flux,
thermal flux, or any other field variables of interest. The power field can be represented with
u(µ) = u(r, Bu, St, Pw, T in), where r ∈ Ω.

To simulate the neutronic process durning the operation period, CORCA-3D code is used in
a standard configuration, by solving Eq. (4.7). There are 177 fuel assemblies in HPR1000, each
assembly is numerically represented using 28 vertical levels. Thus, the size of the physical field (or
vector) u is 4956 (177× 28). The training set

S := {u(µ)|µ ∈ Ds}, (4.10)

consists of 18480 solution snapshots with the parameter sampling scheme

Ds := Bus ⊗ Sts ⊗ Tins ⊗ Pws, (4.11)

where Bus = { 0, 50, 100, 150, 200, 500, 1000, 1500, 2000, 2500}, Sts = {0, 1, ..., 615}, Pws =
RU3(0, 100) and Tins = RU3(290, 300), the operator RU3(a, b) represents a random uniform sam-
pling in the closed set [a, b], (a < b) for three times.

The locations of the sensors which measure the node power can be found in Fig. 3, and the
size of the observation vector Yo is 308 (44 × 7). In this paper, observations used in the analysis
process are not coming from real core measurements, but coming from numerical simulations with
CORCA-3D. We further assume each observation yi is noise-free.

4.3 Forward problem for field prediction

In this section, we will apply the digital twin to model neutronic problem given initial conditions,
i.e., burnup, control rod inserting step, power level and coolant temperature at inlet of the reactor
core. Our goal it to predict the neutronic field or the power distribution, and compare the results
with the output of the neutronic code and the related POD approximation.

To build the forward model of the digital twin, following the methodology described in section 3,
we train both DT and KNN models with the same training set of size ntraining = 15000, randomly
chosen from the original 18480 couples of {µ, α(µ)}. The rest ntest = 3480 couples are used as
the test dataset to evaluate the performance of machine learning algorithms. The optimal hyper-
parameters of KNN and DT models are turned as explained in Section 3. The output of the machine
learning algorithms are the coefficients of POD modes of the physical field, estimated in previous
study. The methodology is shown in Algorithm 15. The prediction results, together with the true
value of α1(µ), α2(µ), α3(µ) and α40(µ), are displayed in Fig. 5. The samples are reordered for each
sub-figures (a-d) in the increasing order of αi(µ). For i = 1, 2, 3, both DT and KNN manage to
provide accurate predictions. The error level arise against the increase of i since we move towards
less representative principle components of the physical field.
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Algorithm 1 Machine learning forward functions
1: Training

2: Inputs:
3: Parameters: {µj}n

training

j=1

4: POD coefficients: {αi(µj)}n,n
training

i=1,j=1 , where n is the number of POD models used.

5: Set: FML = KNN (nKNN neighbors = 5, max leaf size = 30) or DT (quality measure: Gini, min
split/node = 2)

6: Fit: FML model with ({µj}, {αi(µj)})

7: outputs: FML

8: Online evaluating

9: Inputs:
10: The first n POD models: {qi}ni=1

11: For a given parameter: µ

12: Do: select ML=KNN or DT

13: Outputs:
14: Learned coefficients: {αi(µ)}ni=1 = FML(µ)
15: Learned reconstructed field: uML(µ) =

∑n
i=1 αi(µ)qi
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Figure 5: Comparison of machine learning predictions against true values in the test dataset re-
ordered in an increasing order for each of the input variables.

We draw the evolution of the averaged reconstruction error ||VnFML(µ)− u(µ)||2/||u(µ)||2 and
the computational time TML (in a laptop) against the POD mode n, respectively in Fig. 6 (a)
and (b). To compare, we also illustrate the error provided by POD method, i.e., the orthogonal
projection of the true field on to the n-dimensional reduced POD space. In summary, numerical
results are reasonable, POD method provides the best result, both KNN and DT approaches show a
competitive performance where the error percentage remains inferior to 3 % when n > 10. In terms
of reconstruction accuracy, DT is slightly over performed by KNN with less computational time.

In order to determine the optimal truncation parameter no, we introduce an indicator, i.e., the
performance-computation ratio,

En =
1

2

||VnFML
n (µ)− u||2

||Vn=150FML
n=150(µ)− u||2

+
1

2

TML
n

TML
n=150

(4.12)

defined as the algebraic sum of the normalized reconstruction error and the normalized computa-
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tional time. Since runing machine learning algorithms with all 150 POD modes is not computa-
tionally expansive in this application, the choice of the indicator En is conceptual. For large scale
engineering problems, a fine tuning of optimal weight for the computational time and the predic-
tion accuracy is required. The evolution of the averaged value of En over the test set, against the
truncation number n as shown in Fig. 6 (c), result in the choice of qo = 40 for both DT and KNN.
This choice stands for a compromise of the prediction accuracy and the computational efficiency.
It is used as a standard choice later in the inverse modelling. We display in Fig. 7, the true and
the reconstructed physical field of the seventh floor of the reactor core (see Fig. 3) for three ex-
amples µa,µb,µc (see Table 1) by the forward models driven by KNN and DT. The normalized
reconstruction error (i.e., ||VnFML

n (µ)− u(µ)||2/||u(µ)||2) is shown in Table 1. Again, we find that
the error distribution of uPOD, uKNN and uDT with respect to true field utrue is consistent with the
curves shown in Fig. 6 (a). Besides, all the errors are acceptable (below 5%) in engineering point
of view. The averaged online reconstruction time (which doesn’t include the training time of DT
and KNN) of different approaches is shown in Table 2. A significant strength of machine learning
methods in terms of computational efficiency compared to CORCA-3D is notified. We remind that
if the reconstruction problem is based on a finer mesh, the computational cost of CORCA-3D can be
considerably increased while little impact can be found for the online evaluation of DT and KNN.

µi reconstruction error
µ1 µ2 µ3 µ4 POD KNN DT

µa 344 100 79.6 292.0 0.55% 2.1% 2.2%
µb 107 150 84.6 298.9 0.59 % 2.4% 2.7%
µc 473 50 89.3 293.2 0.65% 1.8% 1.8%

Table 1: Normalized reconstruction error of machine learning methods with 40 POD modes for
three samplings of µi.

KNN DT CORCA-3D
Evalutation time 0.028s 0.024s ∼ 35s

Table 2: Averaged evaluation time of µa,µb,µc (40 POD modes for KNN and DT) for one time-step
using different approaches
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Figure 6: (a): The evolution of error in percentage for KNN and DT, compared to the POD error;
(b): The calculation time (in seconds) which includes both training and evaluating for KNN and
DT approaches on a laptop CPU; (c): Algebraic sum of the prediction error and the calculation
time.
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(a) u(µa) (b) error of uPOD(µa) (c) error of uKNN(µa) (d) error of uDT(µa)

(e) u(µb) (f) error of uPOD(µb) (g) error of uKNN(µb) (h) error of uDT(µb)

(i) u(µc) (j) error of uPOD(µc) (k) error of uKNN(µc) (l) error of uDT(µc)

Figure 7: Comparison of machine learning predictions against true values for µa,µb,µc.

4.4 Inverse simulation for input parameter identification and field reconstruc-
tion

In this section, we test the performance of the inverse model of the digital twin. Specifically,
we focus on neutronic field with unknown operational conditions. We assume that we only have
partial measurements on the neutronic field inside the computational domain, u.e. reactor core.
The objectives are i) to infer the entire neutronic field based on a limited number of scattered
observations on power with the aid of the reduced basis, ii) to infer the operational conditions,
which are the input parameters of the forward model of the digital twin.

The inverse problem often remains cumbersome in industrial applications, because of, for in-
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stance, the large dimension or the non-differentiability of the forward function. We first describe
the problem setting of the inverse problem that will be studied in this section.

Inverse problem: Given a set of noise-free observations Yo := [y1, ..., ym]T of the true field u,
which relates to the true parameter µtrue, and a first guess of the parameter µinitial which is close to
µtrue. The inverse problem is to find an optimal parameter µ∗ that is closer to µtrue than µinitial. In
mathematic point of view, given a measure dRd(µ1,µ2) and dRm(Y1, Y2), the inverse problem it to
find µ∗ that dRd(µ∗,µtrue) ≤ dRd(µinitial,µtrue), satisfies µ∗ = argmin

µ∈Rd

dRm(Yo(u(µ)), Yo(u(µtrue))).

By recognizing for a given µtrue and the related observations Yo(u(µtrue))), a initial guess µinitial
that satisfies dRd(µinitial,µtrue) < δ, where δ > 0 is a small real number. There exists ε > 0, such that
dRm(Yo(u(µinitial)), Yo(u(µtrue))) < ε. Define a ball BRd(µinitial, δ) := {µ ∈ Rd, dRd(µ,µinitial) < δ}
centered at µinitial, the following problem is defined.

Find µ∗ s.t. µ∗ = argmin
µ∈BRd (µinitial,δ)

dRm(Yo(u(µ)), Yo(u(µtrue))). (4.13)

In order to illustrate the sensitivity of the machine learning forward models to the four input
parameters, we show in Fig. 8 the evolution of the euclicidean norm of the observation vector (i.e
||HVnFML(µk)||2 ) against a pair of input parameters (respectively (µ1, µ3), (µ2, µ3) and (µ4, µ3)).
More precisely, [µ1, µ3, µ3, µ4] ∈ {(0, 615), (0, 2500), (0, 100), (290, 300)} while µ1 ≡ 130 for (b,c,e,f),
µ2 ≡ 1500 for (a,c,d,f) and µ4 ≡ 300 for (a,b,d,e). From Fig. 8, we observe that the norm of the
observation is more sensitive to input parameters µ1 and µ3. These figures also demonstrate the
non-convex nature of both KNN and DT functions, leading to difficulities in the inverse modelling.
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Figure 8: The evolution of ||HVnFML(µk)||2 against different choices of parameters

4.4.1 Inverse problem for {µ1, µ2, µ3, µ4}

In this work, we introduce an algorithm schema based on the forward models proposed in the previ-
ous section and the LHS sampling strategy. More precisely, to represent/approximateBRd(µinitial, δ),
ns samplings of µ are generated uniformly from a local domain (i.e., [µ1initial±20, µ2initial±100, µ3initial±
30, µ4initial ± 10]) of the initial guess µinitial = [µ1initial, µ

2
initial, µ

3
initial, µ

4
initial]. Then run the forward

models as mentioned in Section 3.1 ns times for each sampling and a sub-optimal µ∗ is obtained
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through Eq. 4.13 or Eq. 3.5. Thereafter, the neutronic field is reconstructed through uML(µ∗) =
VnF

ML(µ∗). In order to ensure the robustness of our approach, six couples of (µtrue,µinitial), listed
in Table 3, are used to test the proposed inverse model.

µtrue µ1 µ2 µ3 µ4 µinitial µ1 µ2 µ3 µ4

µtrue,1 0 0 61.11 291.76 µinitial,1 20 100 61.11 291.76
µtrue,2 200 500 73.51 290.54 µinitial,2 210 600 71.51 293.54
µtrue,3 400 1000 28.03 298.74 µinitial,3 400 1000 18.00 293.54
µtrue,4 500 1000 52.96 291.51 µinitial,4 500 1000 35.00 297.54
µtrue,5 130 1500 52.15 291.01 µinitial,5 120 1700 52.15 300.00
µtrue,6 130 1500 52.15 291.01 µinitial,6 130 1480 52.15 300.00

Table 3: The values of µtrue,i and µinitial,i for i = 1..6.

The sub-optimal µ∗ obtained using ns = 100 and ns = 1000 samplings are respectively shown
in Table 4 and Table 5. We display in Fig. 9 (for KNN inverse model) and Fig. 10 ( for DT inverse
model), the error distribution of seventh floor of the reactor core (see Fig. 3) for different type of
reconstructed field (including u(µtrue,i), u(µinitial,i), u(µML,100,i) and u(µML,1000,i)), regarding the
true field u(µtrue,i), i = 1, ..., 6. In brief, both approaches manage to determine a set of parameters
closer to the true values, regarding the initial guess. A significant advantage of LHS(ns = 1000)
compared to LHS(ns = 100), can be observed (especially for µ1∗ and µ3∗ of µ∗) for both KNN and
DT. The reason why µ1∗ and µ3∗ match the true parameter µ1true and µ3true well is that, the power
distribution is more sensitive to he movement of the control rod (µ1) and the operational power
level (µ3), meanwhile, the burnup of the current state and the temperature of the coolant show less
impact on the power distribution, in the given parameter domain.

To show the effectiveness of the field reconstruction with the inverse model, we show in Table 6
the reconstruction error in the field space (i.e., ||uML(µ∗)− u(µtrue)||2/||u(µtrue)||2)) together with
POD reconstruction error using 40 POD modes. The reconstruction error in the observation space
(i.e., ||HVnFML(µ∗)− Yo||2/||Yo||2) is shown in Table 7. For most cases, the posterior error ranges
from 0.5% to 1.5% for ns = 1000 and ns = 100, which has been consequently reduced regarding the
initial error. The computational time, mainly due to the evolution of ML models on the sampling
ensemble, varies mostly between 2s (ns = 100) and 20s (ns = 1000) which is considerably smaller
than the use of the full physics-based model, the latter is around 30 ∼ 40s.

µKNN µ1 µ2 µ3 µ4 µDT µ1 µ2 µ3 µ4

µKNN,1 16.6 11.0 60.81 294.70 µDT,1 2.6 17.0 59.01 288.46
µKNN,2 199.0 583.0 68.21 290.36 µDT,2 196.2 591.0 73.01 296.36
µKNN,3 405.4 1089.0 32.10 296.00 µDT,3 405.0 1003.0 32.10 298.76
µKNN,4 500.6 1000 53.30 291.51 µDT,4 501.8 1059.0 41.90 294.44
µKNN,5 135.0 1567.0 48.25 297.50 µDT,5 132.3 1543.6 52.99 297.64
µKNN,6 133.8 1457.0 48.25 297.30 µDT,6 134.6 1535.0 45.85 302.50

Table 4: The estimated values of µKNN,i and µDT,i for i = 1..6 with 100 LHS samplings
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µKNN µ1 µ2 µ3 µ4 µDT µ1 µ2 µ3 µ4

µKNN,1 0.0 17.7 58.30 287.40 µDT,1 13.4 4.5 56.64 285.93
µKNN,2 198.8 679.1 70.76 288.21 µDT,2 196.1 545.3 72.86 288.01
µKNN,3 400.7 998.7 31.65 290.13 µDT,3 394.4 917.5 28.77 297.34
µKNN,4 501.6 1035.3 51.07 295.52 µDT,4 502.7 1046.3 54.61 289.71
µKNN,5 128.9 1607.9 48.34 295.93 µDT,5 133.4 1523.7 41.74 305.07
µKNN,6 133.1 1506.1 49.24 292.63 µDT,6 129.9 1484.1 51.40 296.37

Table 5: The estimated values of µKNN,i and µDT,i for i = 1..6 with 1000 LHS samplings

µ POD KNN ini-
tial

KNN(100) KNN(1000) DT
initial

DT(100) DT(1000)

µtrue,1 0.47% 8.41% 1.43% 0.63% 9.98% 0.57% 0.57%
µtrue,2 0.64% 2.92% 1.30% 0.93% 2.14% 1.72% 0.64%
µtrue,3 0.74% 3.21% 1.70% 1.01% 5.41% 1.05% 0.72%
µtrue,4 0.62 % 3.74% 1.13% 0.72% 2.80% 1.52% 1.31%
µtrue,5 0.61% 2.73% 1.74% 0.91% 4.50% 1.12% 1.02%
µtrue,6 0.61% 2.71% 1.22% 0.85% 4.55% 2.13% 1.33%

Table 6: Normalized reconstruction error in the field space for KNN and DT inverse models for six
samplings of µi.

µ KNN ini-
tial

KNN(100) KNN(1000) DT
initial

DT(100) DT(1000)

µtrue,1 8.52% 1.71% 0.33% 10.01% 0.31% 0.25%
µtrue,2 2.72% 1.31% 0.90% 1.83% 0.32% 0.32%
µtrue,3 3.11% 0.83% 0.72% 5.52% 0.42% 0.31%
µtrue,4 3.63 % 1.23% 0.73% 2.71% 0.81% 0.84%
µtrue,5 4.13% 1.71% 0.91% 2.51% 1.10% 1.01%
µtrue,6 2.64% 1.12% 0.71% 4.10% 0.83% 0.82%

Table 7: Normalized error in the observation space for KNN and DT inverse models for six samplings
of µi.
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Figure 9: Comparison of KNNmachine learning predictions against true values for reordered samples
in the test set.
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Figure 10: Comparison of DT machine learning predictions against true values for reordered samples
in the test set.

Despite the improvement, we notice that the µ value on the output (obtained from Eq. 3.5)
exhibits some random behavior. In fact, both KNN and DT forward functions can be highly non-
convex, thus avoiding local minimums when applying the inverse strategies can be hurdle. For this
reason, instead of using one estimated vector µ∗, we envisage averaging an ensemble of parameters
U = {µ∗1,µ∗2,µ∗3,µ∗4,µ∗5}. More precisely,

µ∗1 = µ∗ and µ∗i = argmin
k={1..ns}/{0..i−1}

(||HVnFML(µk)− Yo||2), for i > 1. (4.14)
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This process is shown in details in Algorithm 15. The averaged vector µ̄ = (
∑5

i=1µ
∗
i )/5 using

1000 LHS samples is shown in Table 8. Compared to previous results presented in Table 5, little
difference is observed concerning the output of KNN. On the other hand, the average DT output
of the inverse modelling µ̄ owns a smaller estimation error in comparison with µ∗, especially for
parameter µ2 of µ .

Algorithm 2 Inverse modelling based on machine learning forward functions
Inputs:
Observations: Yo
Initial guess: µinitial
Forward function: FML

Transformation operator: H
Sampling number: ns

U = LHS (number = ns, initial = µinitial)
µ∗1 = argmin

k=1..ns
(||HVnFML(µk)− Yo||2)

for i from 2 to 5: do
µ∗i = argmin

k={1..ns}/{0..i−1}
(||HVnFML(µk)− Yo||2)

end for
µ̄ = (

∑5
i=1µ

∗
i )/5

Outputs:
Parameter: µ∗

Reconstructed field: VnFML(µ∗)

¯µKNN µ1 µ2 µ3 µ4 ¯µDT µ1 µ2 µ3 µ4

¯µKNN,1 6.2 12.2 59.51 289.79 ¯µDT,1 12.8 18.5 58.57 290.56
¯µKNN,2 197.8 626.5 71.17 289.80 ¯µDT,2 197.6 580.0 73.66 287.61
¯µKNN,3 399.8 978.1 31.33 295.27 ¯µDT,3 399.4 1020.7 27.33 300.68
¯µKNN,4 500.4 960.1 48.18 292.34 ¯µDT,4 502.1 1023.2 51.36 298.68
¯µKNN,5 134.9 1694.9 47.57 301.23 ¯µDT,5 129.2 1678.7 48.99 291.28
¯µKNN,6 132.9 1465.5 46.40 300.32 ¯µDT,6 129.9 1487.8 54.53 291.01

Table 8: The averaged values of µKNN,i and µDT,i for i = 1..6 with 1000 LHS samplings

The averaging of µ∗i is helpful to reduce the randomness of the samplings, thus enhancing the
robustness of the inverse approach as shown in Table 8. However, for highly non-convex functions,
when the sampling number is insufficient to cover the domain of definition, µ∗i can be included
in the neighborhoods of different local minimums as illustrated in Fig 11. We propose, in this
paper, a two-steps advanced sampling strategy to improve the accuracy of the inverse modelling
where the first step consists of discovering 5 optimal samplings µ∗i regarding the reconstruction
in the observation space and 50 more samplings are generated around each µ∗i with a finer range
[µ1∗i ±2, µ2∗i ±10, µ3∗i ±3, µ4∗i ±1]. The output of the algorithm ˆµKNN,i or ˆµDT,i is thus determined
as the set of parameters, among all 250 samplings of the second step, for which the reconstruction
error is the smallest in the observation space. The procedure of this two-steps sampling strategy
is illustrated in Fig 11 and in Algorithm 19 where the initial 750 samplings are symbolized by
blue points and the second-step samplings (250 in total) around µ∗i are represented by red points.
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Therefore, this inverse resolution with two-steps sampling owns the same complexity as the ones
presented in Table 5 and Table 8. The output of this two-steps sampling strategy ˆµKNN,i is shown
in Table 9. We observe a more robust inverse estimation, especially for the DT method. This result
is consistent with the high non-convexity of the KNN regression function [105].

Algorithm 3 Two-steps inverse modelling
Inputs:
Observations: Yo
Initial guess: µinitial
Forward function: FML

Transformation operator: H
First stage sampling number: ns,1

Second stage sampling number: ns,2

U1 = LHS (number = ns,1, initial = µinitial)
µ∗1 = argmin

k=1..ns
(||HVnFML(µk)− Yo||2)

for i from 2 to 5: do
µ∗i = argmin

k={1..ns}/{0..i−1}
(||HVnFML(µk)− Yo||2)

end for
for i from 1 to 5: do
U2
i = LHS (number = ns,2, initial = µ∗i )

end for
µ∗ = argmin

µ∈
⋃
U2
i

(||HVnFML(µ)− Yo||2)

Outputs:
Parameter: µ∗

Reconstructed field: VnFML(µ∗)

ˆµKNN µ1 µ2 µ3 µ4 ˆµDT µ1 µ2 µ3 µ4

ˆµKNN,1 2.52 1.40 58.97 285.55 ˆµDT,1 1.65 16.40 53.43 303.03
ˆµKNN,2 200.92 524.06 67.69 287.77 ˆµDT,2 197.49 551.46 76.27 286.10
ˆµKNN,3 398.01 1025.67 27.14 303.18 ˆµDT,3 403.95 928.40 31.68 285.50
ˆµKNN,4 500.60 924.60 55.54 288.28 ˆµDT,4 501.09 969.60 50.24 295.46
ˆµKNN,5 133.37 1587.40 50.01 291.50 ˆµDT,5 132.53 1527.20 41.63 299.58
ˆµKNN,6 129.85 1567.93 50.29 296.65 ˆµDT,6 130.00 1480.00 52.15 300.00

Table 9: The output of the two-steps sampling strategy ˆµKNN and ˆµDT with 1000 LHS samplings
in total

4.4.2 Inverse problem for {µ1, µ3} with a small number of samplings

In order to better illustrate the performance of different inverse approaches proposed in this article,
we compare three more study cases as shown in table. 10. Since the observations are most sensitive
to µ1 and µ3 as illustrated in Fig. 8, µ2 and µ4 are supposed to be known and kept invariant in
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First sampling

Optimal points

Second sampling

Figure 11: Illustration of advanced two-steps sampling strategy

these tests, i.e, (µ2initial, µ
4
initial) ≡ (µ2true, µ

4
true). For each of these methods, including the standard

(Eq. 4.13), the averaging (Eq. 4.14) and the two-step (Algorithm 3) approaches, 150 LHS samples,
within the range [µ1∗i ± 100, µ3∗i ± 30], have been generated to solve the inverse problem. For
the two-step method, 100 samples are used to find µ∗i , i = 1..5, followed by 10 samples around
each µ∗i within [µ1∗i ± 10, µ3∗i ± 3]. The ouput of these algorithms is shown in Table. 12 where a
significant advantage of averaging and two-steps algorithms, compared to the standard approach, can
be observed in general. The reconstruction error is shown in Table. 11. We display the distribution
of generated samples in Fig. 12. For the comparison of standard and averaging approaches, we
observe in (a),(b),(e),(f) that for both KNN and DT methods, the green points which are the
output of the averaging algorithms, are in general closer to the true value of (µ1, µ3) compared to
the purple points (output of the standard methods). On the other hand, for the two-steps method,
the green points (output) are also generally closer to the true values compared to the ensemble of
blue points. These results confirm the strength of averaging and two-steps methods in the inverse
modelling, especially with a small budget of samplings. The ensemble of these numerical results
(including the ones in section 4.4.1) demonsrtates also the robustness of the proposed approaches
for problems of different dimensions.

µtrue µ1 µ2 µ3 µ4 µ′initial µ1 µ2 µ3 µ4

µtrue,4 500 1000 52.96 291.51 µ′initial,4 560 1000 30.00 291.54
µtrue,5 130 1500 52.15 291.01 µ′initial,5 80 1500 72.15 291.01

Table 10: The values of µtrue,i and µ′initial,i for i = 4, 5.
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µ
KNN

(initial) KNN
(standard)

KNN
(averaging)

KNN
(two-steps)

DT
(initial) DT

(standard)
DT

(averaging)
DT

(two-steps)

µtrue,4 24.4 % 0.9% 0.7% 0.9% 24.3% 3.8% 2.5% 4.7%
µtrue,5 8.0% 1.8% 1.3% 1.6% 8.3% 5.9% 3.0% 5.6%

Table 11: Normalized reconstruction error for KNN and DT inverse models using different ap-
proaches.

µKNN µ1 µ2 µ3 µ4 µDT µ1 µ2 µ3 µ4

µKNN,4(standard) 502.0 1000 48.23 291.51 µDT,4(standard) 505.0 1000 59.10 291.51
µKNN,4(averaging) 499.6 1000 50.12 291.51 µDT,4(averaging) 506.2 1000 49.62 291.51
µKNN,4(two-steps) 500.1 1000 48.60 291.51 µDT,4(two-steps) 500.0 1000 54.00 291.51
µKNN,5(standard) 138.1 1500 53.15 291.01 µDT,5(standard) 137.2 1500 45.45 291.01
µKNN,5(averaging) 128.4 1500 49.87 291.01 µDT,5(averaging) 141.8 1500 52.17 291.01
µKNN,5(two-steps) 134.0 1500 50.55 291.01 µDT,5(two-steps) 130.0 1500 49.95 291.01

Table 12: The estimated values of µKNN,i and µDT,i for i = 4, 5 with 150 LHS samplings in total
of three different strategies.
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Figure 12: Distribution of generated samplings through different approaches. The black points
are the initial guesses of µ1 and µ3 while the red points stand for the true value. The blue points
represent the five optimal samplings, evaluated in the observation space. The green points represent
the output of the algorithms. In (a),(b),(e),(f), the purple points stand for the optimal sampling
without averaging.
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5 Conclusions

In this paper, a data enabled physics-informed digital twin is proposed to predict the neutronic
field and the operational parameters of a nuclear reactor core. The digital twin is designed to
solve forward problems given input parameters, as well as to solve inverse problems given some
extra measurements. Our main contribution is to build a non-intrusive reduced order model with
machine learning methods such as KNN and DT, which is fit for limited data modelling approaches
for our nuclear engineering applications. Though other machine learning methods such ANN, GP are
also tested in this work, we didn’t present any related results because of non-satisfactory compared
to KNN and DT.

The data enabled physics-informed digital twin is tested through a real engineering problem in
nuclear reactor physics - reactor core simulation in the life cycle of HPR1000. Numerical results
proved the accuracy of the forward model, though a little worse than POD method its self, it is still
acceptable from the engineering point view. The inverse model for the digital twin is totally new in
nuclear reactor physics domain. Benefits from the rapid response of the machine learning reduced
order forward model, which is far less than solving the forward problem using a neutronic simulation
code directly, the digital twin is able to evaluate the forward model many times by sampling the
parameter around the initial guess, the optimal parameter which match the observations better
can be selected. Numerical results also proved that, with the advanced sampling strategy, the
determination of the optimal parameter and the related output neutronic field is more robust.

This work is valuable because of its simple theory, easy implementable and satisfactory accuracy
and time cost for the prediction of input parameters and output physical fields. Thus it successfully
supports the implementation of real engineering scale digital twin of reactor physics at NPIC.

The framework of the proposed data enabled physics-informed digital twin is general, which can
be also adapted to other industry domain. The next work is to study the robustness of the digital
twin with respect to the noisy parameter and noisy observations, and an industrial scale code shall
be developed for real applications of the proposed digital twin. Future work can be considered to
improve the inverse modelling of the proposed digital twin, for instance, using data assimilation
or Bayesian framework. At the current stage, the main difficulty is the non-differentiability of the
machine learning forward functions.
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