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Abstract

We show that Riemannian geometry is the natural setting for devel-
oping polyhedral rooms of arbitrary shapes into their image rooms, and
therefore counting the image sources. This new setting makes it also
possible to account for scattering on particular edges, called hinges, char-
acterized by negative deficit dihedral angles created by reflections on the
adjacent faces. Using energy conservation, we show that sound rays are
then deviated by the hinges, depending on their frequencies and the dis-
tances they pass by.

Keywords: Riemannian geometry, polyhedral rooms, scattering, stress-
energy tensor, room acoustic modelling.

1 Introduction

Computing the number of image sources for a rectangular enclosure is an easy
task that acousticians routinely carry out [CM78]. Indeed, as all the images
of the room tesselate the Euclidean space, the computation simply amounts
to dividing the volume of a sphere of radius ct, where c is the speed of sound
and t the time elapsed since the source emited, by the volume of the original
room, as each image room, or cell, only contains one image source. Thus one
obtains a number of image sources that increases with the square of the time
elapsed since the source emitted and is inversely proportional to the volume
of the room, and most acousticians consider that this approximation is also
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valid for rooms of arbitrary shapes. As a consequence, most simulation codes
routinely use the mean number of image sources for rectangular rooms when
they fix the complexity of the algorithms that compute the late reverberation,
independently of the actual room shape [NE93].

Few authors have questionned the validity of this approximation for rooms of
arbitrary shapes. [Pol92] has argued that this number should increase exponen-
tially for mixing rooms, as a consequence of the conservation of the phase space
measure. Indeed, in mixing rooms, any small volume of the phase space, for
example the initial volume around the source, exponentially expands in at least
one phase dimension as it propagates with time, and exponentially decreases
in at least one dimension, so that any volume decays into exponentially thin
stripes. Any elementary cell of the phase space thus intersects exponentially
many stripes, corresponding to exponentially many image sources.

Polyhedral rooms, on the other hand, are not mixing rooms since two neigh-
bouring rays in the phase space almost certainly separate linearly with time,
and not exponentially. Thus, the preceding argument cannot be used to evalu-
ate the number of image sources. The present paper therefore addresses the non
trivial issue of computing the number of images sources for arbitrary polyhedral
enclosures. It first examines the reflection and scattering on non rectangular di-
hedral angles and shows that successive reflections on the adjacent faces always
add up to a total angle in excess of 2π, so that taking into account reflections
on all the faces of a polyhedron leads to the tessellation of a Riemaniann space
with negative curvature where edges take the role of the ”hinges” of Regge’s dis-
cretization of Riemannian spaces [Reg61]. Afterwards, it moves to computing
the number of image sources, and proposes a computational scheme based on
the number of faces, edges and vertices, that is, the isometry group of the space.
Then, it addresses the question of the visible image sources that are linked with
the receiver by rays that do not cross any edge of image rooms, and derives
from it the notion of visible horizon. Finally, scattering is taken into account by
introducing the wave nature of the sound field in a room, and the conservation
of its energy and intensity.

2 Scattering on non rectangular dihedral angles

The proper setting for computing scattering on non rectangular dihedral an-
gles is Riemannian geometry. We therefore first expose the principles of this
geometry and the properties of its metric tensor.

2.1 Riemannian geometry

We consider an n-dimensional space with its positive-definite metric tensor gij
and the volume element dV =

√
gdx1 . . . dxn, where g = det gij is positive

[Lin 5]. The infinitesimal distance element is given by:

ds2 = gijdx
idxj (1)

and we note gij the inverse matrix of gij . Oi is the covariant derivation with
respect to xi, which differs from the usual partial derivation ∂i in a way that
depends on the tensor rank. For example, for a function Φ:

OjΦ = ∂jΦ = Φj
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but OjΦi = ∂jΦi − ΓkjiΦk and OjXi = ∂jX
i + ΓijkX

k, where Xi are the (con-

travariant) components of vector X and Γkji the Christoffel symbols linked to
the derivatives of the elements of the metric tensor gij :

Γkji =
1

2
gkl (∂jgil + ∂iglj − ∂lgji) (2)

Note that, unlike ordinary differentiations, covariant derivations do not com-
mute. Their commutators is given by the curvature of the time-space [Lin 5]:

(OiOj − OjOi)Xk = RkmijX
m (3)

where the Rkmij are the elements of the Riemann tensor. However, for a function,
Oi∂jΦ = Oj∂iΦ; and by construction, all covariant derivatives of the elements
of the metric tensor are null. In other words, the contravariant derivation Oi is
defined by:

Oi = gijOj = Ojg
ij

One calls vectors tensors with one upper index, such asXi; and covectors tensors
with one lower index, such as Φi.

The Ricci curvature tensor can be computed from the derivative of the
Christoffel symbols, by contraction of the Riemann curvature tensor on two
indices. One obtains successively:

• the Riemann tensor: Rlkij = ∂iΓ
l
jk − ∂jΓlik + ΓmjkΓlim − ΓmikΓljm

• the Ricci tensor: Rij = Rlilj

• the scalar curvature: R = gijRij ; and the local curvature is obtained by
integrating half the scalar curvature over a small space element, that is,
1
2

∫
R
√
gdx1 . . . dxn

In this Section and the following one, we shall only consider 2- and 3-
dimensional Riemannian spaces, which are embedded in 3- or 4-dimensional
Euclidean spaces in order to derive the metric tensor.

2.2 2-dimensional scattering on obtuse angles

We first consider the obtuse angle β of Fig. 1 in a 2-dimensional Euclidean
space. A sound source S (black star) emitting inside the angle emits rays in all
directions. Some rays impinge on the left arm Ox of the angle and are reflected
(red arrows). As the position of impact moves clockwise toward the apex, the
reflected ray gradually moves upwards and eventually hits the right arm on
which it is reflected once more. Finally, the ray impacts the apex of the angle
(black upwards broken-line arrow).

In a similar fashion, some rays will impinge on the right arm Oy and be
reflected (green arrows). As the position of impact moves anticlockwise toward
the apex, the reflected ray gradually moves upwards and eventually hits the left
arm on which it is reflected once more. Despite the continuity of the impinging
rays around the apex, there is no continuity of the reflected rays, and this creates
scattering.

In order to visualise the scattering, one needs to consider the images of the
sources by reflection on the two arms of the angle. Let’s call S′l the image

3



	

ε 

ε 
ε 

ε 

Figure 1: Reflection and scattering of sound rays on obtuse angle β. ε is the
excess angle, since second order image angles overlap by ε.

of the source on the left arm (red star), and S′r the image on the right arm
(green star); S′′l the left-most second order image (dim red star), and S′′r the
right-most second order image (dim green star). Reflected rays on the arms
of the angle are first emitted from the first order image sources S′l and S′r,
then from the second order sources S′′l and S′′r when the reflected rays hit the
opposite arm, until the rays emitted from the first-order image sources reach
the apex (red and green dotted-line arrows). In that position, the rays emitted
from the second order image sources do not coincide in direction, since they are
emitted from two different image sources at angle ε with respect to the apex.
Scattering therefore comes in to fill the gap between these two directions, and
in fact beyond them. In other words, one must consider a continuum of image
sources along the sector between S′′l and S′′r (grey sector), that is, one must
rotate the second order image angle by ε from position y′′0x′ to position y′0x′′.

In fact, when rays rotate clockwise around the original source S, the reflected
rays rotate anticlockwise around the first order source S′′l , and clockwise around
the second order source S′′r . So, when the secondary source moves clockwise from
S′′l to S′′r on Fig. 1, the diffracted rays rotate clockwise around the apex, thus
filling the grey sector with continuity of rotations at its boundaries.

In order to make the second order image angles coincide, one needs to embed
Fig. 1 in a 3-dimensional space as in Fig. 2. We call x1, y1, and z1 the three
Cartesian coordinates, and keep notationsOx andOy for the arms of the original
flat angular sector, which is now slanted so that angle β exactly projects on a
right angle. As a consequence, Ox is elevated by angle α above Ox1 and Oy is
lowered by angle α below Oy1; similarly, O(−x) is elevated by angle α above
O(−x1) and O(−y) is lowered by angle α below O(−y1), so that the apex angle
remains equal to β. In such a way, we obtain a locally flat space where rays are
free to cross the borders between subsequent angular sectors without changing
their direction. Further, the embedding makes it possible to define the metric
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tensor of this space.
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Figure 2: Embedding scattering on obtuse angle in 3-dimensional space. Angles
α are vertical and measure deviations of angle arms from horizontal plane. Note
that the two second order image sources coalesce in one single image source.

When the angle α is not null, that is, when β > π
2 , the position of any point

M in the system is given by its coordinates x and y, that are no longer orthog-
onal. In order to compute the corresponding infinitesimal distance element, one
must project coordinates x and y on the Ox1y1 plane, then compute the vertical
coordinate with equation:

z1 = tanα(| x1 | − | y1 |)

valid for the four sectors of the system. With the convention sgn(0) = 0, one
obtains everywhere, even on the arms of the angles:

ds2 = dx2
1 + dy2

1 + dz2
1

= (1 + tan2 α)dx2
1 + (1 + tan2 α)dy2

1 − 2sgn(x)sgn(y) tan2 αdx1dy1

with dx =
√

1 + tan2 αdx1 and dy =
√

1 + tan2 αdy1, that is:

ds2 = dx2 + dy2 − 2sgn(x)sgn(y)
tan2 α

1 + tan2 α
dxdy

= dx2 + dy2 − 2sgn(x)sgn(y) sin2 αdxdy

Simple projection on the plane Ox1y1 shows that − sin2 α = cosβ. Note that
cosβ < 0 since π

2 < β < π for obtuse angles. The last equation can therefore
be written as:

ds2 = dx2 + dy2 + 2sgn(x)sgn(y) cosβ dxdy (4)

Using the embedding in the 3-dimensional space, distance elements ds are
obviously continuous along a line that crosses one of the arms, implying that
dx and dy are modified when the line crosses the arms. From the expression of
ds2, it is easy to deduce the metric tensor, its inverse, and its determinant:

gij =

(
1 sgn(x)sgn(y) cosβ

sgn(x)sgn(y) cosβ 1

)
(5)
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gij =
1

sin2 β

(
1 −sgn(x)sgn(y) cosβ

−sgn(x)sgn(y) cosβ 1

)
g = sin2 β (6)

Note that gij and gij reduce to the identity matrix on the arms (x = 0 or y = 0)
because of the convention sgn(0) = 0, with g = 1.

Successive derivations lead to:

• the Christoffel symbols are all equal to 0, but for:

Γyxx = gyy∂xgxy = 2δ(x)sgn(y) cosβ

Γxyy = gxx∂ygxy = 2sgn(x)δ(y) cosβ (7)

where δ is the Dirac distribution, and where we have used the form for
gxy valid on the arms because δ(x), resp. δ(y), is null everywhere except
on the arms x = 0, resp. y = 0 ;

• the Ricci tensor has elements:

Rxx = Ryy = 4δ(x)δ(y) cosβ (8)

Rxy = Ryx = 0

• the scalar curvature and the local curvature are resp. R = 8δ(x)δ(y) cosβ <
0 and 1

2

∫
R
√
gdxdy.

It is easy to see that the curvature is null everywhere but at the apex O where
it is equal to 4 cosβ, which tends toward 4(π2 − β) for small values of π

2 − β.
Indeed, Regge [Reg61] has shown that the curvature is equal to the total deficit
angle at the apex −ε = 2π − 4β.

2.3 3-dimensional scattering on obtuse dihedral angles

For a 3-dimensional obtuse dihedral angle, Fig 1 represents a projection of the
rays on a plane perpendicular to the apical edge. But no equivalent of Fig 2
can be drawn, as the embedding takes place in a 4-dimensional space.

Introducing a new coordinate z, perpendicular to the two coordinates x and
y of the Riemannian plane of Fig 2, the infinitesimal distance element (4) must
now be completed into:

ds2 = dx2 + dy2 + dz2 + 2sgn(x)sgn(y) cosβ dxdy (9)

with the metric tensor and its inverse now given by

gij =

 1 sgn(x)sgn(y) cosβ 0
sgn(x)sgn(y) cosβ 1 0

0 0 1

 (10)

gij =
1

sin2 β

 1 −sgn(x)sgn(y) cosβ 0
−sgn(x)sgn(y) cosβ 1 0

0 0 sin2 β


with determinant g still given by (6); and gij and gij reduce to identity matrices
on the planes x = 0 and y = 0, which we still call arms, with g = 1. All
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Christoffel symbols are equal to 0 but Γyxx and Γxyy still given by eq. (7), and
all elements of the Ricci tensor are 0 except Rxx = Ryy still given by eq. (8).
The scalar curvature therefore remains R = 8δ(x)δ(y) cosβ < 0, but the local
curvature, obtained by integrating half the scalar curvature over a small space
element, is now equal to 1

2

∫
R
√
gdxdydz. It remains null everywhere - flat space

- except on the apical edge. In the limit where β tends toward a right angle, the
curvature around the apical edge is equal to (2π − 4β)`, where ` is the length
of the apical edge, called hinge by [Reg61]. Note that hinges are subspaces of
co-dimension 2 where excess angle is non null.

2.4 Scattering on reflex angles

The case of a reflex angle, both in 2 and 3 dimensions (see Fig. 3) can be
handled in a similar fashion. But in this case, we only need to consider the first
order images of the angle to obtain excess angles at the apex, and rays are never
reflected twice.

	

ε 

ε ε 

ε 

Figure 3: Reflection and scattering of sound rays on reflex angle. ε is the excess
angle, since image angles overlap by ε.

As for obtuse angle, when rays rotate clockwise around the source, the re-
flected rays rotate anticlockwise, first around the image source S′l , then around
S′r. In order to fill the gap at the apex, the image source must move anticlock-
wise from S′l to S′r. It can be seen on Fig. 3 that the diffracted rays then rotate
anticlockwise around the apex, thus filling the grey sector with continuity of
rotations at its boundaries. One considers again a continuum of image sources
along the sector between S′l and S′r (grey sector) by rotating the image angle
by ε, from position (−y)Oy′ to position (−y′)Oy.

Introducing the axis Ox along the bisector of the reflex angle, Fig. 3 (2-
dimensional case) can still be embedded in a 3-dimensional space, as displayed in
Fig. 4. The notations are the same as in Sect. 2.2 and 2.3 for the 2-dimensional
and 3-dimensional cases respectively. As a consequence, curvatures only occur
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Figure 4: Embedding scattering on reflex angle in 3-dimensional space. Axis
Ox is introduced as the bisector of the angle. Angles α and β have the same
meaning as in Figs. 1 and 2. This time, the two first order image sources
coalesce in one single image source S′.

on the ”hinge” and keep the same values, and so do the metric tensors, the
Christoffel symbols, and the Ricci tensors.

Note that only one image angle is created by scattering on a reflex angle,
making them similar to flat edges or faces, except for the curvature localized on
the hinges and the corresponding scattering.

2.5 Scattering on acute angles

The construction of Figs. 1 and 2 can easily be extended to any acute angle. In
this case, the number of image angles must be increased, while keeping it odd,
until one obtains an excess apical angle (see Fig. 5).

As for the two previous cases, when rays rotate clockwise around the original
source, the reflected rays rotate anticlockwise around the first order image source
S′r, then clockwise around he second order source S′′l until the reflected ray
reaches the apex. Continuity of rotation requires that this second order image
source rotates clockwise, but it does not fill the gap between the two second
order sources: image source S′′l moves away from S′′r until it reaches a second
position, marked with a red broken line in the bottom panel of Fig. 5, at which
further rotation makes it disappear. However, just before it disappears, a third
order image source S′′′, not represented in the bottom panel of Fig. 5, emerges
on the left. This third order image source fills the whole angle with diffracted
rays while it keeps on rotating clockwise around the apex, until it disappears
to the right. Shortly afterwards, the second order image source S′′r appears on
the left at the position marked with the green broken line, and further clockwise
rotation brings it to its original position in the top panel. Thus, this time, the
diffracted rays fill the whole angle, plus the two sectors outside the grey sector
on Fig. 5.

In order to correctly embed scattering on an acute angle in a 3-dimensional
space, adapted sets of coordinates must be introduced; but curvature remains
localized at the apical hinge and is equal to the deficit angle −ε (not represented
in Fig. 5), time the length of the hinge in the dihedral case. In fact, since the
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Figure 5: Reflection and scattering of sound rays on acute angle. Top: the visible
rays; bottom: rotating S′′l clockwise makes a supplementary image source S′′′

appear and fill in the whole angle with diffracted rays (not represented), until S′′r
eventually becomes visible on the left hand side. Note that for some positions
no image source diffracts in the angle, whilst two sources can simultaneously
diffract for some other positions.
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space is Euclidean everywhere but on the apex, any directions can be chosen,
provided that the angle between them is equal to π

2 −
ε
4 = β. In Fig 6, the angle

is located in the front sector, and its 5 images are displayed around the hinge
O.

	

α 

α 

α 

α 

Figure 6: Embedding scattering on acute angle in 3-dimensional space. Short-
tick axes represent the original axes of the warped plan; acute angle is inserted
in the front sector. Angles α and β have same meanings as in previous Figures.
The third order image sources coalesce in one single image source S′′′.

Scattering is now created by the non overlapping highest order image sources
radiating through the hinge.

3 Number of image sources

Let us now consider polygonal (2-dimensional case) or polyhedral rooms (3-
dimensional case). We impose the restriction, that will be discussed at the end
of this Section, that all the internal angles of the polygons are right or obtuse
in order to obtain the 4 sectors of Figs. 1 and 2. In the polyhedral case, beside
keeping all internal dihedral angles right or obtuse for the same reason, we also
impose that all vertices are shared by three faces only. Typical examples are
pentagons in 2-dimensions, and dodecahedra in 3-dimensions.

3.1 Convex polygonal rooms

For convex polygonal rooms with n edges, the n first order images are obtained
by reflection on the edges. However, the order of reflection is not relevant for
counting the images: layers are much more relevant. Thus, on Fig. 7, the
numbers correspond to the successive layers around the original room.

Accordingly, the first layer is composed of the n images on the edges, to
which n supplementary images, one at each vertex, are added. For the next
layers, it is more efficient to compute separately the number of free edges and
the number of free vertices, that is, edges and vertices that are not common to
two adjacent images: one adds one image for each free edge, and one for each
free vertex, exactly as for the first layer. It can be seen on Fig. 7 that edge
images create (n − 3) free edges and (n − 4) free vertices; and vertex images
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Figure 7: Image rooms of pentagon. Primed images are skewed in order to
fit in the picture. Numbers correspond to successive layers of images, with 0
denoting the original room and primes one supplementary order of reflection
(see text). Note that one supplementary image must be added each time image
rooms overlap (e.g. between 1′and 2).

crate (n− 2) free edges and (n− 3) free vertices. Note that n > 4 if all angles
are right or obtuse. Let’s call ei the number of free edges and vi the number of
free vertices of layer i. One obtains the recurrence formula:(

ei
vi

)
=

(
n− 3 n− 2
n− 4 n− 3

)(
ei−1

vi−1

)
= Λi

(
e0

v0

)
(11)

where Λ =

(
n− 3 n− 2
n− 4 n− 3

)
and det Λ = 1 . The eigenvalues of matrix Λ are

respectively λ1 = 1
2 (
√
n− 2+

√
n− 4)2 > 1 and λ2 = 1

2 (
√
n− 2−

√
n− 4)2 6 1.

Case n = 4: If n = 4, we obtain rectangular rooms, for which the number of
image sources increases linearly with the layer order. Indeed, in this case, the
matrix is upper triangular:

Λ =

(
1 2
0 1

)
with λ1 = λ2 = 1, and the computation of eq. (11) is straightforward:

Λi =

(
1 2i
0 1

)
As expected, we obtain for rectangular rooms ei = 4(2i + 1) and vi = 4: the
number of corners remains constant and equal to 4, with a linear increase of the
number of edge images. And the total number of image sources Ni of layer i is
Ni = ei + vi = 8(i+ 1), that is, increases linearly with i.
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Case n > 4: If n > 5, then λ1 > 1 and λ2 < 1, and the eigenvectors are given
by:

X1 =

( √
n− 2√
n− 4

)
, X2 =

( √
n− 2

−
√
n− 4

)
that is, Λ can be factorized into Λ = S−1DS with:

S =

(
1

2
√
n−2

1
2
√
n−4

1
2
√
n−2

− 1
2
√
n−4

)
,

D =

(
1
2 (
√
n− 2 +

√
n− 4)2 0

0 1
2 (
√
n− 2−

√
n− 4)2

)
and therefore:

S−1 =

( √
n− 2

√
n− 2√

n− 4 −
√
n− 4

)
For large values of the layer number i, λi2 −→ 0, and eq. (11) reduces to:(

ei
vi

)
≈ (
√
n− 2 +

√
n− 4)2i

2i+1

(
1

√
n−2√
n−4√

n−4√
n−2

1

)(
e0

v0

)
with e0 = v0 = n, that is:

ei ≈
n(
√
n− 2 +

√
n− 4)2i+1

2i+1
√
n− 4

vi ≈
n(
√
n− 2 +

√
n− 4)2i+1

2i+1
√
n− 2

and the total number of image sources Ni of layer i is given by the sum of the
two contributions, that is:

Ni = ei + vi ≈
n(
√
n− 2 +

√
n− 4)2i+1

2i+1

(
1√
n− 4

+
1√
n− 2

)
=
n(
√
n− 2 +

√
n− 4)2(i+1)

2i+1
√

(n− 2)(n− 4)
(12)

Example: For a pentagon, n = 5 and the eigenvalues are λ1 = 1
2 (
√

3 +

1)2 ≈ 3.73 and λ2 = 1
2 (
√

3− 1)2 ≈ 0.27. Matrix Λ is now equal to:

Λ =

(
2 3
1 2

)
which reduces to:

Λ =
1

2

( √
3
√

3
1 −1

)(
2 +
√

3 0

0 2−
√

3

)( 1√
3

1
1√
3
−1

)
and the total number of image sources Ni of layer i is given by eq. (12):

Ni = ei + vi ≈
5
(√

3 + 1
)2(i+1)

2i+1
√

3

In other words, the number of image sources increases exponentially with
the order of the layer, a very different behaviour than for rectangular rooms,
but similar to mixing rooms [Pol92].
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3.2 Convex polyhedral rooms

For convex polyhedral rooms, it is not sufficient to only consider the number N
of faces. We must also consider the number ni of edges of each face i. We thus
obtain:

• the number of faces: F =
∑
i 1 = N

• the number of edges: since one edge is common to 2 faces, this number is
E = 1

2

∑
i ni

• the number of vertices: with the assumption that vertices are shared by 3
faces only, this number is V = 1

3

∑
i ni

With the help of Euler’s polyhedron formula F − E + V = 2, valid for convex
polyhedra, we obtain:

F − E + V =
∑
i

[
1− ni

2
+
ni
3

]
=
∑
i

[
1− ni

6

]
= 2

that is, introducing the mean number of edges per face n̄ = 1
N

∑
i ni:

(6− n̄)N = 12

As a consequence, the mean number of edges per face, the total number of edges,
and the total number of vertices are given by:

n̄ =
6(N − 2)

N
, E = 3(N − 2), V = 2(N − 2) (13)

Note that the assumption that vertices are shared by 3 faces only does not
introduce any restriction, as it is easy to ”regularize” vertices shared by m > 3
faces by cutting-off the vertex according to Fig. 8, thus increasing by 1 the
number of faces, by m the number of edges edges, and by m− 1 the number of
vertices, that is, keeping the Euler characteristic F − E + V equal to 2.

Figure 8: Regularizing vertex shared by 4 faces, by cutting-off the tip of the
pyramid, thus removing one vertex but introducing 4 new edges and vertices.

As in Sect. 3.1, we consider successive layers of image rooms built around
the original rooms, and we compute separately the number of free faces, edges
and vertices belonging to the images created by free faces, edges an vertices.
Simple enumeration leads to:

• each free face i creates:
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– N − (ni + 1) free faces,

– E − 2ni −
∑
j εij(nj − 3) free edges,

– V − 2ni −
∑
j εij(nj − 4) free vertices,

where εij = 1 if faces i and j share one edge, 0 otherwise, so that
∑
i εij =

nj ;

• each free edge k creates:

– N − 4 free faces,

– E − 5−
∑
j γkj(nj − 3)−

∑
lj δklj(nj − 2) free edges,

– V − 6−
∑
j γkj(nj − 4)−

∑
lj δklj(nj − 3) free vertices,

where γkj = 1 if edge k belongs to face j and 0 otherwise, with
∑
j γkj = 2;

and where δklj = 1 if edge k belongs to face j and vertex l to edge k, 0
otherwise, with

∑
lj δklj = 2;

• each free vertex l creates:

– N − 3 free faces,

– E − 3−
∑
j αlj(nj − 2) free edges,

– V − 4−
∑
j αlj(nj − 3) free vertices,

where αlj = 1 if vertex l belongs to face j, 0 otherwise, so that
∑
j αlj = 3.

Let’s now call fm, em and vm the numbers of free faces, edges and vertices
respectively in layer m. We obtain the recurrence formulae:

fm+1 =

fm∑
i=1

[N − (ni + 1)] +

em∑
k=1

[N − 4] +

vm∑
l=1

[N − 3]

em+1 =

fm∑
i=1

E − 2ni −
∑
j

εij(nj − 3)


+

em∑
k=1

E − 5−
∑
j

γkj(nj − 3)−
∑
lj

δklj(nj − 2)


+

vm∑
l=1

E − 3−
∑
j

αlj(nj − 2)


vm+1 =

fm∑
i=1

V − 2ni −
∑
j

εij(nj − 4)


+

em∑
k=1

V − 6−
∑
j

γkj(nj − 4)−
∑
lj

δklj(nj − 3)


+

vm∑
l=1

V − 4−
∑
j

αlj(nj − 3)


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Assuming that the number of image rooms increases exponentially with the
layer order m, it is legitimate to replace numbers ni and nj by their mean n̄,
leading to the approximation:

fm+1 ≈fm [N − n̄− 1] + em [N − 4] + vm [N − 3]

em+1 ≈fm
[
E − 2n̄− n̄2 + 3n̄)

]
+ em [E − 5− 2(n̄− 3)− 2(n̄− 2)]

+ vm [E − 3− 3(n̄− 2)]

vm+1 ≈fm
[
V − 2n̄− n̄2 + 4n̄)

]
+ em [V − 6− 2(n̄− 4)− 2(n̄− 3)]

+ vm [V − 4− 3(n̄− 3)]

that is, to the recurrence formula: fm+1

em+1

vm+1

 =

 N − n̄− 1 N − 4 N − 3(
N
2 + 1

)
n̄− n̄2

(
N
2 − 4

)
n̄+ 5

(
N
2 − 3

)
n̄+ 3(

N
3 + 2

)
n̄− n̄2

(
N
3 − 4

)
n̄+ 8

(
N
3 − 3

)
n̄+ 5

 fm
em
vm


= Λm+1

 f0

e0

v0

 (14)

with matrix Λ given by:

Λ =

 N − n̄− 1 N − 4 N − 3(
N
2 + 1

)
n̄− n̄2

(
N
2 − 4

)
n̄+ 5

(
N
2 − 3

)
n̄+ 3(

N
3 + 2

)
n̄− n̄2

(
N
3 − 4

)
n̄+ 8

(
N
3 − 3

)
n̄+ 5


A lengthy computation leads to the following characteristic equation for eigen-
values λ:

−λ3 + λ2

[(
5N

6
− 8

)
n̄+ (N − 9)

]
− λ

[
4N

3
n̄2 −

(
26N

3
− 8

)
n̄+ (10N − 9)

]
+

[
−N

6
n̄2 + (N − 1)

]
= 0

which, when replacing n̄ by its value given in eq. (13), simply reduces to:

−λ3 + λ2

[
6N − 49 +

96

N

]
− λ

[
6N − 49 +

96

N

]
+ 1 = 0

or more simply to:

−λ3 + λ2

[
6(N − 4)2

N
− 1

]
− λ

[
6(N − 4)2

N
− 1

]
+ 1 = 0 (15)

Case N = 6: If N = 6, we obtain rectangular parallelepiped rooms, for which
eq. (13) reduces to ni = n̄ = 4 for all i, e0 = 12, and v0 = 8 with f0 = N = 6.
In this case, the matrix is upper triangular:

Λ =

 1 2 3
0 1 3
0 0 1


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Since all diagonal terms are equal to 1, the three eigenvalues are equal to 1 and
the computation of eq. (14) is straightforward:

Λi =

 1 2i 3i2

0 1 3i
0 0 1


We obtain for rectangular parallelepiped rooms fi = 6(2i+ 1)2, ei = 12(2i+ 1)
and vi = 8: as expected, the number of corners remains constant and equal to
8, with a linear increase of the number of edge images and a quadratic increase
of the number of the face images. And the total number of image sources Ni of
layer i is Ni = fi + ei + vi = 24(i+ 1)2 + 2, that is, increases quadratically with
i.

Case N > 6: The direct solution of eq. (15) gives then the three eigenvalues:

• λ0 = 1,

• λ1 =
[

3(N−4)2

N − 1
]

+ N−4
N

√
3[(N − 6)(3N − 8)] > 1,

• λ2 =
[

3(N−4)2

N − 1
]
− N−4

N

√
3[(N − 6)(3N − 8)] < 1.

and matrix Λ reduces to:

Λ =


(N−2)(N−6)

N + 1 N − 4 N − 3
3(N−2)(N−4)(N−6)

N2

3(N−4)2

N − 1 3(N−3)(N−4)
N

2(N−2)(N−6)2

N2

2(N−4)(N−6)
N

2(N−3)(N−6)
N + 1


A simple matrix manipulation (see Appendix) easily gives the 3 eigenvectors

associated to the 3 eigenvalues:

X0 =

 (N − 3)
0

− (N−2)(N−6)
N

 , X1 =


√

3[(N − 6)(3N − 8)]

+ 3(N−6)(3N−8)
N

2(N−6)
N

√
3[(N − 6)(3N − 8)]

 ,

X2 =


√

3[(N − 6)(3N − 8)]

− 3(N−6)(3N−8)
N

2(N−6)
N

√
3[(N − 6)(3N − 8)]


Thus, matrix Λ can be factorized into Λ = S−1DS, with the column of matrix
S−1 equal to the eigenvectors:

S−1 =

 (N − 3)
√

3[(N − 6)(3N − 8)]
√

3[(N − 6)(3N − 8)]

0 3(N−6)(3N−8)
N − 3(N−6)(3N−8)

N

− (N−2)(N−6)
N

2(N−6)
N

√
3[(N − 6)(3N − 8)] 2(N−6)

N

√
3[(N − 6)(3N − 8)]


and matrix D given by the eigenvalues:

D =


1 0 0

0 1
2

[√
3
N (N − 4) +

√
(N−6)(3N−8)

N

]2

0

0 0 1
2

[√
3
N (N − 4)−

√
(N−6)(3N−8)

N

]2


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where we have used an alternative form for the eigenvalues λ1 and λ2, leading
by inversion to matrix S:

S =
1

2


4

3N−8 0 − 2N
(N−6)(3N−8)

N−2

(3N−8)
√

3[(N−6)(3N−8)]

N
3(N−6)(3N−8)

N(N−3)
(N−6)(3N−8)

N−2

(3N−8)
√

3[(N−6)(3N−8)]
− N

3(N−6)(3N−8)
N(N−3)

(N−6)(3N−8)


.

For large values of the layer number i, λi2 −→ 0, and eq. (14) is approximated
by:  fi

ei
vi

 ≈
[√

3
N (N − 4) +

√
(N−6)(3N−8)

N

]2i

2i+1(3N − 8) N − 2
N
√

3[(N−6)(3N−8)]

3(N−6)

N(N−3)
√

3[(N−6)(3N−8)]

3(N−6)

(N−2)
√

3[(N−6)(3N−8)]

N 3N − 8 (N − 3)(3N − 8)
3(N−2)(N−6)

N 2
√

3[(N − 6)(3N − 8)] 2(N − 3)
√

3[(N − 6)(3N − 8)]


 f0

e0

v0

 (16)

Example: For a dodecahedron, N = 12 with n̄ = 5, e0 = 30, and
v0 = 20 with f0 = N = 12. The eigenvalues are λ0 = 1, λ1 = 15+4

√
14 ≈ 29.97

and λ2 = 15− 4
√

14 = 0.03. Matrix Λ is now equal to:

Λ =

 9 8 9
10 15 18
5 8 10


which reduces to:

Λ =
1

2

 9 6
√

14 6
√

14
0 28 −28

−5 6
√

14 6
√

14

 1 0 0

0 15 + 4
√

14 0

0 0 15− 4
√

14


 1

7 0 − 1
7

5
84
√

14
1
84

9
28

5
84
√

14
− 1

84
9
28


and the total number of image sources Ni of layer i is given by the sum of the
3 terms in eq. (16), that is:

Ni = fi + ei + vi ≈
(
15 + 4

√
14
)i

46

(
5
[
4 +
√

14
]
f0 + 2

[
15 + 2

√
14
]
e0

+ 37
[
7 + 4

√
14
]
v0

)
=

10(29.97)i
(
316 + 157

√
14
)

23

In other words, the number of image sources increases exponentially with the
order of the layer, as is the case for polygonal rooms with more than 4 edges.
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Note that the case of vertices shared by more than 3 faces is obtained by first
regularising them according to Fig. 8, then moving the intersecting face toward
the original vertex: the number of image rooms remains constant. Therefore,
assuming that all vertices are shared by 3 faces only does not introduce any
restriction.

3.3 Case of reflex angles

The case of reflex angles can now be handled by noticing that reflex angles do not
introduce new images. For polygons, the two adjacent edges must be considered
as a unique edge, thus diminishing the number of edges and vertices by one. For
polyhedra, the two adjacent faces becomes one unique face, thus diminishing the
number of faces and edges by one. However, when two reflex dihedral angles
share a common vertex between two common adjacent edges, the two adjacent
edges also coalesce into one single edge, diminishing both the number of edges
and the number of vertices by one, thus keeping Euler characteristic constant
and equal to 2.

3.4 Case of acute angles

The case of acute angles can also be handled by noticing that they introduce
several new images, depending on the angle. However, both for polygons and
for polyhedra, each case must be handled specifically.

4 Visible image sources

In the previous section, we have demonstrated that, except for rectangular
rooms, the number of image sources increases exponentially, most of them cre-
ating diffracted rays, due to the excess angles at the hinges (see Sec. 2). They
correspond to what is usually called ”hidden image sources”, that is, image
sources that are not visible from the receiver. We therefore now address the
question of the visible images, and the related question of their horizon of vis-
ibility, which we define as the distance at which visible image sources smear
within the swarm of image sources because the intensity they radiate into the
original room starts decreasing exponentially with distance. In doing so, we
must handle separately the cases of regular polygons and polyhedra, and the
case of irregular ones.

4.1 Regular polygons and polyhedra

The most striking feature of space tessellation by regular polygons or polyhedra
(Fig. 9) is the fact that any grouping of one cell and its image on any of its
edges or faces displays parallel edges or faces. As a consequence, images sources
are visible at long range along some specific discrete directions. Nevertheless,
every now and then, one image source becomes hidden behind some hinge, even
in these specific directions (red rays in Fig. 9), so that one should rather talk
of channels - in green in Fig. 9.

It can be seen in Fig. 9 that channels are defined by the repetition of
patterns along some discrete directions. The number of these directions is nu-
merable, since there is a numerable number of image sources; and the widths of
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Figure 9: Visible (green rays) and invisible (red rays) images for a regular
pentagon. Notice the long-range visibility in some direction.

the channels decrease with the length of the repetition pattern. In any case, at
some distance, the widths of the channels become narrow enough so that path
differences for all rays joining the image sources to the original room must be
taken into account, as they eventually reduce the intensity of the sources when
they become narrower that the first Fresnel zones around the direct rays. As a
consequence, all distant visible sources eventually radiate an exponentially de-
creasing intensity, no longer inversely proportional to the square of the travelled
distance. In that respect, distant sources do not differ from hidden sources;
but the distances at which these transitions operate are frequency dependant,
increasing with frequency.

The number of visible images at any range increases at most with distance
in the polygon case, and squared distance in the polyhedra case. This is a
consequence of Fig. 9, since the cells corresponding to visible images constitute
a subset of the Euclidean plane in which the original room lays, bordered by
bold lines in the Figure. As the average number of cells in any annulus, resp.
any shell, of inner and outer radii d and d+ ∆d is overestimated by dividing its
surface by the surface S of the cell, resp. its volume by the volume V of the cell,
an overestimation for the number of visible images at distance d is therefore
2πd∆d
S , resp. 4πd2∆d

V , which increases at most with the distance for a polygon,
and with the squared distance for a polyhedron. Thus, the number of hidden
sources will quickly outnumber the number of visible sources, thus diluting their
strength.

Can we evaluate the horizon for visible sources? From the above discussion
and definition, the maximum distance of visibility can be estimated from the
width w of the channel and the wavelength λ of the frequency under consider-
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ation as a few times the distance H defined by:

H ≈ w2

λ
(17)

Note that no horizon exists for rectangular rooms as no scattering occurs on
the vertices, resp. the edges, since no excess angle exists at vertices or edges
through reflections.

4.2 Irregular polygons and polyhedra

Space tessellation by irregular polygons or polyhedra (Fig. 10) does not exhibit
parallel edges or faces after reflections, and no specific patterns are repeated
along any direction. Indeed, as can be seen in Fig. 10, all channels eventually
split in narrower ones as they cross some hinges, a process which is signalled by
blue arrows in Fig. 10. As a consequence, the horizon of visibility of the image
sources is much shorter than in the regular case.

Figure 10: Visible (green rays) and invisible (red rays) images for an irregular
pentagon. Blue arrows signal channel splitting at hinges. Notice that visibility
quickly vanishes due to random distribution of hinges (here, all vertices).

As can be seen in Fig. 10, the orientations of the image rooms gradually be-
come random with distance, as the angles between non-adjacent, opposing edges
or faces are no longer rational ratios of 2π. This creates random distribution of
the hinges, and thus the splitting of the channels and eventually scattering. As
a consequence, the horizon of visibility of the image sources can be estimated
as a few times the characteristic sizes of the cells, at most 10 times in Fig. 10.
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5 Taking scattering in account: conservation of
stress-energy tensor

Up to now, we have not considered the nature of the signals emitted by the
sources. As we are interested in sound waves, the wave properties of the field
has to be taken into account. Thus, a time dimension must be added to the
space of Sec. 2.1 in order to introduce the wave equation.

5.1 Wave equation and stress-energy tensor

From now on, we consider a 4-dimensional time-space with its metric tensor gij
and the volume element dV =

√
|g|dx0 . . . dx3, where g = det gij [Lin 5]. But

now, g is negative as the first eigenvalue of the metric tensor is negative and
equal to −c2, where c is the speed of sound: its eigenvector corresponds to the
time direction dx0. The infinitesimal distance element is still given by eq. 1:

ds2 = gijdx
idxj (18)

Therefore, covariant derivation, Christoffel symbols, Riemann and Ricci tensor
as well as the scalar curvature are still defined as in Sec. 2.1. More precisely,
according to Sec. 2.3, we have:

gij =


−c2 0 0 0

0 1 sgn(x1)sgn(x2) cosβ 0
0 sgn(x1)sgn(x2) cosβ 1 0
0 0 0 1

 (19)

gij =


−c−2 0 0 0

0 1
sin2 β

− sgn(x1)sgn(x2) cos β
sin2 β

0

0 − sgn(x1)sgn(x2) cos β
sin2 β

1
sin2 β

0

0 0 0 1


where β is one fourth of the total dihedral angle around the hinge, and with
determinant g = −c2 sin2 β < 0. gij and gij reduce to diagonal matrices on the
arms, now denoted (x1 = 0 and x2 = 0), with all diagonal elements equal to
1 except g00 = −c2 and g00 = −c−2, and with g = −c2. As for the Christof-
fel symbols, they are all equal to 0, but for Γ2

11 = 2δ(x1)sgn(x2) cosβ and
Γ1

22 = 2sgn(x1)δ(x2) cosβ (eq 7); and all elements of the Ricci tensor are 0
except R11 = R22 = 4δ(x1)δ(x2) cosβ < 0 (eq. 8). The scalar curvature there-
fore remains R = 8δ(x1)δ(x2) cosβ < 0, but the local curvature, obtained by
integrating half the scalar curvature over a small space element, is now equal to
1
2

∫
R
√
|g|dx0dx1dx2dx3. It remains null everywhere - flat space - except on the

hinges, now given by the apical edges extended by the time laps. In the limit
where β tends toward a right angle, the curvature around any hinge is equal to
c(2π − 4β)`∆t < 0, where ` is the length of the corresponding apical edge and
∆t the time lag.

We now introduce the wave equation:

�Φ = Oig
ij∂jΦ = 0 (20)
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where Φ is the velocity potential. Pressure p and particle velocity v are obtained
from the velocity potential as covectors:

p = ρ∂0Φ

vi = −∂iΦ

where i takes value 1, 2 or 3 (space variables), and where ρ is the density of
the fluid in which the waves propagate. Note that it is more useful to use the
vector formulations for these two quantities:

vi = −OiΦ = −gij∂jΦ (21)

meaning that:

v0 = −O0Φ = −g00∂0Φ = c−2∂0Φ =
p

ρc2

In general, the velocity potential Φ is a complex function. We therefore
consider the product ∂kΦ∗�Φ. Differentiation rules lead to:

∂kΦ∗�Φ = ∂kΦ∗Oig
ij∂jΦ = Oig

ij [∂kΦ∗∂jΦ]− [Oi∂kΦ∗] gij∂jΦ

= Oig
ij [∂kΦ∗∂jΦ]− [Ok∂iΦ

∗] gij∂jΦ

= Oj [∂kΦ∗∂jΦ]− [Ok∂iΦ
∗] gij∂jΦ = 0

As i and j are mute indices, keeping only the real part of the preceding equation
leads to:

Oj (∂jΦ
∗∂kΦ + ∂jΦ∂kΦ∗) = Ok

(
∂iΦ
∗gij∂jΦ

)
(22)

that is, to:
OiTij = 0 (23)

where Tij is the symmetrical stress-energy tensor, defined by:

Tij =
∂iΦ
∗∂jΦ + ∂iΦ∂jΦ

∗

2
− 1

2
gij
(
∂iΦ
∗gij∂jΦ

)
(24)

It is easy to recognise that the eq. (23) corresponds to the contravariant con-
servation of the stress-energy tensor.

5.2 Conservation of stress-energy tensor

The conservation of the stress-energy tensor takes a simpler form for T ij than
for Tij , which still is symmetric. Indeed, Eq (23) can be written as:

gljOiTil = gikOkTilg
lj = OiT

ij = ∂iT
ij + ΓiikT

kj + ΓjikT
ik = 0

that is ([Lin 5] p.54):

1√
|g|
∂i(
√
|g|T ij) + ΓjikT

ik = 0

or, after integration on a small 4-dimensional volume V with border ∂V :∫
∂V

niT
ijdS +

∫
V

ΓjikT
ikdV = 0 (25)
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In the last equation, ni is the outgoing normal covector to the boundary, nor-
malized by nig

ijnj = ±1, with a negative sign for time boundaries. If part of
the border ∂V is defined by equation f(x0 . . . x3) = 0, then ni is given by:

ni =
±∂if√
±∂ifgij∂if

where the same sign is used in the numerator and the denominator. And dS is
the volume element of the border induced by the metric on ∂V . In other words,
it includes the term

√
|g|.

In eq. (25), T ij = 1
2

[
gik(ΦkΦ∗l + Φ∗kΦl)g

lj − gij
(
∂iΦ
∗gij∂jΦ

)]
can also be

written:

T ij =
1

2

[
(ΦiΦj∗ + Φi∗Φj)− gij

(
Φi∗gijΦ

j
)]

where the Φi, resp. the Φj , are the partial covariant derivatives, resp. partial
contravariant derivatives, of the velocity potential Φ. Note that the last form is
preferred, as it makes use of vectors instead of covectors.(

Φi∗gijΦ
j
)

is then given by:(
Φi∗gijΦ

j
)

=
[
−c2|Φ0|2 + |Φ1|2 + |Φ2|2 + |Φ3|2

+ 2sgn(x1)sgn(x2) cosβ<(Φ1Φ2∗)
]

and T ij by:
c−2

2

[
c2|Φ0|2 + |Φ1|2 + |Φ2|2 + |Φ3|2 + 2sgn(x1)sgn(x2) cosβ<(Φ1Φ2∗)

]
<(Φ0Φ1∗)
<(Φ0Φ2∗)
<(Φ0Φ3∗)

<(Φ0Φ1∗)
sin−2 β

2

[
c2|Φ0|2 − cos 2β|Φ1|2 − |Φ2|2 − |Φ3|2 − 2sgn(x1)sgn(x2) cosβ<(Φ1Φ2∗)

]
<(Φ1Φ2∗)

sin4 β
+ sgn(x1)sgn(x2) cos β

2 sin2 β

[
−c2|Φ0|2 + |Φ1|2 + |Φ2|2 + |Φ3|2

]
<(Φ1Φ3∗)

<(Φ0Φ2∗)
<(Φ1Φ2∗)

sin4 β
+ sgn(x1)sgn(x2) cos β

2 sin2 β

[
−c2|Φ0|2 + |Φ1|2 + |Φ2|2 + |Φ3|2

]
sin−2 β

2

[
c2|Φ0|2 − |Φ1|2 − cos 2β|Φ2|2 − |Φ3|2 − 2sgn(x1)sgn(x2) cosβ<(Φ1Φ2∗)

]
<(Φ2Φ3∗)

<(Φ0Φ3∗)
<(Φ1Φ3∗)
<(Φ2Φ3∗)

1
2

[
c2|Φ0|2 − |Φ1|2 − |Φ2|2 + |Φ3|2 − 2sgn(x1)sgn(x2) cosβ<(Φ1Φ2∗)

]

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As for the conservation of the stress-energy tensor, it reduces to:∫
∂V

niT
i0dS = 0∫

∂V

niT
i1dS +

∫
V

Γ1
22T

22dV = 0∫
∂V

niT
i2dS +

∫
V

Γ2
11T

11dV = 0∫
∂V

niT
i3dS = 0

that is to:∫
∂V

niT
i0dS = 0∫

∂V

niT
i1dS = −2 cosβ

∫
V

sgn(x1)δ(x2)T 22
√
|g|dx0dx1dx2dx3∫

∂V

niT
i2dS = −2 cosβ

∫
V

δ(x1)sgn(x2)T 11
√
|g|dx0dx1dx2dx3∫

∂V

niT
i3dS = 0 (26)

Note that the expression of T 11 and T 22 on the arms must be used on the left
hand side of eq. (26), that is:

T 11 =
1

2

[
c2|Φ0|2 + |Φ1|2 − |Φ2|2 − |Φ3|2

]
T 22 =

1

2

[
c2|Φ0|2 − |Φ1|2 + |Φ2|2 − |Φ3|2

]
(27)

which are positive.
In other words, when the stress-energy tensor crosses the arm Ox2 of the

angle, it receives a positive acceleration proportional to T 22 in the x1 direction;
and when it crosses the arm Ox1 of the angle, it receives a positive acceleration
proportional to T 11 in the x2 direction. However, it does not correspond to a
deviation of the direction of propagation since the space is flat everywhere but
on the hinge. It only takes into account the change of coordinates across the
arms of the angle.

5.3 Ray scattering

Any ray issued from a sound source will have some thickness. This is simply due
to the uncertainty principle (see for example [Ste10]), which states that position
and direction cannot be both determined with infinite precision. Note that this
is not the case with the geometrical constructions of the previous Sections, where
both are simultaneously defined with infinite precision.

According to Hadamard [Had03], waves are discontinuities that move through
space. These discontinuities can be infinitesimal, and they are defined by a
function f(x0, x1, x2, x3) = 0 on the time-space variables. As a consequence,
the velocity potential Φ can be expressed as a function of f , and the wave can
be defined by the equation

(
Φi∗gijΦ

j
)

= 0, or equivalently
(
f i∗gijf

j
)

= 0.
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We now consider a wave packet, that is, a wave of finite extension, both
along the direction of propagation defined by the vector Oif , and laterally along
f(xi) = 0. The uncertainty principle then states that frequency and wave
numbers are defined as distribution, the standard deviations of which verify
∆xi∆ki > 1

2 , with k0 = ω = 2πf the radian frequency.
We then introduce new coordinates ξi, defined by ξ0 = cx0, ξ1 = f(xi)

(along Oif), ξ2 and ξ3 on the surfaces f(xi) = 0 at time ξ0. As distance must
be independent of coordinate systems:

gijdx
idxj = γkldξ

kdξl = γkl
∂ξk

∂xi
∂ξl

∂xj
dxidxj

that is, gij = γkl
∂ξk

∂xi
∂ξl

∂xj , where γkl is the metric tensor associated with the

new coordinates ξi. As a consequence, |g| = |γ||∂ξ
k

∂xi |2, where g, γ and |∂ξ
k

∂xi |
are determinants. We can further write that dξ1 = cidx

i, with c0 = −c and
ci, i = 1, 2, 3 the direction cosines of the wave packet. The wave packet is
therefore completely defined by its distribution on any hyper-surface that crosses
its trajectory. On the other hand, on any hyper-surface parallel to the trajectory,
the distribution will depend on the distance to the trajectory.

We now can apply the stress-energy conservation eq. (26) to our wave packet.
We choose for integration a time interval over which the wave packet moves from
one side of the angle arms to the other. Two cases are depicted in Fig. 11.

Figure 11: Wave packets crossing angle arms. Packet on the left crosses arm
Ox1 between x0

1 and x0
2; packet in the middle symmetrically crosses the two

arms. Green lines mark the areas where deviations occur.

The first wave packet is located in sector (−x2)Ox1 at time x0
1. It is here

defined by the projection of its distribution on the plane of Fig. 11, where it is
represented by a rectangle area with levels of grey proportional to the probability
of presence of the wave packet. The size of the rectangle is chosen such that
the components of the stress-energy tensor are negligible on its boundaries. As
time increases, the wave packet moves at angle θ with respect to direction x2

toward sector x1Ox2 in which it is located at time x0
2. In the sector (−x2)Ox1,
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at time x0
1, we have therefore:(

Φi∗gijΦ
j
)

=
[
−c2|Φ0|2 + |Φ1|2 + |Φ2|2 + |Φ3|2 − 2 cosβ<(Φ1Φ2∗)

]
= 0

T 00 =
1

2c2
[
c2|Φ0|2 + |Φ1|2 + |Φ2|2 + |Φ3|2 − 2 cosβ<(Φ1Φ2∗)

]
T 01 = <(Φ0Φ1∗), T 02 = <(Φ0Φ2∗), T 03 = <(Φ0Φ3∗)

and these components remain constant as long as the wave packet remains in
sector (−x2)Ox1. Note that the first equation, which expresses that Φ corre-
sponds to a wave packet, can be rewritten as:

c2|Φ0|2 = |Φ1|2 + |Φ2|2 + |Φ3|2 − 2 cosβ<(Φ1Φ2∗) (28)

It crosses arm Ox1 (x2 = 0) in-between times x0
1 and x0

2, where it is deviated
according to the second line of eq. (26). In other words, the components of T ij

do not change, but for component T 01 which becomes, according to eq. (26):∫
∂V

x0
2

n0T
01dS = −2 cosβ

∫
V

sgn(x1)δ(x2)T 22
√
|g|dx0dx1dx2dx3

+

∫
∂V

x0
1

n0T
01dS (29)

where ∂Vx0
1
, resp. ∂Vx0

2
is the boundary at time x0

1, resp. x0
2, that is, the volumes

of the wave packet at x0
1 and x0

2, and the components of T ij are negligible on the
boundaries of the wave packet. Simple calculations then shows that n0 = −c
and dS = sinβdx1dx2dx3 on ∂Vx0

1
and ∂Vx0

2
, with dV = c sinβdx0dx1dx2dx3

which reduces to dVx2=0 = cdx0dx1dx2dx3 on the arm x2 = 0.
Similarly, on the arm x2 = 0, T 22 is given by eq. (27), that is, with the help

of eq. (28):
T 22 = |Φ2|2 − cosβ<(Φ1Φ2∗)

According to eq. (21), we have Φi = −vi, so that the previous equation becomes:

T 22 = |v2|2 − cosβ<(v1v2∗)

with the vi represented in Fig. 12, except for v3 which is perpendicular to the
plane of the figure. Also note that the figure presents the projections of cv0

1 and
cv0

2 on the plane Ox1x2, respectively called v1 and v2.
With the help of Fig. 12, it can easily be seen that eq. (28) is equivalent to

the vector equation c ~v0 = ~v1 + ~v2 + ~v3, that is, by projecting on v2:

c ~v0 · ~v2∗ = ~v1 · ~v2∗ + ~v2 · ~v2∗ + 0 = cv0v2∗ cos θ

with ~v1 · ~v2∗ = v1v2∗ cos(π − β). We therefore recover:

c<( ~v0 · ~v2∗) = |v2|2 −<(v1v2∗) cosβ

= |Φ2|2 − cosβ<(Φ1vΦ∗) = c cos θ<(Φ0Φ2∗)

where cos θ = c2 is the direction cosine of vector ~v0 with respect to axis Ox2.
In Fig. 12, it corresponds to the projection of c2 on the plane Ox1x2. All in all,
we obtain on the arm x2 = 0:

T 22 = c2<(cΦ0Φ2∗) (30)
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π−β
Φ 

θ 

β−θ 

Figure 12: Wave packets travelling at angle δ with respect to arm Ox2. vij are
the components of the particle velocity vector, with v1 and v2 the projections
of cv0

1 and cv0
2 on the plane Ox1x2. Note that θ < 0 since v1

j are negative.

We must carry out the integration
∫
V

sgn(x1)δ(x2)T 22
√
|g|dx0dx1dx2dx3 on

arm Ox2. Taking into account that ∂ξ1

∂x2 = c2, we obtain δ(x2) = δ(ξ1−ξ)
c2

, where

ξ is the value taken by ξ1 on the axis Ox2. Then using the relation between old
and new coordinates xi and ξi, we obtain:∫

V

sgn(x1)δ(x2)T 22
√
|g|dx0dx1dx2dx3

=

∫
V

δ(ξ1 − ξ)
c2

c2<(cΦ0Φ2∗)
√
|γ|dξ0dξ1dξ2dξ3

=

∫
V

<(cΦ0Φ2∗)
√
|γ|dξ0dξ2dξ3

and with the help of eq. (29):

−cT 01
∂V

x0
2

=

∫
∂V

x0
2

n0T
01dS

= −2 cosβ

∫
V

sgn(x1)δ(x2)T 22
√
|g|dx0dx1dx2dx3 +

∫
∂V

x0
1

n0T
01dS

= −2 cosβ

∫
∂Vx2=0

<(cΦ0Φ2∗)
√
|γ|dξ0dξ2dξ3 − cT 01

∂V
x0
1

= −2c cosβ<(Φ0Φ2∗)x2 − cT 01
∂V

x0
1

or simply:
T 01

∂V
x0
2

= T 01
∂V

x0
1

+ 2 cosβ<(Φ0Φ2∗)x2 (31)

In other word, Φ1 is ”augmented” with 2 cosβΦ2, as is visible in Fig. 12 where
cosβ < 0.

This is not the case for the second wave packet, located in sector (−x1)O(−x2)
at time x0

3 and moving to sector x1Ox2 at time x0
4. It symmetrically crosses the

arms x1 = 0 and x2 = 0 on its way. Since the function sgn changes sign around
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the origin O, the negative deviation compensates for the positive one on each
axis, and no deviations occurs. However, if a larger part of the packet passes on
one side of the origin, some deviation occurs in proportion of the offset. This
case is not represented in Fig. 11.

In both cases, direct calculation shows that T 00 does not change when cross-
ing arm Ox1, as expected for energy conservation.

Note that, in the case of a wave packet impinging at near grazing incidence
on a reflex angle, the above formalism recovers the sound particle diffraction
model of [Ste10]. However, it takes into account the angle of the scattering
wedge and the scattering of the image wave packet, both of which are absent
from the sound particle diffraction model.

6 Conclusion

We have presented a geometrical theory that naturally accounts for scattering
on the boundaries of a room. It introduces Riemannian spaces with negative
curvature, which constitute the proper setting for the distribution of images
created by non-rectangular rooms with obtuse angles, that is, created by irreg-
ular polyhedra. The crucial factor is the excess angle that arises around specific
edges, called hinges, when first and second order images are considered, as it
pilots the metric tensor of the space and all its geometrical properties, including
its curvature. In the case of reflex and acute dihedral angles around edges, less,
resp. more, reflection orders must be taken into account to properly tessellate
the Riemannian space.

From this Riemannian tessellation, we have proposed a scheme for counting
the number of image sources. Here, the parameter is not the order of reflection,
but counting the layers of images around the original room. Only free faces,
edges and vertices are taken into account to build the layers, and it makes it
possible to give a close form formula for the number of image sources in case
all dihedral angles are obtuse: the number of images increases exponentially,
making polyhedral rooms similar to mixing rooms in this respect. We did not
explicitly solved for the cases when some dihedral angles are reflex or acute, but
gave some indications as how to handle them.

In the case of regular polygons and polyhedra, we have also shown that
image sources are regularly distributed along channels delimited by repetitive
distributions of hinges and becoming narrower when the repetitive patterns
of image rooms become longer. In the case of irregularly shaped rooms, the
channels split randomly since the distribution of hinges is also random. In both
cases, we have defined the horizon of visibility as the distance at which the width
of the channel becomes narrower than the first Fresnel zone, thus creating an
exponential decrease of the image sources with distance.

Lastly, using the curvature on the hinges and complementing it with the
uncertainty principle, we were able to describe the scattering of wave packets
around dihedral angles. The scattering is proportional to the excess angle, and
is best described in terms of the stress-energy tensor, that is, in terms of energy
conservation. The basic elements for computing the scattering are given, and
must be adapted to each case at hand in order to derive formulae.

The present theory must now be developed to derive scattering coefficients
from the distribution of hinges around a room. Most certainly, the excess angles
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are the main factors, complemented by the lengths of the hinges. But wave
length also plays a rôle, as demonstrated in Sections 4 and 5.3. Proper definition
of scattering coefficients has long been missing for the application of the diffusion
equation in Room Acoustics [PPS97], despite some recent attempts [G2̈1].

There remain to introduce absorption in the present theory. Due to its geo-
metrical nature, the present theory cannot account for losses in its present form.
The classical way to introduce absorption, which consider intensity flows inside
the boundaries, cannot be used here without some adaptation. But accounting
for losses should not proove difficult since absorption is easily described with the
stress-energy tensor used in the last Section, as shown in [DPTP17, DPTP18].

Appendix: factorization of matrix Λ

Remembering that Λ is given by:

Λ =


(N−2)(N−6)

N + 1 N − 4 N − 3
3(N−2)(N−4)(N−6)

N2

3(N−4)2

N − 1 3(N−3)(N−4)
N

2(N−2)(N−6)2

N2

2(N−4)(N−6)
N

2(N−3)(N−6)
N + 1


it is easy to see that, if one subtracts the eigenvalue 1 from all its line, the

first and last line become proportional with a factor 2(N−6)
N . Then subtracting

3(N−4)
N time the first line from the second one, the second coordinate of the cor-

responding eigenvector must be null. The fist line then give a relation between
the first and the last coordinates, from which the first eigenvector is derived:

X0 =

 (N − 3)
0

− (N−2)(N−6)
N


Using the form

[
3(N−4)2

N − 1
]
± N−4

N

√
3[(N − 6)(3N − 8)] for the two other

eigenvalues, they are easily subtracted from the diagonal terms of matrix Λ.

Then subtracting 2(N−6)
N times the first line from the last one gives a relation

between the first and the last coordinates: the last coordinates is equal to
2(N−6)
N times the first one. Introducing this relationship into the second line

gives a first coordinate proportional to
√

3[(N − 6)(3N − 8)], from which the
other coordinates are obtained. In the end, the corresponding eigenvectors is
given by:

X =


√

3[(N − 6)(3N − 8)]

± 3(N−6)(3N−8)
N

2(N−6)
N

√
3[(N − 6)(3N − 8)]


with sign + on the second line corresponding to λ1 and sign − to λ2.
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