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Echo Cancellation—A Likelihood Ratio Test for
Double-Talk Versus Channel Change

Neil J. Bershad, Fellow, IEEE, and Jean-Yves Tourneret, Member, IEEE

Abstract—Echo cancellers (ECs) are in wide use in both elec-
trical (four-wire to two-wire mismatch) and acoustic (speaker—mi-
crophone coupling) applications. One of the main design problems
is the control logic for adaptation. Basically, the algorithm weights
should be frozen in the presence of double-talk and adapt quickly
in the absence of double-talk. The control logic can be quite
complicated since it is often not easy to discriminate between
the echo signal and the near-end speaker. This paper derives a
log-likelihood ratio test (LRT) for deciding between double-talk
(freeze weights) and a channel change (adapt quickly) using a
stationary Gaussian stochastic input signal model. The proba-
bility density function (pdf) of a sufficient statistic under each
hypothesis is obtained, and the performance of the test is evaluated
as a function of the system parameters. The receiver operating
characteristics (ROCs) indicate that it is difficult to correctly
decide between double-talk and a channel change based upon a
single look. However, postdetection integration of approximately
100 sufficient statistic samples yields a detection probability close
to unity (0.99) with a small false-alarm probability (0.01).

Index Terms—Echo cancellation, channel change, double-talk,
likelihood ratio test.

I. INTRODUCTION

CHO cancellers (ECs) have been used in networks for
E voice quality enhancement for several decades. There are
two different kinds of applications for ECs. The network or hy-
brid echo on the public switched telephone network (PSTN) is
caused by the four-wire to two-wire impedance mismatch. This
mismatch results in unwanted reflection of transmitted energy
back to the speaker or the source. Networks are equipped with
ECs, known as network or line ECs, to remove these unwanted
reflections. The International Telecommunication Union’s
(ITU’s) Recommendation ITU-T G.168 2002 [1] specifies the
minimum requirements and test conditions for performance of
network ECs in the PSTN. Acoustic echo is another kind of
echo which occurs widely in digital applications. Acoustic echo
is the coupling of the received voice and the mouthpiece of a
mobile handset or the coupling of the speaker and microphone
of a hands-free mobile phone. Acoustic echo is typically more
complex than the hybrid or network echo, and the echo delays
are much longer.
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The echo cancellation problem has been studied by many au-
thors [2], [3] for more than 30 years. There are many similar
design issues and parameters for acoustic and network echo can-
cellation. The two main design problems are 1) choice of adap-
tation algorithm(s) and 2) control logic for adaptation. The latter
design problem is caused by double-talk. The EC observes the
channel input vector and the scalar error signal. The error signal
can consist of both double-talk (near-end speaker) and/or the
uncancelled outgoing signal due to the far-end speaker. Spe-
cific control logic involves monitoring the error signal as well
as the channel input vector (to handle nonstationary voice). Sig-
nificant increases in the error signal power can be due to either
double-talk or a channel change (ignoring voice nonstationari-
ties). The algorithm weights should be frozen in the presence of
double-talk and adapt quickly when there is a channel change.

The control logic can be quite complicated [2] since it is
often not easy to discriminate between the echo signal and the
near-end speaker. The primary problem is due to the nonstation-
arity of the channel input. There are many schemes described in
both [2] and [3] for deciding when to adapt the adaptive filter
weights [4]-[11]. Reference [4, p. 1717] states, “It should be
noted that none of these detectors alone is yet sufficient to con-
trol the acoustic echo cancellation filter reliably,” and “However,
a combination of detectors is quite difficult and a lot of heuristics
is involved.” The details of these schemes will not be discussed
here. Suffice it to say, to our knowledge, these or other schemes
are not based on any optimum statistical tests such as a likeli-
hood ratio test (LRT) [12, p. 34]. The principle reason for this
lack is the difficulty modeling the nonstationarity of the voice
data.

This paper derives a LRT for deciding between double-talk
(freeze weights) and a channel change (adapt quickly) using a
stationary Gaussian stochastic signal model. The LRT is then
simplified to a sufficient statistic (a function of the observables
that depends upon which hypothesis is true) to obtain an op-
timum test statistic. The probability density function (pdf) of the
test statistic under each hypothesis is obtained and the perfor-
mance of the test statistic is evaluated as a function of the system
parameters. This performance is represented through receiver
operating characteristics (ROCs) [12, p. 38]. These curves show
the probability of detection (Pp) (deciding one hypothesis is
true when it is actually true) versus probability of false alarm
(Pra) (deciding the same hypothesis is true when it is actually
not true). The ROCs indicate that it is difficult to correctly decide
between double-talk and a channel change based upon a single
look. However, postdetection integration of about 100 succes-
sive LRT samples yields a Pp close to unity (0.99) with a small



Pra (0.01). Note that the application of ROCs to the double-talk
detection problem has been studied in [13]. The paper compares
the performance of three different double-talk detectors using
Monte Carlo simulations with real voice data and real channels.
The simulations are required since no pdf’s are available for
these detectors. Our paper differs from [13] in that it considers
channel changes and derives theoretical ROCs for the test.

The stationary signal model is not necessarily representative
of speech since speech is highly nonstationary. However, as is
usually the case with parametric signal models, the theoretical
results are suggestive of good signal processing techniques. For
example, the theoretical results for the optimum LRT provide
upper bounds on the performance of any other test—i.e., one
cannot do any better with any other test.

A particular EC structure (Fig. 1) is assumed in order to in-
troduce the many parameters needed for the LRT. The EC con-
sists of a nonadaptive main filter H; and an adaptive shadow
filter Hy [14]. The output of the main filter is subtracted from
the echo to obtain the cancelled echo e, (n). The shadow filter
weights are adapted continuously and periodically transferred
to the main filter using control logic based on measurements of
various input parameters such as the far-end signal and received
echo powers [5], for example. Consider the basic behavior of
the EC when double-talk occurs or when a channel change oc-
curs. Assume that the system is initially in steady state so that
H; = Hjg and the two filter short-term time-averaged error
powers e2(n) and eZ (n) are small. Suppose double-talk occurs
suddenly at time ;. The two error powers now become large be-
cause of the double-talk. The shadow filter (incorrectly) adapts
using this large error power and no longer matches the unknown
channel. No transfer from the shadow filter to the main filter
should occur. However, because the power of the double-talk
is usually large compared with the error powers of the two fil-
ters prior to the appearance of the double-talk, e2(n) and €2 (n)
are primarily due to the double-talk. Thus, it is difficult to de-
cide to transfer the weights from the shadow to the main filter
using only the error powers of the two filters. On the other hand,
suppose a channel change occurs at time n1. The shadow filter
now (correctly) adapts on this channel change. After some time,
e2(n) < €2 (n) and a transfer from the shadow filter to the main
filter should occur. This is an easy decision if one can wait long
enough to detect the changes in the error powers. However, how
can one determine the difference between the double-talk and
a channel change when both events cause the shadow filter to
immediately adapt? How should one make these decisions in
an efficient manner based upon only the channel input and the
outputs of the shadow and main filters? Some answers to these
questions will be addressed in this paper.

Section II defines an hypothesis test based on the likelihood
functions for double-talk versus a channel change. This hypoth-
esis test yields a sufficient statistic for this problem. Section III
derives the pdf of the sufficient statistics under both hypothesis.
Section IV presents ROCs for different sets of parameters. A
suboptimum postdetection integration procedure based on mul-
tiple samples of the sufficient statistic is proposed in Section V.
The performance of this postdetection integrator is evaluated
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Fig. 1. Basic EC structure.

using Monte Carlo (MC) methods. Finally, Section VI applies
this theory to full EC implementations for two cases: 1) a syn-
thetically generated data model and 2) real voice data trans-
mitted over a real channel. Some results and conclusions are
reported in Section VIIL.

II. HYPOTHESIS TEST

Two of the primary signals that the EC uses for the control
logic are the error signal e,,(n) (canceller output) and eg(n)
(shadow filter error signal). Whenever the powers of the error
signals increase significantly over some quiescent level, the EC
needs to decide whether the increase is due to double-talk or
to a channel change. Either occurrence will cause a significant
increase in the error powers. A statistical hypothesis testing
problem is defined in what follows, which models these two
possible events. It is assumed that the EC in Fig. 1 is able to
accurately estimate the background noise power o, the signal
power o2, and the double-talk signal power o2. These powers
are assumed to be time invariant, at least over the time interval
of the data used in the hypothesis test.

A. Signal and Channel Models

The channel input vector x(n) is of dimension N x 1 with
E[x(n)xT(n)] = 02Ix (Ix is the N x N identity matrix)
and the channel output is a scalar y(n). This paper assumes that
[y(n),xT(n)]T is a zero-mean Gaussian vector. Let

H1 :y(n) is due to double-talk

Ho : y(n) is due to a channel change.
This choice is arbitrary; the reverse is also possible. Under H;
y(n) = x"(n)H1 +no(n) + n1(n) M

where H; is an unknown channel that has been correctly iden-
tified prior to time n using the adaptive shadow filter and trans-
ferred to the main channel filter. The additive noise ng(n) is



stationary zero-mean white Gaussian, independent of x(n) with
E[n(n)] = o3. The second additive noise n1 (n), modeling the
double-talk, is also zero-mean white Gaussian, and independent
of both x(n) and ng(n) with E[n?(n)] = o%. Under Ho
y(n) = xT(n)Hy + no(n) (2

where H is a new unknown channel which is identified adap-
tively after time n using the shadow filter. It is assumed that
no transfer from the shadow filter to the main filter occurs until
after the hypothesis test has been performed. Thus, Hj is the
main filter weights, and Hy is the shadow filter weights after
convergence.!

Hence, all the parameters are known for the hypothesis test.
Straightforward calculation yields

E [y*(n)|H1] =o2H{H; + 0§ + 03

E [y*(n)[Ho] =o2HIHg + 0}
Ey(n)x(n)|H:] = o7H,
E [y(n)x(n)|Ho] = o7Ho. 3)

Thus, the joint pdf of v(n) = [y(n),xT (n)]* is Gaussian such
that

pv(n)[Hi] ~

where R; is the following (N + 1)

. HT
R; = 021y 1 + 02 ( a; H; ) (5)

X (N + 1) matrix:

Hi 0N
where O is a N X NN matrix of zeroes and where

0+‘71

2
ap=—1+HIHy + g a =—-1+HTH, +

.’L’

B. Log-Likelihood Ratio Test
The log LRT for (4) accepts hypothesis H; when

VO] 1o »
| = 2 (R R v
(Rl
Tyl <|R?|> ©

2
exceeds an appropriate threshold [12, p. 34]. Since the last term
in this expression is not a function of the observables, the log
LRT simplifies to

T -1 —1 o

vin) (R =Ry ) v(n) ST @)
Hy

ITf H, is actually true (double-talk present), it will not be possible for the
shadow filter to adapt and learn the true value of H, needed for the test until
the double-talk disappears. Instead, the output of the shadow filter can be used
as if it has correctly estimated H. The EC examples in Section VI function this
way. The outputs of the main and shadow filters are used in the test statistic to
decide whether or not to transfer the shadow filter to the main filter. As can be
seen, the poor estimates of Hy during the double-talk period do not affect the
transfer logic—no transfers occur during double-talk. Hence, it is not critical to
the test not to have a good estimate of Hy during double-talk. To summarize,
our mathematical model is robust with respect to this problem.

where Tj is a threshold setting determined by Pp and Ppa.
One decides H; is true if the log LR exceeds the threshold
T4 and decides H otherwise. The threshold 73 is selected so
as to yield a given performance for the test. Equation (7) is a
quadratic form in the observables whose matrix inverses need to
be evaluated. Usually, this can be a formidable problem. How-
ever, the inverses can be evaluated here because R and R are
each an identity matrix plus a rank-2 matrix. As a result, the in-
verse problem reduces to the following eigenvalue—eigenvector
problem:

Mo = \@ ®

where

_ [ a Hf
Mk—<Hk 0N>. ©)

Following the techniques in [15], solving (8) yields

ap + ,/a% + 4H{Hk
Alp =

2

ar — y/ai + AH{ Hj,
)\Q,k = )

2

=0,1.

The eigenvectors ¢Z-’ j»

1 =1,2and 5 = 0,1, are given by

1 A2
b= ———(y)
)‘i,j + Hj H]' J
Using (8) and (10), the following result can be obtained:
200
2p -1 _ i, T -
IR =TIy — ; T #abis =01 (D
Inserting (11) in (7) yields
7 NI
ZZ 1+)\ L b | vin )§T1. (12)

i=1 7=0 Ha

Hence, inserting (10) in (12) and performing the matrix multi-
plications yields the test statistic

1 T 2
H
SS (1)t [y(n) L X H, (13)
— = Aij
i=1 j=0 )
where
2
- Aij A )
YT 1+ N, A2+ HIH,

Expanding (13) and, ignoring terms that do not change under
either hypothesis yields the following sufficient statistic for the
test:

—1)it+1lL. .
CO Ry (),



where

K=y

1
(=1 ks ;.

1=1 5=0

By dividing by K and noting that A; ;A2 = —H;{Hk, some

algebra leads to the following test

Ho
v(n) = y(n)z(n) = Tr,
Hi

(14)

where

2 2 2
z(n) =y(n) +2 <U—g> x? (n)Hy — 2 <00 +2(TI> x”'(n)Hp.
o1 o1

5)
Thus, the sufficient statistic is the product of two zero-mean
correlated Gaussian variates. Here, y(n) is the channel output at
time n and z(n) is a linear combination of the channel output,
the scaled output of the main filter, and the scaled output of the
shadow filter. The scalings are simply the ratio of the additive
channel noise power to the double-talk signal power, and 1 plus
this ratio. Note that the test statistic does not depend on the input
signal power but that the performance of the test does. Thus, one
observes two interesting situations as limiting cases. When the
double-talk is large in comparison to the background noise and
the channel input, i.e., 05 /o? — 0 and 02 /o7 — 0, we obtain

Ldim y(n) = y(n) [y(n) - 2x" (n)Ho] =~ y*(n).
02/0—o00

Hence, one just measures the power in the channel output,

agreeing with intuition. On the other hand, if the double-talk is

small in comparison to the background noise and the channel

input, i.e., 07 /0 — 0 and 07 /0% — 0, we obtain

y(n) ~ 2j—§y<n>xT<n>[H1 ~ Hy).

Thus, one cross-correlates the channel output with the channel
input vector and weights the resultant with the difference be-
tween the two channel vectors. The use of cross-correlation is
well known [16]. In the general case, the test is a combination
of a power measurement of y(n) and the weighted cross-corre-
lation vector y(n)x(n). The nice feature of v(n) in the general
case is that it indicates how to optimally combine these two mea-
surements. The next section derives the pdf of v(n) under either
hypothesis.

III. PDF OF THE SUFFICIENT STATISTIC

Since v(n) = [y(n),xT(n)]T is a zero-mean Gaussian
vector, it follows that y(n) is a zero-mean scalar Gaussian
variate with variance given by (3) under the two hypothesis.

Here, z(n) is also a zero-mean scalar Gaussian variate with a
variance that can be computed from (15), and [y(n), z(n)]? is
linearly related to v(n) = [y(n),xT(n)]T through the matrix
relation

BEZ” - H 2aH1T0_T25HOT] [igg” (16)

where a = 08 /o} and 3 = (02 + 0%)/o?. Thus, [y(n), z(n)]*
is a Gaussian vector with mean [0,0]7" and covariance matrix
¥, 4 = 0,1 under hypothesis H; (z = 0,1), where

o |1 o™ R |1 1
71 2HT —2pHT | T |0 20H; — 28H,

=0
xr 1 1
Moy Moo

a7

with

mil =1+4a,

miy =14 a; + 2H? (aH; — fHp) = miy,

mby =1+ a; + 4 («H] H; — SH] H)
+4 (eHT — Hy ) (eH, — fHy)

where a; has been defined below (5). The joint pdf of y(n) and
z(n) under hypothesis H; can be written

1 1 -1 T:|
i(y,z2) = ——exp | —=(y,2)X; (y,2 (18)
pi(y, 2) 2m 5] p[ 5 (4 2)8; (y, 2)
where
-1 1 [ méz —mb}
¥, = S R 2 i . (19
o2 (mlnméz - mz12m121) —Mg My

Since y and z are jointly Gaussian with zero means, the pdf of
the product v = yz is given by [17, p. 45]

exp |:—’U,(2i_1)12:|

T/ |5

pi(u) =

Ko [Iul\/ (=), (=0 1)22}

(20)

where K is the modified Bessel function of the second kind
and of zero order. It is interesting to note that the two chan-
nels are related to the pdf p;(u) through HY Hy, HY Hy, and
HTH,. Consequently, any pair of channels with the same
values for these three parameters will yield the same detection
performance for a given value of (02,03, 07). Note also that
when ag = 0, the covariance matrix X is singular. In this case,
the pdf of the product u = yz under hypothesis H reduces to
po(u) = [~2ro (HIHo)u] V2 exp{u/[202(HI Hy)]}, i,
u/[—(HEHy)o2] is distributed according to a x? distribution
with one degree of freedom.
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IV. PERFORMANCE CURVES

A. Theoretical Curves

The performance of the sufficient statistic can be defined by
the two following probabilities [12, p. 34]:

oo

Pp = Placcepting Hq|H; istrue] = /pl(u)du 21

T
S

Prs = Placcepting Hi1|Hy is true | = /pg(u)du. (22)
T

Alternatively, if H is critical

1 — Ppa = Placcepting Ho|H, is true |,
1 — Pp = Placcepting Ho|H; is true |.

Thus, for each value of T, there exists a pair (Pra, Pp). The
curves of Pp as a function of Pp 4 are called ROCs [12, p. 38].

B. Monte Carlo Simulations

A set of 10 000 MC simulations has been run for the sufficient
statistic in (13) as a check on the theoretical results obtained in
(20)—(22). Fig. 2 shows some typical ROCs for N = 1024 and
different parameter selections. Here, Hy and H; are two one-
sided exponential channels with attenuation between successive
taps

oy = e(0.95)77 8 > A

Hi(j) = {07 otherwise

where A; is a relative delay of the individual channel H; and the
parameter c is defined by the filter gain, whichis G = HTH; =
HI'H,. Two cases will be considered here: the first one is de-
fined by G = 0.1, corresponding to a —10-dB channel gain
(typical in electrical applications); the second case is defined by
G = 4, corresponding to an acoustic channel (with a 6-dB gain).

o
©

o
©

e
3

o
2

o
o

Probability of Detection

o
~

o
w

o
o

e

L L L
0 0.1 0.2 0.3 04 05 06 0.7 08 0.9 1
Probability of False Alarm

Fig.3. Pp versus Prpa (MC simulations) for different values of o2 with 02 =
1,02 = 1, N = 1024, and orthogonal channels.

Each filter is effectively about 80 taps. The two filters differ only
in a bulk delay (a difference of more than 200 taps for the or-
thogonal case).

Excellent agreement between the theory and MC simulations
was obtained over all values of Pp and Ppa. Fig. 2 shows the
ROC:s for different double-talk powers, no additive noise, and
orthogonal channels (HT Hy = 0) with G = 0.1. It is seen
that a Pp approaching unity requires a fairly large Pra, even
with no additive background noise. Fig. 2 displays the relatively
poor behavior with no background noise because 1) the suffi-
cient statistic is noncoherent (quadratic in the data rather than
linear) and 2) only one time sample of the data vector is used in
the decision.

C. Using the MC Simulations to Validate the Theory

Some numerical integration problems were encountered
using (21) and (22), as the tails of the density functions are
not particularly well behaved. Because Fig. 2 showed excellent
agreement between the theory and MC simulations, it was
decided to display the ROC curves generated from the MC
simulations instead. Thus, the ROC curves in the subsequent
figures were obtained using 10000 MC simulations rather
than by direct integration. This approach was also useful
when obtaining ROCs for a postdetection integration scheme
presented in Section V. Fig. 3 shows the effect of decreasing
the background noise power on the ROC curves. The improve-
ment in performance asymptotically approaches the top curve
as the background noise power approaches zero. Hence, the
hypothesis test defined by (14) is not noise-limited. Fig. 4
shows that the performance of the sufficient statistic does not
increase monotonically with increasing levels of double-talk.
This agrees with physical intuition. At very low levels of
double-talk, the double-talk is buried in the background noise.
Thus, the channel output dominates the test statistic. As the
double-talk power level increases, the channel output is some-
what obscured by the double-talk and the performance of the
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test statistic decreases. Eventually, the double-talk power dom-
inates, and the performance again improves. This effect occurs
because of the noncoherent nature of the sufficient statistic.

V. POSTDETECTION INTEGRATION

The previous ROCs suggest that one time sample of the suf-
ficient statistic is not enough to make a reliable decision. Thus,
one would like to derive the sufficient statistic for p time samples
of the vector v(j) = [y(5),xT(j)]T forj =n—p+1,...,n
The problem with this approach is that inversion of the co-
variance matrix of the p data vectors is extremely difficult un-
less it is assumed that successive time samples are independent.
This is not a viable or useful assumption because both the se-
quences y(j) and x(j) are strongly correlated for different j,
y(7) through the memory of the channel and x(j) through the
tapped delay line structure of the adaptive filter in the EC.

A way to get around this statistical problem is to use the
MC simulation approach. Consider the time averaged sufficient
statistic

y(m)z(m). (23)

p m=n—p+1

A total of 10000 MC simulations of (23) were run for or-
thogonal channels and channels whose differential delay is
A = Ay — Ay = 1. It is straightforward to show that a
differential delay of 200 taps yields essentially orthogonal
channels (for the one-sided exponential channel used in this
paper). Figs. 5(a) and (b) and 6(a) and (b) show the resulting
ROCs for different values of p and 0§ = o7 = 1. It can be
seen that p = 100 yields excellent ROCs (P approaches unity
with a small Pga) for all cases except for the nonorthogonal
6-dB case. For the good cases, the p = 100 curves are in the
extreme upper left hand corner of the figures and are difficult
to discern. However, it is clear from the p = 50 curves that
changes in delays of one tap can be detected with Pp > 0.9
and Pra < 0.01. Fig. 6(b) indicates that the nonorthogonal
6-dB case would require p > 1000 to obtain good performance.

This result suggests that it will be very difficult to differentiate
double-talk and channel change due to a loss of synchronization
(defined by A = A; — Ay = 1) for a 6-dB channel gain.

VI. APPLICATION TO ECS

The LRT theory derived in this paper has been tested for two
distinct examples in full EC implementations of Fig. 1 with
transfer logic between the shadow and main filters modified to
use the postdetection test statistic (23). The first example con-
sists of a synthetically generated data set whose channel change
and double-talk parameters are assumed known to the EC. The
second example consists of real voice data transmitted over a
real channel.

The first EC uses a partial Haar adaptive filter to estimate
the bulk channel delay for sparse channels. It consists of a
main filter (128 taps), an adaptive shadow filter (128 taps), and
a second adaptive filter (256 taps) to handle sparse channels
as described in [18]. The second adaptive filter operates on
Haar transformed inputs to estimate the channel bulk delay. An
overall channel delay of 1024 taps can be accommodated in this
way. The 128-tap adaptive filter uses the affine projection (AP)
algorithm of order 2. The 256-tap Haar adaptive filter uses the
NLMS algorithm.

The second bench-tested EC uses a time-domain sub-sam-
pling adaptive filter scheme (Duttweiler filter) as described in
[19], instead of the Haar-based adaptive filter used in the first
example. The EC structure consists of a main filter (158 taps),
an adaptive shadow filter (158 taps), and a second adaptive filter
(108 taps) to handle sparse channels. The second adaptive filter
operates on sub-sampled inputs to estimate the channel bulk
delay. An overall channel delay of 1024 taps can be accommo-
dated in this way. The 158-tap adaptive filter uses the AP algo-
rithm of order 2. The 108-tap adaptive filter also uses the AP
algorithm of order 2.

A. Synthetic Data

The input to the canceller and the unknown channel output
was synthetically generated. The channel input x(n) consisted
of four 1-s (8000 samples/s) sets of zero-mean white Gaussian
variates with unit variance. The unknown channel output y(n)
consisted of four 1-s segments generated as follows:

xT(n)Hi+no(n), n=1,...,8000
) xT(n)Hy+no(n), n=8001,...,16000
Y= ST () Ho4no(n) +na(n), n=16001,...,24000
xT(n)Ho + no(n), n=24001, ..., 32000

where E[n}(n)] = 1 and E[n3(n)] = 1073. Also, Hy corre-
sponds to a time-delayed version of H; as given in Section IV-B.
Thus, y(n) consist of channel changes at n = 1 and n =
8001, double-talk but no channel change at n» = 16001, and the
double-talk disappears at n = 24001 without another channel
change. The parameters needed in (23) were set a priori, y(n)
was generated as above, and xT (n)H; and x” (n)H, were re-
placed by the outputs of the main and shadow filters, respec-
tively.
The threshold setting for (23) was set at

E [y(n)[Hol}

Ty = E [y(n)[Ho] + b {E [y(n)[Hy] - 24)
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where
i
Eblr] = o2 (1427 ) BIH,
1

o2 —1—02
952 (M) HTH, + 0 + o2

ot
and
o2 + o2
Ehi] = o2 (1- 2757 ) By
1

o2
+202 <0—[12)> H{H, + o}.
Here, b is a scalar that controls controls the location of the
threshold with respect to the means under the two hypothesis.
When b = 0, To = E[y(n)|Ho] (at the mean under Hy); when
b =1,Ty, = E[y(n)|H4] (at the mean under ;) and when
b =0.5,T5 = 0.5{E[y(n)|H1] + E[y(n)|Ho]} (halfway be-
tween the two means). Here, b was chosen equal to 0.2 for the
subsequent figures. Threshold 7% can be related to Pp and Ppa
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0? =02 =1, N = 1024).

through (22) for p = 1. This information is of limited value here
since p > 1 and the ROCs are obtained from the MC simula-
tions.

Figs. 7-9 display the mean-square error (MSE) (top curves),
the number of transfers from the shadow filter to the main filter
every 200 samples (middle curves), and the average sufficient
statistic I'(n) and threshold 75 (bottom curves) for p = 100,
p = 10, and p = 1, respectively, as a function of the number
of algorithm iterations. The MSE is defined as the uniformly
weighted time average of the squared error over 100 adjacent
time samples. The MSE begins at about 90 dB (c2HTH; =
0.1 implies MSE = 90 dB) and converges to about 70 dB
(02 = 103 implies MSE = 70 dB) for the first two channel
changes. The channel changes are correctly detected in all cases.
It takes about 400 ms for the shadow filter to adapt to the un-
known channel and transfer this information to the main filter
when the shadow filter is initialized at zero. It takes about 750
ms for the shadow filter to change from H; to H. The reason
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for this longer convergence time is due to the convergence time
of the Haar adaptive filter. In the third phase, the MSE is deter-
mined by the double-talk, which is 30 dB above the noise floor
(at 100 dB). The third phase is the most interesting. It demon-
strates the sensitivity to double-talk as p varies. This is shown
in the middle curves of Figs. 7-9. Fig. 7 shows that no trans-
fers occur during double-talk when p = 100, whereas Fig. 9
shows that numerous transfers occur for p = 1. This behavior
is supported by the MSE curves. Further support for this be-
havior is provided by the bottom curves of Figs. 7-9, which
compare I'(n) and T». The fluctuations in I'(n) decrease as p
increases, reflecting the change in the time averaging of I'(n).
The case p = 10 displays mixed behavior with some sensitivity
to double-talk. Note that the middle curves of Figs. 7-9 show
I'(n) < T; for some values of n, but no transfers occur. This
is because of the ad hoc requirement for a transfer that all pre-
vious p— 1 samples of y(m)z(m) be less than T3 (for additional
double-talk protection). This prevents a transfer when previous
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Fig. 9. EC performance for p = 1. (Top) MSE. (Middle) Number of trans-
fers from the shadow filter to the main filter. (Bottom) Time-average sufficient
statistic I'(n) and threshold 7.

double-talk has badly affected the shadow filter weights before
they have received a transfer back from the main filter. The
bottom curves of Figs. 7-9 show that lowering 75 (reducing b)
will increase both Pp and Pra. This will change the operating
point (Pra, Pp) to a different place on the ROC. The behavior
displayed in Figs. 7-9 is in agreement with the ROCs shown
in Figs. 5(a) and (b) and 6(a) and (b). When p is increased, no
transfer from the shadow filter to the main filter occurs in the
presence of double-talk, as is observed in the middle curves of
Figs. 7-9.

B. Voice Data Over a Real Channel

The EC structure used in this example has been described
previously. For comparison purposes, the LRT-based EC was
obtained from the conventional EC with only one modifica-
tion. The logic for transfer from the shadow to main filters was
changed in accordance with (23) and (24). The various parame-
ters in (24) were replaced by estimates obtained from other por-
tions of the EC.

The voice data file is approximately 114-K-samples long. The
language is Swedish. The channel output consists of a far-end
speaker (0-27 K) during which time a channel change occurs
at 20 K, double-talk (27-93 K), a second channel change (93
K), and far-end speaker (93—114 K). Thus, the file consists of
an initial training period of 20 K, a channel change with only 7
K for training, a long period of high-level double-talk, a second
channel change, and 21 K for training after the second channel
change. Thus, this file tests three properties of an EC: learning
speed, double-talk sensitivity, and response to channel changes.
It should be noted that the first channel change does not involve
a significant change in echo return loss (ERL) or delay. Hence,
the estimate of the bulk delay should not change. The second
channel change (93 K) involves a change in channel delay of
about 300 samples. For this channel change, the estimate of the
bulk delay changes significantly. The real channels were un-
known. Hence, the adaptive filter weights, after convergence,
provided the following information about the unknown impulse
responses:
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e prior to first channel change—a highly oscillatory of length
about 80 taps with six positive and five negative discernible
peaks (of positive amplitudes about 0.12, 0.08, 0.05, 0.04,
0.01, 0.01 and negative amplitudes of 0.11, 0.09, 0.07,
0.015, 0.01);

o after first channel change—the same filter shape but a
change in delay of one tap;

» second channel change—the same filter shape but a very
large change in delay (300 taps).

The first channel change did not require a new estimate of
delay by the partial Haar filter, in contrast to the second channel
change. Figs. 10 and 11 show four curves for each of the two
EC results: the smoothed MSE of the main filter in decibels
(top), the number of transfers from shadow to main (second),
a measure of the adaptive filter weight errors (third) (a small
value of the norm of the “delay coefficients” [20], denoted as (3,
means that the adaptive filter is at or near convergence), and the
bulk delay of the main filter (bottom). Note that the beginning

and the end of double-talk are indicated by vertical dotted lines
on all figures. These two sets of curves can be interpreted as
follows.

* Both ECs undergo a learning phase from 0 to 20 K. The
transfers from the shadow to the main filter occur under the
control of some transient learning logic. This logic is the
same for both ECs and is not related to the channel change
versus double-talk logic. Hence, the 3 curves are identical
during this phase.

* The first channel change at 20 K is detected at 20.4 K
(within 400 samples) for the LRT-based EC (Fig. 11,
middle two curves) but is detected at 24.8 K (within 4800
samples) for the conventional EC (Fig. 10, middle two
curves). Note that the parameters for the LRT-based EC
are p = 500 in (23) and b = 0 in (24).

* The curves for the second channel change at 93 K are more
difficult to interpret because of the effects of the Duttweiler
filter and the transient learning logic. Fig. 10 has the fol-
lowing interpretation: the first change in the third figure (at
about 92 K) is an incorrect estimate of the bulk delay. A
correct estimate occurs at about 94.2 K. Numerous trans-
fers from the shadow filter to the main filter occur due to
the transient training logic. However, the conventional EC
transfers the channel change to the main filter at 94.8 K
(in 600 samples). The jump in § at 99.6 K is due to a
small change in the Duttweiler filter estimate of the delay
(not shown here) at 99.5 K. This changes the delay of the
shadow filter and causes it to re-adapt. This is interpreted
by the conventional EC as another channel change and,
hence, a transfer at 99.6 K. A similar comment applies to
the transfer at about 108 K. Fig. 11 has the following inter-
pretation: the bottom curve indicates that the first change
in the bulk delay is correct (at 96.2 K). The middle two
curves indicate that the LRT-based EC first transfers the
shadow filter to the main filter at 97.6 K (in 1400 samples).
Then, the transient training logic takes over, causing J to
decrease. Note that a significant portion of the total delay
(from the channel change at 93 K) is due to the Duttweiler
filter estimating the new bulk delay and transferring this to
the main filter.

* Both cancellers are insensitive to the heavy double-talk
during 27-93 K, as shown in the second and third curves
of Figs. 10 and 11.

To summarize for this particular example, both ECs are not
sensitive to double-talk. The LRT-based EC yields a much faster
transfer from the shadow to the main filter for the first channel
change, whereas the conventional EC is somewhat faster for the
second channel change. The latter result is somewhat clouded
by the effects of the Duttweiler adaptive filter.

VII. RESULTS AND CONCLUSION

This paper has derived a LRT for deciding between double-
talk (freeze weights) and a channel change (adapt quickly) for
a stationary Gaussian stochastic input signal model. The pdf of
the sufficient statistic under each hypothesis was obtained and
the performance of the sufficient statistic was evaluated as a
function of the system parameters. The ROCs indicate that it is
difficult to correctly decide between double-talk and a channel



change based upon a single look. However, MC simulations
of the postdetection integration of approximately 100 sufficient
statistic samples yields a detection probability close to unity
(0.99) with a small false alarm probability (0.01). Thus, use of
an LRT to decide between a channel change or double-talk of-
fers a significant improvement in EC performance. It should be
noted that the simpler problem of detecting double-talk only is
a special case of what has been studied here. One need only set
H; = H, in (1) and proceed to generate ROCs, etc.2

The LRT is highly parametric and requires detailed statistical
information about the input under both hypotheses. This will
not be the case in a real echo cancellation environment. Thus,
any practical application of the LRT to an EC will suffer perfor-
mance degradation as compared to the ROC curves presented
here. These degradations are due to the difficulty of the EC to
accurately estimate these parameters in an actual voice signal
environment. However, the real value of the ROC curves is to
upper bound the performance of any less-than-optimum system.
Thus, the ROC curves presented in this paper (or others derived
using the theory in this paper) can be of great value to an EC
designer even though they may not match precisely the param-
eters of the environment.

The effects of parameter estimation errors can be studied
through the use of the generalized-likelihood ratio test (GLRT)
when the parameters are assumed unknown and are simulta-
neously estimated while deciding which hypothesis is true. Of
course, the GLRT will not perform as well as the LRT.
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