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Abstract 
 

This article demonstrates that coatings of tantalum carbide can be obtained by 

electrodeposition of carbon in molten fluorides on a tantalum substrate as an alternative 

to the CVD process. The structural characteristics of the carbon deposited by the 

electrolytic route lead to a high reactivity of this element towards a tantalum cathode to 

produce tantalum carbide. Mutual reactivity was shown to be enhanced if tantalum plate 

is replaced by an electrodeposited layer of tantalum, where the fine microstructure 

provides a catalytic effect. 
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1. Introduction 

 

Up to now, layers of tantalum carbide have been synthesised by chemical vapour 

deposition of carbon on a tantalum substrate in a 1300-1500°C temperature range. The 

carbon prepared in this way is very reactive towards the substrate and the interdiffusion 

of tantalum and carbon produces 10-20 μm layers of TaC and Ta2C on the surface of 

tantalum plate after 50 hours of treatment [1]. 

 

A similar process using reactive electrodeposition of carbon as an alternative to 

CVD process was examined here. In this way, the overall process consists of 
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electrodeposition of carbon on a tantalum substrate with diffusion of the carbon 

produced leading to the formation of tantalum carbide. 

 The success of this operation, based on a solid state reaction, is obviously 

affected by the state of division of each reactant: 

- we demonstrated [2] that carbon can be electrodeposited in fluoride media, and in 

further work [3], focused on the electrocrystallisation process, that the nucleation of 

carbon is progressive and provides a constant source of small amorphous grains at 

the cathode surface, 

- in a recent article [in press] concerning the electrocrystallisation of tantalum in 

molten fluorides, we optimized the electrolysis current to obtain a regular and 

microstructured layer of tantalum over a stainless steel substrate. 

 

In the present work, we used instead of solid tantalum plate an electrodeposited 

layer in which the small grain size enhances the contact area of the cathode and thus 

acts as a catalyst. 

Following optimisation of the operating conditions for the tantalum coating 

structure and optimisation of the operating conditions for the carbon coating 

morphology, we observe the reaction between the electrodeposited carbon and a 

cathodic substrate made successively of tantalum plate and of a thin tantalum coating. 

 

 

2. Experimental Details 

 
2.1 The electrochemical cell 
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All the experimental systems have already been detailed in previous works [2,4]. 

 

2.2 Experimental techniques 

 

All the electrolyses were carried out with a PGSTAT 30 galvanostat/potentiostat 

with autolab software. 

 

The deposits of carbon, tantalum and carbides are characterised using physical 

techniques:  

(i) XRD (SEIFERT) to analyse the crystallised compounds with the 

following operating conditions : 20° < 2θ < 90° with a sweep rate of 

0.05°/20s, 

(ii) scanning electron microscopy (LEO 435 VP) and an EDS probe for 

the observation and the chemical analysis of the deposits respectively. 

 

3. Results and Discussion 

 

The overall process consisted in making a tantalum coating on a usual substrate 

(stainless steel, copper, etc) then followed by carbon coating of the tantalum layer.  

 

 Each coating was optimised in order to enhance the microstructure of the two 

reactive elements. Indeed, the intermetallic diffusion between tantalum and carbon is 

facilitated if both coatings are microstructured instead of containing big crystals. 
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3.1 Optimisation of operating conditions on tantalum coatings 

morphology 

 

The preparation of tantalum coatings is well controlled by our team [4-6]. We 

first recall the operating conditions and the previous results: (i) electrolyte: LiF-NaF + 

K2TaF7,  (ii) temperature range: 750 – 900°C, (iii) the electrode process: direct 

electroreduction of TaF7
2- ions into tantalum exchanging five electrons, and (iv) the 

coatings are adherent and smooth at moderate current densities.   

The oxide content is to be controlled for successful electrodeposition as we 

reported in a recent article [6], where we demonstrated that the contamination of the 

bath by these ions hinders the success of the coating.  

The optimization of the experimental conditions in terms of microstructure was 

missing up to now and thus was examined here. 

 

For this purpose, we examined the influence of the temperature and the current 

density on the microstructure of the coating through a two-dimensional experimental 

design: two values of the variables temperature (800°C and 900°C) and current density 

(5 and  

100 mA.cm-2). The substrate was stainless steel and the thickness of the coatings about 

20 µm. The microstructure of the coating was assessed by SEM of cross sections after a 

treatment to reveal the grain boundaries. Figures 1a, b, c and d represent SEM 

micrographs of cross sections of tantalum coatings prepared for the four operating 

conditions. 

The main observations are: 
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- temperature effect: at 800°C, the thickness of the layer was more homogeneous 

than at the higher temperature (900°C), 

- current density effect: small crystals were presents at the Ta / steel interface for the 

higher current density; otherwise at low current density, the coating was made of 

coarse crystals. This is explained in a previous work on the electrocrystallisation of 

tantalum in molten fluorides [3], where it was stated that at low current, the 

nucleation rate is low, and consequently generating few crystals which become 

coarse grains in the future layer. 

 

We conclude that the best operating conditions for obtaining microstructured 

coatings are 800°C and 100 mA/cm². Furthermore, in these conditions, the thickness of 

the coating is very regular, and this can be considered as a promise of a smooth 

tantalum carbide layer. 

 

3.2 Optimisation of operating conditions on electrolytic carbon 

coating morphology 

3.2.1 Carbon electrodeposition process 

In previous works [2], it was shown that the electrochemical reduction of 

carbonate ions in molten fluoride melts in the 700-900°C temperature range leads to a 

one-step process exchanging four electrons to produce amorphous carbon: 

CO3
2- + 4 e-  C + 3 O2- 

 

Then, we demonstrated that carbon nucleation is progressive whatever the 

temperature and carbonate ion concentration.  
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So, these earlier results suggested a high reactivity of the electrodeposited 

carbon in molten fluorides: (i) amorphous structure; (ii) progressive nucleation. 

Accordingly, during electrolysis, small and reactive grains are continuously generated at 

the surface of the substrate; if the reaction with the tantalum substrate is 

thermodynamically spontaneous, a catalytic effect can be expected from the small size 

of the carbon particles obtained. 

 

3.2.2 Optimisation of the current density and the temperature with 

respect to coating morphology 

 

As in the case of tantalum coatings, we used an experimental design with 

temperature and current density as variables and the morphology of the electrodeposited 

carbon as endpoint. A series of carbon coatings were obtained on copper electrodes for 

two temperatures (700°C and 800°C) and for two current densities (60 and 130  

mA.cm-2). Figures 2a, 2b, 2c and 2d represent SEM micrographs of the carbon coatings 

prepared for the four operating conditions: 700°C, 60 mA/cm²; 700°C, 130 mA/cm²; 

800°C, 60 mA/cm² and 800°C, 130 mA/cm² respectively. 

The role of the current density seems to be particularly important on the 

structure and the morphology of the carbon coatings obtained by carbonate reduction. 

At the lower temperature (700 °C) and lower current density (60 mA/cm²), in figure 2a, 

a fibrous texture with whiskers of electrodeposited carbon is observed. The real surface 

area of the deposit is very high. While at higher current density (130 mA/cm²), on figure 

2b, the shape of the coating is smoother and more compact.  
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The temperature has a strong influence on the growth rate: the growth of carbon 

nuclei is fast, so the deposit is made of big spherical grains regularly distributed over 

the surface of the cathode. Figure 2d, showing the coating prepared in these conditions 

(high temperature and current density), also confirms that the carbon grains are not of 

the same size, which is coherent with the notion of progressive nucleation.  This type of 

coating seemed, to us, to be the most propitious for further reaction of the carbon with 

tantalum substrate; therefore, the operating conditions of figure 2d were chosen carbon 

electrodeposition on tantalum.  

 

3.3 Reactive Electrodeposition of Carbon on Tantalum 

 

3.3.1 Thermodynamic and kinetic aspects 

 

Gibbs energy at 1000K of both TaC (ΔfG° = - 140.9 kJ/mol) and Ta2C (ΔfG° = - 

209.6 kJ/mol) prove that these compounds are thermodynamically stable [7], and that 

the reaction between tantalum and carbon should be spontaneous; nevertheless, we 

know that a reaction proceeding between two solid phases put into contact needs special 

conditions to be activated. As mentioned, a strong catalytic effect can be expected from 

the permanent supply at the tantalum cathode surface of small grains of carbon during 

the electrolysis of carbonate ions in fluorides; likewise the reactivity of tantalum must 

be improved by the small grain size at the surface of the cathode since it is well known 

that the reactivity of tantalum proceeds mainly in the grain boundaries.  
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3.3.2 Observation of the formation of tantalum carbides 

 

Preliminary carbon electrodeposition runs at 1073 K of on smooth surfaces of 

tantalum plate yielded only a thin carbide layer (less than 1 μm in 2 hours) on the 

cathodic surface, as shown in the micrograph in figure 3. So, it was decided to use a 

tantalum coating on stainless steel as cathode material.  

 

 Figure 4 represents an XRD spectrum of the tantalum carbide layer obtained in 

this way: 20 µm of tantalum and carbon deposition for 2 hours at 130 mA/cm² at 800°C. 

Normally, at the interface of TaC layer and Ta substrate, a thin layer of Ta2C should be 

expected whereas we can notice in this spectrum that the layer is made entirely of TaC. 

This result proves that the kinetic of formation of Ta2C is very slow. We can also 

observe that some tantalum is still visible in the spectrum, indicating that carbon 

interdiffusion within the tantalum layer is not complete. 

 

As we can see in figure 5a and 5b, thick carbide layers are obtained on 

electrodeposited Ta (about 7-8 μm). Obviously, this result confirms that the 

microstructure of the Ta coating and the nucleation mode of the carbon promote a 

catalytic effect, due to a much more extended area of contact between the two elements. 

As evidenced in the micrograph in figure 6 and its magnification of figure 7, the  

penetration of small grains of carbon supplied by the electrodeposition process proceeds 

within the grain boundaries and the rate of the reaction increases significantly when the 

contact between the two elements is enhanced. This work confirms the high reactivity of 
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carbon electrodeposited in molten fluorides in the formation of tantalum carbides as 

proved by the analysis of the diffusion layer [8]). 

 

Notice that reference [9] mentions a similar approach in molten oxysalts for 

obtaining layers of borides and silicides of refractory metals (W, Mo) or oxides (Cr2O3) 

by an electrolytic process in two stages: (1) deposition of the refractory metal or of the 

oxide; (2) reactive electrodeposition of B or Si. 

 

4. Conclusion 

 

This work confirms the high reactivity of electrodeposited carbon in molten 

fluoride media towards tantalum and the reaction proceeding between the two elements 

in the grain boundaries of tantalum.  

 

Nevertheless, the XRD pattern of the layer shows that Ta is still present in the 

coating, meaning that the reaction is not complete and that the diffusion of reactive 

carbon is too rapid compared with the reaction within the tantalum grains. Further 

optimisations should lowering the diffusion of carbon in the grain boundaries and 

increase the reaction rate in the tantalum bulk. 

These results lead us to conclude protective coatings of tantalum carbides 

generated by the electrochemical route over a moderate temperature range (700 – 

900°C) can be now expected as an alternative to Chemical Vapour Deposition which 

proceeds at higher temperatures (1300°C). 
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This conclusion can be extended to the possible preparation of other refractory 

metal carbides (Nb, Mo, W…) in this way, so the methodology described here seems to 

be promising for the electrosynthesis of such compounds. 
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Legend of figures 

 
 
Figure 1: Evolution of the microstructures of tantalum coatings observed by SEM for 

various operating conditions: (a) T = 800°C, j = 5 mA/cm², (b) T = 800°C, j = 100 

mA/cm², (c) T = 900°C, j = 5 mA/cm², (d) T = 900°C, j = 100 mA/cm².   

 

Figure 2: SEM observation of carbon coatings on steel at various current densities and 

temperature: (a) T = 700°C, j = 60 mA/cm², (b) T = 700°C, j = 130 mA/cm², (c) T = 

800°C,    j = 60 mA/cm², (d) T = 800°C, j = 130 mA/cm². 

 

Figure 3: Optical observation of the cross section tantalum plate after electrolysis in 

carbon deposition optimized conditions. 

 

Figure 4: XRD spectrum of tantalum coating after 2 hours of carbon coating at 130 

mA/cm² and T = 800°C. 

 

Figure 5a and 5b: Optical observations of tantalum carbide layer obtained with tantalum 

coating made at T = 800°C and j = 5 mA/cm² and carbon coating made during 2 hours 

at 130 mA/cm²  and 800°C. 

 

Figure 6: Optical observation of the interface between the tantalum carbide layer and 

the stainless steel substrate. 

 

Figure 7: SEM micrograph (×2000) of the tantalum carbide layer. 
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