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This paper demonstrates the feasibility of using a camera to estimate the emotional state embedded on personal mobility two-wheel balanced vehicle. The Heart Rate Variation (HRV) metrics are used to recognise the two states: stressed and relaxed. We proceed into three steps: First, we validate the acquisition chain with camera, comparing the results with a contact sensor in static conditions for the first experiment; second, we obtain the results of the emotional state classification using neural network and support vector machine methods. Then, we improve these results using Boost methods for the classification. Finally, we design a second experiment in quasi-dynamic conditions. Results indicate that using a low-cost camera to estimate the emotional state of an individual is feasible.

Introduction 1.Background

Emotional state is important in a man-machine interaction. In recent years, including the emotions felt during a man-machine interaction is an interest point for researchers [START_REF] Pampouchidou | Automatic Assessment of Depression Based on Visual Cues: A Systematic Review[END_REF]. With this input, the machine becomes more interactive with its user [START_REF] Yu | Interactive Robot Learning for Multimodal Emotion Recognition[END_REF]. Among these emotions stress, which is manifested in an uncomfortable situation, disrupting the well-being of the person.

In recent years, several studies have been conducted to recognise the emotional state of a driver using various modalities such as facial expressions, gestures, speech, or physiological signals using "invasive" measurement solutions that have many advantages but require sensor contact, which presents discomfort to the driver. The following table resume the different studies:

Table 1 : Estimation of driver's emotional state studies using invasive solutions

Reference, Year

Context and Measures Results [START_REF] Mukhopadhyay | Wearable Sensors for Human Activity Monitoring: A Review[END_REF] 2015 Activities of human beings by monitoring physiological parameters with wearable contact sensors (Temperature, BPM)

Review of the latest reported systems on activity monitoring [START_REF] Healey | Detecting stress during real-world driving tasks using physiological sensors[END_REF] 2005 Determine driver's relative stress level using contact sensors (ECG, skin conductance, respiration)

Estimation accuracy is 97 % [START_REF] Mühlbacher-Karrer | A Driver State Detection System -Combining a Capacitive Hand Detection Sensor With Physiological Sensors[END_REF] 2017 Estimate the driver's stress level using EDA, ECG, EEG Estimation accuracy is 92 % [START_REF] Willcocks | A Mobile Sensing Approach to Stress Detection andMemory Activation for Public Bus Drivers[END_REF] 2011 Study of the daily stress experienced by bus drivers (questionnaire and ECG sensor)

Detect physiological and psychological stress responses [START_REF] Rimini-Doering | Monitoring Driver Drowsiness and Stress in a Driving Simulator[END_REF] 2001

Driver drowsiness caused by workloads and stress using physiological parameters skin conductance, temperature, ECG, EEG Driving simulator to define the relationship between physiological states and factors [START_REF] Jansen | Detection of Drivers' Incidental and Integral Affect Using Physiological Measures[END_REF] 2013

Determine the affective state of the driver using physiological measures (average heart rate) with an auto-evaluation Advantages of physiological measurement and self-auto-evaluation [START_REF] Dang | Physiological Signals in Driving Scenario -How Heart Rate and Skin Conductance Reveal Different Aspects of Driver's Cognitive Load[END_REF] 2014 Study of driver's cognitive load aspects based on skin conductance and heart rate Heart rate relates to the processing events -skin conductance linked to the novelty of the task [START_REF] Villarejo | A Stress Sensor Based on Galvanic Skin Response (GSR) Controlled by ZigBee[END_REF] 2012 Detect people's emotional state (stressed, relaxed, etc.) based on skin conductance Estimation accuracy is 90.97 % [START_REF] Zangróniz | Estimation of mental distress from photoplethysmography[END_REF] 2018 Mental distress estimation using wearable photoplethysmography (PPG)

Estimation accuracy is 82.35 % [START_REF] Asif | Human stress classification using EEG signals in response to music tracks[END_REF] 2019 The effect of music tracks on human stress using EEG signals

Estimation accuracy is 98.76 % [START_REF] Xia | A physiological signal-based method for early mental-stress detection[END_REF] 2018 Mental stress using detection using EEG and ECG Estimation accuracy is 79.54 %

The different studies show promising results. But, due to usability and perturbations associated to mobility context, embedding this kind of sensor on mobility solutions is difficult.

Many studies [START_REF] Maaoui | Automatic human stress detection based on webcam photoplethysmography signals[END_REF] [15] [START_REF] Boucenna | Development of first social referencing skills: Emotional interaction as a way to regulate robot behavior[END_REF] [17] [START_REF] Gaonkar | Robust real-time pulse rate estimation from facial video using sparse spectral peak tracking[END_REF] have been conducted to evaluate the use of cameras as a measuring system. Among all the modalities used to estimate the emotional state, the physiological signals are particularly interesting because they are mainly controlled by the autonomous system with the camera as a measuring tool.

Several studies [START_REF] Mcduff | Accessed Non-contact , automated cardiac pulse measurements using video imaging and blind source separation[END_REF], [START_REF] Takano | Heart rate measurement based on a time-lapse image[END_REF] and [START_REF] Verkruysse | Remote plethysmographic imaging using ambient light[END_REF] have demonstrated the possibility of estimating the heart rate (HR) of a person using a camera. More complex solutions have been developed, allowing the analysis of heart rate variability (HRV), which is temporal variation study between heartbeats. We chose to study the HRV because it is a set of measurements that provides diverse information: cardiac activity, breathing and even autonomic nervous system. Works like those of Bousefsaf et al. [START_REF] Maaoui | Automatic human stress detection based on webcam photoplethysmography signals[END_REF], McDuff et al. [START_REF] Mcduff | Remote Measurement of Cognitive Stress via Heart Rate Variability[END_REF], Park et al. [START_REF] Park | A Study on the Stress-Index Estimation Using Face Image[END_REF] and Kaur et al. [START_REF] Kaur | Remote Stress Detection using a Visible Spectrum Camera[END_REF] have shown that camera is a viable system for measuring HRV to detect people's stress.

In this article, we will consider the stress felt when using a mobility solution "Gyrolift" to adapt the behaviour of the device according to this feeling.

Gyrolift (Fig. 1), an innovative technology for inclusive mobility [START_REF] Trénoras | Gyrolift, a new way of verticalisation on mobile personal transporter[END_REF], is a robotic seat on a two-wheel self-balanced vehicle base integrating a verticalisation function which allows the user to transfer from a sitting to a standing position. Using the centre of gravity, the gyropod allows the Gyrolift's user to move.

Gyrolift is equipped of a fully controlled and motorised verticalisation. We lean forward or backward to move forward or backward using a gravity control unit. Currently, available electric wheelchairs only allow verticalisation in static mode, whereas Gyrolift user can move while sitting or standing.

Gyrolift is designed to be reliable and secure. Safety crutches are implemented to prevent the device from falling, which are controlled manually via crank or automatically by the central control system.

Despite all the advantages of this new type of mobility solution, it also brings a problem. Being on a two-wheel solution and the standing position can cause stress or apprehension for the user. Gyrolift is an unusual vehicle. In addition, people with reduced mobility have lost habit of standing up, which amplifies their apprehensions. Considering this emotional state to secure the system and the device driver is important.

Objectives

Based on the bibliography, this work aims to demonstrate that classifying the physiological data of a Gyrolift user from a low-cost camera and estimating user's emotional state are possible. We choose this method for several reasons. 1) Compared with conventional solutions, the camera is a non-contact sensor and thus a non-invasive sensor that promotes user comfort and ergonomics. 2) A contact sensor presents an inconvenience and a risk factor.

3) Moreover, the camera considers the industrial aspect of the Gyrolift because of its accessibility and low cost, thus making Gyrolift inexpensive.

To demonstrate the feasibility of this visual solution in the presence of perturbation due to mobility, the static and quasi-dynamic situations were studied, validating the use of the camera.

Having sufficiently robust system against perturbations related to the embedded situation, is the main challenge of using a camera, a simple and accessible solution that will not affect the cost of the Gyrolift. The rest of the document will be organised as follows: Section 2 explains the general proposed method. Section 3 describes our experiments and results, in which we proceed in three steps: first, the 'static approach', which aims to test the camera solution in static conditions, comparing the results with a contact sensor; second, improvement of the classification solution; and, lastly, the "Quasi-dynamic approach", which aims to the test solution's performances under dynamic laboratory conditions. A general discussion is presented in Section 4. Section 5 presents the conclusion of our study.

General Method & Materials

General Method

The study of emotional state with a camera will be based on the principle of Photoplethysmography (PPG) [START_REF] Akdemir Akar | Spectral analysis of photoplethysmographic signals: The importance of preprocessing[END_REF]. The person's cardiac activity causes a change in blood volume, causing a fine colorimetric variation measured with a camera in the form of a PPG signal, more precisely on the face of the person by creating several regions of interest (ROI).

Figure 2 presents the different steps used for the acquisition of the PPG signal.

The solution adopted is the OpenCv algorithm with the use of the Lbpcascade classifier. It is the suitable solution for our system given the low execution time compared with the other algorithms presented.

Rather than trying to isolate all the pixels from a person's face by masking, it is possible to define ROI directly on the face. The participant's cheeks and forehead are the most favourable regions for extracting PPG information and therefore were chosen to create these three ROI. We first defined the three ROI on the forehead and cheek areas, which we then subdivided into seven areas of equal This method allows the signal-to-noise ratio to be optimised by minimising the number of pixels not belonging to the skin, in contrast to the method using masking, which is approximate under certain conditions. We select the chrominance component * u of the space L * u * v to form the PPG signal. The *u component represents colours between red and green and v* between yellow and blue. In accordance with the wavelength range for which the absorption rate of haemoglobin is the best, the photoplethysmographic variations are more easily observable by analysing the chrominance *u the reason why we choose this colour space.

The spatial average will be calculated for each frame captured, thus forming a point in our PPG signal. For N captured frames, a signal of N points is formed. This spatial average is done for each ROI to create a PPG signal for each ROI: in our case, we will therefore have seven PPG signals.

The best quality signal is obtained when the whole face is not uniformly illuminated: it is possible that one of the regions has a very good signal at a time when the other regions have little or no usable signals.

Figure 4 illustrates a PPG signal extracted from our acquisition chain; the sampling rate is 30 Hz. The red dots represent the peaks P. The intervals between the different points ''P to P'' are the intervals PP. This concept is applicable to RR intervals of a signal measured by an ECG.

In our study, we are interested in HRV, the study of time variation between heartbeats. HRV provides information on autonomic nervous system activity, vagal tone, respiration and heart activity [27] [28].

Regarding the R-peaks of an ECG, it is possible to process from the peaks of the signal PPG, which are not R-peaks (Fig. 5a) but P-peaks (Fig. 5b). HRV study via the PPG wave as PRV pulse rate variation (PRV) is a reliable alternative that leads to identical results to that of the ECG (HRV) [START_REF] Park | A Study on the Stress-Index Estimation Using Face Image[END_REF].

PRV metric is a substitute of HRV in our study. So, estimating HR in the same way is possible. Four PRV metrics define the responsive system, which are the most recurrent in the various recent studies and those used in our study [START_REF] Jan | Evaluation of Coherence Between ECG and PPG Derived Parameters on Heart Rate Variability and Respiration in Healthy Volunteers With/Without Controlled Breathing[END_REF]:

• BPM: Number of beats per minute • RMSSD: Root square of squared differences of successive RR intervals modulated by respirations (in our case the PP intervals, as we study the PPG signal) • SDNN: Standard deviation of intervals between heartbeats • BSV: Balance of sympatho-vagal, it is a frequency parameter extracted from PRV. LF and HF represent the control and balance of parasympathetic and sympathetic components. LF component ranges from 0.04 to 0.15 Hz, and its increase is generally associated with a sympathetic activation [START_REF] Acharya | Heart rate variability: A review[END_REF], whereas HF component ranges between 0.15 and 0.4 Hz, and it is associated with parasympathetic modulation [START_REF] Acharya | Heart rate variability: A review[END_REF]. Finally, the relationship between the power found in LF and HF components is usually estimated, because it assesses the sympatho-vagal balance controlling the HR [START_REF] Malliani | Cardiovascular neural regulation explored in the frequency domain[END_REF].

In stressful situation, we observe an increase in BSV, a reduction in RMSSD and SDNN and an increase in BPM. The established acquisition chain captures cardiac measurements related to HR, more precisely to the PRV. We propose two experiments that aim to create our database to build the classification model of emotional state, which can indicate if the person is stressed (state 1) or relaxed (state 2).

Methodology

To achieve our objective, the methodology is divided into different steps of development and testing (Fig. 8). The first step is the "static approach", which has two purposes [START_REF] Tagnithammou | Stress detection of human using heart rate variability analysis based on low cost camera[END_REF]:

(1)Demonstrate the possibility of classifying the emotional state using a camera by comparing the obtained results with those of a PPG contact sensor, (2) test the chain in static conditions. The experimentation scenario does not consider the driving context since this step aims only at validating the acquisition chain using the camera as a measurement tool. We need to collect measures related to the PRV corresponding to stressed and unstressed states. These data will then be injected into classification models by comparing different methods.

The second step is "improved classification performances" which aims to improve the classification results obtained using other classification methods. The objective is to have better performances.

The third step is "quasi-dynamic approach", which aims to test the performance of our acquisition chain under dynamic laboratory conditions. The experimentation scenario Step 1: Static Approach

Seated without perturbations

Step 2: Static Approach Seated without perturbationsimproved classification performances

Step 3: Quasi-Dynamic Approach Seated wit perturbations Fig. 8. Methodology of validation considers the driving context. The purpose is to evaluate the solution "the camera as a measure of apprehension" before integration on the Gyrolift. Considering the disturbances generated during the driving context is necessary: vibrations of the ground or of an obstacle or movements of the user. These experimental conditions are closer to reality. We can therefore demonstrate the robustness of the acquisition chain.

Experimentation and Results

Step 1: Static Approach

Scenario

The participants of this experiment were 21 normal, healthy adults of different ages (20 to 54 years old). Each of them sits down in front of a computer with a set of sensors: PPG contact sensor, galvanic skin response (GSR) and a camera to record the participant's face.

As shown in Figure 9, we used the Stroop test as visual stressor [START_REF] Zhang | Reaction time and physiological signals for stress recognition[END_REF] for the participants. Each participant had to watch a 6-minute video with relaxation and stress phases. In the relaxation phases, the participant watches relaxing nature landscapes. In the stress phases, the Stroop [START_REF] Scarpina | The stroop color and word test[END_REF] test asks the subject to name the font colour of the word when the colour and meaning of the words differ (e.g. the word 'Blue' printed in brown colour). In parallel, a relaxing music for the relaxation phases and stressful music (e.g. beeps when counting down) for the stress phases were used as auditory stimulus.

Figure 10 illustrates the different types of chains from the first experiment. Each participant has a set of three sensors which are connected to a RaspberryPi B. It includes an ARM11 processor running at 700 MHz with integrated FPU and a Vedeocore4 GPU. Several peripherals can be connected to the board through USB ports or general-purpose input output pins (keyboard, mouse,etc..). The RaspberryPi represents the data acquisition and processing Data is acquired with sampling rates between 1 -10 Hz. In Figure 11.a, we notice the presence of three peaks at 75, 185 and 325s, which corresponds to the stress phases and shows that there is indeed a physiological response to our stressful stimulus. Figure 11.b shows the curve of the GSR sensor showing no response to the stressful stimulus. In this case, we did not observe clearly distinguishable peaks. We initially had 21 participants; however, using the GSR, we excluded some participants and used data from 15 participants: 10 participants for the training sets and 5 participants for the testing sets.

In addition to create a stress classification model from a PPG sensor in contact, we collected videos of the subjects from a RaspberryPI camera to have videos synchronised with the PPG signal (cardiac activity) for each participant. In this way we will be able to validate our acquisition chain for PRV measurements from a camera.

The PPG contact sensor and camera make it possible to estimate the PRV in the form of metrics: BPM, SDNN, BSV and RMSSD. 

Data Classification and Results

Once in possession of the camera (chain to evaluate) and contact PPG sensor (chain 1) data, we excluded participants with no signs of stressful reaction using GSR sensor (exclusion chain) data and did the classification part.

Chain 1: PPG contact data

There are two types of machine learning algorithm: the "supervised" and "unsupervised" learning algorithms. The first type classifies a new sample among a set of predefined classes: so, we know the classes. While in the unsupervised learning, the number and definition of classes are not given. In our case, the set of classes is predefined, we have two classes corresponding to a stressed state and a relaxed state. We focus on supervised learning algorithms. Based on a bibliographic analysis [START_REF] Pampouchidou | Automatic Assessment of Depression Based on Visual Cues: A Systematic Review[END_REF], we will study two types of algorithms: support vector machine (SVM) and Neural networks.

SVM is a supervised machine learning model proposed by Vapnik [START_REF] Vapnik | The nature of Statistical Learning Theory[END_REF] [36], which analyses data for the purpose of classification and regression analysis. SVM processes by mapping the training data into a high-dimensional feature space. Then, it separates the two classes of data with a hyperplane and maximises the distance called the margin. In our case, the two classes are stressed or relaxed. By introducing Kernels into the algorithm, maximising the margin in the feature space is possible, which is equivalent to nonlinear decision boundaries in the original input space. We performed hyperparameter tuning using the Gridsearch method and measured the performances using a k-fold cross-validation with k = 5. The obtained SVM hyperparameters are as follows:

• 'kernel': rbf: means the kernel is a non-linear separation. The full form of the RBF is

( , ) = ! " #- ∥ % ∥ &
&' & ( with ) = *+ , ():gamma) So, we have : .(/, / ) = 0/1(-) ∥ / -/′ ∥ * ) using the tuning hyperparameters, we have gamma = 0.01 , C = 100.

• 'c': 100 represents misclassification • 'gamma' : 0.01 It defines how far it influences the calculation of plausible line of sep aration.

We have 1418 samples for data learning and validation and 1000 samples for dataset test.

Neural network is a supervised machine learning based on a network or circuit of neurons.

The main stages in the development of a neural network are as follows:

• Dataset preparation: During the experiment, we include 21 participants watching a video of 6-minutes for the Stroop test. For each instant ti, we have a sample that is a set of four parameters ( BPM, RMSSD, SDNN, BSV) corresponding to a state ( stressed or relaxed) collected from a PPG signal. In total, we have 2221 samples. • Model creation: We define a layer of four inputs, which are the parameters ( BPM, RMSSD, SDNN, BSV); three hidden layers; a layer of two outputs (relaxed and stressed); Adamax as a optimisation algorithm; SoftMax as an activation function; and

Binary cross-entropy loss function. To avoid overlearning, we used the dropout method after each hidden layer. We classify PPG contact sensor data using these two methods (Fig. 12). Comparing the different methods, the SVM and neural network present the best results in the stress classification. Munla [START_REF] Munla | Driver Stress Level Detection Using HRV Analysis[END_REF] used the SVM method for 85% accuracy. Finally, Qin [START_REF] Qin | Stress Level Evaluation Using BP Neural Network Based on Time-Frequency Analysis of HRV[END_REF] used the neural network method to classify the measures of HRV on four levels, and Sing [START_REF] Singh | A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signals[END_REF] proposes a neural network driven based solution to learning driving-induced stress.

To evaluate the performance of each method, the dataset was divided into two: data training and validation of the model (train phase) and data test and evaluation of the model (test phase). 3 summarises the classification results of the three used methods. The first results represent the precision rate of each method, which is high since the injected data are the same with the training data. The test phase consists of injecting data never seen by the model. We note that the neural network method presents the best classification performance, with an accuracy of 83.3%, whereas that of the SVM method is 75.2%. We deduce that the neural network has the best ability to generalise. The classification results are significant for the two used methods. About 80% accuracy is obtained. 

Chain to evaluate: camera PPG data

First, the time-averaging method consists of using the HR estimates over a given period. For example, if we study the 10 second estimates, we will have 70 HR estimates (because we have 7 ROI). The goal is to calculate the right HR by choosing the one with the highest number of occurrences. The aspect "evolution in time" is considered to calculate the right HR.

The histogram in Figure 13 allows us to visually understand this concept: This histogram represents all HR estimations on a record. We notice a peak around 75 BPM, which means it is the most recurrent value. The average HR of this participant is 77 BPM. The most frequent estimate is therefore very close to reality. This method aims to validate the camera estimation of the PRV measurements.

Figure 14 shows the chain of acquisition using the camera. We classify camera PPG data using neural network and SVM, keeping the same settings for the first chain using the PPG contact sensor. 

Discussion on the Step 1: Static Situation

For the first step 'static approach', we created a classification model that estimates whether a person is stressed or unstressed from the PPG contact sensor data, which is the reference of our test. We have set up an acquisition chain using the camera, which has been validated by comparing with the PPG contact sensor. Several classification methods were used to construct the emotional state classification model with the camera. To train this model four parameters of the PRV were used. Regarding the comparison of the two chains, the chain with PPG contact sensor and the chain to evaluate with camera show that estimating a person's emotional state is possible. We have 90 % accuracy for chain 1 and 59 % accuracy for the chain to evaluate. The performed tests were done in a static environment. To better represent the reality of embedding the solution on the Gyrolift device, the second experiment, which will test other methods of classifications, define the importance of injected PRV parameters to build our classification model, take into account the dynamic aspect and review the classification method to achieve better classification performance since we have only an accuracy of about 56% using the camera that is not reliable. We need better performances for the proposed solution to be reliable, the reason why we tested other classification solutions to improve these performances.

Step 2: Improved Classification Performances

From the first step, the classification results are significant and demonstrate the possibility of using the camera as a sensor. We can do some improvements in terms of the protocol, more precisely with the used stressors and the type of learning algorithm used to achieve a higher accuracy rate. Using the neural network and SVM, we have an accuracy rate of about less than 60% . Using the boosted classification methods (random forest, extreme gradient boosting (XGBoost), adaptive bosting (AdaBoost), gradient boosting (GradBoost), k-nearest neighbours (KNN)), we classified the collected data from the camera of the first experiment to improve the accuracy rate.

Boosting [START_REF] Freund | Boosting a weak learning algorithm by majority[END_REF][41] refers to a family of algorithms. It combines the outputs from weak learner and creates a strong learner which eventually improves the prediction power of the model. To determine the weak rule, we apply base learning algorithms with different distributions. When we apply a base learning algorithm, a new weak prediction rule is generated. Boosting algorithms are rather fast to train, which is computationally very efficient. The main hyperparameters for the boosting methods are as follows:

• n_estimators = number of trees in the forest • max_features = maximum number of features considered for splitting a node • max_depth = maximum number of levels in each decision tree • learning_rate = learning rate shrinks the contribution of each classifier by learning_rate. There is a trade-off between learning_rate and n_estimators.

To select models with the best performances possible, we used the k-fold cross-validation for performance evaluation with k = 5 and Gridsearch for tuning hyperparameters. To combine the two evaluations, we used the method RandomizedSearchCV from sklearn.

The AdaBoost method [42] [43] assigns high weights to the misclassified data in order that the classifier model focuses on the misclassified data. The method is formalised in the algorithm 'AdaBoost' in [START_REF] Freund | A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[END_REF]. Fine-tuned hyperparameters using a cross-validation are n_estimators = 50; learning_rate = 1.0 and max_depth = 1.

The GradBoost method [START_REF] Natekin | Gradient boosting machines, a tutorial[END_REF] is an approach where new models that predict the residuals or errors of prior models added together to make the final prediction are created. It is called GradBoost because it uses a gradient descent algorithm to minimise the loss when adding new models. It supports both the regression and classification predictive modelling problems. Fine-tuned hyperparameters using a cross-validation are n_estimators = 100, learning_rate = 0.1 and max_depth = 3.

The XGBoost method [START_REF] Chen | XGBoost: A Scalable Tree Boosting System[END_REF] is an open-source model available in different languages (C++, R, Python, etc.). This model is widely used for its flexibility in hyperparameter tuning and fast code execution. It is an implementation of gradient decision trees for speed and performance. Fine-tuned hyperparameters using a cross-validation are n_estimators = 100; learning_rate = 0.1 and max_depth = 3.

Random forest method [START_REF] Krauss | Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500[END_REF] consists of many individual decision trees that operate as an ensemble. Each tree spits out a class prediction, and the class with the most votes becomes the prediction model. Random forests handle noisy data very well, are highly robust to overfitting and can be considered an all-purpose model requiring even less parameter tuning than boosting. Fine-tuned hyperparameters using a cross-validation are n_estimators = 10 and max_depth = 3.

Figure 15 is a confusion matrix used to describe the performances of the boosting classification models on a set of test data. The y-axis are the real labels (0, stressed; 1, relaxed), while x-axis are the predicted labels (0, true; 1, false). We used this metric on the testing dataset after training.

We distinguish four cases from this matrix: • Precision = TP / (TP + FP), representing the rate of successful prediction.

•
• Recall = TP/ (TN+FN), representing the true rate since we include the instances that have been wrongly classified in negative • Macro-F1: known as balanced F-score: F1 = 2 * (precision * recall) / (precision + recall)

Table 5 :

Experiment 1 -Classification result Table 5 presents these different rates, and the accuracy rate is higher with these methods. For the XGBoost method, the results are:

• Accuracy rate = 97.8%

• Precision = 97.5%

• Recall = 97.5%

• Macro-F1 = 97.5%

Comparing the classification results of SVM and Neural Network with the Boosting methods, we notice that boosting methods have better results with an accuracy of 97.8% for the XGBoost classifier. For the third step, which is testing the chain acquisition in quasi-dynamic conditions, we select the boosting classification methods that show better results.

3.3.

Step 3: Quasi-Dynamic Approach

Scenario

Nine participants have to test the approach, each of them sits down in front of a computer with a camera in front to record the participant's face. Participants are seating on a wheelchair connected to a screen (Fig. 16). It is equipped with a force feedback that generates vibrations that can be faced using a wheelchair.

Classifier

As shown in Figure 17, to generate stress in the participant, we define different stimuli: visual stressor 'Stroop test' involving the phases of stress and relaxation; auditory stressor which is a relaxing or stressful music [START_REF] Balasubramanian | Music induced emotion using wavelet packet decomposition-An EEG study[END_REF] depending on the phase of the video; and vibration stressor (generated in real environment) on the platform that reproduces haptic feedbacks.

During the experiment, each participant has a camera sensor (PPG non-contact) that estimates the PRV measurements from our acquisition chain set up to build a classification model based on images of participants' faces in quasi-dynamic conditions.

Data Classification & Results

Data classification is based on 9 participants: 6 participants for the training sets and 3 participants for the testing sets. We collected each participant's PRV data from our acquisition chain. To classify the emotional state, we select several boosted classification methods(Fig . 18).

The different used classifiers are as follows: random forest, XGBoost, AdaBoost and Grad Boost.

Analysing Figure 18, we inject four parameters to 

PRV

train and build the model. These parameters were chosen based on their recurrences in the bibliography. It is necessary to define the importance of these four injected parameters.

In general machine is like a 'Black Box' as it is impossible to understand or trace which feature, or combination of features is responsible for the forecast. Machine learning ensemble using trees such as XGBoost method does have a very nice feature that rules out this criticism: variable importance (Fig . 19).

We notice that BPM and SDNN are the parameters with a higher importance factor, which is the gain metric (contribution in terms of accuracy). Furthermore, we noted that there is a strong correlation between SDNN and RMSSD. We deduce that instead of using 4 parameters to build our classification model, two parameters are enough.

In the process of assessing the quality of the model, evaluation metrics are calculated. We calculated the different metrics represented in Table 6: Table 6 summarises the classification results with the different methods used. We notice the XGBoost method with 80.2% accuracy. These performances are significant with a value of about 80.2% compared with performances of the static approach of about 97%.

Discussion on the Step 3: Quasi-Dynamic Situation

For the quasi-dynamic approach, we tested different classification methods and the importance of the parameters injected to train and build our classification model. In a quasidynamic situation, all constraints related to an embedded context (vibrations, movements, etc.) are considered. XGBoost method performs better with 80.2% accuracy compared with other classification methods used. We estimated the importance of each parameter injected into the classification (RMSSD, SDNN, BPM, BSV) and the correlation between the parameters, which the reduction of the number of these parameters to make this classification phase more reactive and optimal. We defined the importance factor of parameters of which BPM and SDNN have the highest importance factor. Using the boosting methods for classification for the quasi-dynamic situation, we obtain about 80% accuracy in comparison to the 90% accuracy for the static situation. The result is significant and confirms the feasibility of the solution.

Metrics such as recall (79%), precision (80%) and Macro-F1 (73.9%), detect the imbalances in classes and determines if our model is a 'lazy' classifier, which means that, even if the global accuracy is good, one class is underrepresented and shows a lower level of accuracy.

The results demonstrate that XGBoost method and the boosting method in general do not show imbalances. We set up an acquisition chain using a camera to estimate the HR and more specifically the HRV. There are several parameters related to the HRV. All these measurements are based on R-R intervals, which are estimated by PP intervals calculated with PPG signals. Thus, the study of PRV can be a reliable alternative to HRV [START_REF] Maaoui | Automatic human stress detection based on webcam photoplethysmography signals[END_REF]. We proposed two different experiments to evaluate this chain. The first experiment (step 1) is in static conditions. We chose the PRV parameters which are the most used parameters in the bibliography, and compared the results obtained from our camera acquisition chain and those obtained by a PPG sensor, allowing us to validate the chain of acquisition. The stress generated from the participants is a 'Weak' stress. The used stressors for the first experiment are visual (Stroop) and auditory (stressful music for stress phases and relaxing music for relaxing phases). To generate stress or relaxation, the intensity of the stimulus is relative to the participant. For example, as regards the nature sounds for the relaxation phases, some participants find birdsong relaxing, while others do not. Also, concerning the speed of the words for the Stroop test scroll, some participants notice that is too fast, which stresses them, unlike others who find it normal.

General Discussion

In the second experiment, it varies, from what a Gyrolift user can feel (e.g. vibrations, obstacles). These constraints are not considered in the first experiment. One of the improvements we notice is the use of other stressors to get data closer to reality. Using the neural network and SVM methods, we obtained an accuracy of about 60%. These results are significant to validate that we can use the camera to estimate the emotional state.

To improve the results (step 2), we tested the boosting methods, and the accuracy is about 90%. We must consider the static environment. When it is embedded on a mobility aid solution like Gyrolift, the dynamic context is different from the static conditions. It does not consider perturbations like vibrations.

The second experiment (step 3) demonstrates the approach in dynamic conditions. Considering the points to improve from the first experiment, we added another stressor, which are the vibrations of the test platform. The results are significant since we have a classification accuracy of 80%, but we must consider that the experiment was done with a simulation platform that is close to real conditions with the haptic feedbacks but is not identical to the embedded conditions on the Gyrolift. We defined the importance of the various parameters injected for the construction and training of the classification model , which optimizes the classification model and makes it more responsive. We obtained an accuracy of about 80% in comparison to that in the first experiment in static conditions, which is 90%. This loss of performances can be explained by the vibrations generated in quasi-dynamic situation.

However, these two experiments validate the possibility to estimate the emotional state of a driver in general and of a Gyrolift user with the study of PRV using camera. This study demonstrates the feasibility of using this sensor as a solution.

Conclusion

In this article, we demonstrated the possibility of estimating the emotional state of a personal driver using a low-cost camera. The solution is based on the principle of HRV, which is the estimation of the HR and its variability over time. Instead of using the RR intervals, we use the PP intervals from PPG signal, so by analogy, we use the PRV. Establishing a classification model based on this acquisition chain is the goal, and the main objective is estimating the emotional state of a Gyrolift driver, more precisely if he feels stress.

The first step is in static conditions with visual and auditory stressors to generate stress in the participant. Comparing different classification methods, we created a classification model from the collected data of this experiment. This demonstrates the feasibility of estimating the emotional state using a low-cost camera.

For the second step, to improve classification performance, we tested the Boosting methods, which present better results with about 90% accuracy.

The third step is in quasi-dynamic conditions with visual, audio, and mechanical stressors to represent better the real conditions of a Gyrolift driver. We used the boosting methods as they present better results for the static approach with about 80% accuracy. This step evaluates the robustness of the solution with the quasi-dynamic context, which presents vibrations. The final objective is to integrate this solution into the control of the Gyrolift and have a human-machine interface that integrates the data 'apprehension of the user' into the closed loop of the control to secure and assist the user. To conclude, using the proposed solution in this study to estimate the emotional state of an individual is possible and effective with the camera as a sensor. This allows us to start a new step which is to test the solution embedded on the Gyrolift. This new step will include new inputs such as speed and perturbations in a dynamic environment. The stress felt is more intense.

Fig. 1 .

 1 Fig. 1. New mobility solution Gyrolift

Fig. 2 .Fig. 3 .

 23 Fig. 2. PPG signal creation

Fig. 4 .Fig. 5 .

 45 Fig. 4. PPG Signal with peak extraction

Fig. 6 .

 6 Fig. 6. Acquisition chain: General method

Fig. 7 .

 7 Fig. 7. PRV measurements classification

Fig. 9 .

 9 Fig. 9. Static Approach -Scenario

Fig. 11 .

 11 Fig. 11. GSR sensor response

Fig. 12 .

 12 Fig. 12. PPG contact -chain of acquisition

Fig. 13 .

 13 Fig. 13. Heart Rate acquisition of participant

  Figure15is a confusion matrix used to describe the performances of the boosting classification models on a set of test data. The y-axis are the real labels (0, stressed; 1, relaxed), while x-axis are the predicted labels (0, true; 1, false). We used this metric on the testing dataset after training. We distinguish four cases from this matrix:• True positives (TP) = 122: Predict stressed and it is true • True negatives (TN) = 3 : Predict relaxed and it is true • False positives (FP) = 3: Predict stressed and it is false • False negatives (FN) = 162: Predict relaxed and it is false
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 1719 Fig. 17. Experiment 2 -Scenario with vibrations

Figure 20

 20 Figure 20 represents the receiver operating characteristic (ROC) curve. It is a plot of the FP rate (incorrect prediction rate) (x-axis) versus the TP rate (correct prediction rate) (y-axis) for several different candidate threshold values between 0.0 and 1.0. The ROC curve is a useful tool for the following reasons:• The shape of the curve contains a lot of information: smaller values on the x-axis indicate lower FP and higher TN; larger values on the y-axis indicate higher TP and lower FN. • The area under the curve (AUC) is used as a summary of the model skill. For the XGBoost method, we have AUC = 86.4 %, which means higher TP; therefore, it is a true prediction.
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Table 2 :

 2 PRV metrics

	PRV Parameters	Formula		
	BPM		Number (~ 75 BPM)	
	RMSSD				
			=	1 -1	(	)^2
	SDNN				
			=	1 -1	(	-	)^2
	BSV				
	PPG signal with camera	PRV parameters extraction	PRV classification measurement	Emotional state

=

Figure
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describes our acquisition chain. PRV parameters are injected into a classification model to estimate the driver's emotional state. The idea is that our model can perform a binary classification between a stressed and unstressed state from PRV parameters. For this, we need a database of PRV parameters matching the stress and non-stress states.

Table 3 :

 3 Experiment -Classification result for PPG contact sensor

	Algorithm	Accuracy: Training	Accuracy: Test
	Neural network	89,1 %	83,3 %
	SVM	97,2 %	75,2 %
	Table		

Table 4 :

 4 Data classification result for cameraTable4presents the results of the two methods used to classify the camera dataset with 56.3% accuracy for SVM method and 59.2% accuracy for the neural network method. The two methods have relatively close results, about 56% accuracy.

	Algorithm	Accuracy
	SVM	56,3 %
	Neural Network	59,2 %

Table 6 :

 6 Experiment 2 -Classification result