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HIGHLIGHTS 13 

- Develop an evolutive constitutive model for cold mixes treated with bitumen14 

emulsion;15 

- Develop an oedometric test to study the cold mix asphalt evolutive behaviour.16 

ABSTRACT 17 

Given a political context in which energy and environmental stakes have become 18 

increasingly dominant, road engineering practices have favoured saving energy and 19 

protecting the environment. Among these practices, the use of cold mixes treated with 20 

bitumen emulsion has proven to be a suitable technique. Cold mix design, as well as the 21 

design of pavements including cold mix asphalt (CMA) layers, is highly empirical and 22 

based on local skills and tend to limit the development of this environmentally-friendly 23 

pavement technique. In the case of CMA, no mechanical behaviour law has been 24 

established to take into account its evolutive behaviour. 25 
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The paper is set in three parts. The CMA model is presented in Part I. The second part 1 

of the paper illustrates the numerical response of the model on a compressive sinusoidal 2 

load. The last part presents some first simulations of the cyclic oedometer laboratory 3 

tests. By comparing then to the numerical simulations, they show the relevance of the 4 

model to account for the CMA behaviour. 5 

6 

Keywords: emulsified bitumen, mechanical behaviour, oedometer test, cold mix asphalt. 7 

1. Introduction8 

Given a political context in which energy and environmental stakes have become 9 

predominant, road engineering practices have favored saving energy and protecting the 10 

environment [1]. Among these practices, the use of cold mixes treated with bitumen 11 

emulsion has proven to be a suitable technique. The design of pavements including cold 12 

mix asphalt (CMA) layers [2] however remains highly empirical and based on local 13 

skills. From prior experience, the transposition of established local rules from one site to 14 

another and their application to pavements subjected to medium or heavy traffic are not 15 

simple steps and tend to limit the development of this environmentally-friendly 16 

pavement technique. With this objective in mind, a French project with partners from 17 

industry and academia was launched a few years ago to promote the use of sustainable 18 

road techniques, among which CMA, through defining a rational and coherent CMA 19 

pavement design method and finding ways to expand its scope to higher traffic volumes 20 

than those typically encountered by this type of material. 21 

CMA displays an evolutive behaviour [3], [4], [5], due to the use of a bitumen emulsion 22 

(i.e. mixture of water and bitumen) as binder. In the laboratory, the breaking of the 23 

bitumen emulsion and water release are both observed under gyratory compaction [6]. 24 

These phenomena are found to be highly correlated with the emulsion formulation, 25 
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which must be adapted to the choice of aggregate. In pavements, after compaction the 1 

CMA continues to evolve according of the remained water content in the material, in 2 

exhibiting a behaviour that remains poorly understood [7]. In the fresh state, CMA 3 

behaves like soft and quasi-unbound granular materials. Over time, the material 4 

becomes increasingly stiffer with a mechanical behaviour resembling that of a bound 5 

asphalt concrete material. The time required to achieve this stiffer mechanical state is 6 

called "curing time". 7 

The objective of this paper is to develop a generic curing model for CMA, derived from 8 

"merging" the Boyce nonlinear elastic (NLE) model [8], which reflects the behaviour of 9 

unbound granular materials at a very early age, with the Huet model [9], which reflects 10 

the thermo-viscoelastic behaviour (VE) of hot mix asphalt (HMA) by means of a 11 

"curing function". The obtained nonlinear viscoelastic model (NLVE) is based on the 12 

use of spectral decomposition for both NLE and VE components. The paper is set in 13 

three parts. The CMA model is presented in Part I. The second one of the paper 14 

illustrates the numerical response of the model on a compressive sinusoidal load. The 15 

last part presents some first simulations of the cyclic oedometer laboratory tests 16 

undertaken in parallel to this modelling work. 17 

2. Development of a model to account of the NLVE and curing behaviour of CMA 18 

To design a pavement structure, the first step consists of computing the strain and stress 19 

fields generated by the action of traffic loads. Those ones must then be compared with 20 

the long-term performances of materials under cyclic mechanical loadings (fatigue tests, 21 

cracking tests …) and climatic conditions in relation with the specified pavement life. 22 

The CMA model proposed herein is related to the first step. 23 

1.1.2.1. Two generic models to describe the behaviour of the CMA in fresh 24 

and cured states 25 
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Our objective is to develop a generic curing model of CMA, whose behaviour varies 1 

from an unbound granular material at a very early age to the thermo-viscoelasticity of 2 

asphalt mixes over the long term. To fulfil this objective, two well-known models are 3 

firstly considered. One is the Boyce nonlinear elastic (NLE) model for characterising 4 

unbound granular materials, while the second is the Huet viscoelastic (VE) model 5 

known for its accurate description of HMA. 6 

1.1.1.2.1.1. Boyce model (3D) 7 

The Boyce’s model is a nonlinear extension of Hooke's Law and is based on the 8 

hardening dependence with stress of the compressibility    and shear    moduli, which 9 

is typical of the reversible behaviour of unbound granular materials [8]. Using the 10 

standard signs and notations of continuum mechanics (contraction strain < 0, 11 

compressive stress < 0), the model is written in 3D: 12 
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deviatoric stress tensors,   = unit 3x3 tensor); 20 

           : is the volumetric strain; 21 
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       (    = strain and 22 

deviatoric strain tensors); 23 

   ,   ,   ,   are positive parameters; 24 
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 n is an exponent lying between 0 and 1. 1 

 2 

As an example, figures 1 and 2 show the modelling of a cyclic oedometric triaxial test 3 

with Boyce model. 4 

 5 

Figure 1. Illustration an oedometric triaxial test  6 

 7 

Figure 2. Illustration of Boyce model response in the case of an oedometric triaxial test, 8 

a) Stress vs strain hardening curve, b) Secant oedometric modulus vs axial stress     9 

1.1.2.2.1.2. Huet model (1D) 10 

The thermo-viscoelastic model as defined by Huet is composed of a series of elements: 11 

one spring    and two parabolic dashpots (h and k) (fig. 3). 12 

 13 

Figure 3. Representation of the Huet model 14 
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The complex modulus    
      and creep function         of the Huet model are 1 

expressed as: 2 

  
     

  

                        
  (5) 3 

       
 

  
   

 

      
 

 

    
 
 

 
 

      
 

 

    
 
 

       (6) 4 

where    is the elastic modulus, h, k are the exponents of parabolic dashpots lying 5 

between 0 and 1,   is the weight of dashpot (k) (positive value),   is the Euler function, 6 

     is the function whose time dimension accounts for the dependence of the material 7 

behaviour on temperature   (decreasing exponential type).      is the Heavyside 8 

function.  9 

The relationship between stress and strain can be derived from the creep function by the 10 

usual time convolution equation: 11 

                 
  

  

  

  
       (7) 12 

1.1.3.2.1.3. Idea basis for the NLE + VE generic laws 13 

At the end our aim is to develop a 3D NLVE constitutive law to account for the real 14 

CMA behaviour by mixing NLE component of Boyce’s type with VE component of 15 

Huet’s type; this, in order to be able to compute strain stress fields in pavements 16 

submitted to traffic loads and to develop pavement design methodology. However, in 17 

this paper, we only present the first step of construction of the constitutive model in 1D 18 

that can be generalized in 3D latter on. For our purpose, we then use the 1D following 19 

approximations of the laws presented in part 2.1.1 and 2.1.2 that is: 20 

         
   (8) 21 

        
 

 
 
 

 with        (9) 22 
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Equation (8) can be derived from Boyce model, using the relationship between the mean 1 

pressure and the volumetric strain. Indeed, from equations (1) and (3), one obtains: 2 

     
  

  
 

 

        
 

   (10) 3 

which is similar to equation (8) after a change of notation and with   
 

 
 , thus     4 

and with       
  

  
 

 

 
, having the dimension of an elastic modulus.  5 

Equation (9) is the creep function corresponding to a single parabolic dashpot (fig. 4) 6 

considered as sufficient as generic model to describe the viscoelastic behaviour of 7 

CMA.   value can be assumed to be close to Huet   exponent, representative of the 8 

HMA behaviour for relatively low values of stiffness (at low frequency or at high 9 

temperature) which corresponds to the case of CMA. 10 

The   parameter accounts later on for the dependence of the viscosity of CMA both 11 

with the age of the material since its manufacturing and with its actual temperature 12 

    . The evolution of this parameter both with curing and      is discussed further on 13 

in 2.2.4. 14 

 15 

Figure 4. Single parabolic dashpot used as the viscoelastic component of the CMA 16 

model 17 

Without restricting the model,   can be taken equal to 
 

  
 (see equation (8)), just 18 

changing          by a multiplicative constant. 19 

In the following, we principally focus on the compressive behaviour of CMA which is 20 

the expected response of the material in pavement at young age. But the model that we 21 
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present can also account for tensile stresses that may also arise on site after a certain 1 

curing time. 2 

 3 

1.2.2.2. Derivation of the CMA model from the spectral decomposition of the 4 

two-previous generic NLE and VE laws 5 

It is proposed herein to derive the CMA model from a "juxtaposition" of the two 6 

previous equations (8) and (9), by assigning greater weight to the viscoelastic behaviour 7 

over time due to parameter          increasing with the material age. To carry out the 8 

"juxtaposition" of equations (8) and (9) without duplicating the elastic behaviour 9 

displayed by both, the two laws are decomposed in spectrum series. The same non-10 

dimensional real variable    ranging from 0 to     is initially used to continuously 11 

index the spectral elements of the two series. In denoting         as the strain 12 

distribution over the set of elements, the material strain obtained for such a spectrum 13 

can be expressed as: 14 

               
  

 
  (11) 15 

1.2.1.2.2.1. Description of the NLE law (8) using a series of "linear spring 16 

+ mechanical stop" elements 17 

The spectral decomposition of the NLE law, is based on a series of elements   (with 18 

    ) with two branches, a linear spring and a mechanical stop in the compressive 19 

domain (fig. 5). The spring value is assumed to be constant across the set of elements 20 

and taken equal to the value of parameter    in equation (8). The mechanical stops are 21 

characterized by their “initial opening value”      considered as positive and which can 22 

be presumed without restriction as a decreasing, monotonous function of   (figure 6). 23 
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Under compressive stress, the opening of the mechanical stops will decrease until 1 

possibly getting shut for the elements which strain is equal to     . Then closing 2 

elements one after the other leads to the progressive stiffening of the series.  3 

               4 

Figure 5. Spectral decomposition for NLE 

Figure 6. Evolution of the variable 

     

The function      can be defined for any given NLE law σ(ε) (computation given in 5 

appendix A). The following function is obtained in the case of equation (8): 6 

     
 

     
 
   

 which satisfies the requisite assumptions for     (12) 7 

1.2.2.2.2.2. Representation of equation (9) by its spectral creep series 8 

This type of representation is usual; it may be based on a series of Kelvin-Voigt 9 

elements, for which the elastic modulus E is set as a constant whereas the viscosity      10 

varies with   (fig. 7).  11 

 12 
Figure 7. Viscoelasticity creep spectrum 13 

The creep function can then be written as follows: 14 

     
 

 
     

    

       
  

 
    (13) 15 

which makes it possible to derive      from      (computation given in appendix B). 16 

In the case of equation (9), with     ,      is found equal to               where 17 

     is a non-dimensional function of  : 18 
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   (14) 1 

1.2.3.2.2.3. "Juxtaposition" of the NLE + VE generic laws by series of 3-2 

branch elements 3 

In order to merge equations (8) and (9), a series of 3-branch elements is introducing, as 4 

illustrated in figure 8. To avoid duplicating the elastic components stemming from both 5 

NLE and VE spectra, the springs for each element are merged into a single one, whose 6 

value is set equal to   . 7 

 8 

Figure 8. Series of 3-branch elements for CMA 9 

In this model, the   parameter allows us to get a continuous transformation of the 10 

material from an unbound material at early age (small values for  ) to an asphalt 11 

concrete material at cured state (after increase of        parameter and   value). 12 

In equation (12), the   variable can be replaced by the   variable (equation (14)) to 13 

simplify the spectral representation, in which case the spectrum is characterized solely 14 

by the function     : 15 

      
 

      
 

 

   
 
 

 
 

  

   
  (15) 16 

From typical values for exponents   and  , i.e. 1.4 for   (derived from typical values of 17 

Boyce exponent   for granular materials) and 0.6 for   (the "h" exponent in the Huet 18 

model for HMA), the exponent 
  

   
 is found to be greater than 1, which makes      19 

monotonically decreasing from    to 0 for   varying from 0 to    . 20 
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Now, by denoting         as the "elementary deformation" of element   at time  , the 1 

total strain      of the series is given by: 2 

     
 

         
 

       

    
  

  

 
  (16) 3 

1.2.4.2.2.4. Modeling of curing 4 

In this model, the parameter   is meant to account for the evolution of viscosity of 5 

CMA binders both with their curing state and the actual value of temperature  . A first 6 

approach, which will be developed in future work from the on-going experimental 7 

campaign, will be to use the factorized form:                                   .  8 

As in the case of usual asphalt materials, the function      where   is the actual value 9 

of temperature, is meant to account for the “immediate” change of viscoelastic 10 

properties of CMA with temperature. The higher  , the softer the material. This 11 

function often called “function of translation in temperature” is generally taken close to 12 

the shape of a decreasing exponential and can be represented, for example, by the 13 

Williams-Landel-Ferry law [10]. Furthermore, it is generally found that the      14 

function of asphalt concrete can be assimilated to the one of the bitumen used as binder 15 

[11]. In the present case     , it will have to be checked if      can be deduced from 16 

the thermal behaviour of the bitumen used in the emulsion of CMA.  17 

Beside        is meant to account for the curing of the material with its age since its 18 

manufacturing. Supposed to be equal to 0 just after manufacturing        ,        19 

increases with the material age. A priori        is itself a function of the temperature 20 

and moisture time histories               ,                that is        21 

              . One of our objectives starting from the results of our experimental 22 

campaign for which two different constant curing temperatures are used (20 and 35°C) 23 
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will be to identify the   function by taking inspiration from Doyle's work [12] which 1 

accounts for the acceleration of the curing process with temperature.  2 

1.2.5.2.2.5. Calculation of the stress-strain relationship for the NLVE 3 

model 4 

Let's now examine the response of the previous spectrum model to a given stress 5 

history, which constitutes a more direct problem than the inverse one (i.e. computation 6 

of stress for a given strain history), although the method described below can easily be 7 

adapted to the inverse case. This calculation is based on the numerical computation of 8 

the integral appearing in equation (16) and can be performed in three steps, namely: 9 

(1) Discretisation of time into regular time steps     defining the times        ; 10 

(2) For each time step           and for any element of the spectrum, an 11 

incremental calculation of            in response to the given stress function 12 

and to the strain value of           at time    is assumed to be known and 13 

stored in memory; 14 

(3) Calculation of the integral in    by the trapezium rule, yielding the total 15 

strain response        . 16 

Step (2) is based on equations (17) to (19), which are exact for continuous and piecewise 17 

linear      functions on intervals          . The equation to be used for any element   18 

among equations (17), (18), (19) depends upon the open or close state of element at time   . 19 

First case: Element   open at time    20 

Its evolution following time    is given by Equation (17): 21 

        
  

  
 

       

  
                   

  

  
 

       

  
   

       

  (17) 22 

where         
       

  
 is the stress rate imposed between times    and     . 23 

Two subcases can then again occur depending on the value of         obtained at time 24 

     using equation (17): 25 
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(1) If                 , the element remains open throughout the time interval 1 

          and the element deformation at time      is equal to           . 2 

(2) If                 , the element closes during the time interval (for a specific 3 

time value that does not need to be calculated in our algorithm), and the true 4 

element deformation at time      equals:                 . 5 

Second case: Element   closed at time    6 

Now, the element will open between    and      only if the stress      becomes smaller 7 

in absolute value terms than       . Once again, two subcases are raised: 8 

(1) If                , the element remains closed on the time interval          ; 9 

the element deformation at time       is equal to                 . 10 

(2) If                , the element opens at time    , as defined by: 11 

       
         

       
  (18) 12 

The element deformation at time      is then given by: 13 

                 
       

  
             

       

  
   

       

  (19) 14 

With these known values of           , the total strain         of the spectrum can now 15 

be calculated by applying the trapezoidal rule to (16) and limiting the variation of   to 16 

the range          with         being large enough. Then: 17 

        
 

         
  

          

    
  

  
 

  
         

 
 
           

 
 
    

             

 
   
    

     
     (20) 18 

To get an accurate precision,    values are taken into logarithmic progression between 19 

      and    . 20 

The first integral over the interval        is approximated by an analytical calculation to 21 

avoid the problem of singular integrand in    . For this,    value is selected small 22 

enough with      sufficiently high, being sure that all elements are open on the whole 23 

interval       . Then: 24 
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 (21) 1 

Finally, the entire procedure can easily be implemented into software for the step-by-2 

step numerical computation of the material response     . 3 

2.3.Examples of the strain-stress response of the 1D CMA model 4 

A compressive sinusoidal test (fig. 9) was programmed using Visual Basic software to 5 

compute the strain response. Exponents   and   are taken equal to     and    . The    6 

parameter is defined by imposing        for           in equation (8), as typical 7 

values for unbound pavement materials. In these first calculations, which aim at 8 

representing a fresh material,   in equation (9) is taken equal to          . This means 9 

that for a loading time of       s and for a pressure of       which are typical orders 10 

of magnitude associated with traffic loads, the VE law would lead to strains in the order 11 

of     . 12 

With this condition, figure 9 shows the strain obtained fort the CMA, as well as the 13 

NLE and VE curves calculated using the following relationships: 14 

Nonlinear elasticity:       
 

  
 

 

 
 (22) 15 

Viscoelasticity:             (23) 16 

 17 

Figure 9. Strain response of CMA model to stress signal 18 
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As expected, the CMA strain curve looks equal to the VE deformation curve over a 1 

short time interval, but its maximum remains under the NLE curve. During the 2 

discharge, due to viscoelasticity, the CMA curve returns to zero well below the VE 3 

curve but more gradually than the NLE curve, which returns to zero at 0.2s. 4 

3.4.First comparison between the model response and oedometric tests on CMA 5 

3.1.4.1. Experimental tests on CMA 6 

In parallel of this modelling work, an experimental campaign was managed to 7 

characterize the mechanical behaviour of CMA from fresh to cured state.  8 

The tested material is a CMA (Table 1.), composed of basalt aggregate and a cationic 9 

emulsion with a binder content of 60% (including a 160/220 pen-grade bitumen). 10 

Table 1. CMA formulation 11 

Sieve (mm) 0.063 0.125 0.2 0.25 0.4 0.5 1 2 4 6.3 8 10 12.5 14 16 

Passing (%) 7 9 11 13 16 19 28 43 62 73 79 86 95 99 100 

Total water content (%) Residual binder content (%) Void ratio (%) 

7.9 4.2 15 

CMA has been compacted thanks to Duriez protocol. CMA specimens have been 12 

always kept in the Duriez molds for curing and mechanical testing. After compaction, 13 

CMA specimens have been stored in climatic chambers for three weeks under different 14 

controlled curing conditions (temperature of 20°C, 35°C and humidity ratio of 55%) to 15 

study the effect of these parameters on mechanical performance [13]. From time to 16 

time, the specimens will be shortly retrieved from the chambers to test them under 17 

cyclic oedometric conditions to measure their (complex) modulus. These tests are done 18 

at different frequencies (0.1, 1, 3, 6 and 10Hz) and temperatures in order to better assess 19 

their viscoelastic behaviour and possibly further characterize the curing parameter   of 20 

our model. Only mechanical performance measured at 20°C are shown in this article. A 21 

hundred of load cycles are applied on the whole life of the specimens to avoid 22 
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mechanical disturbance of the samples. To conduct these tests, a specific experimental 1 

device (fig. 10) was fully designed and manufactured specifically to study CMA 2 

mechanical behaviour. 3 

 4 

Figure 10. Device for the mechanical characterization test 5 

The oedometric tests results presented in the following (fig. 11) were performed at 6 

different curing states at 20°C and 1 Hz for a sinusoidal stress of 0.4 MPa applied to the 7 

specimens. These first tests demonstrate a strong stiffening of the material with curing 8 

when comparing strain amplitude which decreases from          in the fresh state to 9 

         in the cured state. 10 

 11 

Figure 11. Experimental stress-strain cycles measured at 20°C on specimens cured at 12 

35°C and 55% H.R 13 

In the fresh state (2 days after manufacturing, compacting and curing at 35°C and 55% 14 

H.R), the CMA specimen displays at 20°C and 1 Hz an oedometric secant modulus 15 
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(calculated on the stabilized loading cycles) of 623 MPa. After 11 days and 64 days of 1 

curing, the modulus increases to 1038 MPa and 1761 MPa respectively. It can also be 2 

observed that with curing, the shape of the curves become less convex (fig. 11) which 3 

reflects the viscoelastic component increasing in the CMA behaviour. In the most cured 4 

state, the loading unloading loop even becomes elliptic. 5 

3.2.4.2. Application of the CMA model for different values of “ ” 6 

To simulate these oedometric tests, a stress function                    was run 7 

for few cycles in order to obtain the corresponding strain. The parameters   and   are 8 

kept equal to     and    . The    parameter is defined by imposing         for the 9 

stress         . The value of   is used to modify the model viscosity so as to 10 

observe the variation in material behaviour between the fresh and cured states (fig. 12 11 

and 13). To be closed to the experimental results shown on figure 11, the parameter   is 12 

chosen as           (fresh state),           (intermediate state) and         (cured 13 

state). 14 

 15 

Figure 12. Simulation of three CMA loading cycles at the fresh state (1), at the 16 

intermediate state (2) and at the cured state (3) 17 
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 1 

Figure 13. Simulation of 3 CMA loading cycles at the different states 2 

Despite the fact that no specific attention has been given yet to optimise the fit between 3 

numerical and experimental curves, the qualitative comparison between figure 11 and 4 

figures 12 and 13 indicates that our 3 branches spectrum model looks promising to 5 

account for the evolutive behaviour (NLVE component) of CMA under curing.  6 

4.5.Conclusion and outlook 7 

This work has dealt with the need to develop a first-of-its-kind CMA constitutive model 8 

in order to introduce CMA as a structuring layer. The model is obtained as the 9 

juxtaposition of type Boyce model and a parabolic dashpot, using their spectral 10 

decomposition and the "curing function"         . Thus curing phenomenon is prone 11 

to be described by a dedicated function giving more and more weight with time to the 12 

viscous component. First comparisons between experimental results and numerical 13 

simulations show the relevance of the model to account for the CMA behaviour. 14 

The experimental campaign launched in parallel to this work should make it possible to 15 

better define the values of the model parameters for an evolutive material. In particular, 16 

it is expected to be able to relate the function          with the curing conditions. It is 17 

also planned to extend the model in 3D and to integrate it into a finite element software 18 

to compute the strain and stress fields induced in CMA pavement layers under traffic 19 
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and have a better knowledge of their mechanical behaviour over the pavement life. 1 

Further, damage criteria will have to be added on this basis. 2 
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Appendix A: Computation of the opening function      1 

Let us examine the general computation of the opening function      linked to the 2 

nonlinear elastic relationship     . 3 

Let us start from equation (11) and figure 6. Considering the strain response to some 4 

given stress value  , this integral (11) can be divided into two parts:  5 

- the first one being related to the open elements for          where      is 6 

the solution of the implicit equation:  7 

      
 

  
   (A1) 8 

- the second one being related to the closed elements for          .  9 

Thus: 10 

     
 

  
             

  

    
  (A2) 11 

Then by derivation with  : 12 

  

  
 

    

  
  (A3) 13 

Let us introduce the tangent flexibility modulus S defined by: 14 

     
  

  
  (A4) 15 

Then: 16 

     
 

  
  (A5) 17 

Then by elimination of   between equations (A1) and (A5), it comes: 18 

      
 

  
    

 

  
   (A6) 19 

 20 

Let us apply this relationship to the particular case of the constitutive law (8). We have 21 

for this one: 22 

    
  

  
 

 

 
  (A7) 23 
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and so for the flexibility modulus: 1 

     
  

  
  

 

  
 

 

  

 
    

   

   (A8) 2 

Wherefrom: 3 

            
 

  

 

   
 

 

     (A9) 4 

And then: 5 

     
 

     
 
   

 with      (A10) 6 

  7 



23 

 

Appendix B: Computation of the spectral function      linked to the 1 

creep function      2 

Lets us start from the relationship (13). 3 

By time derivation, it comes: 4 

      
 

 
 

 

    
 
  

      
  

 
  (B1) 5 

Let us note: 
 

    
    6 

and let us assume that      is an increasing function, being equal to   for     and 7 

tending to +  for     . 8 

Then: 9 

      
 

 
 

    

 

     
 

 
 

  
  

  

 
  (B2) 10 

Then, it can be noticed that this relationship is similar to the Laplace transform of 11 

function     : 12 

                             
  

 
   (B3) 13 

with: 14 

     
 

   

     
 

 
 

  
  (B4) 15 

Then by inverse transform: 16 
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Wherefrom: 18 

  

  
 

 

 
             

 

 
   (B6) 19 

That is: 20 

 

 
   

            
 

 
 

 
   

 

 
  (B7) 21 

Finally, the requested equation for      can be obtained by inverting this relationship. 22 
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Let us apply this computation to the particular case of the creep function (9). We have 1 

for this one with   
 

  
: 2 

      
 

    
 

    
  (B8) 3 

            
 

 
  

 

     
  

      
  (B9) 4 

 

  
  

            
 

 
 

 
   

 

 
 

 

           
    (B10) 5 

And then: 6 

             
 

   
 

   (B11) 7 

Being given the inequality 
 

 
  , it can be checked a posteriori that      is equal to 0 8 

for     and tends to +  for     . 9 




