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ABSTRACT

Simulating rotating geometries in fluid flows for industrial applications remains a challenging task for general fluid solvers and in particular
for the lattice Boltzmann method (LBM) due to inherent stability and accuracy problems. This work proposes an original method based on
the widely used overset grids (or Chimera grids) while being integrated with a recent and optimized LBM collision operator, the hybrid
recursive regularized model (HRR). The overset grids are used to actualize the rotating geometries where both the rotating and fixed meshes
exist simultaneously. In the rotating mesh, the fictitious forces generated from its non-inertial rotating reference frame are taken into account
by using a second order discrete forcing term. The fixed and rotating grids communicate with each other through the interpolation of the
macroscopic variables. Meanwhile, the HRR collision model is selected to enhance the stability and accuracy properties of the LBM simula-
tions by filtering out redundant higher order non-equilibrium tensors. The robustness of the overset HRR algorithm is assessed on different
configurations, undergoing mid-to-high Reynolds number flows, and the method successfully demonstrates its robustness while exhibiting
the second order accuracy.

I. INTRODUCTION

The lattice Boltzmann method (LBM) has attracted huge atten-
tion from the computational fluid dynamics community over the last
few decades for its efficiency and its relatively easy numerical imple-
mentation on Cartesian meshes avoiding the use of body-fitted grids.
However, stability still remains a crucial issue for high Reynolds num-
ber and compressible flows. In that context, the regularized method
was suggested to improve the stability properties of the LBM collision
operator.1 The method regularizes the non-equilibrium functions at
the pre-collision steps, by excluding redundant high order non-
equilibrium parts which would not be necessary to recover the
Navier–Stokes equation. It is conducted by reconstructing the low
order non-equilibrium parts from the low order macroscopic non-
equilibrium tensors, computed by projecting the non-equilibrium
parts into the low order Hermite polynomials. Subsequently, the recur-
sive regularization method was suggested to increase the orders of the
regularized non-equilibrium tensors by using the recursive formula.2,3

The recursive regularization showed an improvement of the stability
of the overall algorithm compared to the standard single-relaxation
time model (SRT) and multi-relaxation time model (MRT) at moder-
ate to high Reynolds numbers. More recently, the hybrid recursive

regularized model (HRR) was proposed4 based on the reconstruction
of the non-equilibrium tensors by the non-equilibrium distribution
functions but also by macroscopic stress tensors calculated from finite
difference schemes. The part of the non-equilibrium tensors computed
with the finite difference schemes results in injecting a hyperviscosity
in the flows, which increases the stability of the solver. The HRR colli-
sion model has thus been actively studied and applied to various chal-
lenging configurations, compressible flows for instance.5,6 Also, its
capability to overcome the spurious numerical effects induced by the
interfaces of mesh refinement was demonstrated.7 Extensive studies
based on linear stability analysis also showed that the HRR model can
suppress the non-physical spurious modes and improve the stability of
the global scheme.8,9

Simulating accurately rotating objects immersed in fluid flows is
a major issue for industrial applications. For rigid rotating bodies at
moderate Reynolds and Mach number flows, different solutions such
as the immersed boundary method10–15 and the overset local reference
frame (LRF) method16–20 were proposed. The immersed boundary
method is an efficient way to simulate moving and deformable geome-
tries, but suffers from a low-order of accuracy, which could be an issue
in the case of turbulent high Mach number flows. The overset local
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reference frame method (overset LRF), also referred to as Chimera
mesh or sliding mesh, is widely and successfully applied for industrial
applications due to the possibility of using refined grids to resolve
near-wall turbulent eddies. However, in the context of the LBM, this
class of methods is facing stability issues when the local Mach number
reaches high values in the vicinity of the rotating region.16,17,19,20

In principle, the overset method is based on two different meshes
simultaneously, which raises important issues on how to compute the
fictitious forces generated by the rotating non-inertial frame and how
to interpolate quantities between meshes. In the LBM, several overset
approaches have been tested in the literature. Among them, a standard
Bhatnagar–Gross–Krook (BGK) collision model combined with over-
set sliding meshes and a second order discrete forcing term has been
proposed.16,17 A cumulant lattice Boltzmann method has also been
proposed with overset sliding meshes,19 which showed a second order
accuracy at low Mach and low Reynolds number flows. Also, an
implementation using the multi-relaxation time collision model has
been proposed to study the noise generated by rotating walls.20

Based on these works, and within the scope of simulating rotating
geometries in industrial flows, we propose here to integrate the overset
method with the HRR collision model. To the best of the authors’
knowledge, this is the first time that the overset method is tested with
the regularization based collision model. The method is validated
through its second order accuracy at different configurations, and also,
its aerodynamic properties are well matched with the references. The
proposed algorithm is assessed in mid-to-high Reynolds number
flows, keeping the non-dimensional relaxation times between 0.5 and
0.6. The paper is organized as follows: the HRR collision model and
the proposed overset method are presented in Sec. II and Sec. III; the
accuracy of the overall algorithm is then studied in Sec. IV, before vali-
dating the model in Sec. V on various test cases; and the conclusions
are in Sec. VI.

II. THE HYBRID RECURSIVE REGULARIZED LATTICE
BOLTZMANNMETHOD

Originating from the discretization of the Boltzmann equation,
the lattice Boltzmann method (LBM) describes the motion of fluids
through the collision and streaming of fluid particles, described by
their distribution functions, which relate to the probability of having a
fluid particle at a given velocity, at a given position in space, and at a
given instant.

The lattice refers to the space discretization, which is classically a
simple Cartesian mesh in the LBM. At each lattice point, a set of dis-
crete particle velocities are defined, allowing the fluid particles to head
toward a finite set of directions, chosen as a function of the accuracy
and physical contents of the LBM model. By discretizing the
Boltzmann equation in space, time, and particle velocity, a transport
equation for the distribution functions is obtained,

fiðx þ ciDt; t þ DtÞ � fiðx; tÞ ¼ �Dt
s
f neqi ; (1)

where the index i refers to the discretization in the space of fluid veloc-
ities, ci refers to the discrete velocities, and f neqi refers to the non-
equilibrium part of the distribution function fiðx; tÞ, given by
f neqi ¼ fiðx; tÞ � f eqi , with f eqi the equilibrium part of the distribution
functions, which will be detailed hereafter. The classical normalization
Dx ¼ Dt ¼ 1 will be used hereafter, where Dx denotes the mesh size.

The left hand side of (1) represents the streaming process and its right
hand side represents the simplest and widely used collision model,
referred to as the Bhatnagar–Gross–Krook operator (BGK).21 For
more details, the reader is referred to Ref. 22. At each instant, the mac-
roscopic characteristics for the fluids such as velocity, density, and
stresses are easily reconstructed by taking the moments of the distribu-
tion functions. For instance, the fluid density is the moment of order
0, the fluid momentum is the moment of order 1 of the distribution
function, and the stress tensor is obtained by taking the moment of
order 2 of the non-equilibrium part of the distribution function.

By applying the Chapman–Enskog expansion,23 the distribution
function can be expanded with respect to the Knudsen number e,

fi ¼ f eqi þ ef ð1Þi þ e2f ð2Þi þ � � � : (2)

The zeroth order corresponds to the equilibrium function, and
the rest of higher order terms are expansion of the non-equilibrium
functions according to different Knudsen numbers.

The regularized method enhances the stability and accuracy of
the collision and streaming processes by truncating redundant higher
order non-equilibrium terms.1–3 It aims at keeping the low order of
the non-equilibrium terms which are sufficient to recover the macro-
scopic shear stress, while filtering out all the rest of higher order terms
which are not essential. The original regularization method drops out
all the non-equilibrium terms except for the second order non-
equilibrium part, by projecting the non-equilibrium term to the sec-
ond order Hermite polynomial Hð2Þ

i .1 It is based on the assumption
that the second order non-equilibrium term could represent all the
non-equilibrium parts [ef ð1Þi ’ ðfi � f eqi Þ]. This second order non-
equilibrium part can be reconstructed from the second order non-
equilibrium tensor [from now on, all fi’s stand for the values including
the Knudsen number e in Eq. (2)],

að2Þ1;ab ¼ RiH
ð2Þ
i ðfi � f eqi Þ ¼ Riðciacib � dabc

2
s Þðfi � f eqi Þ: (3)

However, the recursive regularization method (RR) allows us to
keep the few more finite numbers of low order non-equilibrium ten-
sors.2,3 Using the recursivity formula of the Hermite polynomials, the
method is able to hold finite orders of non-equilibrium tensors aðnÞ1 .
As it provides freedom to expand the orders of the non-equilibrium
tensors to be retained, it contributes to improving the stability. The
third order non-equilibrium tensors are added based on the recursive
formula,

að3Þ1;aab ¼ 2uaa
ð2Þ
1;ab þ uba

ð2Þ
1;aa; (4)

where isotropic tensors such as að3Þ1;xxx have to be excluded in the
D3Q19 lattice.

These methods were further improved introducing the hybrid
recursive regularized method (HRR),4 in which two different ways to
construct the second order non-equilibrium tensor að2Þ1 are hybridized.
The first one is the second order non-equilibrium tensor as in the nor-
mal recursive regularization method [see Eq. (3)]. The second one
relies on the shear stress SFD calculated using a second-order accurate
centered finite difference scheme,

að2Þ;FD1;ab ¼ �2qsc2s S
FD; (5)

SFD ¼ ð@bua þ @aubÞ=2: (6)
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The second order non-equilibrium tensor of the HRR method

að2Þ;HRR1 is defined as a linear combination of the non-equilibrium tensor
computed by the second order moment of non-equilibrium distribution

function að2Þ1 and the non-equilibrium tensor computed from finite

difference að2Þ;FD1 ,

að2Þ;HRR1;ab ¼ rað2Þ1;ab þ ð1� rÞað2Þ;FD1;ab : (7)

This additive finite difference part works as injecting artificial vis-
cosity in flow fields, which improves the numerical stability.4,7–9

Then, the third order non-equilibrium tensors of the HRR model
að3Þ;HRR1 are computed from the given second order non-equilibrium
tensors [Eq. (7)] and the recursive formula [Eq. (4)], which is exactly
the same procedure as the normal recursive regularization method.

Finally, the non-equilibrium parts of the HRR model could be
reconstructed by projecting the different orders of the non-
equilibrium tensors to the Hermite polynomialsHðnÞ

i ,

f ð1Þi ¼ wi

�
1
2c4s

H
ð2Þ
i : að2Þ1

þ 1
2c6s

ðHð3Þ
i;xxy þH

ð3Þ
i;yyzÞðað3Þ1;xxy þ að3Þ1;yyzÞ

þ 1
2c6s

ðHð3Þ
i;xzz þH

ð3Þ
i;xyyÞðað3Þ1;xzz þ að3Þ1;xyyÞ

þ 1
2c6s

ðHð3Þ
i;yyz þH

ð3Þ
i;xxzÞðað3Þ1;yyz þ að3Þ1;xxzÞ

þ 1
6c6s

ðHð3Þ
i;xxy �H

ð3Þ
i;yyzÞðað3Þ1;xxy � að3Þ1;yyzÞ

þ 1
6c6s

ðHð3Þ
i;xzz �H

ð3Þ
i;xyyÞðað3Þ1;xzz � að3Þ1;xyyÞ

þ 1
6c6s

ðHð3Þ
i;yyz �H

ð3Þ
i;xxzÞðað3Þ1;yyz � að3Þ1;xxzÞ

�
; (8)

where wi and cs are, respectively, the lattice weights and the speed of
sound, and the second and third order Hermite polynomials read

H
ð2Þ
i;ab ¼ ciacib � dabc2s ;

H
ð3Þ
i;abc ¼ ciacibcic � cicdabc2s � cibdcac2s � ciadbcc2s :

(9)

Also, the third order equilibrium function is employed as4,6

f eqi ¼ wi

�
qþ q

ci � u
c2s

þ q
2c4s

ððci � uÞ2 � c2su
2Þ

þ 1
2c6s

ðHð3Þ
i;xxy þH

ð3Þ
i;yyzÞðað3Þ0;xxy þ að3Þ0;yyzÞ

þ 1
2c6s

ðHð3Þ
i;xzz þH

ð3Þ
i;xyyÞðað3Þ0;xzz þ að3Þ0;xyyÞ

þ 1
2c6s

ðHð3Þ
i;yyz þH

ð3Þ
i;xxzÞðað3Þ0;yyz þ að3Þ0;xxzÞ

þ 1
6c6s

ðHð3Þ
i;xxy �H

ð3Þ
i;yyzÞðað3Þ0;xxy � að3Þ0;yyzÞ

þ 1
6c6s

ðHð3Þ
i;xzz �H

ð3Þ
i;xyyÞðað3Þ0;xzz � að3Þ0;xyyÞ

þ 1
6c6s

ðHð3Þ
i;yyz �H

ð3Þ
i;xxzÞðað3Þ0;yyz � að3Þ0;xxzÞ

�
; (10)

where the third equilibrium tensors are að3Þ0;abc ¼ quaubuc and u2 is
the vector norm.

Eventually, from the given equilibrium and regularized non-
equilibrium functions, the HRR collision operator in the inertial fixed
frame is defined as

fiðx þ ciDt; t þ DtÞ ¼ f �i ðx; tÞ ¼ f eqi ðx; tÞ þ 1� Dt
s

� �
f ð1Þi ðx; tÞ:

(11)

Note that the Galilean invariance is not corrected explicitly,
which corresponds to an Oðu3Þ error added on the non-equilibrium
tensor, following the standard HRR method.2–4,7

III. OVERSET LOCAL REFERENCE FRAME METHOD
(LRF)

In the overset local reference frame (LRF) approach, two different
meshes exist at the same time, with different reference frames. The
background fixed mesh has an inertial/Galilean reference frame,
whereas the rotating mesh has a non-inertial/non-Galilean reference
frame. Therefore, in the rotating region, this non-inertial reference
frame requires using the fictitious forces at each time step. The com-
munications between moving and fixed grids involve the interpola-
tions of macroscopic values, modifying them to take into account the
geometrical and inertial features of the newly interpolated region and
reconstructing the distribution functions from the interpolated macro-
scopic values. In this section, we detail the different steps of the com-
munications between grids.

A. The discrete forcing scheme in the HRR model

In the non-inertial rotating frame, the fictitious forces such as the
Coriolis and centrifugal forces have to be considered as

F
q
¼ �2x� v� x� ðx� rÞ; (12)

where r is the radius vector from the rotation center andx is the angu-
lar velocity vector.

It assumes that the fictitious force only includes steady angular
velocity, which may not allow us to compute the impulsive rotation
case. The fictitious forces are taken into account for the collision and
streaming process at each time step, which gives the general LBM for-
mulation in the non-inertial reference axis,24

fiðx þ ciDt; tn þ DtÞ

¼ fiðx; tnÞ � Dt
s
ðfiðx; tnÞ � f eqi ðx; tnÞÞ þ 1� Dt

2s

� �
Si

¼ fiðx; tnÞ � Dt
s
ðfiðx; tnÞ � f eqi ðx; tnÞ þ 1

2
SiÞ þ Si

¼ fiðx; tnÞ � Dt
s
f neqi ðx; tnÞ þ Si: (13)

This formulation has two particular features compared with the
conventional formulation in the inertial frame [Eq. (1)]. One is that it
requires a new definition of its macroscopic velocity for the equilib-
rium function and another is that it needs to employ the discrete forc-
ing term Si which will be detailed hereafter in Eq. (18).
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First, the representative macroscopic velocity v has to be defined
as considering the non-inertial acceleration. The velocity is designated
as the one including half of the force, which is so called “half-force
correction,”

qvðx; tnÞ ¼
X
i

cifiðx; tnÞ þ 1
2
Fðx; tnÞDt; (14)

where Fðx; tnÞ is a function of x, r, and vðx; tnÞ, and density q isP
i fiðx; tnÞ.
This new velocity is representative velocity at each discrete time

step, which is applied to both the equilibrium function and discrete
forcing term in Eq. (13). This treatment is essential to guarantee the
second order accuracy in time and space discretization process
through the trapezoidal rule.22 Due to the external force F which is
being acted on the fluid particles during the unit discrete time step, the
macroscopic velocity u is also varied within the time step. It means
that, over the discrete time step, the macroscopic velocity would be
laid on somewhere between the pre-collide velocity and the velocity
after adding the fictitious acceleration. Therefore, this half-force cor-
rected macroscopic value v could be considered as the average velocity
within the discrete time step, by which the discrete forcing scheme
becomes more robust.

However, when the external force includes the Coriolis force
which consists of the velocity, the force becomes a function of time
which gives the implicit problem.25–27 vðx; tnÞ is composed of Fðx; tnÞ
which is a function of vðx; tnÞ itself. One solution is to predict the
force Fðx; tnÞ from the post-collide discrete force of the previous time
step Fðx; tn�1 þ Dt

2 Þ by solving Eq. (15). Its solution is given as Eq.
(16),

da
dt

¼ �2x� a; (15)

Fðx; tnÞ
q

¼
axðx; tnÞ
ayðx; tnÞ
azðx; tnÞ

2
64

3
75 ¼

cosðxDtÞ sinðxDtÞ 0

�sinðxDtÞ cosðxDtÞ 0

0 0 1

2
64

3
75

�

ax x; tn�1 þ Dt
2

� �

ay x; tn�1 þ Dt
2

� �

az x; tn�1 þ Dt
2

� �

2
666666664

3
777777775
; x ¼ xẑ ; (16)

where Dt is the difference between tn and tn�1.
Then, the predicted external force at the current time step

Fðx; tnÞ could be applied to compute the half-force corrected velocity
vðx; tnÞ in Eq. (14). Finally, this velocity satisfies the fictitious force
equation as follows:

Fðx; tnÞ
q

¼ �2x� vðx; tnÞ � x� ðx� rÞ: (17)

Subsequently, the next question is how to impose the defined fic-
titious force on the fluid particles during the collision and streaming
process. The following discrete forcing term (so called “Guo’s forcing
scheme”) is chosen to enforce the fictitious forces on the particles at
each collision and streaming step:24

Si ¼ wi
ci � v

c2s
þ ðci � vÞ

c4s
ci

" #
� F: (18)

This equation could recover the Navier–Stokes equation consid-
ering the discrete lattice effect24 and also it removes unphysical dissi-
pation in time-dependent incompressible flows.27

In the following, the HRR collision equation is to be set up
including the discrete forcing term. The equation is transformed from
general collision equation (13). The pre-collision distribution function
fiðx; tnÞ in Eq. (13) does not include the half-force correction accord-
ing to its original definition.24 Therefore, the pre-collision distribution
function in the HRR collision f HRRi should also be defined as excluding
the half-force correction,

f HRRi ¼ f eqi v� 1
2
FDt

� �
þ f neq;HRRi

¼ f eqi ðvÞ � 0:5Si þ f neq;HRRi þ Oðu3Þ ; (19)

where the half-force corrected macroscopic velocity v is applied to
define the equilibrium function, discrete forcing term [Eq. (18)], and
the non-equilibrium part [Eq. (3)] in the rotating mesh, and hence the
scheme could maintain consistency. Since the orders of the equilib-
rium function and discrete forcing term are different, it comes with an
Oðu3Þ error, but this error is not corrected here, as the third order
term is often neglected to recover the isothermal Navier–Stokes
equation.

Finally, given Eqs. (13) and (19), the HRR collision equation in
the non-inertial reference frame is derived as

f �;HRRi ¼ ðf eqi � 0:5SiÞ þ f neq;HRRi � Dt
s
f neq;HRRi þ Si þ Oðu3Þ

¼ f eqi þ 1� Dt
s

� �
f neq;HRRi þ 0:5Si: (20)

It gives the final form of the HRR collision equation under the
external force, which describes how the collision of the HRR model
should occur in the non-inertial rotating frame.

B. Rotating to fixed grid interpolation

To transfer information from moving to fixed grids, the mesh
velocity (x� r in the case of the rotating mesh) is first added to the
macroscopic velocity in the moving grid (see Algorithm 1). This treat-
ment is not needed for the non-equilibrium tensors because the mesh
rotation does not affect the shear stress if the mesh rotates with a uni-
form angular velocity. The macroscopic values are then interpolated
from the moving grid to the fixed grid. The boundary nodes of the
fixed grid (black circles of the yellow fixed grid in Fig. 1) receive the
data from the surrounding moving nodes. The interpolation scheme
takes four moving nodes enclosing one target fixed node at the bound-
ary (Fig. 2). Two different interpolation schemes are considered in this
research. The bi-linear interpolation used here consists in linear inter-
polations by using the distances between the target node and input
interpolating nodes, see Eq. (30).28 This interpolation scheme is of sec-
ond order of accuracy which is demonstrated through the Taylor
expansion.29 Also, the gradient based second order interpolation is
tested.30 The second order interpolation is built using the gradients,
and hence the interpolation stencil is not larger than in the case of the
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bilinear interpolation which contributes to reduce the computational
cost. More details are described in Sec. IVC.

This interpolation is performed separately for each macroscopic
variable such as velocity, density, and non-equilibrium tensor Pneq.
Here, the non-equilibrium tensor is computed as being described in
Eqs. (4) and (7). The next step is to redefine the vectors of the interpo-
lated macroscopic values according to the fixed reference axis, through
the rotation matrix R. Finally, the equilibrium and non-equilibrium
distribution functions at the fixed node are reconstructed from the
interpolated macroscopic values by using the Hermite polynomials
according to formulas (10) and (8).

ALGORITHM 1. Interpolation from rotating to fixed grid.

for all border nodes at fixed grid do
for 4 surrounding interpolating nodes at moving grid do

ûmg ¼ umg + x� r; P̂neq;mg ¼Pneq;mg ;
qfg ¼ I(qmg), û fg ¼ I(ûmg), P̂neq;fg ¼ I(P̂neq;mg): interpolate
macroscopic values from moving to fixed grid;

end
ufg ¼R(û fg), Pneq;fg ¼R(P̂neq;fg): redefine macroscopic vectors
from moving to fixed reference axis;
fi;fg ¼ g(qfg, ufg ; Pneq;fg): reconstruct fi;fg ;

end

C. Fixed to rotating grid interpolation

The interpolation step from fixed to moving grid is similar to the
previously described one, except for considering the half force correc-
tion at the end of the interpolation procedure (see Algorithm 2). First,
macroscopic values of the fixed grids are projected on the moving grid
by using the interpolation [Eq. (30) or Eq. (31)], based on four fixed
nodes surrounding one target moving node (Fig. 2, right). Each mac-
roscopic term is transferred through the interpolation separately, such
as q, u, andPneq. Then, the next step is to transform the reference axis
of the interpolated macroscopic values using the rotation matrix R.
Additionally, the mesh velocity has to be subtracted. Note that no extra
treatment is needed for the non-equilibrium tensors because the mesh
rotation does not affect the shear stress if the mesh rotates with a uni-
form angular velocity. Next, the distribution functions at the border of
the moving grid are reconstructed from the interpolated macroscopic
values, by expanding the equilibrium and non-equilibrium distribu-
tion functions through the Hermite polynomials, see Eqs. (10) and (8).
Finally, half of the body forces are subtracted from the reconstructed
distribution functions. The macroscopic momentum flux in the mov-
ing region contains half of the force, while its distribution function
does not, see Eq. (14).24 Therefore, this subtraction is to recover the
distribution functions before undergoing the half-force correction.

ALGORITHM 2. Interpolation from fixed to rotating grid.

for all border nodes at moving grid do
for 4 surrounding interpolating nodes at fixed grid do

qmg ¼ I(qfg), ~umg ¼ I(ufg), ~Pneq;mg ¼ I(Pneq;fg): interpolate
macroscopic values from fixed to moving grid;

end
ûmg ¼R(~umg), P̂neq;mg ¼R( ~Pneq;mg): redefine macroscopic vec-
tors from moving to fixed reference axis;
umg ¼ ûmg − x� r; Pneq;mg ¼ P̂neq;mg ;
f̂ i;mg ¼ g(qmg, umg ; Pneq;mg): reconstruct f̂ i;mg ;
fi;mg ¼ f̂ i;mg − Fi/2: “half-force correction;”

end

FIG. 1. Schematic diagram of the overset grids: fixed grid (yellow), rotating grid
(red), overset region (navy), interpolation border from rotating to fixed grid (solid
line), and interpolation border from the fixed to rotating grid (dashed line).

FIG. 2. Schematic diagram of the bi-linear interpolation between the moving (red) and fixed (yellow) grids. Left: moving to fixed grid interpolation. Right: fixed to moving grid
interpolation. The nodes at the boundary of each grid receive the data from the other grid (black circle).
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D. Boundary condition at solid walls

The extrapolation-based boundary condition is applied on the
rotating solid wall.31,32 The method reconstructs the distribution func-
tions of the boundary nodes using the target macroscopic values at the
exact location of the wall and the nearest fluid nodes.32 Therefore, the
method can describe the curved wall without facing the “staircase
approximation” problem while having the second order accuracy.31

Since the overset rotating grid and its non-inertial rotating reference
axis are attached to the rotating solid body as moving together, this
boundary condition has exactly the same performance as the conven-
tional one in the fixed grid. As a matter of fact, it does not face any
issue with the moving boundary coming from redefining the fluid and
solid nodes at each time, such as methods using ghost-cells33,34 or
immersed boundary methods.5,11

IV. ACCURACY OF THE OVERSET LRF–HRR
ALGORITHM
A. Accuracy of the discrete forcing term
on the HRR model

The accuracy of the overset LRF method can be evaluated by
comparing the obtained flow fields with those of the reference compu-
tation without overset grids. There are two main major sources of
error. The first one is located near the border of overset grids, where
spurious numerical effects are observed due to the interpolation
scheme itself, and consequently the reconstruction step which is per-
formed afterwards to compute the macroscopic variables. The second
source of error is related to the discrete forcing term present inside the
rotating region to account for the non-inertial rotating reference axis.

A second order discrete forcing scheme is reliable and robust
enough to achieve the second-order accuracy.22,24 However, it is an
extra source of error which adds on the interpolation error. In particu-
lar, for uniform and incompressible flows, this error from the discrete
forcing term inside the rotating region becomes dominant compared
to the interpolation error, because the bi-linear interpolation scheme is
exact for a uniform flow field, in a sense that its interpolation error
becomes negligible as the second order derivatives of the perturbation,
and also, the error due to the reconstruction of the non-equilibrium
part is negligible for incompressible flows. For instance, in the case of

the arbitrary Lagrangian–Eulerian method (ALE) where no discrete
forcing term is used, the error is uniquely created by the interpolation
and reconstruction process at the borders and gives a trivial value of
10�14 for an incompressible uniform flow.35 Therefore, considering
the simple configuration of uniform flow is a relevant way to isolate
the effect of the forcing term and analyze its error on the global overset
LRF method.

The forcing term generates two kinds of error: the discretization
of the forcing scheme in time and space, and the error due to the
weakly compressible approximation. First, the classically used trape-
zoidal rule to integrate in time and space LBM equations with discrete
forcing terms is generating second-order discretization error OðDx2Þ
[Eq. (21)].22,36 Also, the compressibility error OðMa2Þ comes from
gradients of force fields which have OðMa2Þ error when the force
fields are the fictitious forces [see Eq. (21)].36,37 These errors are added
to the conventional compressibility error OðMa2Þ which occurs in the
lattice even without the force fields, but becoming more dominant
according to the rotation speed [see Eq. (21)],38–41

@ðquaÞ
@t

þ @bðc2sqdab þ quaubÞ ¼ @bP
ð1Þ
ab þ Fa þ OðDx2;Ma2Þ:

(21)

Figure 3 (left) shows the discretization error of the discrete forc-
ing term, using the L2 norm of the error defined by

EF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðF � FexactÞ2X
F2
exact

vuut ; (22)

where Fexact is the analytical forcing term.
The error is measured in the overset rotating grid of the LRF sim-

ulation. A uniform channel flow has low Reynolds number
Re ¼ U0L

� ¼ 60, where L is the channel height, and inlet Mach number
Ma0 ¼ 0:17. The number of lattices in the channel height is Nx which
increased from 50 to 125. The error is reduced as the number of lattice
points is increased, following a second-order accuracy trend. This
mesh convergence test is conducted based on the acoustic scaling.42

Also, it is shown that accuracy with the HRR collision model always
outperforms that of the BGK collision model. Here, the BGK collision

FIG. 3. Relative L2 error norm of the discrete forcing term Fx in the overset rotating grid. The error is calculated from the analytical force. Left: mesh convergence test at the
rotation speed Marx ¼ 0:17. Right: compressibility error at different mesh rotation speeds with the number of lattices Nx¼ 200. In the legend, “slope-2” indicates the second-
order accuracy trend.
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model uses the same equilibrium function as for the HRR. Figure 3
(right) shows the compressibility error on the discrete forcing term at
different rotation speeds. The mesh resolution is set high enough
(Nx¼ 200) to minimize as much as possible the error due to the spa-
tial discretization. The Mach number represents the rotation speed at
the edge of the rotating square mesh: Marx ¼ rx

cs
, with r referring to

half length of the rotating square. The results show the second-order
accuracy, which highlights the compressibility error by using the dis-
crete forcing term in the overset rotating grid.

Given the fact that major differences between the BGK and HRR
models are used to define the non-equilibrium parts, analyzing the
spurious error of the non-equilibrium tensor can be helpful to figure
out the improvement made by the HRR model. Using multi-scale
analysis, it becomes easier to understand the connection between the
effect of the different collision models and the accuracy of the discrete
forcing term.24,27,43 From the Chapman–Enskog expansion, the trans-
port equations of macroscopic values can be derived from the lattice
Boltzmann distribution functions at each different space and time
scales. In the first order time and space scale where t¼ et1 and x¼ ex1,
the continuity and Euler equations are recovered,24,27,43

@q
@t1

þr1 � ðquaÞ ¼ 0; (23)

@ðquaÞ
@t1

þr1 � ðc2sqdab þ quaubÞ ¼ F1a: (24)

Note the presence of the forcing term in the Euler equation [Eq.
(24)] affecting the momentum transport qu. In the second order time
scale where t¼ et2, the equations read

24,27,43

@q
@t2

¼ 0; (25)

@ðquaÞ
@t2

¼ r1 �Pð1Þ
ab : (26)

The momentum transport equation [Eq. (26)] is driven by the
shear stress, thus showing that accuracy of the forcing term is con-
nected to the non-equilibrium tensor through the mass flux in differ-
ent time scales. This implies the possibility that accuracy of the
discrete forcing term can be improved by reducing the spurious errors
of the non-equilibrium tensor. The error on the non-equilibrium

tensor is measured in the overset rotating grid of the LRF simulation.
It is shown in Fig. 4 for different collision models BGK and HRR, by
computing the L2-norm of the error as follows:

EP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðPneq �Pneq
ref Þ2

N

s
; (27)

wherePneq
ref is the non-equilibrium tensor of reference simulation with

the single fixed grid.
Without the overset rotating grid, the reference non-equilibrium

tensor is zero at machine accuracy 10�15 for both BGK and HRR colli-
sion models. Indeed, the shear stress and divergence are supposed to
vanish in this low Reynolds number and low Mach regime of uniform
channel flow, but they appear in the overset LRF simulation due to the
defect of its algorithm. It shows that the HRR collision model clearly
has less spurious error in the non-equilibrium tensor compared to the
BGK, from which we may deduce the capability of the HRR collision
model to recover more accurate non-equilibrium tensor in the overset
LRF method, thus enhancing accuracy of the discrete forcing term in
the rotating region. The mechanism driving how the HRRmodel dissi-
pates the spurious modes is studied using linear stability analysis.9

The improvement achieved by the HRR model is more clearly
visualized in high Reynolds number flow. Figure 5 left shows the
velocity field without the overset rotating grid. The inlet Mach number
is Ma0 ¼ 0:17 and the Reynolds number is set to Re ¼ 107. It shows
that the flow fields remain stable both with the BGK and HRR colli-
sion operators. However, when the non-inertial rotating grid is overset,
the flow field computed with the BGK collision operator becomes
unstable and gives rise to spurious fluctuations (Fig. 5, middle). The
numerical errors implied by the fictitious force and high local Mach
number in the rotating region induce instability on the field, which the
BGK collision operator cannot damp. By contrast, the flow field com-
puted with the HRR collision operator stays stable in high Reynolds
number flow (Fig. 5, right). More detailed analysis is delivered subse-
quently in Sec. VA.

B. Impact of r on the overset local reference frame

The HRR model adopts two different ways to constitute the non-
equilibrium distribution functions. First, it projects the non-

FIG. 4. L2 error norm of the non-equilibrium tensor Pneq
XX þPneq

YY in the overset rotating grid. The error is calculated from the analytical value. Left: mesh convergence test at
the rotation speed Marx ¼ 0:17. Right: compressibility error at different mesh rotation speeds using Nx¼ 200.
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equilibrium functions onto the low order Hermite polynomials, by which
only the essential low order non-equilibrium tensors are able to be pre-
served. Also, it uses the stresses computed by finite difference schemes,
which are applied to reconstruct the low order non-equilibrium parts.

An interesting consequence of computing these stresses using
finite difference schemes is that artificial viscosity is injected in the
flow, which may be related to the error terms coming out of the trun-
cation and modeling errors,4

SHRR ¼ SþDSFD þDSLBM

’ Sþ ð1� rÞ1
2

�
1
6
Dx2ð@3

aub þ @3
buaÞ

�
þ rOðDx2;u3Þ: (28)

S is the exact shear strain. The strain calculated by the finite dif-
ference SFD gives a discretization error DSFD compared to the exact
shear strain.4 Also, the strain DSLBM calculated by the second order
momentum of the non-equilibrium distribution function contains an
Oðu3Þ error relative to the exact shear strain.41,44,45 This alternative
way of defining the shear stress brings about the artificial viscosity,
which may contribute to improving the stability.4,8,9

Although the artificial viscosity of the scheme damps the ghost
mode carrying non-physical information, there also exists

possibility of over-damping the physical modes, as it behaves like
physical viscosity in the fluid flow.8,46,47 Therefore, it is better to
control the use of r once the stability is achieved to prevent the
over-damping. This stabilization mechanism has been extensively
analyzed using linear stability analysis to show how r can kill the
non-physical modes.8

The effect of r on the overset LRF algorithm is studied on
Poiseuille channel flow configuration by comparing with the reference
fixed case. The Reynolds number is set to Re ¼ U0L

� ¼ 500, where L is
the channel height, the inlet Mach number is Ma0 ¼ 0:17, and the
non-dimensional relaxation time is set to s ¼ �

c2sDt
þ 1

2 ¼ 0:56. The

number of lattices in the channel height is varied as Nx ¼ 100; 125;
160; 200. The empty rotating mesh is rotated with angular velocity x.
The rotation speed is represented by the local Mach number at the
edge of the rotating grid Marx ¼ rx

cs
, where r is half length of the

rotating grid. Figure 6 shows the error in the velocity field using the
L2-norm of the error computed by

Eu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðu� uref Þ2X
u2ref

vuut ; (29)

FIG. 5. Velocity fields in uniform channel flow with Re ¼ 107 and Ma0 ¼ 0:17. Left: normal fixed grid (both the BGK and HRR models). Middle: the overset LRF grid with the
BGK model. Right: the overset LRF grid with the HRR model.

FIG. 6. Results obtained with the overset method at various parameters r of the HRR model in Re¼ 500, Ma0 ¼ 0:17. Left: L2 relative velocity error with Marx ¼ 0:347.
Right: maximum rotation speed of the overset rotating mesh at which numerical stability is preserved.
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where uref is the velocity field with the HRR model in the reference
fixed grid.

The numerical errors between the overset LRF-HRR and refer-
ence HRR simulations are computed by varying the parameter r at a
different number of lattices. Both the overset and reference simulations
use the same r values for the matter of consistency. Figure 6 (left)
shows that this numerical error on the fluid velocity is increased with
r¼ 0, indicating that the order of accuracy of the overset algorithm is
reduced. By contrast, Fig. 6 (right) shows that the maximum rotation
speed of the overset rotating grid is increased for r¼ 0. It means that
the method can achieve more stability by compensating the accuracy,
but the detailed analysis of this mechanism is left for future works.
Therefore, in this research, r¼ 1 is maintained to keep the second
order of accuracy for the overset method, except for the vortex
advection test case (Sec. VB) where it is shown that a slight amount of
r ¼ 0:995 can suppress the spurious noise while not corrupting pres-
sure profile. In Fig. 6 (right), the maximum rotation speed is measured
as the limit where the simulation is numerically stable, and hence it
does not guarantee the accuracy near this limit due to the error coming
from the high Mach number.

C. Effect of different interpolation methods
on the overset method

Two different interpolation methods are considered, namely, the
bi-linear interpolation and the gradient-based quadratic Hermite
interpolation. The bi-linear interpolation is composed of two sets of
linear interpolations in each dimension by using the four neighboring
nodes, which is proven to have the second order of accuracy based on
the Taylor expansion.29 Therefore, it is enough to recover the second
order discretization error of the LBM scheme. However, the leading

order of interpolation error is O @2qu
@x2

� �
which corresponds to the spu-

rious viscosity.48 It could affect the simulation if one needs to recover
sensitive parameters such as the acoustic properties. The bilinear inter-
polation is constituted as follows:28

MðX;YÞ ¼ 1
ðx2 � x1Þðy2 � y1Þ x2 � X; X � x1

� �

�
~Mðx1; y1Þ ~Mðx1; y2Þ
~Mðx2; y1Þ ~Mðx2; y2Þ

" #
y2 � Y

Y � y1

" #
; (30)

where each coordinate follows the description of Fig. 2.
The second order interpolation can overcome this issue as sup-

pressing the numerical error.30 The method has a third order accuracy,
found by Taylor expansion.30 The leading order of the error is reduced

to the third derivative of the equilibrium function O @3f eq

@x3

� �
.48 Since

the leading order of the interpolation is not similar to the numerical
viscosity anymore, it appears more appropriate to study sensitive
parameters, such as acoustic properties. The gradient based second
order interpolation scheme is employed which constitutes the second
order interpolation equation by using velocities and gradients of the
neighboring nodes.30 Using the gradients makes the scheme more
compact, using only the four neighboring nodes, and thus saving com-
putational time as the solver already stores information about the

gradients for certain purposes such as post-processing and constituting
turbulence model,

uðx0; y0Þ ¼ a0 þ a1x0 þ a2y0 þ a3x0y0 þ cxð1� x02Þ þ cyð1� y02Þ;
vðx0; y0Þ ¼ b0 þ b1x0 þ b2y0 þ b3x0y0 þ dxð1� x02Þ þ dyð1� y02Þ; (31)

where all the coefficients ai, bi, ci, and di and coordinate x0 and y0 are
defined in Ref. 30. The coefficients ai and bi concern velocities in the
neighboring nodes, while ci and di concern the gradients.

Two different interpolation methods are tested in the case of
Poiseuille flow. The inlet Mach number is Ma0 ¼ 0:17. The number
of lattices in each dimension is NL¼ 100. The Reynolds number is
Re ¼ U0L

� ¼ 500. The overset rotating mesh is square shaped which
has 40 lattices in its length NL0 ¼ 40. The local Mach number at the
edge of the overset rotating mesh is Marx ¼ L0=2x

cs
¼ 0:347. The setup

is presented in Fig. 7.
Spurious error of the overset method is analyzed by subtracting

the flow field from the reference simulation which is made from the
single fixed grid. Spurious velocity field is generated from the interpo-
lation boundary and the error is reduced by increasing the order of
interpolation scheme (Fig. 8). Also, spurious radiated noise is studied
by analyzing the pressure fluctuation j @p@t �

@pref
@t j in Fig. 9. It shows

that the spurious noise is generated from the interpolation boundary
and then, it propagates through the field. The second order interpola-
tion suppresses the noise more effectively. The errors are listed in
Table I.

This brings about two conclusions. First, the second order inter-
polation guarantees more accurate performance compared to the lin-
ear interpolation, though the linear interpolation has an OðDx2Þ error
term which is enough to recover the second order discretization error
of the LBM scheme. Also, the bi-linear interpolation gives the numeri-
cal error with a leading order O @2qu

@x2

� �
which corresponds to spurious

viscosity. Therefore, the second order interpolation is recommended if
one is interested in viscosity-sensitive parameters, such as acoustic
properties and turbulence. In this work, the second order interpolation
is tested for the vortex advection (Sec. VB) and 3D large-eddy simula-
tion of the turbulent flow around a rotating cylinder (Sec. VE).

FIG. 7. Overset grids for the Poiseuille flow. The rotating grid is superposed on the
fixed grid. The fixed grid has a void in the middle.
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V. NUMERICAL VALIDATION OF THE OVERSET
LRF–HRR ALGORITHM
A. High Re uniform channel flow without solid body

The first test case consists in a simple uniform channel flow. The
empty rotating mesh is overset on the fixed mesh to simulate the

uniform flow without any solid body. To produce the reference data, the
single fixed mesh is set up to simulate the same uniform channel flow.
The Reynolds number of the flow (Re ¼ U0L

� ) is set to 107 and the inlet
Mach number isMa0 ¼ 0:17. There are 100 lattices in the length of the
channel L ¼ 100Dx. The overset rotating mesh is square shaped which
has 40 lattices in its length L0 ¼ 40Dx. The local Mach number at the

edge of the overset rotating mesh isMarx ¼ L0=2x
cs

¼ 0:347. The bilinear
interpolation is applied in this section.

Figure 10 shows the velocity error fields of the overset LRF simu-
lations. The error fields are computed from the reference simulations
with the single fixed grids (j u�uref

uref
j). Both overset simulations are con-

ducted with Guo’s forcing scheme as described in Eq. (18). On the left
side, the error field from the LRF simulation with the BGK collision
model is plotted, exhibiting spurious oscillations due to the instability
of the BGK collision model. By contrast, the HRR collision model can
successfully kill the spurious instabilities generated by the LRF algo-
rithm and stabilize the flow (Fig. 10, right). For a quantitative study,
the L2 relative error norms between the overset LRF simulations and
the reference simulations are computed as follows:

FIG. 8. Instantaneous spurious velocity fields of the overset grids in the Poiseuille flow. The spurious errors are defined as ju� uref j=u0, where u0 is the maximum velocity.
Left: bi-linear interpolation. Right: second order interpolation. The reference simulation is computed in the normal fixed grid.

FIG. 9. Instantaneous spurious noise fields of the overset grids in the Poiseuille flow. The spurious errors are defined as j @p@t �
@pref
@t j. Left: bi-linear interpolation. right: second

order interpolation. The reference simulation is computed in the normal fixed grid.

TABLE I. Error comparison between the bilinear and gradient-based second order
Hermite interpolation.30

Bilinear Second order Hermite

Eu
a 2:2399� 10�4 1:4931� 10�4

Eu;max
b 5:0805� 10�4 4:5188� 10�4

Edp=dt
c 4:2036� 10�7 2:0317� 10�7

Edp=dt;max
d 3:8406� 10�6 6:2729� 10�7

aL2 relative norm. Same as Eq. (29).
bMaximum error.
cL2 averaged norm. Same as Eq. (33) as being replaced by dp/dt.
dMaximum error.
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Eu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðu� uref Þ2X
u2ref

vuut : (32)

Figure 11 shows that the L2 errors of the HRR collision models
are smaller than the error of the BGK model which confirms the plots
of Fig. 10. Also, both collision models are tested by using the forcing
scheme proposed by He et al.49 Different forcing terms are tested to
show the robustness of the overset scheme. For both forcing schemes,
the HRR-based overset methods have smaller error compared to the
BGK-based overset methods.

Figure 12 shows the divergence error fields of the LRF domains
with BGK and HRR collision models. The error fields are evaluated by
subtracting the divergence fields of the LRF domains from those of the
reference domains (jr � u�r � uref j). Both error fields are computed
based on Guo’s forcing scheme given in Eq. (18). The error field of the
BGK collision model, which is the difference between the overset
LRF–BGK and the reference BGK computations, shows spurious oscil-
lations, which are reduced if the HRR collision model is used instead.

FIG. 10. The velocity error fields in the overset LRF simulations with the different collision models. Left: BGK model. Right: HRR model with r ¼ 1:0.

FIG. 11. L2 relative velocity error norms of the overset LRF simulations with the dif-
ferent collision models and discrete forcing scheme. The errors are evaluated
during 20 flow through time (20 FFT ¼ 20 Lx

U0
).

FIG. 12. The divergence error fields of the overset LRF simulations with the different collision models. Left: BGK model. Right: HRR model with r ¼ 1:0.
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In Fig. 13, the errors are quantitatively expressed where the L2 aver-
aged error norms are given as

Er�u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðr � u�r � uref Þ2
N

s
: (33)

It shows that the L2 error norm of the divergence is more
reduced with the HRR collision model compared to the BGK colli-
sion model, while the error is bounded in time. In Fig. 13, apart
from Guo’s forcing scheme, He’s forcing scheme is also tested to
actualize the fictitious force inside the rotating region.49 For both
forcing schemes, the HRR based overset methods have smaller
divergence errors compared to the BGK based overset methods.
Considering the divergence is closely related to acoustic noises, and
this implies that the HRR collision model can contribute to attenu-
ating the spurious noises generated by the overset LRF mesh for
industrial applications.

B. High Re vortex advection

A barotropic vortex passing through an overset rotating mesh is
then tested, to identify how the overset method affects the vortex
structure over time. The 2D vortex structure is defined by imposing
initial velocity and density fields on the 2D computational domain
with periodic boundaries. Once the simulation is started, the initial
vortex structure keeps flowing through the computational domain,
thanks to the periodic boundaries,

ux ¼ U0 � e
y � yc
Rvortex

� �
exp �ðx � xcÞ2 þ ðy � ycÞ2

2R2
vortex

" #
; (34)

uy ¼ e
x � xc
Rvortex

� �
exp �ðx � xcÞ2 þ ðy � ycÞ2

2R2
vortex

" #
; (35)

q ¼ q0 exp � e2

2c2s
exp �ðx � xcÞ2 þ ðy � ycÞ2

R2
vortex

 !" #
: (36)

Equations (34) and (35) define the initial velocity fields of the
vortex in 2D Cartesian coordinates, where U0 is the uniform

freestream velocity, which has the Mach number Ma0 ¼ 0:17, and e
refers to the vortex strength, which relates to the vortex rotation
speed.50 The vortex strength e is set equal to 0.1, which implies the
Mach number at the tip of the rotating vortex Mavortex ¼ e

cs
¼ 0:17.

Hence, the velocity field of the vortex is defined by Ma0 and Mavortex.
The coordinate (xc, yc) is the location of vortex center. Also, Eq. (36)
describes the density field of the vortex.50 Note that this density field is
for athermal conditions. Kinematic viscosity is set low to prevent the
vortex structure from being dissipated due to the physical viscosity
(Re ¼ 2U0Rvortex

� ¼ 1010). Figure 14 shows the density field of the vortex.
The length of the whole computational domain is 20 times of the vor-
tex radius Lx ¼ Ly ¼ 20Rvortex, where the number of lattices is
Nx¼ 200. The length of the overset rotating domain is eight times of
the vortex radius L0x ¼ L0y ¼ 8Rvortex , using 80 lattices. The angular
velocity of the overset rotating gridx is defined to have the local veloc-
ity at the edge of the overset rotating grid asMarx ¼ xL0=2

cs
¼ 0:2. The

number of lattices in the radius of the vortex is set as Nvortex¼ 10.
When the vortex flows over the background fixed mesh, it pene-

trates through the overset rotating mesh in the middle. In this condi-
tion, there are two requirements to maintain the vortex structure over
time: the first one is a low viscosity condition to prevent the vortex
from being dissipated and the second one is accuracy of the LRF algo-
rithm which generates numerical errors related to the discrete forcing
term and interpolation between two grids (see Secs. III and IVA).

To evaluate the dissipation, the simulation results using the LRF
algorithm are compared to reference test cases, obtained for a baro-
tropic vortex simulated with the HRR model in the single fixed mesh,
which is known to be stable.6 Figure 15 shows that, as the vortex
moves through the overset rotating mesh, the density profile is gradu-
ally smoothed. In this figure, the HRR models with r¼ 1 are consid-
ered. It shows that the HRR methods perform better than the BGK
model to preserve the density profile. Also, the second order interpola-
tion is more robust compared to the bilinear interpolation because the
spurious viscosity generated from the bilinear interpolation dissipates
the vortex structure.48 This dissipation is caused by the numerical
defects of the overset LRF algorithm, which is quantified at different
mesh resolutions (Fig. 16). The relative L2-norm of the error on pres-
sure reads

FIG. 13. L2 averaged divergence error norms of the overset LRF simulations with
the different collision models and forcing schemes. The errors are evaluated during
20 FTT.

FIG. 14. The vortex passing through the overset rotating grid.
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Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ðp� pref Þ2X
p2ref

vuut ; (37)

where the reference simulation is the HRR simulation without the
overset grid. The number of lattices in the length of the domain is
Nx ¼ 100; 125; 160; 200 and the corresponding resolutions of lattices
in the radius of the vortex are Nvortex ¼ 5; 6:25; 8; 10. The errors are
measured after three flow-through-times (FTT). The mesh conver-
gence test is conducted for the overset method with the bilinear inter-
polation and the HRR models with different r¼ 1 and r ¼ 0:995 are
considered. It shows that the algorithm gives the second order accu-
racy at different mesh resolutions.

Acoustic properties of the vortex are then analyzed. Given the
fact that the overset method with the bilinear interpolation would be
more vulnerable to the spurious noise than the method with the sec-
ond order interpolation, here the spurious noise is studied only with

the bilinear interpolation. Pressure fluctuation [p0ðx; tÞ ¼ @p
@t] is

selected as a parameter to quantify the noise level.51–53 Spurious noise
generated from the overset LRF algorithm is evaluated by analyzing
the pressure fluctuation p0 between the overset LRF and reference
computations (jp0 � p0ref j). From this parameter, the absolute spurious
noise level can be identified, though it may not be sufficient to map
detailed dissipation and dispersion properties of noise wave. Figure 17
plots the spurious noise when the center of the vortex is located at
ðx; yÞ ¼ ð2Lx=5; Ly=2Þ which is the left edge of the square shaped
fixed grid boundary in the middle of the computational domain. In
the case of r ¼ 1:0 (Fig. 17, left), the spurious noise is emitted near
the square boundary and then propagates through the field. However,
introducing r ¼ 0:995 suppresses the level of the spurious noise
(Fig. 17, right). It clearly shows that the spurious noise generated near
the border is killed in the case of r ¼ 0:995. This effect is quantified
by analyzing the power spectral density (Fig. 18). The power spectral
density is calculated about the pressure fluctuation p0 at the location
ðx; yÞ ¼ ð4Lx=5; Ly=2Þ which is the coordinate at downstream of the

FIG. 16. L2 relative pressure error norms of the overset LRF simulations at differ-
ent mesh resolutions. slope-2 legend denotes the slope of the second order
accuracy.

FIG. 17. Instantaneous spurious noise fields made by the overset LRF algorithm of the HRR model with different r: r ¼ 1:0 (left) and r ¼ 0:995 (right). The error fields of
the pressure fluctuations p0 ¼ @p

@t after 1 FTT.

FIG. 15. Density profiles of the vortexes after 5 FTT. The vortex center is located
at Lx=5.
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overset rotating mesh. The pressure fluctuation is measured during
the time span of 1 FTT (1 Lx

U0
). It shows that the r ¼ 1:0 case gives the

spurious noise at various frequency levels. Particularly, the discrepancy
in the power spectral density (PSD) between blue and black lines in
Fig. 18 corresponds to the spurious noise. However, the level of spuri-
ous noise is reduced by introducing r ¼ 0:995 (a red line in Fig. 18).
This effect of r in suppressing the spurious noise corresponds to the
observation which was studied in the context of the mesh refinement.7

C. Taylor–Couette flow

The 2D Taylor–Couette flow is simulated using the overset LRF
method. The HRR model with r ¼ 1:0 is used to run the both overset
LRF and reference simulations. The inner rotating cylinder drives
the flow while the outer cylinder is stationary. The local velocity at the
wall of inner rotating cylinder is the Mach Ma0 ¼ xRi

cs
¼ 0:1. The

Reynolds number is Re ¼ xRiðRo�RiÞ
� ¼ 72 and the corresponding

dimensionless relaxation time is s ¼ 1
c2s

�
Dt þ 1

2 ¼ 0:62. The radius of

the outer stationary cylinder Ro is twice the inner rotating cylinder Ri,
and therefore the aspect ratio is g ¼ Ri

Ro
¼ 0:5. The overset meshes are

composed of the inner rotating mesh and the outer fixed mesh. The
inner rotating mesh is attached to the rotating circular cylinder, where
the wall boundary conditions are the no-slip velocity boundary condi-
tion (uh ¼ 0; @ur

@n ¼ 0) and the Neumann condition for density

(@q@n ¼ 0). Although it employs the no-slip velocity condition, it could
actualize flow characteristics of the rotating solid because the whole
inner mesh is rotating as it is being attached to the inner cylinder. The
radius of the overset rotating grid is Rmg ¼ 1:6Ri, and hence the mesh
velocity at the outer radius of the overset rotating grid is

Marx ¼ Rmgx
cs

¼ 0:16. The outer mesh is affixed to the outer stationary

curved wall having the no-slip velocity boundary condition
(uh ¼ 0; @ur

@n ¼ 0) and the Neumann boundary condition for density

(@q@n ¼ 0). As a reference, the computational domain with the single
fixed mesh is chosen by imposing the slip-wall velocity Ma0 on the
curved cylinder wall. Schematic diagrams of the overset LRF and

reference domains are given in Fig. 19. The initial flow condition of
the azimuthal velocity uh;t¼0 is defined as the analytical Taylor–

Couette solution (uh;t¼0 ¼ Ar þ B
r ;A ¼ �x g2

1�g2 ;B ¼ xR2
i

1
1�g2, r:

the radius from the rotation center), while the initial radial velocity
and density are set as uniform (ur;t¼0 ¼ 0;qt¼0 ¼ q0). The iteration is
stopped when the convergence criteria is reachedP

jjuðx;tþ1Þ�uðx;tÞjjP
jjuðx;tÞjj < 10�7

	 

.

Figure 20 compares the velocity profile of the overset LRF com-
putation with the reference. The velocity is normalized by the local
velocity at the wall. The red line refers the velocity profile at the inner
rotating mesh and the blue line is the velocity at the outer fixed mesh.
The green line is the velocity profile of the reference computation
which is from the single fixed mesh. The number of lattices in the
diameter of the inner solid cylinder is Nd¼ 125. The inner boundary
of the fixed part of the overset LRF grids is located at R

Ro ¼ 0:7 (Fig.
20), where the interpolation from the moving to fixed grid occurs.
Meanwhile, the outer boundary of the rotating part of the overset LRF
grids is placed at R

Ro ¼ 0:8 (Fig. 20), where the rotating grid receives
the information from the fixed grid through the interpolation. The
result shows that the both profiles are well matched. Figure 21
describes the normalized pressure profiles of the overset LRF and ref-
erence computations. The pressure profiles are normalized by the

FIG. 19. Schematic views of the Taylor–Couette flow. Left: the overset LRF domain
which comprises the fixed part of the overset grid (yellow and blue), the moving
part of the overset grid (red and blue), and the overlapped part (blue). Right: the ref-
erence simulation in the single fixed grid.

FIG. 20. Velocity magnitude profiles of the Taylor–Couette flow. The reference sim-
ulation in the single fixed grid (green). The inner rotating part of the overset LRF
grids (red). The outer fixed part of the overset LRF grids (blue). Vi is the velocity at
the inner rotating wall. Ro is the radius of the outer stationary wall.

FIG. 18. Power spectral density of the pressure fluctuations p0 ¼ @p
@t measured

during 1 FTT. The reference simulations in the single fixed grid with r ¼ 1:0 and
r ¼ 0:995 (solid black and dashed black). The overset LRF with r ¼ 1:0 (blue).
The overset LRF with r ¼ 0:995 (red).
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pressure at the inner rotating wall (Pi) and the outer boundary wall
(Po), and both results are well matched.

A mesh convergence test is conducted for the Taylor–Couette
flow computation of the overset LRF algorithm. The L2 relative errors
of velocity fields are computed between the overset LRF results and
the reference computations at different mesh resolutions [Eq. (38)]. Nd

indicates the number of lattices in the diameter of the inner rotating
cylinder. Figure 22 shows that the overset LRF has second order accu-
racy in the mesh convergence test. The overset LRF method is able to
achieve this second order accuracy because all its related components
have the second order accuracy. For example, the LRF method uses
the extrapolation based no-slip wall boundary condition which has the
second order accuracy.31 Also, the accuracy of the forcing term inside
the rotating region is reported as having the second order accu-
racy.22,24,27 That is why the overset LRF algorithm is able to achieve
the robust second order accuracy,

Eu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðu� uref Þ2P

u2ref

s
: (38)

D. Rotating circular cylinder in uniform flow

A rotating circular cylinder in a uniform stream is chosen to fur-
ther assess the overset LRF algorithm. The Mach number of inlet flow
is Ma0 ¼ 0:03, while varying the rotation ratio a of the circular cylin-
der from 0.5 to 2.0. The rotation ratio a is defined as the ratio between
the local velocity at the rotating cylinder wall and the free stream
velocity (a ¼ xR

U0
). The Reynolds number is Re¼ 200 where the flow

becomes unsteady (Re ¼ 2U0R
� ). The height and length of the computa-

tional domain L are set equal to 200R which is large enough to avoid
reflected disturbance from the inlet, outlet, and surrounding walls. The
HRR model with r ¼ 1:0 is employed within the D3Q19 lattice, but
the computational domain is quasi-2D by setting the periodic bound-
aries in the depth direction.

The mesh refinement is applied to save the number of lattices
while keeping the fine resolution in the vicinity of the solid cylinder. In
the test case with Re¼ 200, the size of the finest lattice near the cylin-
der is DX ¼ R

20, which means that the number of lattices on the radius
of cylinder is 20. In the outermost region, the resolution is the coarsest
having the size of lattice as DX ¼ R

2:5. The finest region in the core of
multi-level grids has the length 12R. Figure 23 shows the mesh struc-
ture which is composed of four different mesh levels, where the mesh
resolution is increased two times at each transition interface. The inlet
boundary condition is Dirichlet velocity and the Neumann for density.
The outlet boundary condition is Dirichlet density and the Neumann
boundary condition for velocity. Top and bottom boundaries have the
slip boundary condition, whereas velocity and density are defined
using the Neumann boundary condition and shear stress parallel to
the wall is null. The radius of overset rotating mesh is large enough to
avoid disturbance between the boundary of rotating mesh and the
solid circular cylinder (Rmesh ¼ 3R), which makes the local velocity at
the boundary of overset rotating mesh to be three times of the local
velocity at the rotating cylinder wall. For example, when the rotation
ratio a is 2.0, the local velocity at the rotating cylinder wall is around
0.06 (aMa0) and the local velocity at the boundary of the rotating
mesh becomes around 0.18 (3aMa0). If the rotation ratio is increased
more, then the accuracy of the simulation will be affected due to the
higher local velocity at the outer rotating mesh boundary.

Lift and drag coefficients are compared with the reference cases
which are computed from the direct numerical simulation of
Navier–Stokes computation.54 The aerodynamic coefficients are com-
puted by applying the far-field integral method,55,56 which are

FIG. 23. The mesh refinement structure in global view (left). The mesh structure
near the rotating solid cylinder in close view (right).

FIG. 21. Pressure profiles of the Taylor-Couette flow. The reference simulation in
the single fixed grid (green). The inner rotating part of the overset LRF grids (red).
The outer fixed part of the overset LRF grids (blue). Pi is the pressure at the inner
rotating wall. Po is the pressure at the outer stationary wall. Ro is the radius of the
outer stationary wall.

FIG. 22. L2 relative velocity error norms of the overset LRF simulations at different
mesh resolutions. Nd is the number of lattices in the diameter of inner rotating cylin-
der driving the Taylor-Couette flow.
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averaged over 1 FTT (1 L
U0
). Figure 24 shows the averaged lift and drag

coefficients and the Strouhal number. The averaged lift and drag coef-
ficients are well matched with the references (Fig. 24, top and middle).
All over the different rotation ratios a from 0.5 to 2.0, errors of aver-
aged lift and drag coefficients are less than 1%, but with the higher
rotation ratio near a¼ 3.0, the error becomes increased due to the ele-
vated local Mach number inside the rotating region. Also, the Magnus
effect is well captured, which means that the flow unsteadiness is faded
away as the rotation ratio a reaches 2.0 (Fig. 24, bottom). The Strouhal

number shows that the flow becomes steady when the rotation ratio
is 2.0. The Strouhal number references are not provided for
a ¼ 2:5� 3:0 due to their availability in the reference. Instantaneous
flow fields show that the re-circulation zone behind the cylinder is well
identified compared to the Navier–Stokes reference (Fig. 25, left) and
the Karman vortex structure is well observed (Fig. 25, right),

CD ¼ Fx
qRU2

0
; CL ¼ Fy

qRU2
0
; St ¼ 2fR

U0
: (39)

E. Large-eddy simulation of flow over a 3D rotating
cylinder

The turbulent flow past a 3D rotating circular cylinder in a uni-
form flow is simulated by the overset LRF algorithm. The Mach num-
ber of inlet flow is Ma0 ¼ 0:0735, while the rotation ratio a of the
circular cylinder is a¼ 1.0 (a ¼ xR

U0
). The Reynolds number is

Re ¼ 2U0R
� ¼ 5� 103. The height of channel is set as H ¼ 80R and

the distance from the inlet is 20R and from the outlet is 80R. The
depth of the channel is Z ¼ 6:4R. The HRR model with r ¼ 1:0 is
employed within the D3Q19 lattice, by using the gradient based sec-
ond order interpolation scheme. The large eddy simulation is per-
formed using the shear-improved Smagorinsky model to model the
subgrid scale turbulence.57 The Dirichlet type no-slip wall boundary
condition is imposed on the rotating cylinder. The first cell height at
the top of the cylinder is located near rþ ¼ 1:61.

The mesh refinement is applied to spare the number of lattices
while keeping a fine resolution near the 3D rotating cylinder.58 The
size of the finest lattice near the cylinder is DX ¼ R

50, which means that
there are 50 lattices in the radius of cylinder. The coarsest lattice reso-
lution is DX ¼ R

1:5625. Figure 26 shows the mesh structure which is
composed of five different mesh levels. The inlet boundary condition
is Dirichlet velocity and the Neumann for density.32 The outlet bound-
ary condition is Dirichlet density and the Neumann boundary condi-
tion for velocity.32 Top and bottom walls have frictionless slip wall
boundary conditions.32 Each boundary is equipped with a sponge
zone to prevent spurious reflections.32 The radius of overset rotating
mesh is Rmesh ¼ 3R, which gives the local velocity at the boundary of
the rotating mesh to be aroundMamesh¼ 0.22.

The aerodynamic coefficients are compared with the reference
cases which are computed from the large eddy simulation (LES) of
Navier–Stokes based computation.59 The coefficients are evaluated
from the far-field integral method,55,56 which is averaged over 80 non-
dimensional time span (¼ tU0

2R ) after the simulation has reached a sta-
tistically steady state. Table II displays the averaged aerodynamic coef-
ficients computed using the HRR collision model which are close to
the references within 5% of error. Also, 3D vortex structure is observed
by using the isosurface Q-criterion, which describes a vortex shedding
over the 3D cylinder (Fig. 27).

VI. CONCLUSION

The overset LRF grid with HRR collision model has been assessed
for simulating rotating geometries. The discrete forcing scheme is well
established to consider the fictitious forces inside the overset rotating
region. Also, the interpolation between the rotating and fixed grids is
conducted through the macroscopic quantities. The HRR model

FIG. 24. Aerodynamic coefficients at different rotation ratios in the Reynolds num-
ber Re¼ 200. The averaged lift coefficients (top), the averaged drag coefficients
(middle), and the Strouhal number (bottom).
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successfully proves its capability to stabilize the overset LRF algorithm
as overcoming its numerical defects.

The HRR model is observed to contribute to enhancing accuracy
of the discrete forcing scheme by suppressing the spurious error in the
non-equilibrium tensor, as outperforming the BGK model (see Sec.
IVA). Also, it is demonstrated that the stability of the overset algo-
rithm is improved by injecting artificial viscosity, by tuning the param-
eter r in the HRR model, but it can also overdamp the simulation by
reducing the order of accuracy (see Sec. IVB). Then, different interpo-
lation methods have been considered, showing that the higher order
Hermite interpolation can reduce the spurious errors efficiently (see
Sec. IVC).

TABLE II. Aerodynamic coefficients (Re ¼ 5� 103, a¼ 1.0).

Mobini and Niazi59 HRR

CL 1.880 1.875
CD 0.810 0.819

FIG. 25. Velocity streamlines (left) and vorticity field (right) in Re¼ 200, a¼ 1.0.

FIG. 26. 3D overset mesh structure: fixed mesh (blue), rotating mesh (red), and
the rotating cylinder (black).

FIG. 27. Isosurface Q-criterion colored by velocity in side-view (left) and top-view (right).
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The robustness of the overset-HRR method is assessed with the
empty rotating sub-domain in the high Reynolds and moderate Mach
number flows. It shows that the spurious velocity error of the overset
algorithm is lower than the BGK at different forcing schemes, without
diverging according to time (see Sec. VA). Also, the second order
accuracy at different mesh resolutions is achieved in the vortex advec-
tion test case. It shows that the second order interpolation is more
effective to keep the vortex structure than the bilinear interpolation.
And, the way how its spurious acoustic noise is damped by injecting
the artificial viscosity is presented (see Sec. VB).

Furthermore, the overset method is tested with the rotating
solid body in the mid-to-high Reynolds and Mach number flows. It
achieves the second order accuracy at different mesh resolutions in
the Taylor–Couette flow test case (see Sec. VC). Also, in Re¼ 200,
the errors of aerodynamic coefficients are less than 1% compared to
the Navier–Stokes based references for the test case with a 2D rotat-
ing circular cylinder in uniform channel flow (see Sec. VD).
Finally, a 3D rotating circular cylinder is tested in high Re flow by
using the large eddy simulation approach, which is validated from
the reasonable aerodynamic coefficients compared to the reference
(see Sec. V E).

This research confirms the performance of the overset LRF
method in the framework of the hybrid recursive regularized collision
model. To the best of the authors’ knowledge, this is the first research
which tests the regularization based collision model with the overset
method. The scheme is validated by demonstrating its second order
accuracy at different test cases and its aerodynamic profiles are vali-
dated from the references. In close-term perspective, the authors
expect that this work could deal with industrial applications such as
higher Reynolds number flows with turbulence models, 3D flows, and
compressible flows.
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