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Abstract 

Solid organ transplant recipients are at high risk for the development of severe forms of 

COVID-19. However, the role of immunosuppression in the morbidity and mortality of the immune 

phenotype during COVID-19 in transplant recipients remains unknown. In this retrospective study, 

we compared peripheral blood T and B cell functional and surface markers, as well as serum antibody 

development during 29 cases of mild (World Health Organization 9-point Ordinal Scale (WOS) of 3-4) 

and 22 cases of severe COVID-19 (WOS 5-8) in solid organ transplant (72% kidney transplant) 

recipients hospitalized in our center. Patients who developed severe forms of COVID-19 presented 

significantly lower CD3+ (median 344/mm3 (inter quartile range 197; 564) vs. 643/mm3 (397; 1251), 

and CD8+ T cell counts (124/mm3 (76; 229) vs. 240/mm3 (119; 435). However, activated CD4+ T cells 

were significantly more frequent in severe forms (2.9% (1.37; 5.72) vs. 1.4% (0.68; 2.35), 

counterbalanced by a significantly higher proportion of Tregs (3.9% (2.35; 5.87) vs 2.7% (1.9; 3.45)). A 

marked decrease in the proportion of NK cells was noted only in severe forms. In the B cell 

compartment, transitional B cells were significantly lower in severe forms (1.2% (0.7; 4.2) vs. 3.6% 

(2.1; 6.2). Nonetheless, a majority of transplant recipients developed antibodies against SARS-CoV-2 

(77% and 83% in mild and severe forms respectively). Thus, our data revealed immunological 

differences between mild and severe forms of COVID 19 in solid organ transplant recipients, similar 

to previous reports in the immunocompetent population. 
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Introduction 

 

 Solid Organ Transplant (SOT) recipients are a high-risk population for the 

development of severe forms of COVID-19, with an in-hospital mortality rate reported 

ranging from 20% to 30%1,2. Although comorbidities associated with severe SARS-CoV-2 

infection2,3 such as cardiovascular diseases, obesity, hypertension, and diabetes are frequent 

in this population, factors that influence a substantial proportion of severe disease are not 

well understood. For instance, it is unknown whether the immune response changes that are 

observed in the general population are also present during COVID-19 in SOT patients2.  

 A significant immune dysregulation correlated with COVID-19 severity, with an 

increase in the level of pro-inflammatory cytokines4 and impaired interferon type-I response 

to elevated interleukin-65, dysregulation of innate immune cells (HLA class II downregulation 

on monocytes6 or dysregulation of the mTOR pathway in dendritic cells7), and acquired 

immune cell changes (lymphopenia8 and T cell exhaustion9).  Song et al10 reported a sharp 

difference between mild and severe cases of COVID-19 in 41 immunocompetent patients, 

with a major CD3+, CD4+ and CD8+ and NK cell lymphopenia, excessive T-cell activation, a 

higher expression of T-cell inhibitory molecules, and a higher expression of cytotoxic 

molecules in CD8+ T cells in severe cases compared to mild cases. Zheng et al9 reported an 

overexpression of the inhibitory molecule NKG2A in CD8+T cells and NK cells in patients with 

severe forms, suggesting a state of functional exhaustion in cytotoxic lymphocytes in severe 

forms of COVID-19, in 55 immunocompetent patients with COVID-19.  

 Standard immunosuppression after solid organ transplantation may have variable 

consequences on lymphocyte homeostasis and functions. Therefore, we retrospectively 



examined the impact of SARS-Cov2 infection on innate and adaptive lymphocytes in 

immunocompromised SOT recipients with moderate or severe COVID-19. 

  



Patients and Method 

 

Patients 

 This retrospective study was conducted in the Department of Nephrology of 

Toulouse (registration number RnIPH 2021 sou-16 s, Supporting information 1). 

From March to November 2020, 69 SOT recipients who were hospitalized in our 

department for a COVID infection proven by the detection of SARS-CoV-2 by PCR in 

nasopharyngeal swab. Fifty-one of them were included in this retrospective cohort. The 

eighteen remaining patients, that presented a mild form, were excluded from the analysis 

because of lack of immunological data. 

 COVID-19 severity was assessed at admission and then each day, in accordance with 

the World Health Organization (WHO) 9-point Ordinal Scale (WOS) for clinical improvement 

consisting of the following categories: 0) Uninfected - no evidence of infection; 1) 

Ambulatory - no limitation of activities; 2) Ambulatory - limitation of activities; 3) 

Hospitalized, mild - no oxygen therapy; 4) Hospitalized, mild - oxygen by mask or nasal 

cannula; 5) Hospitalized, severe - non-invasive ventilation or high flow oxygen; 6) 

Hospitalized, severe - intubation and mechanical ventilation; 7) Hospitalized, severe - 

ventilation + additional organ support; 8) Death. Patients were then divided into two 

categories, according to the worst score obtained during the follow-up: Mild (WOS 3, 4) and 

Severe (WOS 5, 6, 7, 8). 

   

 



 

 

Immunological analysis 

 The first immunological analysis was performed during the first five days post 

admission to our department. Serial analyses were then performed, if possible, during 

hospitalization, each week until the discharge. 

All staining was performed on fresh (<24h) whole blood samples drawn by venipuncture in 

EDTA coated tubes. Membrane immunostaining was performed as follows: 100µl of blood 

was incubated with the appropriate amount of antibodies for 15 mins at room temperature, 

followed by red cell lysis with either FACS Lyse buffer (BD Biosciences) or Versalyse 

(Beckman Coulter). After washing with CellwashTM (BD Biosciences), the cell pellet was re-

suspended in the same buffer before rapid analysis by flow cytometry. Intracellular staining 

was performed as follows: 100µl of blood was fixed and permeabilized with the Perfix-nc kit 

(Beckman Coulter), according to the manufacturer’s instructions. Fixed/permeabilized blood 

was then incubated with the appropriate amount of mAbs for 1h, washed and processed for 

flow cytometry analysis. Lymphocyte subsets were enumerated by addition in the 

appropriate stained samples of 100µl of Flow-Count fluorospheres (Beckman Coulter), as per 

the manufacturer’s instructions.  

Data was acquired using a Navios flow cytometer (Beckman Coulter), and data analysis was 

carried out with the Kaluza analysis software (Beckman Coulter). The gating strategy is 

presented in the Supporting Information 2. 

 



 

Virological analysis 

Positivity for SARS-CoV-2 was diagnosed through nasopharyngeal swab samples using a 

home-brew real-time PCR (RT-PCR) or a TMA assay on the Panther instrument (Hologic ®). 

The total antibody against SARS-CoV-2 in serum samples were tested using enzyme linked 

immunosorbent assay (ELISA) kit supplied by Beijing (Wantai Biological Pharmacy Enterprise 

Co., Ltd., China), according to the manufacturer’s instructions. Briefly, the ELISA for total 

antibodies detection (IgG/IgM/IgA) was developed based on double-antigens sandwich 

immunoassay, using mammalian cell expressed recombinant antigens contained the 

receptor binding domain (RBD) of the spike protein of SARS-CoV-2 as the immobilized and 

HRP conjugated antigen. Samples were considered as positive if the S/Co was > 1. 

 

Statistical analyses 

Results were expressed as median with interquartile ranges, unless stated otherwise. 

Continuous variables between groups were compared by unpaired T test and categorical 

variables by two-sided chi-square or two-sided Fisher’s exact test, when necessary. Unpaired 

parametric or non-parametric tests were chosen according to the Gaussian-based data 

analysis. Spearman coefficient was used for correlation analyses and Pearson coefficient was 

established for linear regression analyses. All statistical analyses were performed with 

GraphpadPrism® 8.4.2 software (GraphPad Software Inc., San Diego, CA, USA). A p value 

<0.05 was considered statistically significant. 

  



Results 

 

1. Patient’s characteristics 

 

Fifty-one Solid Organ Transplant (SOT) patients were included in the analysis (29 (57%) 

mild forms and 22 (43%) severe forms) (Table 1). A large majority of patients were kidney 

transplant recipients (21/29 (72%) and 19/22 (86%) in mild and severe forms respectively (p= 

0.31)). Three kidney transplant patients with a mild form, and one kidney recipient with a 

severe form received a re-transplantation. A large majority of patients received a triple, 

tacrolimus-based therapy. Immunosuppression management was protocolized for all 

patients as follows: mycophenolic Acid (MPA), mammalian target of rapamycin (mTOR) 

inhibitors and costimulation signal blockers were immediately stopped at diagnosis of 

COVID19, whereas tacrolimus was maintained (or introduced) with a trough target of 3-5 

ng/ml. It was the first year post transplantation for twelve patients (41%) with a mild form 

and eight (36%) with a severe form (4/12 and 2/8 respectively received anti-T lymphocyte 

globulin  (p> 0.99), 0/12 and 1/8 received a course of anti-CD20 monoclonal antibodies (p= 

0.40)); among them 8 mild cases and 7 severe cases were in the first 3 months post 

transplantation (3/8 and 2/7 respectively received anti-T lymphocyte globulin (p= 0.99), 0/8 

and 1/7 respectively received anti-CD20 monoclonal antibodies (p= 0.47)). At admission, 

eGFR was lower in patients who later developed a severe form compared to mild forms. 

Among the 22 SOT recipients with severe COVID-19, 17 (77%) required mechanical 

ventilation. One patient in each group had a thromboembolism. Four patients with a severe 

form died from COVID-19 (18.2%), compared to none among the mild forms (p= 0.03). 



 

 

2. Mild vs Severe forms of COVID 19 in solid organ transplant recipients  

 

We first compared patients affected by mild versus severe COVID-19 using data 

collected at the closest time before the worst clinical situation (Table 1). The time between 

the first symptom of COVID-19 and sample analysis was comparable in both groups (3 days 

(1; 5) and 6 days (0; 16) days respectively in mild and severe forms, p= 0.16). The lymphocyte 

count was lower in patients presenting a severe form (526/mm3 (278; 782) in severe forms, 

vs. 815/mm3 (560; 1506) in mild forms, p= 0.04), (figure 1A). The NK cell count was 

comparable in both groups (100/mm3 (63; 135) in severe forms vs. 49/mm3 (23; 156) in mild 

forms, p= 0.16). CD3+ T cells were lower in severe forms (344/mm3 (197; 564) vs. 643/mm3 

(397; 1251), p= 0.04), as well as the number of CD8+ T cells (124/mm3 (76; 229) vs. 240/mm3 

(119; 435), p= 0.05). Naive and memory T cell subsets (both in the CD4+ and the CD8+ 

compartments) were similar between both groups (Figure 1B). However, the proportion of 

Tregs (3.9% (2.35; 5.87) vs 2.7% (1.9; 3.45), p= 0.02), and CD4+ DR+/CD38+ T cells (2.9% 

(1.37; 5.72) vs. 1.4% (0.68; 2.35), p= 0.005) was higher in severe forms compared to mild 

forms. We also analyzed markers associated with exhaustion (PD-1, TIGIT, CD39), effector 

differentiation (CD57), and cytotoxic functions (perforin, granzyme B). We did not find any 

statistical difference for these markers between mild and severe COVID-19. Nonetheless, in 

severe forms a positive correlation was found between Tregs frequencies and the 

percentage of CD4 and CD8 T cells expressing TIGIT, CD39+ (for CD4+) and PD-1 (for CD8+). 

Further a negative correlation was observed between CD4+TIGIT+ and CD4+ 



perforin/granzyme B + frequencies (Figure 1C). The proportion of unconventional γδ T cells 

was comparable in both groups (2.5% T cells (1.25; 7.00) in mild forms, vs. 3.5% (2.35; 5.70) 

in severe forms), p= 0.31). Similar results were obtained when kidney transplant patients 

alone were analyzed (Supporting information 3). Therefore, severe forms presented a more 

important lymphopenia, with an intense activation of adaptive immunity, associated with 

suggestive signs of exhaustion. 

B cell numbers did not differ between the two groups (Figure 1A); However, the proportion 

of CD24highCD38high transitional B cells was lower in severe forms than in mild forms (1.2% 

(0.7; 4.2) vs. 3.6% (2.1; 6.2), p= 0.03) (Figure 1D). We also observed in severe forms a 

positive correlation between the proportion of memory CD27+ B cells and the proportion of 

CD4+ EM cells (Figure 1E), suggestive of a co-regulation of these two subsets. Similar results 

were obtained when kidney transplant patients alone were analyzed (Supporting 

information 3). The results remained unchanged when we had excluded two patients from 

the mild form group and one patient from the severe form group in whom samples were 

obtained after the administration of dexamethasone (n=2) or tocilizumab (n=1) (data not 

shown).   

3. The kinetics of expression of the different T cell compartments during COVID-19 

 

Serial blood tests were carried out for seventeen patients (9 mild and 8 severe forms, 

supporting information 4). During hospitalization, a negative correlation was observed in the 

number of NK cells and the duration of severe forms (Spearman r= -0.36, p= 0.05), whereas a 

weak positive correlation was observed in mild forms (Spearman r=0.27, p= 0.02), (Figure 2A). 



Similar results were obtained when kidney transplant patients alone were analyzed (Supporting 

information 3). 

We then compared the differential expression of T and B cell markers in patients who had 

had a mild form whether or not it developed into a severe form during hospitalization (Figure 

2B). A decrease in the proportion of NK cells was observed only in severe forms during the first 

week (20.0% (10.7; 33.0) on the first analysis vs 7.2% (4.4; 13.8) during the first week, p= 0.08). 

An increase in CD3+ T cells was observed in both groups, but later in the severe forms. 

However, CD4+ T cell distribution was stable in both groups. Tregs and the different CD4+ 

memory subsets presented a similar evolution in both groups (Supporting information 5). 

Nonetheless, the proportion of activated CD4+, as well as CD4+ T cells expressing perforin and 

granzyme B, PD1+ CD4+ and CD39+ CD4+ exhaustion markers tended to be at a higher level in 

severe forms compared to mild forms. CD8+ T cell counts tended to be lower over time in 

severe forms compared to mild forms. The change in B cell compartment was similar in both 

groups, except for CD21low memory B cells, which were more elevated in severe forms at 

admission (p= 0.03), and remained at a higher level when the disease worsened.  

 

4. SARS-CoV-2 antibody detection 

 

Among the 44 (26 mild, 18 severe) patients screened for anti-SARS-CoV-2 antibodies 

(time of screening 28 (18.5; 58) and 21 (15; 46) days post diagnosis (p=0.46)): 20 /26 (76.9%) 

with a mild form and 15/18 (83.3%) with a severe form developed a positive serology (p= 

0.72). Fourteen of the fifteen patients that presented a COVID-19 during the first three 

months post transplantation seroconverted. Among them, four patients had receive a T cell 

depleting agent and one patient had receive both T and B cell depleting agents for ABO 



incompatible kidney transplantation. The latter was the sole patient who did not 

seroconvert. Among the 20 patients that presented a COVID-19 during the first-year post 

transplantation, three of them did not seroconvert. The use of a depleting agent was not 

associated with no seroconversion (4/6 patients that had receive a T and or B cell depleting 

agent have seroconvert, vs. 13/14 patients without depleting agents, p= 0.20).  

 Patients with a negative serology presented higher level of CD4+PD1+ (p= 0.06) or 

CD8+PD1+ (p=0.04) comparing with patients that seroconverted (Supporting information 6). 

  



Discussion 

 

 During 2020, the pandemic caused by severe acute respiratory syndrome coronavirus 

2 had a marked impact on solid organ transplant recipients. While SARS-CoV-2 infection is 

frequently asymptomatic in the general population, severe forms seem to be higher by 13 to 

50% in solid organ transplant recipients11. The course of infection in the general population 

is now well documented. A comprehensive understanding of immune responses in COVID-19 

transplant recipients is fundamental to defining the best management for these patients.  

The first step in immune response is driven by the secretion of pro-inflammatory 

cytokines by innate immune cells to inhibit viral replication, recruit other immune cells to 

the infection site and stimulate adaptive immune response12. A dysregulated innate immune 

response, mainly with a type I interferon response driven by genetic susceptibilities such as 

inborn errors of Toll-like receptor-3, IRF-7 dependent type I interferon, or neutralizing 

antibodies to interferon, was previously associated with severe forms of COVID 195,13–15.  

Moreover, T and B cell responses are implicated in preventing SARS-CoV-2 viral clearance, 

and are detectable as early as the first week after the onset of COVID-19 symptoms16. As 

previously demonstrated in the immunocompetent population1,4,5,17, we found that severe 

forms of COVID-19 in SOT recipients were associated with lower CD3+ T cells. There are 

several hypotheses to explain this phenomenon, including a direct cytopathic effect on 

infected immune cells, pulmonary recruitment of lymphocytes from blood, or T cell 

apoptosis during infection18,19. Memory CD8+ T cells can recognize the MHC-class I 

molecules of cells infected by viruses, leading to their elimination and subsequent clearance 

of many viruses including SARS-CoV-220. Lymphopenia could be directly associated with a 



higher level of viral load or delayed viral clearance, leading to a cytokine storm and 

destructive tissue inflammation18. Lymphopenia is frequent in SOT recipients, and could at 

least partially explain the high proportion of severe forms of COVID-19 in this population. A 

recent study21 suggested a delayed SARS-CoV-2 specific T cell response in kidney transplant 

recipient, which may also participate in the development of severe forms in this population. 

In addition, we found a higher level of regulatory T cells in severe forms compared to mild 

forms. Interestingly, we observed in severe forms only a correlation between the percentage 

of Tregs and the expression of exhaustion-related markers TIGIT, CD39 in CD4+ T cells and 

PD1+ and CD39+ in CD8+ T cells. Conflicting results were observed concerning the frequency 

of Tregs and outcomes in general population22–24. Exhaustion was suspected to be a 

mechanism to maintain immune cell homeostasis25, and to participate in the progression of 

the disease severity20,26. The correlation between the percentage of Tregs and the 

expression of exhaustion markers in severe forms of COVID-19 in our patients might be seen 

as a reflection of the intense and prolonged activation of the immune system. However, 

further studies are required to better understand the role of Tregs in acute infections, and 

relations with CD4+ and CD8+ T inhibitory receptors expression in immunocompromised 

recipients.  

As previously shown in immunocompetent population20,27,28, our data also suggest, a 

marked difference in the change in NK cell count during infection in mild and severe cases. 

The exact reasons for these kinetics could involve lung sequestration during pneumonia and 

an apoptosis mechanism directly due to SARS-CoV-229. In any event, the decrease in 

circulating NK cells during infection could facilitate viral spread29.  



We observed changes in the B cell compartment during infection that were similar to 

those described in non-transplant, immunocompetent patients30. First, we observed a sharp 

difference in CD24highCD38high transitional B cells between mild and severe patients. A higher 

percentage of transitional B cells during mild COVID 19 infection compared to severe cases 

was previously reported in the general population30. Infectious diseases could promote the 

expansion of transitional B cells which play a direct protective role by differentiation into 

antibody secreting cells31. We also observed in severe forms a positive correlation between 

the proportion of memory B cells and CD4+ EM T cells, suggesting a strong activation of T 

and B cells during COVID-19. Nonetheless, although most patients seroconverted during the 

course of the infection, a significant proportion did not (23% and 17% of moderate and 

severe COVID-19, respectively). These numbers are higher than those described in the 

general population. Two out of nine seronegative patients had been treated with anti-T 

lymphocyte globulin and/or anti-CD20 therapies and displayed no detectable circulating B 

cells. Recently Burack and colleagues32 reported similar results in a cohort of 70 solid organ 

transplant recipients, in which only 51% of patients developed antibodies after COVID-19. 

Interestingly, time post transplantation (OR=1.26, p= 0.002) and the use of more than 2 

immunosuppressive agents (OR=0.26, p= 0.03) were significantly associated with the 

seroconversion32.  

Based on these different observations, one could hypothesize that delayed and weak 

specific T cell and neutralizing humoral response to SARS-Cov-2 caused by 

immunosuppression lead to virus immune neutralization escape33, prevent rapid clearance 

of the virus leading to severe disease forms. Early reports investigating the response to 

vaccines tend to demonstrated also a weak and delayed response to vaccination in solid 

organ transplant recipients34,35. 



The expression of different T and B cell markers differed between patients that 

presented mild forms and those initially mild who developed severe forms. Patients who 

developed severe forms presented since the diagnosis a lower CD3+, CD8+ T cell, a higher 

expression of PD1 or CD39 in CD4+ T cells, comparing with mild forms that did not 

developed severe forms.  Further studies including a larger number of patients are needed 

to identify the optimal biomarker that predicts disease severity. 

Interestingly, as previously demonstrated in general population, we observed a 

higher proportion of male recipients and lower kidney function in severe forms of COVID-

1936. Acute kidney injury occurs frequently among patients with COVID-19 and is associated 

with poor prognosis37–39. Kidney susceptibility to SARS-CoV-2 infection is in part related to 

the expression of angiotensin-converting enzyme 2 receptor which is used as a port of the 

viral entry into targeted cells40. Case series of naïve kidney biopsies identified acute tubular 

necrosis as the main histological finding41,42, but some patients with genetical predisposition 

(i.e apolipoprotein L1 G1 risk allele homozygosity) could develop collapsing focal segmental 

glomerulosclerosis43,44.  Renal dysfunction could participate in dysregulation of inflammation 

(e.g, CRP and IL-6 levels), nitrogen, carbon (glucose and free fatty acid) metabolism, fueling 

viral proliferation45. 

Our study has various limitations. First, anti-rejection treatment used in our patients 

can have a dramatic impact on lymphocyte numbers and phenotype. Unfortunately, these 

parameters are not accessible; therefore, the influence that the immune status of our 

patients had on the course of COVID-19 and the dynamics of immune cells that we studied 

cannot be inferred. Specifically, due to the relative low number of patients recently 

transplanted that received a T or B cell depleting agent, we were not able to draw robust 



conclusions about the role of induction on the outcome. Further studies investigating the 

impact of depleting agents and the durability of antibodies in patients having received 

depleting agents is required. Second, some patients with mild forms were not included in 

our study due to the absence of immunological samples. However, our large cohort of SOT 

recipients was well defined, with clear clinical differences between mild and severe patients, 

comparable to previously published data46. Third, since all patients received the same 

immunosuppressive treatment, with only the maintenance of a low dose of tacrolimus (and 

mTOR inhibitors, antimetabolites, or second signal inhibitor withdrawal), we were unable to 

investigate the best strategy to reduce severe forms of COVID-19. However, the uniform 

immunosuppressive regimen allowed us to exclude biases in the interpretation of 

immunological analysis. Future large studies concerning the management of 

immunosuppressive therapies during COVID 19 are required to address this issue, especially 

concerning the role of the most lymphopenia-inducing treatments, such as T cell depleting 

agents. Similarly, it should be noted that in our study, treatments against SARS-CoV-2 such 

as antibiotics, convalescent patient plasma, or immunomodulatory agents (e.g. anti-IL-6 

receptor blockers) changed over time. However, since these treatments were proposed only 

for patients who experienced a worsening clinical status associated with COVID-19 therapies, 

this did not influence the immunological results.  

In summary, our data revealed sharp differences between mild and severe forms of 

COVID 19 infections that are similar to what is observed in the general population. CD3 and 

CD8 lymphopenia was highly associated with severe COVID 19 infections in solid organ 

transplant recipients. Prospective studies to investigate the effect of immunosuppression 

management are urgently needed.     
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Tables 

 

1. Main patient characteristics 

 

Variable Mild forms (n=29) Severe forms (n= 

22) 

p-value 

Medical past 

Medical history of 

- Chronic respiratory insufficiency, yes (%) 

- Cardiovascular events, yes (%) 

- Hypertension, yes (%) 

- Cancer, yes (%) 

- Diabetes mellitus, yes (%) 

- Smoking, yes (%) 

Dialysis at admission, yes (%) 

Transplanted organ 

- Kidney, n (%) 

- Liver, n (%) 

- Combined Kidney-Pancreas, n (%) 

- Heart, n (%) 

 

8 (27.6) 

10 (34.5) 

21 (72.4) 

4 (13.8) 

8 (27.6) 

5 (17.2) 

1 (3.4) 

 

21 (72.4) 

4 (13.84) 

0 

4 (13.8) 

7 (31.8) 

11 (50) 

19 (86.3) 

2 (9) 

11 (50) 

4 (18.1) 

1 (4.5) 

 

19 (86.5) 

1(4.5) 

1 (4.5) 

1 (4.5) 

0.74 

0.26 

0.23 

0.61 

0.10 

0.89 

0.85 

 

0.28 

Parameters at admission 

Recipient age, mean (± SD) 

Recipient gender, male (%) 

Body Mass Index (kg/m²), mean (SD) 

IS at admission, n (%) 

Tac / MMF/ S 

Tac / mTORi ± S 

Co-stimulation inhibitors* /MMF/S 

mTORi/S 

55 ± 11 

17 (57) 

27.3 ± 5.0 

 

23 

4 

1 

0 

56 ± 15 

19 (86) 

28.8 ± 7.2 

 

17 

2 

2 

1 

0.63 

0.06 

0.70 

0.64 

Time between transplantation – Sars-CoV-2 diagnosis, 

months (median, IQR25-75) 

49.4 (2; 108) 26.7 (0.9; 77) 0.39 

Time between first symptom of COVID-19 – hospitalization 

(days) median, (IQR25-75) 

4 (2; 6) 3 (1; 5) 0.40 

Time between SARS-CoV-2 diagnosis – first immunological 

analysis (days) median, (IQR25-75) 

3 (1; 5) 6 (0; 16) 0.18 

CT-scan evidence of COVID-19 pneumonia n (%) 

Severity of CT-scan lesions (%) 

<25 

25-50 

>50 

22 (75.9) 

 

12 (41.4) 

8 (27.6) 

2 (6.9) 

19 (86) 

 

4 (18) 

12 (54.5) 

3 (13.6) 

0.48 

0.31 

Oxygen requirement, yes n (n%) 

SaO2 (%)  

6 (20.7) 

97.8 ± 1.6 

9 (40.9) 

96.6 ± 3.4 

0.13 

0.22 

Biologic parameters mean (± SD) 

- Serum creatinine (µmol/L)  

- CKD-EPI eGFR (mL/min/1.73m²) 

- Ferritin (µg/L) 

- Troponin (µg/L) 

- C-Reactive Protein (mg/L) 

- Serum albumin (g/L) 

- Platelets (G/mm3) 

 

125 ± 52 

52.2 ± 23.5 

802 ± 1018 

23.6 ± 24 

61 ± 81 

31.1 ± 6 

195 ± 79 

 

163 ± 58 

35.8 ± 14.9 

786 ± 508 

60.7 ± 76 

95 ± 81 

31.5 ± 10 

194 ± 99 

 

0.008 

0.0007 

0.15 

0.08 

0.02 

0.72 

0.37 



- Serum Interleukin 1β (pg/mL), median, (IQR25-75) 

- Serum Interleukin 6 (pg/mL), median, (IQR25-75) 

- Serum TNFα (pg/mL), median, (IQR25-75) 

- Serum IL8 (pg/mL), median, (IQR25-75) 

0.6 (0.3-1.0) 

10.0 (7.3- 53.9) 

18.7 (12.9; 26.4) 

10.8 (8.35; 13.5)  

0.7 (0.5; 0.9) 

14.7 (4.3; 55.9) 

16.2 (11.0; 28.0) 

8.6 (4.0; 11.2) 

0.51 

0.99 

0.99 

0.22 

Hospitalization follow-up 

Treatments n (%) 

Azithromycin 

Third generation cephalosporin  

Hydroxychloroquine 

Dexamethasone 

Time (days) between Dexamethasone – sample analysis* 

IL6-R blockers 

Time (days) between IL6-R blockers- sample analysis** 

Convalescent plasma therapy 

 

9 (31) 

23 (79) 

4 (14) 

8 (28) 

-1.5 (-3.5 ; 0) 

0 

- 

1 (3) 

 

6 (27) 

21 (95) 

0 

17 (77) 

-2.5 (-12 ; 0) 

4 (18) 

-1 (-7 ; 4) 

2 (9) 

 

0.77 

0.12 

0.12 

0.0006 

0.23 

0.03 

- 

0.57 

Outcomes, n (%) 

Oxygen therapy 

Non-invasive ventilation / High flow oxygen 

Invasive ventilation 

 

7 (24) 

0 

0 

 

22 (100) 

5 (23) 

17 (77) 

0.05 

 

 

Abbreviations: IS, Immunosuppression; Tac, tacrolimus; MMF, mycophenolate mofetil; S; Steroids; 

mTORi, inhibitors of mammalian target of rapamycin; eGFR, Estimated Glomerular Filtration Rate. 

Costimulation inhibitors were represented by anti-CD40 monoclonal antibodies in mild (n=1) and 

severe case (n=1), and belatacept in one case with severe disease. 

*Blood sample analyses were performed before dexamethasone for 6/8 mild forms and 16/17 

severe forms. 

** Blood sample analyses were performed before IL6-R blockers therapy in 3 / 4 severe 

forms. 

  



Figures legend 

 

Figure 1 A-E. Comparison of NK, conventional and regulatory T, and B cell compartment in mild and 

severe forms of COVID-19 

Severe forms were analyzed using the immunological sample taken at the closest time before the 

worse clinical situation. 

A: Total lymphocyte count, CD3+, CD4+, CD8+ T cell count, proportion of NK cells, δγ T cells, and 

CD19+ B cells. 

B: T cell compartment: CD4+ memory T cell compartment, Tregs, activation senescence and 

exhaustion markers, and functional markers. CD8+ memory T cell compartment, activation 

senescence and exhaustion markers, and functional markers. 

C: Correlation between the percentage of Tregs and CD4+ TIGIT+ or CD4+ CD39+ cells, and CD8+ 

PD1+ or CD8+ CD39+, and CD4+TIGIT+ and CD4+perforin+/granzyme B + in mild and severe forms. 

The linear regression analysis was assessed using a Pearson correlation. 

D: B cell compartment: naive, transitional, activated, memory B cells, and plasmablasts. 

Data are represented as median with interquartile ranges. 

E: Correlation between the percentage of CD27+ memory B cells and CD4+ EM T cells in mild and 

severe forms. 

The linear regression analysis was assessed using a Pearson correlation. 

*: p <0.05 

 

Figure 2 A-B: Comparison of NK and conventional, T, and B cell compartment in an initially mild case 

that became severe after the first blood test, and those that remained mild 

A. NK cell count over time in mild and severe forms. 

B. CD3+, activated CD4+, PD1+ and CD39+ CD4+ T cells, Perforin+ / Granzyme B + CD4+ T cells, 

CD8+ T cells, and memory CD19+ CD21low B cells. 

Data are represented as mean with standard error of the mean. 

*: p <0.05 

 

 

 

 

















Adaptive lymphocyte profile analysis discriminates mild and 

severe forms of COVID-19 after solid organ transplantation

• 51 solid organ transplant patients hospitalized
from 03/20 to 11/20 with COVID-19 (29 mild
and 22 severe)

Including 40 kidney, 5 liver, 5 heart, 1 combined
pancreas-kidney, transplant recipients

• Immunological analyses: 
CD3/CD4/CD8 (conventional, Tregs, Tex) cells
B cells/NK cells
serological status

• Comparison before the worst clinical situation, 
and in kinetics

Higher activated CD4+ T cells & Tregs, lower transitional B cells
Lower rate of CD8+ T cells, NK cells

Outcomes: severe forms presentedPatients and Method

CONCLUSION 
Immunological differences between mild and severe forms of COVID 19 are 
observed in solid organ transplant recipients

Del Bello et al, 2021




