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Constrained Differential Dynamic Programming:
A primal-dual augmented Lagrangian approach

Wilson Jalleta,b,*, Antoine Bambadeb,c, Nicolas Mansarda and Justin Carpentierb

Abstract— Trajectory optimization is an efficient approach
for solving optimal control problems for complex robotic
systems. It relies on two key components: first the tran-
scription into a sparse nonlinear program, and second the
corresponding solver to iteratively compute its solution. On
one hand, differential dynamic programming (DDP) provides
an efficient approach to transcribe the optimal control problem
into a finite-dimensional problem while optimally exploiting
the sparsity induced by time. On the other hand, augmented
Lagrangian methods make it possible to formulate efficient
algorithms with advanced constraint-satisfaction strategies. In
this paper, we propose to combine these two approaches into
an efficient optimal control algorithm accepting both equality
and inequality constraints. Based on the augmented Lagrangian
literature, we first derive a generic primal-dual augmented
Lagrangian strategy for nonlinear problems with equality
and inequality constraints. We then apply it to the dynamic
programming principle to solve the value-greedy optimization
problems inherent to the backward pass of DDP, which we
combine with a dedicated globalization strategy, resulting in
a Newton-like algorithm for solving constrained trajectory
optimization problems. Contrary to previous attempts of formu-
lating an augmented Lagrangian version of DDP, our approach
exhibits adequate convergence properties without any switch in
strategies. We empirically demonstrate its interest with several
case-studies from the robotics literature.

1

I. INTRODUCTION

In this paper, we are interested in solving constrained
continuous-time optimal control problems (OCP) of the
form:

min
x,u

∫ T

0

ℓ(t, x(t), u(t)) dt+ ℓT (x(T )) (1a)

s.t. f(t, x(t), u(t), ẋ(t)) = 0, t ∈ [0, T ) (1b)
x(0) = x̄0 (1c)
h(t, x(t), u(t)) ⩽ 0 (1d)
hT (x(T )) ⩽ 0, (1e)

where ℓ and ℓT are the running and terminal costs respec-
tively, (1b) accounts for the system dynamics written as a
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differential algebraic equation (and includes the classical
ODE case ẋ = f(t, x(t), u(t))). We denote X and U the
state and control spaces, T > 0 the time horizon, x̄0 ∈ X
the initial condition, h(·) and hT (·) the path and terminal
constraints.

For numerical solving, the continuous OCP (1) must be
transcribed into an optimization problem (i.e., with a finite
number of variables, which the continuous-time trajectories
are not) [1]. Several transcriptions are possible [2]–[4].
Differential Dynamic Programming (DDP) is a particular OC
algorithm which implies a direct transcription known as sin-
gle shooting [5]. Popularized in robotics in the late 2000s [6],
it has the advantage over other transcriptions of providing a
simple formulation, optimally exploiting the sparsity of the
resulting nonlinear programs while providing feedback gains
at no extra cost. The corresponding transcription, extended
to any constraints, reads:

min
x,u

N−1∑
k=0

ℓk(xk, uk) + ℓN (xN ) (2a)

s.t. fk(xk, uk, xk+1) = 0, k ∈ J0, N − 1K (2b)
x0 = x̄0 (2c)
hk(xk, uk) ⩽ 0 (2d)
hN (xN ) ⩽ 0, (2e)

where hk, hN , fk are appropriate functions discretizing the
dynamics and path constraints depending on the given nu-
merical discretization scheme employed. The ℓk are approxi-
mations of the cost integrals

∫ tk+1

tk
ℓ(t, x(t), u(t)) dt. We use

the shorthands x
def
= (x0, . . . , xN ) and u

def
= (u0, . . . , uN−1)

for the discretized state and control trajectories.

While the nominal DDP algorithm is not able to handle
path constraints, implicit integrators or multiple-shooting
stabilization, several improvements have been proposed over
the years to equip it with these properties. In this paper,
we notably focus on the handling of equality and inequality
constraints, and we first review previous work focusing on
it.

A first subcase of interest only considers OCP with control
bounds, which can be handled by a projected quasi-Newton
approach [7]. Several other projection-based formulations
have then been proposed to extend DDP [8], [9], none of
which have been shown to be robust enough to be widely
adopted in robotics. To account fro inequality constraints,
interior-point methods [10], [11] have also been recently
investigated; however, these do not allow for easy warm-
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starting [3] which is unsuitable for online optimization and
application to model-predictive control (MPC) [12], [13].

In the past few years, augmented Lagrangian approaches
have emerged as a suitable solution for solving constrained
trajectory optimization problems [14]. As argued later in
this paper, it offers many of the good properties that we
need for trajectory optimization: super-linear convergence or
even more quadratic convergence, stability, ability to warm-
start, and so on. Yet the first attempt to write dedicated
OCP solvers based on augmented Lagrangian exhibited poor
convergence properties. Thereby, further refinement using a
projection in a two-stage approach had to be introduced in
the solver ALTRO [15]. The penalty function used in ALTRO
was then recognized to be irregular and discarded [16],
introducing then a switch to an SQP formulation to converge
to a higher precision.

A key idea that we exploit in this paper is to introduce the
augmented Lagrangian formulation directly in the backward
pass, to solve the value-greedy problems while directly
considering the constraints, as initially proposed for multi-
phase constrained problems [17]. This enables us to obtain
better numerical accuracy for equality-constrained problems,
by stabilizing the backward pass using a primal-dual system
of equations to compute the control and multipliers to-
gether [18], and a monotonic update of the penalty parameter
derived from the bound-constrained Lagragian (BCL) [19]
strategy. Their method converges reliably to good numerical
accuracy. We have recently extended this formulation to also
account for the dynamics and other equality constraints using
a primal-dual augmented Lagrangian, allowing for the inclu-
sion of infeasible initialization and implicit integrators [20].

In this paper, we introduce a complete augmented La-
grangian DDP algorithm for handling both equality and
inequality constraints, and validate it on several real-size
robotic scenarios. We first introduce in Sec. II a primal-
dual algorithm, rooted in the nonlinear programming litera-
ture [21], to handle generic nonlinear optimization problems
(NLPs). We then adapt it to the specific case of OCPs of
the form (2) in Sec. III. It results in an overall second-
order quasi-Newton-like algorithm with good convergence
properties for solving constrained trajectory optimization
problems. We finally benchmark our method in Sec. IV on
various standard case studies from the robotics literature.

II. THE PRIMAL-DUAL AUGMENTED LAGRANGIAN
METHOD FOR CONSTRAINED OPTIMIZATION

This section introduces our augmented Lagrangian ap-
proach to solve constrained nonlinear optimization problems
(NLP) of the form:

min
x∈Rn

f(x)

s.t. c(x) = 0, h(x) ⩽ 0,
(3)

where c and h stands for equality and inequality constraints
respectively. We then adapt this approach in Sec. III to
the case of trajectory optimization. While many augmented
Lagrangian approaches have been introduced in the optimiza-
tion literature [22], most of them rely on alternating between

primal solving and dual updates. In this work, we propose
instead to compute combined primal-dual steps by taking
inspiration from the work of Gill and Robinson in [21],
which we extend by also considering inequality constraints
and by connecting it to the proximal method of multipliers
(PMM) [23] that we use to for numerical robustness. We
discuss these contributions in more detail at the end of this
section.

A. Optimality conditions

The Lagrangian L associated to (3) is defined by:

L : Rn × Rne × Rni
+ −→ R

(x, λ, ν) 7−→ f(x) + λ⊤c(x) + ν⊤h(x).
(4)

A saddle point of L is a solution of (3). This leads to the
Karush-Kuhn-Tucker (KKT) necessary conditions [24] for
ensuring a primal-dual point (x, λ, ν) to be optimal:

∇xL(x, λ, ν) = 0,

c(x) = 0 and h(x) ⩽ 0,

ν ⩾ 0 and h(x)⊤ν = 0.

(KKT)

In practice, we search for a triplet (x, λ, ν) satisfying these
optimality conditions (KKT) up to a certain level of prede-
fined accuracy ϵabs > 0, leading us to the following natural
absolute stopping criterion: ∥∇xL(x, λ, ν)∥∞ ⩽ ϵabs,

∥c(x)∥∞ ⩽ ϵabs,
∥[h(x)]+∥∞ ⩽ ϵabs,

(5)

where [z]+ denotes the projection of z ∈ Rnz on the positive
orthant Rnz

+ .

B. Equality constrained nonlinear programming problems

In this section, we provide a high-level overview on the
primal-dual augmented Lagrangian (PDAL) method. It is
closely related to the probably even more famous Method
of Multipliers (MM) [25, Chapter 2], which we review first
in the context of purely equality-constrained NLPs.

Primal-Dual augmented Lagrangian. The PDAL function
LA
µ [21, Section 3] is defined by augmenting the standard

Lagrangian L (4) with two squared ℓ2 penalties:

LA
µ (x, λ;λe)

def
= L(x, λe, 0) +

1

2µe
∥c(x)∥22

+
1

2µe
∥c(x) + µeλe − µeλ∥22,

(6)

where µe is a positive scalar2. The PDAL method then
searches a sequence of iterates approximately minimizing
(6) [28]:

xl+1, λl+1 ≈ωl
min
x,λ
LA
µ (x, λ;λl), (7)

where ≈ωl
stands for requiring (xl+1, λl+1) to be an

ωl-approximate solution to the intermediate subproblem (7).

2Some authors associate a penalty parameter to each constraint. In this
case, the penalty parameters µe is a matrix Σλ [26], [27].



The accuracy level of this approximation is controlled via
the following condition:

∥rl(xl+1, λl+1)∥∞ ⩽ ωl, (8)

where rl is a mapping accounting for the optimality condi-
tions at iteration l: ∥rl(x, λ)∥∞ ⩽ ϵabs if (x, λ) is a solution
to (7) at precision ϵabs. The formula for rl will be specified
in the sequel.

To enforce the generated sequence (xl, λl) to converge to a
local solution of NLP problem (3), we must address two im-
portant aspects: (i) computing suitable iterates (xl+1, λl+1)
satisfying (8) efficiently; (ii) choosing appropriate rules for
scheduling ωl (ωl should decrease) and adequately increasing
µe (as shown by the theory, µe should be increased over the
iterations, but a too large value may drastically impact the
overall numerical stability [22]).

In the last two paragraphs of section II-B, the problem
(i) of finding suitable approximations for the subproblems
is handled in the next paragraph. Then we review in the
last paragraph the BCL globalization strategy (originating
from [29]) for dealing with (ii).

Primal-Dual Newton descent. The (KKT) conditions of (7)
read as:

∇LA
µ (x, λ;λl) = 0. (9)

Iterates (xl+1, λl+1) satisfying (9) at precision ωl can be
derived using a quasi-Newton descent [21], which iteration
at t+ 1 starting from (x̂0

l , λ̂
0
l ) = (xl, λl) reads:[

Hµ
l + 1

µe
J⊤
c Jc −J⊤

c

−Jc µeI

] [
δx
δλ

]
= −

[
∇xLA

µ (x̂
t
l , λ̂

t
l ;λl)

∇λLA
µ (x̂

t
l , λ̂

t
l ;λl)

]
,

(10)
with: {

x̂t+1
l = x̂t

l ⊕ δx,

λ̂t+1
l = λ̂t

l + δλ,
(11)

and where Hµ
l is the Hessian matrix or an approximation of

∇2
xL(x̂t

l , 2π
µ
l (x̂

t
l , λl)− λ̂t

l , 0) with πµ
l (x, λl)

def
= 1

µe
c(x) + λl

following [21] notation, and Jc the jacobian matrix of the
constraints at x̂t

l .
There are two conflicting goals to balance in this iterative

process. First, the smaller the value of µe the faster the con-
vergence, as 1

µe
penalizes then more the constraints. Second,

as µe gets smaller, the conditioning of (Hl +
1
µe
JT
c Jc) gets

worse, thereby limiting the numerical applicability of the
approach, particularly when the condition number of Jc is
already potentially large.

Fortunately, the linear system (10) can be in fact equiva-
lently written in the following form:[

Hµ
l J⊤

c

Jc −µeI

] [
δx
δλ

]
= −

[
∇xL(x̂t

l , λ̂
t
l , 0)

c(x̂t
l) + µe(λl − λ̂t

l),

]
, (12)

which shows that the PDAL method is closely related to
the method of multipliers MM [25, Chapter 2]. Indeed, (12)
implies that the sequence of iterates (xl, λl) are approximate

solutions of a proximal-point method applied to the dual
of (4):

xl+1, λl+1 ≈ωl
min
x

max
λ
L(x, λ, 0)− µe

2
∥λ− λl∥22. (13)

Hence, µe is the inverse of the step-size of the equivalent
MM, and it directly calibrates the convergence speed of
the approach (see [23, Section 4] for details). It is also
worth mentioning that this linear system involves a matrix
that is always nonsingular thanks to the regularization terms
−µe

2 ∥λ − λl∥22. In other words, the problem (12) is always
well-defined in the iterative process. Such linear system is
also better conditioned than (10) [22, Section 17.1].

Finally, (12) implies that the generated sequence
(xl+1, λl+1) converges to a pair (x∗, λ∗) satisfying the
following equivalent optimality conditions:[

∇xL(x∗, λ∗, 0)
c(x∗) + µe(λl − λ∗)

]
= 0. (14)

Hence, we choose the optimality criterion function rl to be:

rl(x, λ)
def
=

[
∇xL(x, λ, 0)

c(x) + µe(λl − λ)

]
. (15)

The globalization strategy. For fixing the hyper-parameters
(tolerance on subproblems ωl, step-sizes µe), we rely on BCL
(see [19] and [22, Algorithm 17.4]) which has been proved
to perform well in advanced optimization packages such as
LANCELOT [30] and also in robotics for solving constrained
optimal control problems [16], [31].

The main idea underlying BCL consists in updating the
dual variables λl from (13) only when the corresponding
primal feasibility (denoted by ηl hereafter) is small enough.
More precisely, we use a second sequence of tolerances
denoted by ϵl (which we also tune within the BCL strategy)
and update the dual variables only when ηl+1 ⩽ ϵl, where
ηl+1 denotes the primal infeasibility as follows:

ηl+1
def
=∥c(xl+1)∥∞. (16)

It remains to explain how the BCL strategy chooses appro-
priate values for the hyper-parameters ωl, ϵl and µe. As for
the update of the dual variables, it proceeds in two stages:

• If ηl+1 < ϵl: the primal feasibility is good enough, we
thus keep the constraint penalization parameters as is.

• Otherwise: the primal infeasibility is too large, we thus
increase quadratic penalization terms on the constraints
for the subsequent subproblem (7).

Concerning the accuracy parameters ωl and ϵl, the update
rules are more technical and the motivation underlying those
choices is to ensure global convergence: an exponential-
decay type update when primal feasibility is good enough,
and see [29, Lemma 4.1] for when the infeasibility is too
large. The detailed strategy is summarized in Algorithm 1
for the general case (including inequalities).



C. Extension to inequality constrained nonlinear programs

As we will see, our approach developed for tackling equal-
ity constraints easily extends to the general case. Indeed, as
we will see the PDAL function only changes in a subtle way
for taking into account inequality constraints. As a result,
it also impacts how the minimization procedure must be
realized.

Generalized primal-dual merit function. In the general
setup, the PDAL function can be framed in its equality con-
strained form introducing a slack variable z ⩽ 0 satisfying
the new equality constraint:

h(x)− z = 0. (17)

Hence, the generalized PDAL function reads:

LA
µ (x, λ,ν, z;λl, νl)

def
= L(x, λl, νl) +

1

2µe
∥c(x)∥22

+
1

2µe
∥c(x) + µeλl − µeλ∥22 +

1

2µi
∥h(x)− z∥22

+
1

2µi
∥h(x)− z + µiνl − µiν∥22 + g(z).

(18)

where we have highlighted in blue the terms related to the
inequalities and g is the (component-wise) indicator function
related to z ⩽ 0:

g(z)
def
=

{
0 if zi ⩽ 0, i ∈ [1, ni],
+∞ otherwise.

The minimization of (18) w.r.t. x, λ, ν or z variables
commutes. Considering the problem structure and following
ideas from [32], it can be shown that z and ν can be directly
deduced as functions of x:

ẑ(x, νl), ν̂(x, νl)
def
= argmin

z,ν
LA
µ (x, λ, ν, z;λl, νl),

ẑ(x, νl) =
1

µi
h(x) + νl −

[
1

µi
h(x) + νl

]
+

,

ν̂(x, νl) =

[
1

µi
h(x) + νl

]
+

.

(19)

The minimization problem can thus be reduced to:

min
x,λ,ν,z

LA
µ (x, λ, ν, z;λl, νl)

= min
x,λ
LA
µ (x, λ, ν̂(x, νl), ẑ(x, νl);λl, νl).

(20)

Yet, we choose to maintain the ν variable relaxed in the
minimization procedure (20) as it enables us to preserve
similar well conditioned linear systems and stopping criterion
derived in (12) and (14). Consequently, the generalized merit
function corresponds to:

Mµ(x, λ, ν;λl, νl)
def
= LA

µ (x, λ, ν, ẑ(x, νl);λl, νl)

= L(x, λ, 0) + 1

2µe
∥c(x)∥22 +

1

2µe

∥∥c(x) + µe(λl − λ)
∥∥2
2

+
1

2µi

∥∥ [h(x) + µiνl]+
∥∥2
2
+

1

2µi

∥∥ [h(x) + µiνl]+ − µiν
∥∥2
2
.

(21)

For ensuring better regularization w.r.t. the primal variable x,
following the PMM [23], we finally consider the following
generalized primal-dual merit function:

Mµ,ρ(x, λ, ν;xl, λl, νl)
def
=Mµ(x, λ, ν;λl, νl)+

ρ

2
∥x⊖xl∥22,

(22)
with ρ > 0 being a proximal positive parameter.

Semi-smooth Newton step with line-search procedure.
Contrary to the equality-constrained case, (22) now corre-
sponds to a semi-smooth function (due to the presence of
the positive orthant projection operators [·]+). It should thus
be minimized using a semi-smooth quasi-Newton iterative
procedure [33, Chapter 1], [22, Chapter 6]. For ensuring
convergence, such procedure must enforce a line-search
scheme3 over the semi-smooth convex primal-dual merit
function (22) to find an adequate step size along the primal-
dual Newton direction, following an approach similar to (12),
while also considering the change of active inequality-
constraints defined by Al(x):

Al(x)
def
= {j | (νl + µihj(x)) ⩾ 0}, (23)

where Al(x) is the shifted active-set of the l-th subproblem
at point x. This definition of shifted active set differs from
existing augmented Lagrangian-based optimal control meth-
ods in robotics which defines the active-set by the condition
hj(x) ⩾ 0, as done in [15], [34].

Algorithm 1: PDAL Method for constrained opti-
mization

1 Inputs:
• initial states: x0, λ0, ν0,
• initial parameters: ϵ0, ω0, ρ, µe, µi > 0,
• hyper-parameters: µf < 1, αbcl ∈ (0, 1), βbcl ∈ (0, 1),

µi,min, µe,min > 0.
while Stopping criterion (5) not satisfied do

Compute (x̃l+1, λ̃l+1, ν̃l+1) satisfying (26)
using II-C ;
xl+1 = x̃l+1;
if ηl+1 < ϵl then

ϵl+1 = ϵlµi; ωl+1 = ωlµ
βbcl
i ;

λl+1 = 2λ̂(xl+1, λl)− λ̃l+1;
νl+1 = [2ν̂(xl+1, νl)− ν̃l+1]+;

else
µi ←− max(µi,min, µfµi), µe ←−
max(µe,min, µfµe);
ϵl+1 = ϵ0µi; ωl+1 = ω0µ

αbcl
i ;

λl+1 = λl; νl+1 = νl;
end
l← l + 1;

end
Output: A (xl, λl, νl) satisfying the
ϵabs-approximation criterion (5) for problem (3).

3Different line-search scheme can be used to minimize the merit func-
tion (22) through a semi-smooth quasi-Newton iterative procedure.



D. Final algorithm

Once a local ωl primal-dual solution (x∗, λ∗, ν∗) min-
imizing (22) is found, for better numerical precision, we
follow the Lagrange multiplier update rule introduced in [28,
Section 4]:

λl+1 = 2λ̂(x∗, λl)− λ∗,

νl+1 = [2ν̂(x∗, νl)− ν∗]+,
(24)

where ν̂(x, νl) is defined from the derivation of our gen-
eralized merit function in (19), and λ̂(x, λl) comes from
the classic multiplier update rule (similar to ν̂(x, νl) without
projections) [28]. Hence, the measure of the convergence
towards the optimality conditions captured by rl (15) can be
more generally defined as follows:

rl(x, λ, ν)
def
=

∇xL(x, λ, ν) + ρ(x⊖ xl)

µe(λ̂(x, λl)− λ)
µi(ν̂(x, νl)− ν)

 . (25)

The generalized inner-loop exit condition thus reads:

∥rl(x, λ, ν)∥∞ ⩽ ωl. (26)

The primal feasibility also generalizes as:

ηl+1
def
=∥(c(xl+1), [h(xl+1)]+)∥∞. (27)

Finally, our approach for solving constrained NLPs (3) is
summarized in Algorithm 1.

E. Key novelties of Alg. 1

Alg. 1 notably differs from [21] for two main aspects.
First, we show in the equality-constrained case that the linear
systems involved in the (quasi-)Newton steps are equivalent
to a better-conditioned linear system originating from the
proximal method of multipliers [23]. For this reason, we
use this equivalent saddle-point system formulation and its
associated stopping criterion to enforce the overall numerical
stability of the approach. Second, we extend the PDAL
function from [21] to account for inequality constraints by
introducing a new merit function that does not require any
slack variables. The resulting algorithm is a generic NLP
solver which is a contribution in itself, with direct application
in optimization for robotics e.g. [35]. As our objective is to
design a constrained OCP solver, we have let the evaluation
of the empirical performances of this generic solver for future
work and we directly jump to its adaptation to dynamic
programming.

III. PRIMAL-DUAL AUGMENTED LAGRANGIAN FOR
CONSTRAINED DIFFERENTIAL DYNAMIC PROGRAMMING

In this section, we extend the differential dynamic pro-
gramming framework accounting for equality constraints
[18] and implicit dynamics [20] to the case of inequality
constraints using the PDAL introduced in Sec. II.

A. Relaxation of the Bellman equation.

In [20], we show that applying the MM to (2) leads
to a relaxation of the Bellman equation, in the equality-
constrained case. We now extend this idea to the inequality-
constrained case. Indeed, the discrete-time problem (2) also
satisfies a dynamic programming equation in the inequality-
constrained case. The value function for the subproblem at
time k satisfies the Bellman relation:

Vk(x) = min
u,x′

ℓk(x, u) + Vk+1(x
′)

s.t. fk(x, u, x′) = 0 and hk(x, u) ⩽ 0.
(28)

The optimality conditions for this Bellman equation involve
a Lagrangian function of the form:

Lk(x, u, x
′, λ, ν) = ℓk(x, u) + Vk+1(x

′)

+ λ⊤fk(x, u, x
′) + ν⊤hk(x, u).

(29)

Following the PDAL presented in Sec. II, we can define
an augmented primal-dual Q-function modelled after (21)
which reads, considering multiplier estimates (λl, νl), l ∈ N:

Ql
µ,k(x, u, x

′, λ, ν) = ℓk(x, u) + Vk+1(x
′)

+ µe

2 (∥ 1
µe
fk(x, u, x

′) + λl∥2 + ∥ 1
µe
fk(x, u, x

′) + λl − λ∥2)
+ µi

2 (∥[νl +
1
µi
hk(x, u)]+∥2 + ∥[νl + 1

µi
hk(x, u)]+ − ν∥2).

(30)

Then, the minimization in the Bellman equation is relaxed
to the following augmented Lagrangian iteration:

V l
k(x) = min

u,x′λ,ν
Ql

µ,k(x, u, x
′, λ, ν), (31)

with the boundary condition V l(x) = ℓf(x). This dy-
namic programming equation can be seen as a relaxation
of the classical Bellman equation (28) using the primal-dual
merit function. Indeed, assuming the multipliers estimates
(λl, νl) are optimal multipliers associated with (28), then
any minimizer (ū, x̄′, λ̄, ν̄) of (31) also satisfy the optimality
conditions for (28).

B. Backward and passes

As outlined in the previous section, the semi-smooth
(quasi-)Newton descent direction for Ql can be recovered
from the system of equations:

Kµ


δu
δx′

δλ
[δν]A

 = −


Qu +Quxδx
Qx′ +Qx′xδx

f + fxδx+ µe(λl − λ)
[h+ hxδx+ µi(νl − ν)]A

 , (32)

where:

Kµ
def
=


Quu Qux′ f⊤

u [hu]
⊤
A

Qx′u Qx′x′ f⊤
x′ [hx′ ]⊤A

fu fx′ −µeI
[hu]A [hx′ ]A −µiI

 , (33)

is a regularized KKT matrix. It is similar to the matrix
derived in [20], with an additional highlighted block covering
the active set of inequality constraints, denoted by [·]A. Sub-
scripted symbols (e.g. fx, hu. . . ) denote partial derivatives.



Fig. 1. Left. Throwing motion on UR10. The ball is the yellow, then green sphere. Right. UR10 reach task. The yellow spheres around the end-effector
and wrist links do not collide with the purple cylinders, and the waypoints are reached at the specified times.

We switch convention from [20], where µ is the reciprocal
of the penalty parameters (µe, µi) we use here.

Since the previous state deviation δx is unknown but the
r.h.s. of (32) is linear in that parameter, we can recover the
solution from the sensitivities, which satisfy:

Kµ


k K
a A
ξ Ξ
ζA ZA


︸ ︷︷ ︸

sensitivities

= −


Qu Qux

Qx′ Qx′x

f + µe(λe − λ) fx
[h+ µi(νl − ν)]A [hx]A

 . (34)

The step is recovered as:

δu = k +Kδx, δx′ = a+Aδx

δλ = ξ + Ξδx, δν = −[ν]Ac + ζA + ZAδx.
(35)

In practice, the system (34) is solved by an LDL⊤ Cholesky
factorization of the KKT matrix Kµ.
Forward pass and linear rollout. Similarly to [20], the
primal-dual step is recovered through a linear rollout over
(35):

δut = kt +Ktδxt, δxt+1 = at +Atδxt

δλt+1 = ξt + Ξtδxt, δνt+1 = −[νt+1]Ac + ζA,t + ZA,tδxt.
(36)

The initial step over (δx0, δλ0, δν0) is associated with the
value function, equality and inequality constraints at k = 0.

C. Convergence and globalization strategy

As discussed in Sec. II and following the approach pro-
posed in [18], [20], we use a BCL strategy as an outer
loop to automatically update the parameters µ and ρ and the
multipliers estimates (λl, νl) according to the progress made
on the primal and dual feasibility. We refer to [20] to see
how BCL is used within the constrained DDP. We also use a
vanilla Armijo backtracking linesearch procedure to compute
a step length at each iteration of the DDP algorithm after the
linear rollout. This linesearch relies on the assumption that
the direction δw = (δx, δu, δλ, δν) is a descent direction
satisfying ∇M⊤

µ δw < 0. To ensure this, we play on the
proximal parameters ρl > 0 in the outer BCL loop, and
have a heuristic similar to [36] and [6] to control the inertias
of the regularized KKT matrices (33), which is central to
obtain good convergence behavior. This is sharp contrast with
heuristic strategies introduced in [7] which tends to increase
the regularization ρ of the problem according to the step
length quantity. Our stopping criteria is the same as in the
constrained optimization framework outlined in Alg. 1.

IV. EXPERIMENTS

To experimentally validate our approach, we extend the
numerical optimal control framework written in Python de-
veloped in [20], which extensively relies on the Pinocchio
rigid-body dynamics library [37] which provides the ana-
lytical derivatives of main quantities [38] and NumPy [39]
for linear algebra. For this reason, we do not provide CPU
timings against existing implementations.

A. Bound-constrained problems

Bound-constrained LQR. The first system we test is the
simple linear-quadratic regulator (LQR) with bound con-
straints, of the form:

min
x,u

N−1∑
k=0

1

2
x⊤
k Qxk +

1

2
u⊤
k Ruk +

1

2
x⊤
NQNxN

s.t. xk+1 = Axk +Buk + c, k ⩽ N − 1

x0 = x̄0, −ū ⩽ uk ⩽ ū

(37)

where Q,QN and R are positive semi-definite matrices,
ū ∈ Rnu

+ are the control bounds. This problem is a convex
quadratic program (QP), which can be solved with classical
QP solvers. We test a few configurations for the bounds,
and parameters A and c, leading to the results in Fig. 2 and
3. For bound-constrained LQR, the proposed takes a ten of
iterations to converge to an optimal solution with a precision
of ϵ = 10−8.
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Fig. 2. Rotational system: A approximates a continuous-time system with
matrix Ac =

[
0 2
−2 0

]
, c = (0.3,−0.2), control bound ū = 0.4. In spite of

the control bounds, which saturate, the target is reached.

Car parking, as proposed in [7, IV.B.]. The car dynamics
is defined by its state variables (x, y, θ, v), the goal is to
steer the car to the state (0, 0, 0, 0). The control inputs are
the front wheel acceleration a ∈ R and angle ω, with
bounds |a| ⩽ 10m/s2, |ω| ⩽ 0.5 s−1. Figure 4 illustrates the
resulting trajectory with comments. Following [7], the system
makes the distinction between the initial angles 3π

2 and −π
2 ,
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Fig. 3. A approximates the continuous-time matrix Ac =
[
0.4 2
−2 0.4

]
and

same c, the target is located near a repulsive equilibrium. Then, even with
the same bound ū = 0.4, the target is not reached. The obtained control is
a bang-bang or on/off control.

which (interestingly for the interest of the benchmark) forces
the solver to find more commutations. We used initial penalty
parameters µ0 = 100, ρ0 = 10−5, and convergence threshold
ϵ = 2.10−4 (no convergence threshold was given in [7]). The
timestep is dt = 0.03 s and horizon T = 15 s. The problem
converges to an optimal solution in 62 iterations.
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Fig. 4. Solution of the car parking task. The starting state is (1, 1, 3π
2
, 0).

The turn control u0 = ω often saturates, causing the policy to go backwards
to turn further; due to the parametrization with angle θ, a lot more turning
is required.

UR5 – throwing task. The goal of this task is to throw
a ball at a target velocity v̄ at a time half-way through
the horizon T = 1 s (with a minimum velocity in the z
direction). We also impose that the elbow frame be above
ground, and that the end-effector stay within a box, as well as
joint velocity and torque limits. The dynamics are integrated
using a second order Runge-Kutta scheme with timestep
dt = 0.05 s. The state and control trajectories are clearly
satisfying the bound constraints as depicted in in Fig. 5. The
robot motion is illustrated in Fig. 1.

B. Obstacle-avoidance
LQR with obstacles. We extend the exemple of the bound-
constrained LQR (37) with path constraints that consist in
avoiding obstacles. We consider avoiding the interiors of
polyhedral sets of the form P (j) = {x | C(j)x ⩽ d(j)}
which is the piecewise linear constraint

max
i

(C(j)x− d(j))i ⩾ 0. (38)
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Fig. 5. Joint angles (upper left), joint velocities (middle left), controls
(lower left), end-effector trajectory (upper right) and velocity (lower right)
for the throwing motion on UR10. The ball trajectory is displayed with
dashed green lines on the upper-right plots. Both the velocities, controls
and end-effector position satisfy their respective bounds, displayed in red.
The minimum target end-effector velocity is also satisfied.

These constraints make the problem nonconvex and thus
cannot be handled by standard convex solvers. Fig. 6 shows
an example with both obstacles and control which saturate.
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Fig. 6. Top: The pink area is a rectangular obstacle defined by (38).
The trajectory avoids the area (at the discretization nodes) and the controls
saturate: both constraints are satisfied. Bottom: Evolution of the primal-dual
residuals after each step (backward and forward pass). We obtain very fast
convergence in a handful of steps.

UR10 – reach task with obstacles. The goal is for the
end-effector pe(q) to reach a target p̄ ∈ R3, expressed as
a terminal cost ℓf(x) = 1

2∥pe(q) − p̄∥2Wee
. We also impose

waypoint constraints at t0, t1 ∈ (0, T ), with time horizon
T = 3 s. As obstacles, we choose simple vertical cylinders



of radius rC > 0 and impose that they should not collide with
spheres of radius rS > 0 centered around given frames pj
(the end-effector and wrist links of the UR10). This condition
is expressed using the distance from the sphere center pj to
the cylinder axis: ∥pj−projcyl. axis(pj)∥ ⩾ rS +rC . Figure 1
illustrates the motion on the UR10 robot, and Fig. 7 controls
and velocities.
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Fig. 7. Controls and velocities for the UR10 reach task. Translucent red
lines indicate control and velocity bounds. The velocities saturate only for
a few axes in the middle and end of the trajectory (the arm bows down to
avoid the obstacles, and lurches forward to reach the final waypoint).

V. CONCLUSION

In this work, we have introduced a new approach for
solving generic NLPs with equality and inequality con-
straints. We notably propose to combine the BCL glob-
alization strategy [19] with the minimization of a relaxed
semi-smooth primal-dual Augmented Lagrangian function
inspired from [21]. We apply then this approach to extend
the framework of equality-constrained [18] and dynamics-
implicit [20] differential dynamic programming to the case
of inequality constraints. It results in an overall second-order
quasi-Newton-like algorithm for solving constrained DDP
problems. We finally highlight the numerical efficiency of
our method on various sets of standard case-studies of the
robotic literature. These contributions pave the way towards
more advanced numerical methods for dealing with complex
optimization problems in robotics, with the ambition of
significantly reducing the computational burden, increase the
numerical robustness of the trajectory optimization methods
while also lowering the need of manually tuning underlying
hyper-parameters. As future work, we plan to implement
in C++ the proposed contributions within the Crocoddyl
library [40] to properly account for equality and inequality
constraints for trajectory optimization.
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