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Ethylene response factors (ERFs) are plant

transcriptional regulators mediating ethylene-dependent gene

expression via binding to the GCC motif found in the

promoter region of ethylene-regulated genes. We report

here on the structural and functional characterization of

the tomato Sl-ERF2 gene that belongs to a distinct class of

the large ERF gene family. Both spliced and unspliced

versions of Sl-ERF2 transcripts were amplified from RNA

samples and the search in the public tomato expressed

sequence tag (EST) database confirmed the existence of

the two transcript species in a number of cDNA libraries. The

unspliced transcript contains two open reading frames

yielding two hypothetical proteins, a small highly truncated

version lacking the APETALA2 domain and a bigger protein

lacking the N-terminal MCGGAAI
I
/L consensus peptide

specific to ERF members from subfamily IV. Nevertheless,

functional Sl-ERF2 protein may only derive from spliced

transcripts since, depending on the tissue, the level of the

spliced transcript is much higher than that of the unspliced

transcript. Sl-ERF2 is expressed in all plant tissues

tested, though its transcript accumulates preferentially in

germinating seeds and ripening fruit. Overexpression of the

Sl-ERF2 gene in transgenic tomato lines results in premature

seed germination and enhanced hook formation of dark-

grown seedlings, which is indicative of increased ethylene

sensitivity. The expression of the mannanase2 gene is

upregulated in Sl-ERF2-overexpressing seeds, suggesting

that Sl-ERF2 stimulates seed germination through the

induction of the mannanase2 gene. It is noteworthy that

the exaggerated hook phenotype is abolished when ethylene

perception is blocked, strongly suggesting that Sl-ERF2

requires other ethylene-dependent components to impact the

hook formation process.
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Introduction

Ethylene is an important phytohormone involved

in many plant developmental processes. Notably, this

plant hormone is involved in germination, fruit ripening,

abscission and senescence (Abeles et al. 1992). Ethylene

response factors (ERFs) are known to act at the last step of

the ethylene signaling pathway (Ohme-Takagi and Shinshi

1995). ERF-type transcription factors are specific to plants

and belong to the large AP2/ERF family which accounts for

470 genes in Arabidopsis thaliana (Riechmann et al. 2000).

Proteins encoded by this family have a highly conserved

DNA-binding domain known as the AP2 domain made up

of 58–59 amino acids involved in the high affinity binding to

the target DNA sequences (Allen et al. 1998). The ERF

proteins specifically bind the so-called GCC box with a

strictly conserved GCCGCC core domain to modulate

transcription of genes such as PDF1.2 or NtChitinase

harboring this type of cis-element on their promoter

(Ohme-Takagi and Shinshi 1995, Gu et al. 2002). It is

known that ERF genes are not only induced by ethylene but

can also respond to jasmonate, ABA, NaCl (Finkelstein

et al. 1998, Zhang et al. 2004), salicylic acid (Gu et al. 2000),

wounding (Tournier et al. 2003) and biotic stress (Fujimoto

et al. 2000, Onate-Sanchez and Singh 2002, Brown et al.

2003, Lorenzo et al. 2003).

It was reported recently that tomato ERFs belong

to four distinct classes, and expression analyses revealed

that representatives from each class display a differential

pattern of expression in a tissue- and developmental-specific

manner (Tournier et al. 2003). The tomato Sl-ERF2

(AY192368) gene belongs to class IV characterized by the

presence of a conserved short N-terminal domain

(MCGGAAII/L) of unknown function. Sl-ERF2 was

capable of binding the GCC box found in the promoter

of ethylene-responsive genes and shows a distinctive
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ripening- and wound-associated expression, yet its

transcript accumulation was unaffected by ethylene

treatment in tomato leaves (Tournier et al. 2003).

ERFs have been shown to be involved in normal and

abnormal plant developmental processes such as plant

defense (Zhou et al. 1997, Thara et al., 1999, Brown et al.

2003, Chakravarthy et al. 2003, Cheong et al. 2003),

osmotic stress tolerance (Park et al. 2001, Zhang et al.

2004) and seed germination (Finkelstein et al. 1998;

Song et al. 2005). Seed germination is one of the earliest

and most important steps of the plant life cycle as it allows

embryos to develop into seedlings. In many plant species,

germination is preceded by dormancy which is known to be

maintained by ABA (Hilhorst et al. 1995) while gibberellin

is required for breaking dormancy and inducing

germination (Karssen et al. 1989, Debeaujon and

Koorneef 2000). Germination is characterized by radicle

protrusion as a result of weakening of the endosperm region

enclosing the radicle tip, termed the endosperm cap (Groot

and Karsen 1987). The ABA-insensitive Arabidopsis

mutant abi4 affected in seed germination displays altered

expression of seed-specific genes (Finkelstein et al. 1998)

and the abi4 mutation is caused by a single pair deletion

within an APETALA2 gene (Finkelstein et al. 1998). While

it has been known for a long time that ethylene impacts seed

germination, it was demonstrated only recently that ERFs

are involved in ethylene-dependent regulation of seed

germination (Song et al. 2005). It was reported that

AtERF7 acts as a transcriptional repressor of the ABA

response and that transgenic Arabidopsis lines expressing

an RNAi construct targeted to down-regulate the AtERF7

gene are more sensitive to ABA and germinate later than

the wild-type seeds.

While direct evidence for the involvement of ERFs in

the seed germination process is still scarce, we report in

the present study that overexpression of the Sl-ERF2 gene

in transgenic tomato lines results in premature seed

germination and causes altered ethylene response as

assessed by the triple response. Moreover, our data suggest

that Sl-ERF2 may stimulate seed germination through the

activation of the Sl-Man2 gene encoding mannanase.

Results

Structure of the Sl-ERF2 gene

In order to gain more information on the structure

of the tomato Sl-ERF2 gene, a 2,517 bp genomic fragment

was isolated and fully sequenced, allowing delineation of

the promoter region (1,367 bp) and the transcribed region

(1,150 bp). The isolated gene is composed of two exons

and one intron and contains an open reading frame (ORF)

of 783 bp. As shown in Fig. 1A, the first exon starts at

nucleotide 151 and ends at nucleotide 292, and the second

exon encompasses the region from nucleotide 368 to 1,150.

Upstream of the first exon there is a 50-untranslated region

(50UTR) of 150 bp and downstream of the second exon a

30UTR of 141 bp. The Sl-ERF2 gene contains a single, small

intron of 75 bp (Fig. 1A). The closest Arabidopsis homolog

of Sl-ERF2 is AtEBP (AT3G16770.1) which also contains a

single intron though of a larger size (237 bp). Sl-ERF2- and

AtEBP-encoded proteins display 52% identity and 64%

similarity at the amino acid level.

Features of the Sl-ERF2 promoter

The tomato Sl-ERF2 genomic clone contains a 1,367 bp

fragment upstream of the transcription site corresponding to

the promoter region that is likely to harbor most regulatory

elements necessary for driving the regulated transcription of

the gene. In silico analysis of the promoter performed by

PlantCare software (http://bioinformatics.psb.ugent.be/

webtools/plantcare/html/) identified three putative

ABA-responsive elements (ABREs) containing the consen-

sus sequence GTACGTGGCGC lying at positions �929,

�1,183 and�1,194 (Fig. 1A). A putative regulatory element,

known as an RY-element, found in the promoter region of

seed-specific regulated genes, was also identified at position

�605. Finally, at least five putative ethylene-responsive

elements (EREs) were found at positions�747,�631,�431,

�322 and �32 (Fig. 1A).

Tomato Sl-ERF2 gene undergoes alternative splicing

Two Sl-ERF2 transcripts were detected and the

corresponding cDNAs cloned and sequenced. The presence

of the intronic region in one of these mRNA species raises

the possibility that Sl-ERF2 undergoes alternative splicing

(Fig. 1B). The search in the tomato expressed sequence

tag (EST) database (sgn.cornell.edu) identified a number of

contigs (SGN-E375112, SGN-E378950, SGN-E377694,

SGN-E258222, SGN-E233294 and SGN-E231194) that

contain an intronic region, confirming the co-existence

of spliced and unspliced versions of Sl-ERF2 transcripts

and suggesting that alternative splicing may play a role in

controlling the expression of the Sl-ERF2 gene. Sequence

analysis of the unspliced Sl-ERF2 transcript revealed two

putative ‘Stop codons’, the first being located in the intron

region at position 153 from the ‘Start codon’ and the second

at position 858. Two proteins can therefore be derived

from this transcript: (i) a low molecular weight predicted

peptide (5.5 kDa) of 50 amino acids; and (ii) a higher

molecular weight protein of 209 amino acids (24 kDa).

Compared with the protein derived from the spliced version

of the Sl-ERF2 transcript, the short putative protein

corresponds to the N-terminal part lacking the AP2

domain, while the larger one corresponds to the C-terminal

moiety containing the AP2 domain but lacking the

http://bioinformatics.psb.ugent.be/


N-terminal MCGGAAII/L consensus peptide specific to

members of subfamily IV of the ERF gene family (Fig. 1B).

In order to assess the relative abundance of each

version of the Sl-ERF2 transcripts, we performed a

comparative analysis of the accumulation of the spliced

and unspliced Sl-ERF2 transcripts. Specific primers

allowing discrimination between the two mRNA species

were used in a quantitative reverse transcription–PCR

(RT–PCR) experiment with RNA samples extracted from

different plant tissues. Table 1 shows that accumulation of

the spliced transcript is 82–70,000 times higher than that of

the unspliced version, suggesting that the spliced version

accounts for most of the Sl-ERF2 transcripts in all tissues

tested. Hence, because it is more likely that functional

Sl-ERF2 protein only derives from the spliced transcript,

we decided to target subsequent expression studies to this

type of transcript.

Sl-ERF2 is mainly expressed in ripening fruit

To uncover the expression pattern of the Sl-ERF2 gene

at the transcriptional level, quantitative RT–PCR analyses

were performed using different tomato plant tissues.

The data presented in Fig. 2A reveal a ubiquitous

expression of Sl-ERF2 in various plant tissues even

though transcripts appear to accumulate preferentially in

germinating seeds and ripening fruit. Pre-germinating seeds

display the highest level of transcript accumulation, whereas

the lowest expression is found in roots where Sl-ERF2

transcript accumulation is 10 times lower than that in fruit.

Table 1 Abundance of the unspliced and spliced forms of

the Sl-ERF2 transcript in different tissues of tomato plants

Spliced/unspliced �SD

Red fruit 72,744 2,395

Flower 10,026 3,113

Root 5,451 6,22

Seed 82 13

Stem 10,822 1,523

Transcript accumulation was monitored using specific primers,
allowing complete discrimination between the spliced and
unspliced forms. The expression level of both forms was assessed
by real-time PCR, and the data are expressed in fold differences in
the abundance of the Sl-ERF2 spliced transcript relative to the
spliced transcript.
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Overexpression of Sl-ERF2 results in enhanced ethylene

sensitivity and premature seed germination

In an attempt to unveil the physiological significance of

Sl-ERF2 and to better explore its role in seed germination,

we generated tomato lines under- and overexpressing this

gene by stably transforming tomato plants with either sense

or antisense constructs under the control of the constitutive

35S promoter. A number of homozygous transgenic lines

corresponding to independent transformation events were

obtained and analyzed. It is noteworthy that no visible

phenotypes could be detected in any of the Sl-ERF2-

suppressed lines (Fig. 2C), which may be due to

functional redundancy among ERF genes. In contrast,

Sl-ERF2-expressing lines showed visible phenotypes

associated with seed germination and ethylene response.

Two transgenic lines S28 and S88 showing 19 and 33 times

higher accumulation of Sl-ERF2 transcript, respectively,

were selected for subsequent studies (Fig. 2B).

Hook formation in the seedlings is one component of

the typical triple response displayed by dark-grown seed-

lings in response to the plant hormone ethylene. Compared

with the wild type, dark-grown overexpressing lines

exhibited exaggerated apical hook formation in the absence

of exogenous ethylene treatment (Fig. 3A). Table 2 shows

that when grown in the dark, 1% of wild-type seedlings

exhibit complete hook formation, whereas this
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proportion increased up to 16 and 18% for S28 and S88

overexpressing lines, respectively. Furthermore, treatment

with 1-methylcyclopropene (1-MCP), a potent inhibitor of

ethylene perception, abolished formation of a complete

hook in the sense lines (Table 2).

Sl-ERF2 is involved in seed germination

Considering the presence of the RY-element, a motif

present in seed-specific promoters, and the ABREs in the

Sl-ERF2 promoter, we sought to assess the effect of the

overexpression of the Sl-ERF2 gene on seed germination.

Figs. 3B and 4A show that both S28 and S88 lines displayed

early germination compared with the wild type. Indeed,

after 78 h imbibition in water, up to 72 and 66% of S28 and

S88 overexpressing seeds germinated, respectively, whereas

525% of wild-type seeds initiated the germination process.

Fig. 4A also indicates that both wild-type and transgenic

seeds display full germination potential (100% germinated

seeds) after 142 h. Because these data suggest that Sl-ERF2

A

wild type plants

Sl-ERF2 over-expressing plants

wild type seeds Sl-ERF2 over-expressing seeds

B

Fig. 3 Phenotypes of the transgenic Sl-ERF2-overexpressing lines. (A) Exaggerated hook curvature displayed by overexpressing lines
compared with the wild type. Hook curvature was monitored on 4-day-old etiolated seedlings. (B) Early germination phenotype displayed
by Sl-ERF2-overexpressing tomato lines. Seeds were imbibed on water-prepared 1% agar, and germination was scored at root protrusion.



might be involved in triggering the seed germination

process, we tested whether Sl-ERF2 overexpression is

capable of overcoming the typical ABA inhibition of seed

germination. We therefore assessed the effect of this

hormone on the germination of transgenic seeds. Fig. 4B

shows that in the presence of 3 mM ABA, 85% of wild-type

seeds failed to germinate, while in the same condition,

inhibition of seed germination was reduced to 45 and

68% for S88 and S28 transgenic seeds, respectively.

However, higher ABA concentrations resulted in almost

complete inhibition of germination of both wild-type

and Sl-ERF2-expressing seeds. We addressed the impact

of ABA treatment on the expression of Sl-ERF2 in

germinating seeds. Fig. 4C shows that the seed-associated

expression of Sl-ERF2 is reduced when seed germination is

inhibited by exogenous ABA treatment. However, ABA

inhibition of Sl-ERF2 gene expression in wild-type germi-

nating seeds occurs only after 48 h imbibition but not at

earlier stages (Fig. 4C).

In order to gain better insight into the mechanism by

which Sl-ERF2 impacts seed germination, we assessed its

transcript accumulation during this process. Taking into

Table 2 Apical hook formation in etiolated wild-type and

Sl-ERF2-overexpressing tomato lines

Air 1-MCP

% �SD % �SD

Wild type 1 0.08 0 0

S88 16 2.9 1.5 0.21

S28 18 1.1 0 0

Complete hook formation (exceeding 2708) in wild-type and
Sl-ERF2-overexpressing seedlings in the dark in air or in airþ 1-
MCP was scored. The data correspond to the mean value of three
biological replicates corresponding to the seedlings.%, percentage
of seedlings with complete hook formation. P50.05.
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account that Sl-ERF2 can give rise to two types of

transcripts, specific primers were designed to target

exclusively the spliced mRNA in all quantitative RT–PCR

experiments. Fig. 5A shows that Sl-ERF2 transcript

accumulation in germinating wild-type seeds decreases

after 24 h imbibition and then increases at 48 h, coincident

with the start of the germination process (see Fig. 4A).

The mannanase2 gene is up-regulated in the Sl-ERF2

overexpressing lines

Because the mannanase2 gene (AF184238) is consid-

ered as a marker of seed germination (Nonogaki et al.

2000), we assessed the accumulation of the tomato

mannanase2 transcript (Sl-MAN2) in germinating seeds.

In wild-type seeds, the level of Sl-MAN2 transcript

decreases slightly after 6 h of imbibition in water and then

undergoes a dramatic increase, reaching 15 times its initial

level after 48 h imbibition (Fig. 5B). In order to uncover

whether the overexpression of Sl-ERF2 impacts the

accumulation of Sl-MAN2 transcripts during the germina-

tion process, we assessed the level of Sl-MAN2 transcripts

in the transgenic lines. Quantitative RT–PCR data (Fig. 6)

reveal that after 12 h imbibition, accumulation of Sl-MAN2

transcripts is substantially higher in Sl-ERF2-expressing

seeds than in the wild type. The level of Sl-MAN2

transcripts in S28 and S88 is three and six times higher

than in the wild type, respectively, clearly indicating that

the Sl-MAN2 gene is up-regulated in the overexpressing

lines (Fig. 6).

To explore further whether the Sl-MAN2 gene is under

direct regulation by Sl-ERF2 and in order to address

whether seed germination is dependent on the expression of

the mannanase2 gene, we assessed its expression in wild-type

and transgenic seeds upon ABA treatment. Fig. 7 indicates

that accumulation of Sl-MAN2 transcripts completely

collapses in the presence of 3 mM ABA in both wild-type

and Sl-ERF2-overexpressing lines. However, the ABA-

induced inhibition of mannanase2 expression is higher in

wild type (39 times) than in transgenic S28 and S88 lines

where it reaches 11 times and six times, respectively,

(Fig. 7). As a result, the level of Sl-MAN2 transcripts in

transgenic seeds remains significantly higher than that in the

wild type, which correlates with the higher germination

capacity exhibited by S88 and S28 lines (see Fig. 4B).

Discussion

ERF proteins are defined as a large family of

transcription factors involved in ethylene-mediated regula-

tion of gene expression (Ohme-Takagi and Shinshi 1995).

We have described previously four new members of the

ERF gene family in tomato and showed that, among

these, Sl-ERF2 exhibits a ripening-associated pattern of

expression (Tournier et al. 2003). We report here that

Sl-ERF2 is also involved in other ethylene-dependent

developmental processes such as apical hook formation

and seed germination. Comparative analyses show that the

tomato Sl-ERF2 gene shares a similar structure with

AtEBP, its putative Arabidopsis ortholog. Both genes are

composed of two exons and a single small intron. However,

while the regulation through alternative splicing has not

been described so far for any member of the ERF family,

an important feature of the Sl-ERF2 gene is the presence of

two different transcripts corresponding to spliced and

unspliced versions. The search in the tomato EST database

(sgn.cornell.edu) confirmed the existence of the two mRNA

species, opening up the possibilty that alternative splicing
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might play a role in the regulation of the Sl-ERF2 gene in

this species. Yet it appears that the unspliced Sl-ERF2

transcript is unlikely to give rise to functional protein since

two truncated proteins can be derived from the two ORFs,

one corresponding to the N-terminal part lacking the AP2

domain and the other corresponding to the C-terminal

part which lacks the N-terminal MCGGAAII/L consensus

peptide specific to ERF members of subfamily IV (Tournier

et al. 2003). Moreover, in all tomato tissues considered, the

abundance of the spliced Sl-ERF2 transcripts is several

thousand times higher than that of the unspliced form and

therefore accounts for most of Sl-ERF2-derived transcripts.

Taking into account that the abundance of the unspliced

transcript is several thousand fold lower than that of the

spliced form, and that the putative proteins derived

from the unspliced form are truncated proteins, it can be

speculated that functional proteins may only derive from

the spliced transcript.

The Sl-ERF2 promoter harbors a number of putative

cis-regulatory elements, among which are three ABREs,

an RY-element found in seed-specific regulated genes

(Fujiwara and Beachy 1994, Reidt et al. 2000) and five

putative EREs. The presence of these regulatory elements

suggests a role for Sl-ERF2 in the associated developmental

processes. The physiological significance of the Sl-ERF2

gene was therefore addressed here by the analysis of up- or

down-regulated transgenic tomato lines. However, none of

the Sl-ERF2-suppressed lines showed any visible phenotype

which may result from functional redundancy among

members of the ERF gene family. In contrast, consistent

with the presence of the RY and ERE cis-elements in the

promoter region of the Sl-ERF2 gene, overexpressing

lines showed altered phenotypes associated with seed

germination and ethylene response. The enhanced ethylene

response in Sl-ERF2-expressing lines is revealed by

exaggerated hook formation in the absence of ethylene

treatment. While these data strongly suggest that Sl-ERF2

is actively involved in hook formation, they also indicate

that in the absence of ethylene perception, Sl-ERF2 alone

is unable to induce hook formation. Therefore, Sl-ERF2

protein seems to require some other ethylene-dependent

components to impact this developmental process.

Up-regulation of Sl-ERF2 also results in premature

seed germination concomitant with enhancement of

mannanase2 gene expression. A number of studies showed

that mannanase activity correlates with the germination

process (Dahal et al. 1997, Dutta et al. 1997). It was

reported that the endosperm cell walls contain approxi-

mately 60% mannan (Groot et al. 1988, Dahal et al. 1997)

probably in the form of galactomannan or galactogluco-

mannan polymers which constitute the major carbohydrate

reserves of the endosperm and contribute to its rigidity.

Endo-(1,4)-b-mannanase, which hydrolyzes internal bonds

within mannan polymers, has been associated with the

mechanism of seed germination in many plant species

(Watkins et al. 1985, Dutta et al. 1994, Downie et al. 1997,

Dutta et al. 1997, Sanchez and De Miguel 1997).

Mannanase activity was found to be high in the endosperm

tissue and, among the tomato mannanase genes expressed in

this tissue, Sl-Man2 was shown to be preferentially

expressed in the endosperm cap of seeds prior to radicle

emergence. In contrast, Sl-Man1 is expressed at the post-

germinative phases (Nonogaki et al. 2000). Therefore, the

expression of the Sl-Man2 gene can be considered as a good

marker of seed germination and the Sl-Man2 protein as a
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Fig. 7 ABA responsiveness of Sl-MAN2 in imbibed seeds. RNAs
were extracted from wild-type (WT) or Sl-ERF2-overexpressing
(S28 and S88) seeds after 48 h of imbibition in either the absence
(black boxes) or presence (white boxes) of 3 mM ABA. The levels of
Sl-MAN2 transcripts were assessed by real-time quantitative PCR
in triplicate, and ��Ct refers to the fold difference in Sl-MAN2
expression relative to imbibed seeds without ABA.
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Fig. 6 Quantitative RT–PCR analysis of Sl-MAN2 transcript
accumulation in Sl-ERF2-overexpressing tomato seeds. ��Ct
refers to the fold difference in Sl-MAN2 expression relative to the
wild type.



germination-specific protein. Mannanase gene expression

seems to be required for seed germination, and in the

Sl-ERF2-expressing lines the premature seed germination

correlates with an enhanced expression of the Sl-Man2

gene, suggesting that Sl-ERF2 impacts seed germination

through the positive regulation of the Sl-Man2 gene. While

we confirm in this study that ABA plays a role in the

inhibition of seed germination (Toorop et al. 2000), we

show for the first time that ABA exerts a negative

regulation on both Sl-ERF2 and Sl-Man2 genes. Our data

indicate therefore that ABA and Sl-ERF2 have opposite

effects on the expression of the mannanase gene and

hence on seed germination. During the process of seed

germination, Sl-ERF2 may allow functional integration of

ethylene and ABA signals, leading to a fine coordination

of this crucial developmental process. The role of ERF-like

proteins in integrating ABA and ethylene responses has

been recently demonstrated for AtERF7, an Arabidopsis

ERF, expressed during drought stress responses of plants

(Song et al. 2005).

Materials and Methods

Plant material

Tomato (Solanum lycopersicum cv MicroTom) plants were
grown under standard greenhouse conditions. For growth in
chamber rooms, the conditions are as follow: 14 h day/10 h night
cycle, 25/208C day/night temperature, 80% hygrometry,
250 mmolm�2 s�1 intense luminosity.

Plant transformation

A sense construct consisting of the full-length coding
sequence of Sl-ERF2 (from ATG to the Stop codon) under the
transcriptional control of the cauliflower mosaic virus 35S (CaMV
35S) promoter and the nopaline synthase (NOS) terminator was
introduced into tomato plants using the pGA643 binary vector.
Agrobacterium tumefaciens-mediated transformation of tomato
plants was carried out according to Jones et al. (2002), and
transformed lines were selected as in Wang et al. (2005). All
experiments were carried out using homzygous lines from F3

or later generations.

Germination assay

After fruits were harvested, seeds were collected and stored at
208C until use. For germination experiments, 100 tomato seeds
were placed in Petri dishes on one layer of filter paper moistened
with 10ml of water, and incubated at 258C in the dark. For
ABA treatment, seeds were imbibed in the presence 3, 10 and
100 mM ABA.

Apical curvature test

Sterilized seeds were put on Murashige and Skoog agar
medium plates and placed in the dark for 2 d at 48C. Hook
formation was assessed on 3-day-old dark-grown seedlings with or
without MCP, and the apical curvature was estimated visually.
Fifty seedlings were used for each experiment and three biological
replicates were performed.

Isolation of the genomic clone

Genomic DNA was extracted from 1 g of ground tomato
(S. lycopersicum) leaf tissue. The resulting powder was mixed
with 5ml of extraction buffer [2% (w/v) hexadecyl-trimethyl-
ammonium bromide, 1.4M NaCl, 20mM EDTA and 100mM
Tris–HCl, pH8] and warmed at 658C for 10min. After a phenol/
chloroform/isoamylalcohol and chloroform extraction, DNA was
precipitated with 1 vol. of isopropanol for 20min on ice. After
centrifugation (5min at 2,000�g), the pellet was re-suspended in
10ml of washing buffer [76% (v/v) ethanol and 10mM ammonium
acetate]. After centrifugation (10min at 2,000�g), the DNA was
re-suspended in 200 ml of sterile water. An RNase treatment was
done at 378C for 10min. A pair of primers was chosen based on the
cDNA sequence, and PCRs were performed on the genomic DNA.
The amplified fragments were cloned and fully sequenced.
Comparative analysis between the genomic clone and cDNA
sequences allowed the delimitation of introns and exons.

Isolation of the Sl-ERF2 promoter

The Universal Genome Walker Kit (Clontech Laboratories,
Inc., Palo Alto, CA, USA) was used to isolate the Sl-ERF2
gene promoter region. Each tomato genomic DNA aliquot was
digested with four 6 bp-recognizing and blunt end-forming
restriction enzymes DraI, EcoRV, PvuII and StuI. Adaptor DNA
which harbored two primer-binding sites for AP1 and AP2
primers provided by the Genome Walker Kit was linked to
both ends of the restricted tomato DNA fragment at 168C.
AP1 (50-GTAATACGACTCACTATAGGGC-30) and AP2
(50-ACTATAGGGCACGCGTGGT-30) primers were used for
PCR amplification, and were paired with two Sl-ERF2 gene-
specific antisense primers. The tomato genomic DNA fragment
with adaptors at both ends was used as a template for the
amplification of the promoter region. The generated PCR
product was cloned into pGEMT-easy vector (Promega) and
fully sequenced. DNA sequences were analyzed with BLAST
network services at the National Center for Biotechnology
Information (Altschul et al. 1997), and by PlantCARE, (Lescot
et al. 2002).

RNA extraction and quantitative PCR

RNA was extracted by the phenol–chloroform method
according to Zegzouti et al. (1999). Extractions from seed tissue
were performed at different times of imbibition: 0, 6, 24, 36 and
48 h before root protrusion. The same protocol was used for
RNA extraction from stem, leaf, root, flower and fruit tissues.
DNase-treated RNA (2mg) was then reverse-transcribed in a total
volume of 20ml using the Omniscript Reverse Transcription Kit
(Qiagen, Valencia, CA, USA). Real-time quantitative PCR
was performed using cDNAs corresponding to 2.5 ng of total
RNA in a 10ml reaction volume using the SYBR Green PCR
Master Mix (PE-Applied Biosystems, Foster City, CA, USA) on
an ABI PRISM 7900HT sequence detection system. PRIMER
EXPRESS software (PE-Applied Biosystems) was used to design
gene-specific primers for Sl-ERF2 and Sl-MAN2 transcripts.
To assess the relative abundance of the Sl-ERF2 spliced
and unspliced transcripts, we designed specific primers capable
of discriminating between the two mRNA species. Actin was
used as a reference gene with constitutive expression in
various tissues. The following gene-specific primers were used:
Sl-ERF2F spliced, GTTCCTCTCAACCCCAAACG; Sl-ERF2R
spliced, TTCATCTGCTCACCACCTGTAGA; Sl-ERF2F_
unspliced, TCGACCCTCTACAGGTACTAGTTAATCATATATA;
Sl-ERF2R_unspliced, TTCACTCGCTCACCACCTGTTT;



Sl-MAN2F, GAATTGGGAAAAAATCCATCCA; Sl-MAN2R,
TCATGGCATGAGACTGACTTGTAAT; Sl-Actin-51F, TGTC
CCTATTTACGAGGGTTATGC; Sl-Actin-51R, AGTTAAATC
ACGACCAGCAAGAT.

For Sl-ERF2 and Sl-MAN2, the optimal primer concentra-
tion was 300 nM and for Sl-Actin the primers were used at 50 nM
concentration. Real-time PCR conditions were as follow: 508C for
2min, 958C for 10min, then 40 cycles of 958C for 15 s and 608C for
1min, and finally one cycle at 958C for 15 s and 608C for 15 s.
For all real-time PCR experiments, two biological replicates were
made and each reaction was run in triplicate. For each sample, a Ct
(threshold constant) value was calculated from the amplification
curves by selecting the optimal �Rn (emission of reporter dye over
starting background fluorescence) in the exponential portion of the
amplification plot. Relative fold differences were calculated based
on the comparative Ct method using the Sl-Actin-51 (accession
No. Q96483) as an internal standard. To determine relative fold
differences for each sample in each experiment, the Ct value for
Sl-ERF2 and Sl-MAN2 genes was normalized to the Ct value for
Sl-Actin-51 and was calculated relative to a calibrator using the
formula 2���Ct.
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Pech, J.C. and Bouzayen, M. (1999) . Ethylene-regulated gene expression
in tomato fruit: characterization of novel ethylene-responsive and
ripening-related genes isolated by differential display. Plant J. 18:
589–600.

Zhang, H., Huang, Z., Xie, B., Chen, Q., Tian, X., Zhang, X., Zhang, H.,
Lu, X., Huang, D. and Huang, R. (2004) The ethylene-, jasmonate-,
abscisic acid- and NaCl-responsive tomato transcription factor JERF1
modulates expression of GCC box-containing genes and salt tolerance in
tobacco. Planta 220: 262–270.

Zhou, J., Tang, X. and Martin, G.B. (1997) The Pto kinase conferring
resistance to tomato bacterial speck disease interacts with proteins that
bind a cis-element of pathogenesis related genes. EMBO J. 16:
3207–3218.




