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In the paper, a self-learning energy management strategy is proposed for fuel cell hybrid electric vehicles (FCHEV). The studied energy system for FCHEV is composed of fuel cells and lithium batteries. A reinforcement learning (RL) based energy management strategy (EMS) for FCHEV is studied to achieve the power allocation of the two energy sources. The objective is to learn a satisfactory EMS from scratch and only through the interaction of environments. Specifically, Q-Learning, one of the RL methods, is applied to minimize fuel consumption and ensure battery sustainability. Compare with Dynamic Programming (DP), which can reach the best performance of sequential decision problems theoretically, Q-Learning based EMS can achieve results close to DP based EMS. During the process, different objective functions are optimized to be suitable for Q-Learning. Finally, the simulation results with python verify the effectiveness of the method proposed in this paper.

I. INTRODUCTION

Fuel cell hybrid electric vehicles are attracting increasing attention. Energy management strategy (EMS), dedicated to allocating power between different energy sources, is one of the key elements to achieve high fuel efficiency [START_REF] Onori | Hybrid electric vehicles: Energy management strategies[END_REF]. Energy management strategies can be divided into three categories: rulebased EMS, optimization-based EMS, and learning-based EMS.

Rule-based strategies realize EMS goals according to the rules which are established based on the characteristics of the concerned powertrain and load. Among those proposed, fuzzy logic rule-based EMS has been demonstrated to be an effective one in a wide range of hybrid electric vehicles [START_REF] Shen | Variable structure battery-based fuel cell hybrid power system and its incremental fuzzy logic energy management strategy[END_REF] [START_REF] Phan | Interval Type 2 Fuzzy Logic Control for Energy Management of Hybrid Electric Autonomous Vehicles[END_REF]. Easy implementation and reliable performance make the rule-based EMS the most widely used strategy. However, over-reliance on experience and difficulty to reach optimal results are its main limitations to higher energy economic.

An EMS problem can often be formulated as a constrained sequence optimization problem. The optimization goal is to find an optimized trajectory with respect to an objective function. Among the optimization methods, the numerical global optimal solution can be found using dynamic programming (DP) [START_REF] Liu | Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization[END_REF]. However, DP implementation needs to the entire information of external system input in advance which is hardly available in practice. In addition, DP implementation is computationally heavy which blocks its real-time implementation. Other modelbased optimal control methods have been investigated for EMS problems. Among them, Pontryagin's minimum principle (PMP), equivalent consumption minimization strategy (ECMS) and stochastic dynamic programming (SDP) are three methods that can be used for real-time implementation [START_REF] Li | Adaptive energy management strategy for fuel cell/battery hybrid vehicles using Pontryagin's Minimal Principle[END_REF][6] [START_REF] Marefat | Energy management of battery electric vehicles hybridized with supercapacitor using stochastic dynamic programming[END_REF].However, the performance of the three methods is highly dependent on the initial parameter settings or identifications that are related to driving conditions. Model predictive control (MPC) is also widely studied for EMS problems [START_REF] He | Model predictive control with lifetime constraints based energy management strategy for proton exchange membrane fuel cell hybrid power systems[END_REF]. The main drawback of MPC is that the control performance is heavily dependent on the model prediction performance and model accuracy.

To tackle the modeling complexity and the uncertain external input information, learning-based approaches are recently receiving attention in both academic and industrial communities [START_REF] Zhang | Fuzzy optimal energy management for fuel cell and supercapacitor systems using neural network based driving pattern recognition[END_REF][10]. Among them, reinforcement learning (RL, which achieved remarkable advances in recent years, is considered a promising alternative for EMS. Through RL, control policy can be learned in a model-free way and only through interaction with the environment [START_REF] Hsu | A Reinforcement Learning Based Dynamic Power Management for Fuel Cell Hybrid Electric Vehicle[END_REF]. The dependency of EMS design on the precise system model could be alleviated and the uncertain information could be handled naturally.

In the paper, EMS based on RL is studied for FCHEV. More precisely, one basic RL method Q-learning is investigated to solve the EMS problem. In practice, the major challenge of using the RL-based method is to improve learning efficiency. For this, two novel objective functions are designed and tested. The performance of the proposed RL-based EMS with the novel objective functions is evaluated by comparing to the benchmarks using DP on a simulation platform.

II. SYSTEM MODELING

The studied FCHEV energy system is as follows: it consists of two energy systems, one is a fuel cells system, another is a batteries system. Each energy source will be cascaded with a DC/DC converter to control their work points and improve system reliability. A simulation platform is built in this study. The models composing the platform are presented in this section.

A. Fuel cell model

The output voltage 𝑉 𝑓𝑐 of the fuel cell can be expressed as follows:
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where 𝐸 0 = 1.23𝑉 is the open-circuit voltage of fuel cell reaction at standard atmospheric pressure, 𝑅 = 8.3145 is gas constant, 𝑇 = 333.15𝐾is the fuel cell temperature, 𝐹 = 96485 is Faraday constant, 𝛼 = 1 is the transfer coefficient, 𝑃 is the local pressure of the reactants and products at this atmospheric pressure. 𝑖 𝑓𝑐 is the current density. 𝑖 𝑙𝑜𝑠𝑠 = 2𝑚𝐴/𝑐𝑚 2 is the current loss, 𝑖 0 = 0.003𝑚𝐴/𝑐𝑚 2 is the exchange current density. 𝐼 𝑙𝑖𝑚 = 1.6𝐴/𝑐𝑚 2 is the limiting current density. 𝑅 𝑜ℎ𝑚 is the fuel cell resistance. 
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where 𝑚̇𝐻 2 is the rate at which hydrogen is consumed, and 𝑀 𝐻 2 is the molar mass of hydrogen. 𝑃 𝑓𝑐 is the output power of fuel cells. The converter model will only concern about its power characteristics. The DC/DC converter model for fuel cells is as follows:
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where 𝑃 𝑓𝑐 ′ is the output power of the fuel cells system. It is considered that 𝑃 𝑓𝑐 ′ is equal to the power command from the control strategy. 𝜂 𝑑𝑐 is the efficiency of DC/DC converter for fuel cells. 𝑃 𝑎𝑢𝑥 is the auxiliary system, and it can be considered as a constant current load 𝐼 𝑎𝑢𝑥 2.0𝐴.

The fuel cells parameters are 𝑛 𝑐𝑒𝑙𝑙 = 200, the effective area of the electrode is 𝐴 𝑓𝑐 = 324𝑐𝑚 2 , the pressure of anode hydrogen is 50 kPa, and anode oxygen is obtained from the air by natural aspiration. As shown in Fig. 2, when the current is: 437A, the FC power can reach the max power: 104kW, and the efficiency will be: 43.19%; When the current is: 63.2A, the FC efficiency can reach the max efficiency: 54.49%, and the power will be: 15.7kW. 

where 𝑉 𝑜𝑐 is the battery open-circuit, 𝑅 𝑏𝑎𝑡 is the internal resistance of the battery. 𝐼 𝑏𝑎𝑡 is the output current of the battery.

When the 𝐼 𝑏𝑎𝑡 > 0, the battery discharge. When the 𝐼 𝑏𝑎𝑡 < 0, the battery discharge.

Given 𝑃 𝑏𝑎𝑡 , 𝐼 𝑏𝑎𝑡 can be calculated according to (5), as .
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The battery state of charge 𝑆𝑂𝐶 𝑏𝑎𝑡 (𝑡) can be obtained by ampere time integration:
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where 𝑄 𝑏𝑎𝑡 is the battery capacity.

The efficiency of the batteries 𝜂 𝑏𝑎𝑡 is:
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𝑉 𝑜𝑐 and 𝑅 𝑏𝑎𝑡 are two empirical functions of SOC shown in Fig. 3, and formed in looking-up table form. Considering the power loss of the battery-side DC/DC converter, the battery output power is expressed as
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where 𝑃 𝑏𝑎𝑡 ′ is the output power of the power converter whose efficiency is 𝜂 𝑎𝑏𝑐 .

We choose the capacity of batteries is: 6.6 Ah, the serial number and parallel number of batteries are 68 and10. Therefore, the standard voltage will be 244.8V. Fig. 3 shows the characteristics of the batteries, including the open circuit voltage and the internal resistance of the batteries. 

C. Vehicle dynamics model

Suppose a vehicle is moving forward at velocity 𝑣 on a road with gradient 𝜃, its dynamic equation is:
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Where The required power for the vehicle is:
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) where, 𝑃 𝑣𝑒ℎ represents the required power of the motor, 𝜂 𝑚 represents the transmission efficiency of the electric machine. According to the power balance, the required power of the motor is provided by fuel cell and battery: veh fc bat P P P  =+ [START_REF] Sutton | Reinforcement Learning: An Introduction second edition[END_REF] In the instantiation of the vehicle, we set the weight of the vehicle to be 2500kg, the windward area is 1.8m2, air density is 1.25 kg/m2, the air resistance coefficient is 0.3, the rolling friction coefficient is 0.01, and the total mechanical transmission efficiency is 90%, the gravity acceleration is 9.8m/s2.

III. PROBLEM FORMULATION AND RL-BASED EMS

The EMS for FCHEV can be considered as a constrained sequence optimization problem. The optimization goal is to find an optimized trajectory to minimize an objective function min max
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subject to the constraints of state and control variables. It is found that the performance of RL-based EMS is dependent on the property of the objective function. In the sequel, several objective functions are formulated to investigate.

A. Objective function design

Objective function formulation is a key element for optimal control. In the paper, minimizing hydrogen consumption and maintaining battery SOC are two general objectives of EMS. Intuitively, the objective function can be formulated as
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where 𝑚 𝐻 2 is the cumulative mass of hydrogen consumed. 𝛼 is a positive real coefficient.𝑆𝑂𝐶 𝑟𝑒𝑓 (𝑖) is the tracking reference of batteries' SOC.

To enable the SOC to track the predefine trajectory faster, the redesigned objective function for fuel consumption minimization and battery SOC tracking would be:
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To avoid the occurrence of too large a positive value or too small negative value 𝛥𝑆 𝑖 , a nonlinear mapping is performed on it based on the hyperbolic tangent function 𝑇𝑎𝑛ℎ( 𝑥) to constrain the size of 𝛥𝑆 𝑖 . As a result, the improved objective function (16) is designed as follows:

2 1 2 0 min min { ( ) Tanh( / )} T H i i i J m i S S  - = = +     ( 16 
)
where 𝛿 is a coefficient greater than zero, which means that when the absolute value of 𝛥𝑆 𝑖 is less than 𝛿, 𝑇𝑎𝑛ℎ( 𝛥𝑆 𝑖 /𝛿) is close to𝛥𝑆 𝑖 /𝛿 . When |𝛥𝑆 𝑖 /𝛿| ≥ 10, | 𝑇𝑎𝑛ℎ( 𝛥𝑆 𝑖 /𝛿)| will be close to 1.

To evaluate the performance of different objective functions, a unified evaluation function is needed. Since the change of SOC in the process is dynamic and the battery will store or release energy, the concept of equivalent fuel consumption is introduced and used as the indicator for evaluating fuel consumption optimization. we can convert the energy charge or discharge in the batteries into the corresponding equivalent hydrogen mass. By combining with (15), a unified evaluation function can be obtained: 
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where 𝜆 is the equivalent fuel factor, 𝑄 𝑏𝑎𝑡 is the capacity of batteries, 𝑉 𝑏𝑎𝑡 is the voltage of Batteries, 𝐸𝑓𝑓 𝑓𝑐 is the average efficiency of the fuel cell system, 𝐸𝑓𝑓 𝑏𝑎𝑡 is the average efficiency of batteries system. 𝑀 𝐻 2 = 2𝑔/𝑚𝑜𝑙 is the molar mass of hydrogen. 𝛥𝐻 = 284𝑘𝐽/𝑚𝑜𝑙 is the high calorific value of hydrogen.

With the evaluation function, we can test the performance of different objective functions under different optimization methods.

B. Constraints

Considering the practical application of energy management optimization problems in FCHEV, constraints are required for both the system state variables 𝒙(𝑡) and action variable 𝒖(𝑡). In the paper, the states of the studied system are chosen as the SOC of batteries 𝑆𝑂𝐶 𝑏𝑎𝑡 (𝑡) and the required power of the vehicle 𝑃 𝑣𝑒ℎ (𝑡).Then, the safety working range of the batteries is set as 𝑆𝑂𝐶 𝑏𝑎𝑡 (𝑡) ∈ [20%, 90%]. The allowed power demand of the vehicle is set as 𝑃 𝑣𝑒ℎ (𝑡) ∈ [-100𝑘𝑊, 100𝑘𝑊]. In addition, the action variable is chosen as the output power of the fuel cell system 𝑃 𝑓𝑐 (𝑡).The designed maximum power of the fuel cell is 117kW. Taking into account the efficiency loss of the auxiliary system and the DC/DC converter of fuel cells system, the range of the control variable is set to 𝑃 𝑓𝑐 (𝑡) ∈ [0,100𝑘𝑊] . The optimal control of the EMS problem will be carried out under these constraints.

C. Reinforcement Learning (RL) based EMS

An RL-based EMS is studied in the paper. As shown in Fig. 4, a general RL controller observes the state 𝑠 𝑡 and the reward 𝑟 𝑡 from the environment, then chooses an action 𝑎 𝑡 with the learned policy at moment t. As a result, the environment will give feedbacks on rewards 𝑟 𝑡+1 and the next state 𝑠 𝑡+1 information. In the study, state variables are composed by the vehicle driving power and the battery SOC, as [𝑃 𝑣𝑒ℎ , 𝑆𝑂𝐶 𝑏𝑎𝑡 ]. The power command for fuel cells system [𝑃 𝑓𝑐 ] is the action variable. The instantaneous reward 𝑟 𝑡 is defined as the opposite instantaneous cost in objective functions 𝐽 0 , 𝐽 RL seeks the optimal policy to maximize the expected discounted cumulated reward, as 0 ( ) max
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where 𝛾 ∈ (0,1) is the discount coefficient factor. For this, Q-value 𝑄(𝑠 𝑡 , 𝑎 𝑡 ) is introduced to express the expected total reward from state 𝑠 𝑡 and taking action 𝑎 𝑡 under one policy. The optimal Q-value 𝑄 * (𝑠 𝑡 , 𝑎 𝑡 ) represents the maximum total reward when the action 𝑎 𝑡 is taken on state 𝑠 𝑡 . 𝑉 * (𝑠) can be obtained from 𝑄 * (𝑠 𝑡 , 𝑎 𝑡 ) by taking the optimal action 𝑎 𝑡 , as:
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Thus, once 𝑄 * (𝑠 𝑡 , 𝑎 𝑡 ) is obtained, the optimal policy can be determined as: According to the Bellman optimality equation, Q-Learning proposes an approach to calculate 𝑄 * (𝑠 𝑡 , 𝑎 𝑡 ) iteratively [Sutton book]. Q-learning algorithm used in the study is summarized in Table I. More details about Q-learning implementation can be found in [START_REF] Sutton | Reinforcement Learning: An Introduction second edition[END_REF]. 

IV. RESULTS AND DISCUSSION

A Python-based training and testing platform have been established for the proposed RL-based EMS. In this section, the results of the proposed EMS and the performance of different objective function settings are analyzed and discussed.

A. Test driving cycles

The proposed EMS will be tested using the driving cycle named Urban Dynamometer Driving Schedule (UDDS). The velocity and power of the specific FCHEV under the driving cycle are shown in Fig. 5. 

B. Dynamic programming results

DP is deployed for the different objective functions to obtain EMS benchmarks. For DP implementation, 𝑆𝑂𝐶 𝑏𝑎𝑡 and 𝑃 𝑓𝑐 are considered respectively as state control variable. The discretization steps for 𝑆𝑂𝐶 𝑏𝑎𝑡 and 𝑃 𝑓𝑐 are respectively 0.1% and 1 kW. EMS time step is set to 1s. The details of DP implementation can be found in [START_REF] Onori | Hybrid electric vehicles: Energy management strategies[END_REF]. In the test, the values of factor 𝛼 in the objective functions 𝐽 0 , 𝐽 1 , 𝐽 2 are set as 100, 1.44 and 2.5 separately, and factor 𝛿 in function 𝐽 2 is 0.001. The initial value of the battery's SOC and the final state value are both set to 50%.

After implementing DP, Fig. 7 shows the specific values of the output power of fuel cells, batteries, and the required power of the vehicle for the concerned driving cycle. During the test process with 3 different objective functions, the SOC termination value is close to the initial SOC value in each test. The quantitative results are summarized in Table II. It is seen that using 𝐽 0 , DP-based EMS can obtain the smallest fuel loss. Further, the optimal control sequences generated using 𝐽 0 , 𝐽 

C. Q-Learning based EMS Test

In this section, the implementation of RL-based EMS is talked about. In the Q-Learning setting, the declining exploration rate 𝜖 from 1.0 to 0.001 is used. The learning rate α of Q-Learning is set as 0.01, and the decay rate γ of Q-Learning is set as 0.99. State and control variables are discretized as follows. the step sizes of 𝑃 𝑣𝑒ℎ , 𝑆𝑂𝐶 𝑏𝑎𝑡 and 𝑃 𝑓𝑐 (𝑡) are respectively 1 kW, 10% and 1 kW. Under the setting, 100,000 episodes of Q-Learning are carried out. In the test, the parameters of the objective functions are consistent with those in the DP test.

The average step losses of 𝐽 1 and 𝐽 2 setting during training processes are shown in fig. 8. It can be seen that the average loss using 𝐽 1 demonstrates converging trend, while the loss for 𝐽 2 tend to be converged after 72,000 episodes. However, the classic objective function J0 still fails to converge after 100,000 episodes of training. This shows that using modified objective functions 𝐽 1 and 𝐽 2 can effectively improve the training efficiency of Q-Learning and increase the convergence rate. It can be seen when the SOC is far from the preset reference trajectory, more powerful actions will be taken to make the SOC return to the normal trajectory as soon as possible.

As shown in Table III, the values using 𝐽 1 and 𝐽 2 are respectively 31.2 and 33.2, which are both smaller than DP results. The hydrogen consumptions are 31.0 g and 29.4 g with function 𝐽 1 and 𝐽 2 which are also smaller than DP results. The reason is that the final state constrain is released for RL-based EMS. The evaluation function values using 𝐽 1 and 𝐽 2 are respectively 31.34 and 29.54 which are also better than DP results. The evaluation value of the function 𝐽 2 is 5.74% lower than that of function 𝐽 1 , which has better performance. Therefore, by using the RL-based EMS and the proposed objective functions, satisfactory EMS results, in terms of consumption reduction and battery charge maintenance, can be achieved. V. CONCLUSION

In the paper, a reinforcement learning (RL) based energy management strategy is studied for fuel cell hybrid electric vehicles. In the strategy, several objective functions are formulated aiming at reducing hydrogen consumption and maintaining battery SOC. The proposed RL-based EMS has been tested and compared with the benchmarks provided by DP. The results show that using the proposed objective functions for RL-based EMS, the learning efficiency can be increased significantly. The quasi-optimal EMS performance can also be achieved. Ongoing work is focused on the theoretical investigation of the effects of the objective function on the learning process.
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  𝑛 𝑐𝑒𝑙𝑙 is the number of single fuel cells, 𝐸 𝑛𝑠𝑡 is the theoretical voltage called the Nernst electromotive force, 𝑉 𝑎𝑐𝑡 is the voltage drop due to the phenomenon of activated polarization, 𝑉 𝑐𝑜𝑛 is the voltage drop caused by concentration polarization, and 𝑉 𝑜ℎ𝑚 is the ohmic voltage loss.

					The specific
	model of each part of the fuel cell is shown in (2):
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  𝐹 𝑚 represents the driving force provided by the motor, 𝐹 𝑎𝑖𝑟 represents air resistance, 𝐹 𝑓 represents rolling resistance, and 𝐹 𝑠 shows slope resistance and 𝐹 𝑎 represents acceleration resistance. 𝜌 and 𝐶

𝐷 represent air density and air resistance coefficient respectively. 𝐴 represents the windward surface volume of the car body, and 𝑣 represents the vehicle velocity. 𝑚 represents the vehicle mass. 𝐺 = 𝑚𝑔 represents the gravity of the vehicle, and 𝑓 represents the sliding resistance coefficient.
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TABLE I .

 I THE PROCEDURE OF THE Q-LEARNING ALGORITHM Q-Learning Initialize 𝑄(𝑠, 𝑎), ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜(𝑠), arbitrarily, and 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙,⋅) = 0 Repeat for each episode: Reset the FCHEV environment with the initialize states 𝑆 Repeat for each step of the episode: Choose 𝐴 from 𝑆 using policy derived from 𝑄 (e.g., 𝜀 -𝑔𝑟𝑒𝑒𝑑𝑦) Observe the reward 𝑅 and next state 𝑆′ 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥 𝑎 𝑄(𝑆 ′ , 𝑎) -𝑄(𝑆, 𝐴)] Update state 𝑆 ← 𝑆 ′ Until 𝑆 is terminal

  1 , 𝐽 2 are tested using evaluation function defined in (17). The evaluation values of 𝐽 0 , 𝐽 1 , 𝐽 2 results are 33.49, 38.53 and 35.91. The objective function 𝐽 0 still have the smallest evaluation value.
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						Time (s)			

TABLE II

 II 

		.	DYNAMIC PROGRAMMING TEST RESULTS
	Objective Functions	Hydrogen Consumption (g)	∆SOC (%)	Cumulative Loss	Evaluation Value
	Function 𝐽 0		33.49	-0.05%	56.86	33.49
	Function 𝐽 1		35.15	-0.10%	35.16	38.53
	Function 𝐽 2		34.14	-0.10%	2.87	35.91

TABLE III

 III 

		.	Q-LEARNING TEST RESULTS
	Objective Functions	Hydrogen Consumption (g)	∆SOC (%)	Cumulative Loss	Evaluation Value
	Function 𝐽 1	31.0		-3.21%	31.2	31.34
	Function 𝐽 2	29.4		-3.21%	33.2	29.54
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